Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia
Coffea arabica L. is a crucial agricultural product in Colombia, ranking as the second most traded commodity worldwide. This sector is vital for the livelihoods of over 540,000 families, with coffee cultivation extending across 600 municipalities in 23 coffee-growing departments. The Ministry of Agr...
- Autores:
-
Zea Quintero, German Elías
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74916
- Acceso en línea:
- https://hdl.handle.net/1992/74916
- Palabra clave:
- Coffea arabica
Thermal stress
Climate change
Photosystem II (Fv/Fm)
Thermal safety margin (TSM)
Maximum quantum efficiency
T50 (injury temperature)
Biología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_5c62f20183c544048b5c9f98086c8c54 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74916 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia |
title |
Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia |
spellingShingle |
Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia Coffea arabica Thermal stress Climate change Photosystem II (Fv/Fm) Thermal safety margin (TSM) Maximum quantum efficiency T50 (injury temperature) Biología |
title_short |
Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia |
title_full |
Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia |
title_fullStr |
Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia |
title_full_unstemmed |
Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia |
title_sort |
Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia |
dc.creator.fl_str_mv |
Zea Quintero, German Elías |
dc.contributor.advisor.none.fl_str_mv |
Rada Rincón, Fermín Hernández Cortés, Sofía Lasso De Paulis, Eloísa |
dc.contributor.author.none.fl_str_mv |
Zea Quintero, German Elías |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Ecofiv: Grupo de Ecologia y Fisiologia Vegetal Uniandino |
dc.subject.keyword.eng.fl_str_mv |
Coffea arabica |
topic |
Coffea arabica Thermal stress Climate change Photosystem II (Fv/Fm) Thermal safety margin (TSM) Maximum quantum efficiency T50 (injury temperature) Biología |
dc.subject.keyword.none.fl_str_mv |
Thermal stress Climate change Photosystem II (Fv/Fm) Thermal safety margin (TSM) Maximum quantum efficiency T50 (injury temperature) |
dc.subject.themes.spa.fl_str_mv |
Biología |
description |
Coffea arabica L. is a crucial agricultural product in Colombia, ranking as the second most traded commodity worldwide. This sector is vital for the livelihoods of over 540,000 families, with coffee cultivation extending across 600 municipalities in 23 coffee-growing departments. The Ministry of Agriculture reports that coffee contributes 15% to the Colombian agricultural GDP, generating approximately 2.5 million direct and indirect jobs. In the Colombian context, assessing plant thermal resistance in agricultural crops has become increasingly significant due to climate change. Thermal stress poses a serious threat to biodiversity and agricultural production, endangering suitable habitats for cultivating C. arabica. Understanding how this species responds to rising temperatures is essential for adaptation to future climate scenarios. The purpose of this study is to quantify how different varieties of C. arabica respond to high temperature stress. Eight different varieties of C. arabica were studied: Bourbon, Castillo, Caturra, Cenicafe 1, Colombia, Geisha, Tabi and Typica. Maximum quantum efficiency of photosystem II (Fv/Fm) measurements were taken on leaves of plants subjected to different temperatures between 20 and 50°C to determine their corresponding injury temperatures (T50). This temperature corresponds to a 50% reduction in Fv/Fm values measured as a function of the reference 20°C temperature. Additionally, the thermal safety margin was calculated for different coffee-producing municipalities of Colombia comparing the T50 values with the maximum air temperature of sites obtained from the Agroclima database. This research reveals significant differences in T50 among various C. arabica varieties, with Caturra and Typica exhibiting greater thermal stress tolerance. Current climatic conditions in the studied municipalities do not exceed the T50 of these varieties, indicating no harmful temperatures. However, with climate change predicting increased extreme temperature events, the higher T50 for Caturra and Typica are crucial for enhancing coffee crop resilience and stability. Despite previous studies suggesting temperature sensitivity in Arabica coffee, this research shows that it can tolerate heat stress up to 42°C, maintaining photosynthetic efficiency up to 40°C. This challenges the notion that Arabica coffee lacks thermal resilience. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-02T18:28:02Z |
dc.date.available.none.fl_str_mv |
2024-08-02T18:28:02Z |
dc.date.issued.none.fl_str_mv |
2024-08-02 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74916 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74916 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. doi:10.1146/annurev.arplant Davis, A. P., Mieulet, D., Moat, J., Sarmu, D., & Haggar, J. (2021). Arabica-like flavour in a heat-tolerant wild coffee species. Nature Plants, 7(4), 413-418. Echeverri-Giraldo, L. F., Osorio Pérez, V., Tabares Arboleda, C., Vargas Gutiérrez, L. J., & Imbachi Quinchua, L. C. (2024). Content of Acidic Compounds in the Bean of Coffea arabica L., Produced in the Department of Cesar (Colombia), and Its Relationship with the Sensorial Attribute of Acidity. Separations, 11(2), 52. Jiménez-Suancha, S. C., Álvarado, O. H., & Balaguera-López, H. E. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 149-160. Krause, G.H., Winter, K., Krause, B., Jahns, P., García, M., Aranda, J., et al. (2010). High-temperature tolerance of a tropical tree, Ficus insipida: Methodological reassessment and climate change considerations. Functional Plant Biology, 37, 890–900. https://doi.org/10.1071/FP10034 León-García, I.V., & Lasso, E. (2019). High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world. PLoS ONE, 14(11), e0224218. https://doi.org/10.1371/journal.pone.0224218 Mouget, J., & Tremblin, G. (2002). Suitability of the fluorescence monitoring system (FMS, Hansatech) for measurement of photosynthetic characteristics in algae. Aquatic Botany, 74, 219-231. Smillie, R.M., & Hetherington, S.E. (1990). Screening for stress tolerance by chlorophyll fluorescence. pp. Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research: Atmospheres, 114(D2). Yamane, K., Nishikawa, M., Hirooka, Y., Narita, Y., Kobayashi, T., Kakiuchi, M., ... & Iijima, M. (2022). Temperature tolerance threshold and mechanism of oxidative damage in the leaf of Coffea arabica ‘Typica’ under heat stress. Plant Production Science, 25(3), 337-349. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
11 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Biología |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Ciencias Biológicas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/709bec6d-d952-4a4a-9889-1a4828562223/download https://repositorio.uniandes.edu.co/bitstreams/99f893cd-037a-4fb4-93d5-daab2d48eba5/download https://repositorio.uniandes.edu.co/bitstreams/5b2bac99-2b28-447f-b99b-287088695c84/download https://repositorio.uniandes.edu.co/bitstreams/ccddb17d-b407-46c4-8a67-cc99f9d7fd6d/download https://repositorio.uniandes.edu.co/bitstreams/a74d9934-b5a8-4884-8a1a-7cb8590a7fe4/download https://repositorio.uniandes.edu.co/bitstreams/03879b3a-18bc-4e44-9ab3-2d1c960682ac/download https://repositorio.uniandes.edu.co/bitstreams/8b77efbb-f200-4828-8be7-22b466b4c2dc/download https://repositorio.uniandes.edu.co/bitstreams/dc143580-cf62-4c1a-a1e3-45b0f4f11cf4/download |
bitstream.checksum.fl_str_mv |
2a0697ad327bb5fc2ecc9178f75a2c09 85c595c342742fc68a7e2e019acb5b5b ae9e573a68e7f92501b6913cc846c39f 4460e5956bc1d1639be9ae6146a50347 ebd22e315a5f52c9a536d11db2d98d4d 30bd2470a900d530c9538b0e4e20f11a 90ec4f96d20c3bd62db6d87ea2389bbc 981a75211944b12e5693b9e4122f4b50 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134059828051968 |
spelling |
Rada Rincón, FermínHernández Cortés, SofíaLasso De Paulis, Eloísavirtual::19641-1Zea Quintero, German ElíasFacultad de Ciencias::Ecofiv: Grupo de Ecologia y Fisiologia Vegetal Uniandino2024-08-02T18:28:02Z2024-08-02T18:28:02Z2024-08-02https://hdl.handle.net/1992/74916instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Coffea arabica L. is a crucial agricultural product in Colombia, ranking as the second most traded commodity worldwide. This sector is vital for the livelihoods of over 540,000 families, with coffee cultivation extending across 600 municipalities in 23 coffee-growing departments. The Ministry of Agriculture reports that coffee contributes 15% to the Colombian agricultural GDP, generating approximately 2.5 million direct and indirect jobs. In the Colombian context, assessing plant thermal resistance in agricultural crops has become increasingly significant due to climate change. Thermal stress poses a serious threat to biodiversity and agricultural production, endangering suitable habitats for cultivating C. arabica. Understanding how this species responds to rising temperatures is essential for adaptation to future climate scenarios. The purpose of this study is to quantify how different varieties of C. arabica respond to high temperature stress. Eight different varieties of C. arabica were studied: Bourbon, Castillo, Caturra, Cenicafe 1, Colombia, Geisha, Tabi and Typica. Maximum quantum efficiency of photosystem II (Fv/Fm) measurements were taken on leaves of plants subjected to different temperatures between 20 and 50°C to determine their corresponding injury temperatures (T50). This temperature corresponds to a 50% reduction in Fv/Fm values measured as a function of the reference 20°C temperature. Additionally, the thermal safety margin was calculated for different coffee-producing municipalities of Colombia comparing the T50 values with the maximum air temperature of sites obtained from the Agroclima database. This research reveals significant differences in T50 among various C. arabica varieties, with Caturra and Typica exhibiting greater thermal stress tolerance. Current climatic conditions in the studied municipalities do not exceed the T50 of these varieties, indicating no harmful temperatures. However, with climate change predicting increased extreme temperature events, the higher T50 for Caturra and Typica are crucial for enhancing coffee crop resilience and stability. Despite previous studies suggesting temperature sensitivity in Arabica coffee, this research shows that it can tolerate heat stress up to 42°C, maintaining photosynthetic efficiency up to 40°C. This challenges the notion that Arabica coffee lacks thermal resilience.Pregrado11 páginasapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in ColombiaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCoffea arabicaThermal stressClimate changePhotosystem II (Fv/Fm)Thermal safety margin (TSM)Maximum quantum efficiencyT50 (injury temperature)BiologíaBaker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. doi:10.1146/annurev.arplantDavis, A. P., Mieulet, D., Moat, J., Sarmu, D., & Haggar, J. (2021). Arabica-like flavour in a heat-tolerant wild coffee species. Nature Plants, 7(4), 413-418.Echeverri-Giraldo, L. F., Osorio Pérez, V., Tabares Arboleda, C., Vargas Gutiérrez, L. J., & Imbachi Quinchua, L. C. (2024). Content of Acidic Compounds in the Bean of Coffea arabica L., Produced in the Department of Cesar (Colombia), and Its Relationship with the Sensorial Attribute of Acidity. Separations, 11(2), 52.Jiménez-Suancha, S. C., Álvarado, O. H., & Balaguera-López, H. E. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 149-160.Krause, G.H., Winter, K., Krause, B., Jahns, P., García, M., Aranda, J., et al. (2010). High-temperature tolerance of a tropical tree, Ficus insipida: Methodological reassessment and climate change considerations. Functional Plant Biology, 37, 890–900. https://doi.org/10.1071/FP10034León-García, I.V., & Lasso, E. (2019). High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world. PLoS ONE, 14(11), e0224218. https://doi.org/10.1371/journal.pone.0224218Mouget, J., & Tremblin, G. (2002). Suitability of the fluorescence monitoring system (FMS, Hansatech) for measurement of photosynthetic characteristics in algae. Aquatic Botany, 74, 219-231.Smillie, R.M., & Hetherington, S.E. (1990). Screening for stress tolerance by chlorophyll fluorescence. pp.Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research: Atmospheres, 114(D2).Yamane, K., Nishikawa, M., Hirooka, Y., Narita, Y., Kobayashi, T., Kakiuchi, M., ... & Iijima, M. (2022). Temperature tolerance threshold and mechanism of oxidative damage in the leaf of Coffea arabica ‘Typica’ under heat stress. Plant Production Science, 25(3), 337-349.202013952Publicationhttps://scholar.google.es/citations?user=V8_nGxAAAAAJhttps://scholar.google.es/citations?user=V8_nGxAAAAAJvirtual::19641-10000-0003-4586-86740000-0003-4586-8674virtual::19641-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001481264https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001481264virtual::19641-1855df0eb-10d3-43df-baec-ef09e07f87d4virtual::19641-1855df0eb-10d3-43df-baec-ef09e07f87d4855df0eb-10d3-43df-baec-ef09e07f87d4virtual::19641-1ORIGINALautorizacion tesis def.pdfautorizacion tesis def.pdfHIDEapplication/pdf247960https://repositorio.uniandes.edu.co/bitstreams/709bec6d-d952-4a4a-9889-1a4828562223/download2a0697ad327bb5fc2ecc9178f75a2c09MD51Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdfThermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdfapplication/pdf243227https://repositorio.uniandes.edu.co/bitstreams/99f893cd-037a-4fb4-93d5-daab2d48eba5/download85c595c342742fc68a7e2e019acb5b5bMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/5b2bac99-2b28-447f-b99b-287088695c84/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/ccddb17d-b407-46c4-8a67-cc99f9d7fd6d/download4460e5956bc1d1639be9ae6146a50347MD54TEXTautorizacion tesis def.pdf.txtautorizacion tesis def.pdf.txtExtracted texttext/plain2084https://repositorio.uniandes.edu.co/bitstreams/a74d9934-b5a8-4884-8a1a-7cb8590a7fe4/downloadebd22e315a5f52c9a536d11db2d98d4dMD55Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdf.txtThermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdf.txtExtracted texttext/plain20962https://repositorio.uniandes.edu.co/bitstreams/03879b3a-18bc-4e44-9ab3-2d1c960682ac/download30bd2470a900d530c9538b0e4e20f11aMD57THUMBNAILautorizacion tesis def.pdf.jpgautorizacion tesis def.pdf.jpgGenerated Thumbnailimage/jpeg10799https://repositorio.uniandes.edu.co/bitstreams/8b77efbb-f200-4828-8be7-22b466b4c2dc/download90ec4f96d20c3bd62db6d87ea2389bbcMD56Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdf.jpgThermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdf.jpgGenerated Thumbnailimage/jpeg5520https://repositorio.uniandes.edu.co/bitstreams/dc143580-cf62-4c1a-a1e3-45b0f4f11cf4/download981a75211944b12e5693b9e4122f4b50MD581992/74916oai:repositorio.uniandes.edu.co:1992/749162024-09-12 15:51:02.362http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |