Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia

Coffea arabica L. is a crucial agricultural product in Colombia, ranking as the second most traded commodity worldwide. This sector is vital for the livelihoods of over 540,000 families, with coffee cultivation extending across 600 municipalities in 23 coffee-growing departments. The Ministry of Agr...

Full description

Autores:
Zea Quintero, German Elías
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74916
Acceso en línea:
https://hdl.handle.net/1992/74916
Palabra clave:
Coffea arabica
Thermal stress
Climate change
Photosystem II (Fv/Fm)
Thermal safety margin (TSM)
Maximum quantum efficiency
T50 (injury temperature)
Biología
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_5c62f20183c544048b5c9f98086c8c54
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74916
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia
title Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia
spellingShingle Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia
Coffea arabica
Thermal stress
Climate change
Photosystem II (Fv/Fm)
Thermal safety margin (TSM)
Maximum quantum efficiency
T50 (injury temperature)
Biología
title_short Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia
title_full Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia
title_fullStr Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia
title_full_unstemmed Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia
title_sort Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia
dc.creator.fl_str_mv Zea Quintero, German Elías
dc.contributor.advisor.none.fl_str_mv Rada Rincón, Fermín
Hernández Cortés, Sofía
Lasso De Paulis, Eloísa
dc.contributor.author.none.fl_str_mv Zea Quintero, German Elías
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Ecofiv: Grupo de Ecologia y Fisiologia Vegetal Uniandino
dc.subject.keyword.eng.fl_str_mv Coffea arabica
topic Coffea arabica
Thermal stress
Climate change
Photosystem II (Fv/Fm)
Thermal safety margin (TSM)
Maximum quantum efficiency
T50 (injury temperature)
Biología
dc.subject.keyword.none.fl_str_mv Thermal stress
Climate change
Photosystem II (Fv/Fm)
Thermal safety margin (TSM)
Maximum quantum efficiency
T50 (injury temperature)
dc.subject.themes.spa.fl_str_mv Biología
description Coffea arabica L. is a crucial agricultural product in Colombia, ranking as the second most traded commodity worldwide. This sector is vital for the livelihoods of over 540,000 families, with coffee cultivation extending across 600 municipalities in 23 coffee-growing departments. The Ministry of Agriculture reports that coffee contributes 15% to the Colombian agricultural GDP, generating approximately 2.5 million direct and indirect jobs. In the Colombian context, assessing plant thermal resistance in agricultural crops has become increasingly significant due to climate change. Thermal stress poses a serious threat to biodiversity and agricultural production, endangering suitable habitats for cultivating C. arabica. Understanding how this species responds to rising temperatures is essential for adaptation to future climate scenarios. The purpose of this study is to quantify how different varieties of C. arabica respond to high temperature stress. Eight different varieties of C. arabica were studied: Bourbon, Castillo, Caturra, Cenicafe 1, Colombia, Geisha, Tabi and Typica. Maximum quantum efficiency of photosystem II (Fv/Fm) measurements were taken on leaves of plants subjected to different temperatures between 20 and 50°C to determine their corresponding injury temperatures (T50). This temperature corresponds to a 50% reduction in Fv/Fm values measured as a function of the reference 20°C temperature. Additionally, the thermal safety margin was calculated for different coffee-producing municipalities of Colombia comparing the T50 values with the maximum air temperature of sites obtained from the Agroclima database. This research reveals significant differences in T50 among various C. arabica varieties, with Caturra and Typica exhibiting greater thermal stress tolerance. Current climatic conditions in the studied municipalities do not exceed the T50 of these varieties, indicating no harmful temperatures. However, with climate change predicting increased extreme temperature events, the higher T50 for Caturra and Typica are crucial for enhancing coffee crop resilience and stability. Despite previous studies suggesting temperature sensitivity in Arabica coffee, this research shows that it can tolerate heat stress up to 42°C, maintaining photosynthetic efficiency up to 40°C. This challenges the notion that Arabica coffee lacks thermal resilience.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-02T18:28:02Z
dc.date.available.none.fl_str_mv 2024-08-02T18:28:02Z
dc.date.issued.none.fl_str_mv 2024-08-02
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74916
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74916
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. doi:10.1146/annurev.arplant
Davis, A. P., Mieulet, D., Moat, J., Sarmu, D., & Haggar, J. (2021). Arabica-like flavour in a heat-tolerant wild coffee species. Nature Plants, 7(4), 413-418.
Echeverri-Giraldo, L. F., Osorio Pérez, V., Tabares Arboleda, C., Vargas Gutiérrez, L. J., & Imbachi Quinchua, L. C. (2024). Content of Acidic Compounds in the Bean of Coffea arabica L., Produced in the Department of Cesar (Colombia), and Its Relationship with the Sensorial Attribute of Acidity. Separations, 11(2), 52.
Jiménez-Suancha, S. C., Álvarado, O. H., & Balaguera-López, H. E. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 149-160.
Krause, G.H., Winter, K., Krause, B., Jahns, P., García, M., Aranda, J., et al. (2010). High-temperature tolerance of a tropical tree, Ficus insipida: Methodological reassessment and climate change considerations. Functional Plant Biology, 37, 890–900. https://doi.org/10.1071/FP10034
León-García, I.V., & Lasso, E. (2019). High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world. PLoS ONE, 14(11), e0224218. https://doi.org/10.1371/journal.pone.0224218
Mouget, J., & Tremblin, G. (2002). Suitability of the fluorescence monitoring system (FMS, Hansatech) for measurement of photosynthetic characteristics in algae. Aquatic Botany, 74, 219-231.
Smillie, R.M., & Hetherington, S.E. (1990). Screening for stress tolerance by chlorophyll fluorescence. pp.
Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research: Atmospheres, 114(D2).
Yamane, K., Nishikawa, M., Hirooka, Y., Narita, Y., Kobayashi, T., Kakiuchi, M., ... & Iijima, M. (2022). Temperature tolerance threshold and mechanism of oxidative damage in the leaf of Coffea arabica ‘Typica’ under heat stress. Plant Production Science, 25(3), 337-349.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 11 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Biología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/709bec6d-d952-4a4a-9889-1a4828562223/download
https://repositorio.uniandes.edu.co/bitstreams/99f893cd-037a-4fb4-93d5-daab2d48eba5/download
https://repositorio.uniandes.edu.co/bitstreams/5b2bac99-2b28-447f-b99b-287088695c84/download
https://repositorio.uniandes.edu.co/bitstreams/ccddb17d-b407-46c4-8a67-cc99f9d7fd6d/download
https://repositorio.uniandes.edu.co/bitstreams/a74d9934-b5a8-4884-8a1a-7cb8590a7fe4/download
https://repositorio.uniandes.edu.co/bitstreams/03879b3a-18bc-4e44-9ab3-2d1c960682ac/download
https://repositorio.uniandes.edu.co/bitstreams/8b77efbb-f200-4828-8be7-22b466b4c2dc/download
https://repositorio.uniandes.edu.co/bitstreams/dc143580-cf62-4c1a-a1e3-45b0f4f11cf4/download
bitstream.checksum.fl_str_mv 2a0697ad327bb5fc2ecc9178f75a2c09
85c595c342742fc68a7e2e019acb5b5b
ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
ebd22e315a5f52c9a536d11db2d98d4d
30bd2470a900d530c9538b0e4e20f11a
90ec4f96d20c3bd62db6d87ea2389bbc
981a75211944b12e5693b9e4122f4b50
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134059828051968
spelling Rada Rincón, FermínHernández Cortés, SofíaLasso De Paulis, Eloísavirtual::19641-1Zea Quintero, German ElíasFacultad de Ciencias::Ecofiv: Grupo de Ecologia y Fisiologia Vegetal Uniandino2024-08-02T18:28:02Z2024-08-02T18:28:02Z2024-08-02https://hdl.handle.net/1992/74916instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Coffea arabica L. is a crucial agricultural product in Colombia, ranking as the second most traded commodity worldwide. This sector is vital for the livelihoods of over 540,000 families, with coffee cultivation extending across 600 municipalities in 23 coffee-growing departments. The Ministry of Agriculture reports that coffee contributes 15% to the Colombian agricultural GDP, generating approximately 2.5 million direct and indirect jobs. In the Colombian context, assessing plant thermal resistance in agricultural crops has become increasingly significant due to climate change. Thermal stress poses a serious threat to biodiversity and agricultural production, endangering suitable habitats for cultivating C. arabica. Understanding how this species responds to rising temperatures is essential for adaptation to future climate scenarios. The purpose of this study is to quantify how different varieties of C. arabica respond to high temperature stress. Eight different varieties of C. arabica were studied: Bourbon, Castillo, Caturra, Cenicafe 1, Colombia, Geisha, Tabi and Typica. Maximum quantum efficiency of photosystem II (Fv/Fm) measurements were taken on leaves of plants subjected to different temperatures between 20 and 50°C to determine their corresponding injury temperatures (T50). This temperature corresponds to a 50% reduction in Fv/Fm values measured as a function of the reference 20°C temperature. Additionally, the thermal safety margin was calculated for different coffee-producing municipalities of Colombia comparing the T50 values with the maximum air temperature of sites obtained from the Agroclima database. This research reveals significant differences in T50 among various C. arabica varieties, with Caturra and Typica exhibiting greater thermal stress tolerance. Current climatic conditions in the studied municipalities do not exceed the T50 of these varieties, indicating no harmful temperatures. However, with climate change predicting increased extreme temperature events, the higher T50 for Caturra and Typica are crucial for enhancing coffee crop resilience and stability. Despite previous studies suggesting temperature sensitivity in Arabica coffee, this research shows that it can tolerate heat stress up to 42°C, maintaining photosynthetic efficiency up to 40°C. This challenges the notion that Arabica coffee lacks thermal resilience.Pregrado11 páginasapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in ColombiaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCoffea arabicaThermal stressClimate changePhotosystem II (Fv/Fm)Thermal safety margin (TSM)Maximum quantum efficiencyT50 (injury temperature)BiologíaBaker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. doi:10.1146/annurev.arplantDavis, A. P., Mieulet, D., Moat, J., Sarmu, D., & Haggar, J. (2021). Arabica-like flavour in a heat-tolerant wild coffee species. Nature Plants, 7(4), 413-418.Echeverri-Giraldo, L. F., Osorio Pérez, V., Tabares Arboleda, C., Vargas Gutiérrez, L. J., & Imbachi Quinchua, L. C. (2024). Content of Acidic Compounds in the Bean of Coffea arabica L., Produced in the Department of Cesar (Colombia), and Its Relationship with the Sensorial Attribute of Acidity. Separations, 11(2), 52.Jiménez-Suancha, S. C., Álvarado, O. H., & Balaguera-López, H. E. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 149-160.Krause, G.H., Winter, K., Krause, B., Jahns, P., García, M., Aranda, J., et al. (2010). High-temperature tolerance of a tropical tree, Ficus insipida: Methodological reassessment and climate change considerations. Functional Plant Biology, 37, 890–900. https://doi.org/10.1071/FP10034León-García, I.V., & Lasso, E. (2019). High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world. PLoS ONE, 14(11), e0224218. https://doi.org/10.1371/journal.pone.0224218Mouget, J., & Tremblin, G. (2002). Suitability of the fluorescence monitoring system (FMS, Hansatech) for measurement of photosynthetic characteristics in algae. Aquatic Botany, 74, 219-231.Smillie, R.M., & Hetherington, S.E. (1990). Screening for stress tolerance by chlorophyll fluorescence. pp.Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research: Atmospheres, 114(D2).Yamane, K., Nishikawa, M., Hirooka, Y., Narita, Y., Kobayashi, T., Kakiuchi, M., ... & Iijima, M. (2022). Temperature tolerance threshold and mechanism of oxidative damage in the leaf of Coffea arabica ‘Typica’ under heat stress. Plant Production Science, 25(3), 337-349.202013952Publicationhttps://scholar.google.es/citations?user=V8_nGxAAAAAJhttps://scholar.google.es/citations?user=V8_nGxAAAAAJvirtual::19641-10000-0003-4586-86740000-0003-4586-8674virtual::19641-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001481264https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001481264virtual::19641-1855df0eb-10d3-43df-baec-ef09e07f87d4virtual::19641-1855df0eb-10d3-43df-baec-ef09e07f87d4855df0eb-10d3-43df-baec-ef09e07f87d4virtual::19641-1ORIGINALautorizacion tesis def.pdfautorizacion tesis def.pdfHIDEapplication/pdf247960https://repositorio.uniandes.edu.co/bitstreams/709bec6d-d952-4a4a-9889-1a4828562223/download2a0697ad327bb5fc2ecc9178f75a2c09MD51Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdfThermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdfapplication/pdf243227https://repositorio.uniandes.edu.co/bitstreams/99f893cd-037a-4fb4-93d5-daab2d48eba5/download85c595c342742fc68a7e2e019acb5b5bMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/5b2bac99-2b28-447f-b99b-287088695c84/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/ccddb17d-b407-46c4-8a67-cc99f9d7fd6d/download4460e5956bc1d1639be9ae6146a50347MD54TEXTautorizacion tesis def.pdf.txtautorizacion tesis def.pdf.txtExtracted texttext/plain2084https://repositorio.uniandes.edu.co/bitstreams/a74d9934-b5a8-4884-8a1a-7cb8590a7fe4/downloadebd22e315a5f52c9a536d11db2d98d4dMD55Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdf.txtThermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdf.txtExtracted texttext/plain20962https://repositorio.uniandes.edu.co/bitstreams/03879b3a-18bc-4e44-9ab3-2d1c960682ac/download30bd2470a900d530c9538b0e4e20f11aMD57THUMBNAILautorizacion tesis def.pdf.jpgautorizacion tesis def.pdf.jpgGenerated Thumbnailimage/jpeg10799https://repositorio.uniandes.edu.co/bitstreams/8b77efbb-f200-4828-8be7-22b466b4c2dc/download90ec4f96d20c3bd62db6d87ea2389bbcMD56Thermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdf.jpgThermal stress tolerance in different cultivars of Coffea arabica L.: Implications in the context of climate change in Colombia.pdf.jpgGenerated Thumbnailimage/jpeg5520https://repositorio.uniandes.edu.co/bitstreams/dc143580-cf62-4c1a-a1e3-45b0f4f11cf4/download981a75211944b12e5693b9e4122f4b50MD581992/74916oai:repositorio.uniandes.edu.co:1992/749162024-09-12 15:51:02.362http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K