Super resolution methods for depth estimation in light sheet light field microscopy
In this Master's Thesis we explore enhanced depth estimation in light fields acquired with microscopes. We propose a neural network architecture for the production of novel angular views. We evaluate the performance of our method by comparing the precision of depth estimation in the HCI Light F...
- Autores:
-
Madrid Wolff, Jorge Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/44325
- Acceso en línea:
- http://hdl.handle.net/1992/44325
- Palabra clave:
- Microscopia - Técnica - Investigaciones
Microscopia fluorescente - Investigaciones
Redes neurales (Computadores) - Aplicaciones - Investigaciones
Ingeniería
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_4c10e6d38bb57c5cde6cf25d201d4f2b |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/44325 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arbeláez Escalante, Pablo Andrés7b73426f-f63b-413f-b44b-ddfa70416b65400Forero Shelton, Antonio Manuvirtual::1856-1Madrid Wolff, Jorge Andrés39340500Valderrama Manrique, Mario AndrésOlarte, Omar2020-09-03T14:37:15Z2020-09-03T14:37:15Z2019http://hdl.handle.net/1992/44325u827129.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this Master's Thesis we explore enhanced depth estimation in light fields acquired with microscopes. We propose a neural network architecture for the production of novel angular views. We evaluate the performance of our method by comparing the precision of depth estimation in the HCI Light Field Benchmark of its state of the art algorithm when receiving regular vs. upsampled light fields. We demonstrate reductions in the error of depth estimation by up to 12-35 percentage points. Complementarily, we present an approach to increase angular resolution in light field microscopy by providing optical sectioning of the sample with light sheets from a digital micromirror device. We also present a Fourier optics model of pattern projection from the DMD to the sample by a tube lens and a microscope objective.En esta tesis de maestría exploramos la estimación mejorada de profundidad en campos de luz adquiridos con microscopios. Proponemos una arquitectura de red neuronal para la predicción de nuevas vistas angulares. Evaluamos el desempeño de nuestro método comparando la precisión en la estimación de profundidad del algoritmo del estado del arte del HCI Light Field Benchmark al suministrarle campos de luz normales versus campos de luz a los que se les ha hecho upsampling angular. Demostramos reducciones en el error de la estimación de profundidad de hasta 12 a 35 puntos percentuales. Complementariamente, presentamos un método para incrementar la resolución en microscopía de campo de luz al hacer seccionamiento óptico de la muestra mediante hojas de luz producidas por un arreglo de microespejos (DMD). Además, presentamos un modelo de óptica de Fourier para la proyección de patrones del DMD a la muestra.Magíster en Ingeniería BiomédicaMaestría10 hojasapplication/pdfengUniandesMaestría en Ingeniería BiomédicaFacultad de IngenieríaDepartamento de Ingeniería Biomédicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaSuper resolution methods for depth estimation in light sheet light field microscopyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMMicroscopia - Técnica - InvestigacionesMicroscopia fluorescente - InvestigacionesRedes neurales (Computadores) - Aplicaciones - InvestigacionesIngenieríaPublicationhttps://scholar.google.es/citations?user=0_jvORsAAAAJvirtual::1856-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001289730virtual::1856-1d8390b22-58d0-4d8c-9abb-d88e0327611dvirtual::1856-1d8390b22-58d0-4d8c-9abb-d88e0327611dvirtual::1856-1ORIGINALu827129.pdfapplication/pdf14790759https://repositorio.uniandes.edu.co/bitstreams/c7433078-ab5c-4d96-9e90-4455e998b54b/download81637fd1e7e3d0ec3d658eb6946bb519MD51TEXTu827129.pdf.txtu827129.pdf.txtExtracted texttext/plain49218https://repositorio.uniandes.edu.co/bitstreams/c6c1bedf-e41f-4bd6-8c57-bccb9aa2e751/downloadb233630ac70fa5236b1cedec6794a20dMD54THUMBNAILu827129.pdf.jpgu827129.pdf.jpgIM Thumbnailimage/jpeg8533https://repositorio.uniandes.edu.co/bitstreams/368b3fd5-17d2-40b5-8d77-082d7468cd3f/downloadafedfbbd081f97b2578438595396fdc7MD551992/44325oai:repositorio.uniandes.edu.co:1992/443252024-03-13 12:03:56.423http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
Super resolution methods for depth estimation in light sheet light field microscopy |
title |
Super resolution methods for depth estimation in light sheet light field microscopy |
spellingShingle |
Super resolution methods for depth estimation in light sheet light field microscopy Microscopia - Técnica - Investigaciones Microscopia fluorescente - Investigaciones Redes neurales (Computadores) - Aplicaciones - Investigaciones Ingeniería |
title_short |
Super resolution methods for depth estimation in light sheet light field microscopy |
title_full |
Super resolution methods for depth estimation in light sheet light field microscopy |
title_fullStr |
Super resolution methods for depth estimation in light sheet light field microscopy |
title_full_unstemmed |
Super resolution methods for depth estimation in light sheet light field microscopy |
title_sort |
Super resolution methods for depth estimation in light sheet light field microscopy |
dc.creator.fl_str_mv |
Madrid Wolff, Jorge Andrés |
dc.contributor.advisor.none.fl_str_mv |
Arbeláez Escalante, Pablo Andrés Forero Shelton, Antonio Manu |
dc.contributor.author.none.fl_str_mv |
Madrid Wolff, Jorge Andrés |
dc.contributor.jury.none.fl_str_mv |
Valderrama Manrique, Mario Andrés Olarte, Omar |
dc.subject.armarc.es_CO.fl_str_mv |
Microscopia - Técnica - Investigaciones Microscopia fluorescente - Investigaciones Redes neurales (Computadores) - Aplicaciones - Investigaciones |
topic |
Microscopia - Técnica - Investigaciones Microscopia fluorescente - Investigaciones Redes neurales (Computadores) - Aplicaciones - Investigaciones Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
In this Master's Thesis we explore enhanced depth estimation in light fields acquired with microscopes. We propose a neural network architecture for the production of novel angular views. We evaluate the performance of our method by comparing the precision of depth estimation in the HCI Light Field Benchmark of its state of the art algorithm when receiving regular vs. upsampled light fields. We demonstrate reductions in the error of depth estimation by up to 12-35 percentage points. Complementarily, we present an approach to increase angular resolution in light field microscopy by providing optical sectioning of the sample with light sheets from a digital micromirror device. We also present a Fourier optics model of pattern projection from the DMD to the sample by a tube lens and a microscope objective. |
publishDate |
2019 |
dc.date.issued.es_CO.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-09-03T14:37:15Z |
dc.date.available.none.fl_str_mv |
2020-09-03T14:37:15Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/44325 |
dc.identifier.pdf.none.fl_str_mv |
u827129.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/44325 |
identifier_str_mv |
u827129.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
10 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Ingeniería Biomédica |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Biomédica |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/c7433078-ab5c-4d96-9e90-4455e998b54b/download https://repositorio.uniandes.edu.co/bitstreams/c6c1bedf-e41f-4bd6-8c57-bccb9aa2e751/download https://repositorio.uniandes.edu.co/bitstreams/368b3fd5-17d2-40b5-8d77-082d7468cd3f/download |
bitstream.checksum.fl_str_mv |
81637fd1e7e3d0ec3d658eb6946bb519 b233630ac70fa5236b1cedec6794a20d afedfbbd081f97b2578438595396fdc7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133822258479104 |