Técnicas no convencionales aplicadas en la extracción de Moringa oleifera
La demanda de nuevas fuentes de compuestos bioactivos está aumentando por parte de las industrias de alimentos funcionales, nutracéuticos, farmacéuticos y cosméticos, junto con el interés del público por las hierbas medicinales y los productos naturales. Erróneamente, se presume que los preparados d...
- Autores:
-
López López, Laura Juliana
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/64374
- Acceso en línea:
- http://hdl.handle.net/1992/64374
- Palabra clave:
- Moringa
Extractos
Técnicas no convencionales
Fluidos supercríticos
Agua subcrítica
Líquidos presurizados
HPLC-PDA-ESI-MS/MS
Disolventes alternativos
Química
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNIANDES2_1512bc9bc8ac0b57a6b51f2b4e370e01 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/64374 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Técnicas no convencionales aplicadas en la extracción de Moringa oleifera |
title |
Técnicas no convencionales aplicadas en la extracción de Moringa oleifera |
spellingShingle |
Técnicas no convencionales aplicadas en la extracción de Moringa oleifera Moringa Extractos Técnicas no convencionales Fluidos supercríticos Agua subcrítica Líquidos presurizados HPLC-PDA-ESI-MS/MS Disolventes alternativos Química |
title_short |
Técnicas no convencionales aplicadas en la extracción de Moringa oleifera |
title_full |
Técnicas no convencionales aplicadas en la extracción de Moringa oleifera |
title_fullStr |
Técnicas no convencionales aplicadas en la extracción de Moringa oleifera |
title_full_unstemmed |
Técnicas no convencionales aplicadas en la extracción de Moringa oleifera |
title_sort |
Técnicas no convencionales aplicadas en la extracción de Moringa oleifera |
dc.creator.fl_str_mv |
López López, Laura Juliana |
dc.contributor.advisor.none.fl_str_mv |
Carazzone, Chiara |
dc.contributor.author.none.fl_str_mv |
López López, Laura Juliana |
dc.contributor.jury.none.fl_str_mv |
Portilla Salinas, Jaime Antonio Reiber, Andreas Zapata Rivera, Jhon Enrique Hurtado Belalcazar, John Jady Rivas Hernández, Ricardo Eusebio |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP) |
dc.subject.keyword.none.fl_str_mv |
Moringa Extractos Técnicas no convencionales Fluidos supercríticos Agua subcrítica Líquidos presurizados HPLC-PDA-ESI-MS/MS Disolventes alternativos |
topic |
Moringa Extractos Técnicas no convencionales Fluidos supercríticos Agua subcrítica Líquidos presurizados HPLC-PDA-ESI-MS/MS Disolventes alternativos Química |
dc.subject.themes.es_CO.fl_str_mv |
Química |
description |
La demanda de nuevas fuentes de compuestos bioactivos está aumentando por parte de las industrias de alimentos funcionales, nutracéuticos, farmacéuticos y cosméticos, junto con el interés del público por las hierbas medicinales y los productos naturales. Erróneamente, se presume que los preparados de hierbas son seguros para su administración oral y, por lo tanto, la documentación sobre el potencial tóxico de algunos brebajes de hierbas es limitada. Particularmente, la Moringa oleifera, se ha utilizado en la medicina tradicional como medio para compensar algunas necesidades nutricionales y medicinales. Hasta hoy, los diferentes compuestos activos se han obtenido con técnicas de extracción tradicionales que incluyen Soxhlet, sonicación, maceración.1,2,3 En este sentido, el objetivo principal del presente trabajo fue obtener extractos de las hojas de M. oleifera con un enfoque de extracción verde, con técnicas no convencionales que permiten el uso de disolventes alternativos a la vez que brindan mayores eficiencias de extracción, menor impacto ambiental y garantizan un extracto o producto seguro y de alta calidad. Así mismo, se aplicó un método HPLC-PDA-ESI-MS/MS para la separación e identificación putativa de 55 compuestos de los extractos adquiridos con las técnicas no convencionales. La identificación se realizó comparando los tiempos de retención, las absorbancias UV-vis y los espectros de masas con datos de la literatura. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12 |
dc.date.accessioned.none.fl_str_mv |
2023-01-31T15:23:46Z |
dc.date.available.none.fl_str_mv |
2023-01-31T15:23:46Z |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/64374 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/64374 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Rodríguez-Pérez, C.; Mendiola, J. A.; Quirantes-Piné, R.; Ibáñez, E.; Segura-Carretero, A. Green Downstream Processing Using Supercritical Carbon Dioxide, CO2-Expanded Ethanol and Pressurized Hot Water Extractions for Recovering Bioactive Compounds from Moringa Oleifera Leaves. The Journal of Supercritical Fluids 2016, 116, 90-100. https://doi.org/10.1016/j.supflu.2016.05.009. Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Analytica Chimica Acta 2011, 703 (1), 8-18. https://doi.org/10.1016/j.aca.2011.07.018. Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy Research 2006, 21(1), 17-25. doi:10.1002/ptr.2023 Craig, W. J. Health-promoting properties of common herbs. The American Journal of Clinical Nutrition 1999, 70(3), 491s-499s. doi:10.1093/ajcn/70.3.491s Chemat, F.; Vian, M. A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. International Journal of Molecular Sciences 2012, 13 (7), 8615-8627. https://doi.org/10.3390/ijms13078615. Gbashi, S.; Adebo, O. A.; Piater, L.; Madala, N. E.; Njobeh, P. B. Subcritical Water Extraction of Biological Materials. Separation & Purification Reviews 2017, 46 (1), 21-34. https://doi.org/10.1080/15422119.2016.1170035. Menezes Maciel Bindes, M.; Hespanhol Miranda Reis, M.; Luiz Cardoso, V.; Boffito, D. C. Ultrasound-Assisted Extraction of Bioactive Compounds from Green Tea Leaves and Clarification with Natural Coagulants (Chitosan and Moringa Oleífera Seeds). Ultrasonics Sonochemistry 2019, 51, 111-119. https://doi.org/10.1016/j.ultsonch.2018.10.014. Ma, Y.-Q., Ye, X.-Q., Fang, Z.-X., Chen, J.-C., Xu, G.-H., & Liu, D.-H. Phenolic Compounds and Antioxidant Activity of Extracts from Ultrasonic Treatment of Satsuma Mandarin (Citrus unshiu Marc.) Peels. Journal of Agricultural and Food Chemistry 2008, 56(14), 5682-5690. doi:10.1021/jf072474o Mohamed, E. A. H.; Lim, C. P.; Ebrika, O. S.; Asmawi, M. Z.; Sadikun, A.; Yam, M. F. Toxicity Evaluation of a Standardised 50% Ethanol Extract of Orthosiphon Stamineus. J Ethnopharmacol 2011, 133 (2), 358-363. https://doi.org/10.1016/j.jep.2010.10.008. Bhattacharya, A.; Santra, S.; Mahapatra, S.; Sahu, P. K.; Agrawal, D.; Kumar, S. Study of Anxiolytic Effect of Ethanolic Extract of Drumstick Tree Leaves on Albino Mice in a Basic Neuropharmacology Laboratory of a Postgraduate Teaching Institute. Journal of Health Research and Reviews 2016, 3 (2), 41. https://doi.org/10.4103/2394-2010.184228. Bakre, A. G.; Aderibigbe, A. O.; Ademowo, O. G. Studies on Neuropharmacological Profile of Ethanol Extract of Moringa Oleifera Leaves in Mice. J Ethnopharmacol 2013, 149 (3), 783-789. https://doi.org/10.1016/j.jep.2013.08.006. Tena, M. T.; Valcárcel, M.; Hidalgo, P. J.; Ubera, J. L. Supercritical Fluid Extraction of Natural Antioxidants from Rosemary: Comparison with Liquid Solvent Sonication. Anal. Chem. 1997, 69 (3), 521-526. https://doi.org/10.1021/ac960506t. Belo, Y. N.; Al-Hamimi, S.; Chimuka, L.; Turner, C. Ultrahigh-Pressure Supercritical Fluid Extraction and Chromatography of Moringa Oleifera and Moringa Peregrina Seed Lipids. Anal Bioanal Chem 2019, 411 (16), 3685-3693. https://doi.org/10.1007/s00216-019-01850-x. Zhao, S.; Zhang, D. Supercritical Fluid Extraction and Characterisation of Moringa Oleifera Leaves Oil. Separation and Purification Technology 2013, 118, 497-502. https://doi.org/10.1016/j.seppur.2013.07.046. Alvarez, G., Bueno, M., Ballesteros, D., Mendiola, J., Ibáñez, E. Pressurized Liquid Extraction. Liquid-Phase Extraction 2020, 375-398. https://doi.org/10.1016/B978-0-12-816911-7.00013-X. Ramos; E.M Kristenson; U.A.Th Brinkman. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis 2002, 975(1), 3-29. doi:10.1016/s0021-9673(02)01336-5. Matshediso, P. G.; Cukrowska, E.; Chimuka, L. Development of Pressurised Hot Water Extraction (PHWE) for Essential Compounds from Moringa Oleifera Leaf Extracts. Food Chemistry 2015, 172, 423-427. https://doi.org/10.1016/j.foodchem.2014.09.047. Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent Advances in the Extraction of Bioactive Compounds with Subcritical Water: A Review. Trends in Food Science & Technology 2020, 95, 183-195. https://doi.org/10.1016/j.tifs.2019.11.018 Pellati, F.; Orlandini, G.; Pinetti, D.; Benvenuti, S. HPLC-DAD and HPLC-ESI-MS/MS Methods for Metabolite Profiling of Propolis Extracts. Journal of Pharmaceutical and Biomedical Analysis 2011, 55 (5), 934-948. https://doi.org/10.1016/j.jpba.2011.03.024. Sahakitpichan, P.; Mahidol, C.; Disadee, W.; Ruchirawat, S.; Kanchanapoom, T. Unusual Glycosides of Pyrrole Alkaloid and 4'-Hydroxyphenylethanamide from Leaves of Moringa Oleifera. Phytochemistry 2011, 72 (8), 791-795. https://doi.org/10.1016/j.phytochem.2011.02.021. Xie, J.; Peng, L.; Yang, M.; Jiang, W.; Mao, J.; Shi, C.; Tian, Y.; Sheng, J. Alkaloid Extract of Moringa Oleifera Lam. Exerts Antitumor Activity in Human Non-Small-Cell Lung Cancer via Modulation of the JAK2/STAT3 Signaling Pathway. Evidence-Based Complementary and Alternative Medicine 2021. https://doi.org/10.1155/2021/5591687. Lee, J.-H.; Kim, Y.-G.; Park, J. G.; Lee, J. Supercritical Fluid Extracts of Moringa Oleifera and Their Unsaturated Fatty Acid Components Inhibit Biofilm Formation by Staphylococcus Aureus. Food Control 2017, 80, 74-82. https://doi.org/10.1016/j.foodcont.2017.04.035. Ko, M.-J.; Cheigh, C.-I.; Cho, S.-W.; Chung, M.-S. Subcritical Water Extraction of Flavonol Quercetin from Onion Skin. Journal of Food Engineering 2011, 102 (4), 327-333. https://doi.org/10.1016/j.jfoodeng.2010.09.008. Bhagya Raj, G. V. S.; Dash, K. K. Ultrasound-Assisted Extraction of Phytocompounds from Dragon Fruit Peel: Optimization, Kinetics and Thermodynamic Studies. Ultrasonics Sonochemistry 2020, 68, 105180. https://doi.org/10.1016/j.ultsonch.2020.105180. Cruz Reina, L. J.; López, G.-D.; Durán-Aranguren, D. D.; Quiroga, I.; Carazzone, C.; Sierra, R. Compressed Fluids and Soxhlet Extraction for the Valorization of Compounds from Colombian Cashew (Anacardium Occidentale) Nut Shells Aimed at a Cosmetic Application. The Journal of Supercritical Fluids 2023, 192, 105808. https://doi.org/10.1016/j.supflu.2022.105808. López, G.-D.; Álvarez-Rivera, G.; Carazzone, C.; Ibáñez, E.; Leidy, C.; Cifuentes, A. Bacterial Carotenoids: Extraction, Characterization, and Applications. Critical Reviews in Analytical Chemistry 2021, 0 (0), 1-24. https://doi.org/10.1080/10408347.2021.2016366. Carazzone, C.; Mascherpa,D.; Gazzani, G.; Papetti, A. Identification of Phenolic Constituents in Red Chicory Salads (Cichorium Intybus) by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionisation Tandem Mass Spectrometry. Food Chemistry 2013, 138 (2-3), 1062-1071. https://doi.org/10.1016/j.foodchem.2012.11.060. Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of Extraction Method to Obtain a Phenolic Compounds-Rich Extract from Moringa Oleifera Lam Leaves. Industrial Crops and Products 2015, 66, 246-254. https://doi.org/10.1016/j.indcrop.2015.01.002. Lin, H.; Zhu, H.; Tan, J.; Wang, H.; Wang, Z.; Li, P.; Zhao, C.; Liu, J. Comparative Analysis of Chemical Constituents of Moringa Oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry. Molecules 2019, 24 (5), 942. https://doi.org/10.3390/molecules24050942. Abd Rani, N. Z.; Husain, K.; Kumolosasi, E. Moringa Genus: A Review of Phytochemistry and Pharmacology. Frontiers in Pharmacology 2018, 9. https://doi.org/10.3389/fphar.2018.00108 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
24 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Química |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Química |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/20e0e57e-9931-4fc0-9559-05d6bfb15159/download https://repositorio.uniandes.edu.co/bitstreams/6e544f75-bd62-4b91-9e95-1bfd9ae876a5/download https://repositorio.uniandes.edu.co/bitstreams/ad6c9b82-30db-4fcc-8843-d043f68cd75c/download https://repositorio.uniandes.edu.co/bitstreams/6f13018f-58ec-4c06-a0ad-044c7b32e63d/download https://repositorio.uniandes.edu.co/bitstreams/98ffd0f1-67b5-45a9-8b65-b95ef91d48ca/download https://repositorio.uniandes.edu.co/bitstreams/227dc6f1-84a7-4f46-ae9f-6bf34867c594/download https://repositorio.uniandes.edu.co/bitstreams/eceb3879-88af-4732-a0f0-91db751ea3ce/download https://repositorio.uniandes.edu.co/bitstreams/c663d65b-69bc-4c88-9eb5-e13aacf12325/download |
bitstream.checksum.fl_str_mv |
84a900c9dd4b2a10095a94649e1ce116 5aa5c691a1ffe97abd12c2966efcb8d6 786b3620cdd367e6fc558f86c570aad9 e9eb53442e9328e5cbba7cc22bebfae8 f3f8049b5c9b975e51fe82bed0eb8558 4491fe1afb58beaaef41a73cf7ff2e27 fd7006fff33d4b75e1dbab62d05c5ec5 0179bb7cba2d038d18605ab9084e7b31 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134053904646144 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carazzone, Chiaravirtual::16003-1López López, Laura Julianab9a4535f-dec5-43e2-8b5e-4cb4c690e6c7600Portilla Salinas, Jaime AntonioReiber, AndreasZapata Rivera, Jhon EnriqueHurtado Belalcazar, John JadyRivas Hernández, Ricardo EusebioLaboratory of Advanced Analytical Techniques in Natural Products (LATNAP)2023-01-31T15:23:46Z2023-01-31T15:23:46Z2022-12http://hdl.handle.net/1992/64374instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La demanda de nuevas fuentes de compuestos bioactivos está aumentando por parte de las industrias de alimentos funcionales, nutracéuticos, farmacéuticos y cosméticos, junto con el interés del público por las hierbas medicinales y los productos naturales. Erróneamente, se presume que los preparados de hierbas son seguros para su administración oral y, por lo tanto, la documentación sobre el potencial tóxico de algunos brebajes de hierbas es limitada. Particularmente, la Moringa oleifera, se ha utilizado en la medicina tradicional como medio para compensar algunas necesidades nutricionales y medicinales. Hasta hoy, los diferentes compuestos activos se han obtenido con técnicas de extracción tradicionales que incluyen Soxhlet, sonicación, maceración.1,2,3 En este sentido, el objetivo principal del presente trabajo fue obtener extractos de las hojas de M. oleifera con un enfoque de extracción verde, con técnicas no convencionales que permiten el uso de disolventes alternativos a la vez que brindan mayores eficiencias de extracción, menor impacto ambiental y garantizan un extracto o producto seguro y de alta calidad. Así mismo, se aplicó un método HPLC-PDA-ESI-MS/MS para la separación e identificación putativa de 55 compuestos de los extractos adquiridos con las técnicas no convencionales. La identificación se realizó comparando los tiempos de retención, las absorbancias UV-vis y los espectros de masas con datos de la literatura.QuímicoPregrado24 páginasapplication/pdfspaUniversidad de los AndesQuímicaFacultad de CienciasDepartamento de QuímicaTécnicas no convencionales aplicadas en la extracción de Moringa oleiferaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMoringaExtractosTécnicas no convencionalesFluidos supercríticosAgua subcríticaLíquidos presurizadosHPLC-PDA-ESI-MS/MSDisolventes alternativosQuímicaRodríguez-Pérez, C.; Mendiola, J. A.; Quirantes-Piné, R.; Ibáñez, E.; Segura-Carretero, A. Green Downstream Processing Using Supercritical Carbon Dioxide, CO2-Expanded Ethanol and Pressurized Hot Water Extractions for Recovering Bioactive Compounds from Moringa Oleifera Leaves. The Journal of Supercritical Fluids 2016, 116, 90-100. https://doi.org/10.1016/j.supflu.2016.05.009.Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Analytica Chimica Acta 2011, 703 (1), 8-18. https://doi.org/10.1016/j.aca.2011.07.018.Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy Research 2006, 21(1), 17-25. doi:10.1002/ptr.2023Craig, W. J. Health-promoting properties of common herbs. The American Journal of Clinical Nutrition 1999, 70(3), 491s-499s. doi:10.1093/ajcn/70.3.491sChemat, F.; Vian, M. A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. International Journal of Molecular Sciences 2012, 13 (7), 8615-8627. https://doi.org/10.3390/ijms13078615.Gbashi, S.; Adebo, O. A.; Piater, L.; Madala, N. E.; Njobeh, P. B. Subcritical Water Extraction of Biological Materials. Separation & Purification Reviews 2017, 46 (1), 21-34. https://doi.org/10.1080/15422119.2016.1170035.Menezes Maciel Bindes, M.; Hespanhol Miranda Reis, M.; Luiz Cardoso, V.; Boffito, D. C. Ultrasound-Assisted Extraction of Bioactive Compounds from Green Tea Leaves and Clarification with Natural Coagulants (Chitosan and Moringa Oleífera Seeds). Ultrasonics Sonochemistry 2019, 51, 111-119. https://doi.org/10.1016/j.ultsonch.2018.10.014.Ma, Y.-Q., Ye, X.-Q., Fang, Z.-X., Chen, J.-C., Xu, G.-H., & Liu, D.-H. Phenolic Compounds and Antioxidant Activity of Extracts from Ultrasonic Treatment of Satsuma Mandarin (Citrus unshiu Marc.) Peels. Journal of Agricultural and Food Chemistry 2008, 56(14), 5682-5690. doi:10.1021/jf072474oMohamed, E. A. H.; Lim, C. P.; Ebrika, O. S.; Asmawi, M. Z.; Sadikun, A.; Yam, M. F. Toxicity Evaluation of a Standardised 50% Ethanol Extract of Orthosiphon Stamineus. J Ethnopharmacol 2011, 133 (2), 358-363. https://doi.org/10.1016/j.jep.2010.10.008.Bhattacharya, A.; Santra, S.; Mahapatra, S.; Sahu, P. K.; Agrawal, D.; Kumar, S. Study of Anxiolytic Effect of Ethanolic Extract of Drumstick Tree Leaves on Albino Mice in a Basic Neuropharmacology Laboratory of a Postgraduate Teaching Institute. Journal of Health Research and Reviews 2016, 3 (2), 41. https://doi.org/10.4103/2394-2010.184228.Bakre, A. G.; Aderibigbe, A. O.; Ademowo, O. G. Studies on Neuropharmacological Profile of Ethanol Extract of Moringa Oleifera Leaves in Mice. J Ethnopharmacol 2013, 149 (3), 783-789. https://doi.org/10.1016/j.jep.2013.08.006.Tena, M. T.; Valcárcel, M.; Hidalgo, P. J.; Ubera, J. L. Supercritical Fluid Extraction of Natural Antioxidants from Rosemary: Comparison with Liquid Solvent Sonication. Anal. Chem. 1997, 69 (3), 521-526. https://doi.org/10.1021/ac960506t.Belo, Y. N.; Al-Hamimi, S.; Chimuka, L.; Turner, C. Ultrahigh-Pressure Supercritical Fluid Extraction and Chromatography of Moringa Oleifera and Moringa Peregrina Seed Lipids. Anal Bioanal Chem 2019, 411 (16), 3685-3693. https://doi.org/10.1007/s00216-019-01850-x.Zhao, S.; Zhang, D. Supercritical Fluid Extraction and Characterisation of Moringa Oleifera Leaves Oil. Separation and Purification Technology 2013, 118, 497-502. https://doi.org/10.1016/j.seppur.2013.07.046.Alvarez, G., Bueno, M., Ballesteros, D., Mendiola, J., Ibáñez, E. Pressurized Liquid Extraction. Liquid-Phase Extraction 2020, 375-398. https://doi.org/10.1016/B978-0-12-816911-7.00013-X.Ramos; E.M Kristenson; U.A.Th Brinkman. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis 2002, 975(1), 3-29. doi:10.1016/s0021-9673(02)01336-5.Matshediso, P. G.; Cukrowska, E.; Chimuka, L. Development of Pressurised Hot Water Extraction (PHWE) for Essential Compounds from Moringa Oleifera Leaf Extracts. Food Chemistry 2015, 172, 423-427. https://doi.org/10.1016/j.foodchem.2014.09.047.Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent Advances in the Extraction of Bioactive Compounds with Subcritical Water: A Review. Trends in Food Science & Technology 2020, 95, 183-195. https://doi.org/10.1016/j.tifs.2019.11.018Pellati, F.; Orlandini, G.; Pinetti, D.; Benvenuti, S. HPLC-DAD and HPLC-ESI-MS/MS Methods for Metabolite Profiling of Propolis Extracts. Journal of Pharmaceutical and Biomedical Analysis 2011, 55 (5), 934-948. https://doi.org/10.1016/j.jpba.2011.03.024.Sahakitpichan, P.; Mahidol, C.; Disadee, W.; Ruchirawat, S.; Kanchanapoom, T. Unusual Glycosides of Pyrrole Alkaloid and 4'-Hydroxyphenylethanamide from Leaves of Moringa Oleifera. Phytochemistry 2011, 72 (8), 791-795. https://doi.org/10.1016/j.phytochem.2011.02.021.Xie, J.; Peng, L.; Yang, M.; Jiang, W.; Mao, J.; Shi, C.; Tian, Y.; Sheng, J. Alkaloid Extract of Moringa Oleifera Lam. Exerts Antitumor Activity in Human Non-Small-Cell Lung Cancer via Modulation of the JAK2/STAT3 Signaling Pathway. Evidence-Based Complementary and Alternative Medicine 2021. https://doi.org/10.1155/2021/5591687.Lee, J.-H.; Kim, Y.-G.; Park, J. G.; Lee, J. Supercritical Fluid Extracts of Moringa Oleifera and Their Unsaturated Fatty Acid Components Inhibit Biofilm Formation by Staphylococcus Aureus. Food Control 2017, 80, 74-82. https://doi.org/10.1016/j.foodcont.2017.04.035.Ko, M.-J.; Cheigh, C.-I.; Cho, S.-W.; Chung, M.-S. Subcritical Water Extraction of Flavonol Quercetin from Onion Skin. Journal of Food Engineering 2011, 102 (4), 327-333. https://doi.org/10.1016/j.jfoodeng.2010.09.008.Bhagya Raj, G. V. S.; Dash, K. K. Ultrasound-Assisted Extraction of Phytocompounds from Dragon Fruit Peel: Optimization, Kinetics and Thermodynamic Studies. Ultrasonics Sonochemistry 2020, 68, 105180. https://doi.org/10.1016/j.ultsonch.2020.105180.Cruz Reina, L. J.; López, G.-D.; Durán-Aranguren, D. D.; Quiroga, I.; Carazzone, C.; Sierra, R. Compressed Fluids and Soxhlet Extraction for the Valorization of Compounds from Colombian Cashew (Anacardium Occidentale) Nut Shells Aimed at a Cosmetic Application. The Journal of Supercritical Fluids 2023, 192, 105808. https://doi.org/10.1016/j.supflu.2022.105808.López, G.-D.; Álvarez-Rivera, G.; Carazzone, C.; Ibáñez, E.; Leidy, C.; Cifuentes, A. Bacterial Carotenoids: Extraction, Characterization, and Applications. Critical Reviews in Analytical Chemistry 2021, 0 (0), 1-24. https://doi.org/10.1080/10408347.2021.2016366.Carazzone, C.; Mascherpa,D.; Gazzani, G.; Papetti, A. Identification of Phenolic Constituents in Red Chicory Salads (Cichorium Intybus) by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionisation Tandem Mass Spectrometry. Food Chemistry 2013, 138 (2-3), 1062-1071. https://doi.org/10.1016/j.foodchem.2012.11.060.Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of Extraction Method to Obtain a Phenolic Compounds-Rich Extract from Moringa Oleifera Lam Leaves. Industrial Crops and Products 2015, 66, 246-254. https://doi.org/10.1016/j.indcrop.2015.01.002.Lin, H.; Zhu, H.; Tan, J.; Wang, H.; Wang, Z.; Li, P.; Zhao, C.; Liu, J. Comparative Analysis of Chemical Constituents of Moringa Oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry. Molecules 2019, 24 (5), 942. https://doi.org/10.3390/molecules24050942.Abd Rani, N. Z.; Husain, K.; Kumolosasi, E. Moringa Genus: A Review of Phytochemistry and Pharmacology. Frontiers in Pharmacology 2018, 9. https://doi.org/10.3389/fphar.2018.00108201715609Publicationhttps://scholar.google.es/citations?user=dVoSCGkAAAAJvirtual::16003-10000-0002-9791-5762virtual::16003-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001527902virtual::16003-19e48e55a-f420-4196-b0f3-211822d024d7virtual::16003-19e48e55a-f420-4196-b0f3-211822d024d7virtual::16003-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/20e0e57e-9931-4fc0-9559-05d6bfb15159/download84a900c9dd4b2a10095a94649e1ce116MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/6e544f75-bd62-4b91-9e95-1bfd9ae876a5/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILTrabajo de grado Laura Juliana López .pdf.jpgTrabajo de grado Laura Juliana López .pdf.jpgIM Thumbnailimage/jpeg6149https://repositorio.uniandes.edu.co/bitstreams/ad6c9b82-30db-4fcc-8843-d043f68cd75c/download786b3620cdd367e6fc558f86c570aad9MD56repositorio firmado.pdf.jpgrepositorio firmado.pdf.jpgIM Thumbnailimage/jpeg15576https://repositorio.uniandes.edu.co/bitstreams/6f13018f-58ec-4c06-a0ad-044c7b32e63d/downloade9eb53442e9328e5cbba7cc22bebfae8MD58TEXTTrabajo de grado Laura Juliana López .pdf.txtTrabajo de grado Laura Juliana López .pdf.txtExtracted texttext/plain45696https://repositorio.uniandes.edu.co/bitstreams/98ffd0f1-67b5-45a9-8b65-b95ef91d48ca/downloadf3f8049b5c9b975e51fe82bed0eb8558MD55repositorio firmado.pdf.txtrepositorio firmado.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/227dc6f1-84a7-4f46-ae9f-6bf34867c594/download4491fe1afb58beaaef41a73cf7ff2e27MD57ORIGINALTrabajo de grado Laura Juliana López .pdfTrabajo de grado Laura Juliana López .pdfapplication/pdf381632https://repositorio.uniandes.edu.co/bitstreams/eceb3879-88af-4732-a0f0-91db751ea3ce/downloadfd7006fff33d4b75e1dbab62d05c5ec5MD54repositorio firmado.pdfrepositorio firmado.pdfHIDEapplication/pdf176196https://repositorio.uniandes.edu.co/bitstreams/c663d65b-69bc-4c88-9eb5-e13aacf12325/download0179bb7cba2d038d18605ab9084e7b31MD531992/64374oai:repositorio.uniandes.edu.co:1992/643742024-03-13 15:36:34.983http://creativecommons.org/licenses/by-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |