Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learning

This is a work that implements spectra of distant celestial objects taken by the spectrograph of the DESI collaboration. It seeks to deal with the current problem of ambiguity in the classification of Seyfert-type galaxies, causars and stars. For this purpose, a set of spectrophotometric variables i...

Full description

Autores:
Fajardo Poveda, Daniel Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74561
Acceso en línea:
https://hdl.handle.net/1992/74561
Palabra clave:
Astronomia
Extragalactica
Galaxias
Quasares
Estrellas
Clasificadores
Fotometria
Espectroscopia
Espectros
DESI
Machine learning
Redshift
Física
Rights
openAccess
License
Attribution-NoDerivatives 4.0 International
id UNIANDES2_141c9acf054d7dace552a9a656dfbc69
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74561
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learning
dc.title.alternative.spa.fl_str_mv Mapeando el Universo: clasificación de galaxias y cuásares a través de variables espectrales esenciales con aprendizaje automático
title Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learning
spellingShingle Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learning
Astronomia
Extragalactica
Galaxias
Quasares
Estrellas
Clasificadores
Fotometria
Espectroscopia
Espectros
DESI
Machine learning
Redshift
Física
title_short Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learning
title_full Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learning
title_fullStr Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learning
title_full_unstemmed Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learning
title_sort Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learning
dc.creator.fl_str_mv Fajardo Poveda, Daniel Andrés
dc.contributor.advisor.none.fl_str_mv García Varela, José Alejandro
dc.contributor.author.none.fl_str_mv Fajardo Poveda, Daniel Andrés
dc.contributor.jury.none.fl_str_mv Sabogal Martínez, Beatriz Eugenia
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias
dc.subject.keyword.spa.fl_str_mv Astronomia
topic Astronomia
Extragalactica
Galaxias
Quasares
Estrellas
Clasificadores
Fotometria
Espectroscopia
Espectros
DESI
Machine learning
Redshift
Física
dc.subject.keyword.none.fl_str_mv Extragalactica
Galaxias
Quasares
Estrellas
Clasificadores
Fotometria
Espectroscopia
Espectros
DESI
Machine learning
Redshift
dc.subject.themes.spa.fl_str_mv Física
description This is a work that implements spectra of distant celestial objects taken by the spectrograph of the DESI collaboration. It seeks to deal with the current problem of ambiguity in the classification of Seyfert-type galaxies, causars and stars. For this purpose, a set of spectrophotometric variables is proposed and the best models for the creation of spectral classifiers are found.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-16T19:42:13Z
dc.date.available.none.fl_str_mv 2024-07-16T19:42:13Z
dc.date.issued.none.fl_str_mv 2024-07-16
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74561
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74561
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Adam, G. 2022, AJ, 163, 11
Adame, A. G. et al. 2023, arXiv preprint: [2306.06308]
Chaussidon, E. et al. 2023, ApJ, 944, 107
Cárdenas, C. & Fajardo, D. 2023, Theoretical Project Report, Universidad de los Andes
Farr, J. et al. 2020, Journal of Cosmology and Astroparticle Physics, 2020, 15
Gallagher, S. C. et al. 2015, RAS, 451, 2991
Ginsburg, A. et al. 2022, ApJ, 163, 291
Karttunen, H. et al. 2007, Fundamental Astronomy, Springer
Li, R. et al. 2019, MNRAS, 482, 313
Li, Z. et al. 2022, MNRAS, 517, 4875
Myers, A. D. et al. 2023, Astron. J, 165, 50
Ness, M. et al. 2015, ApJ, 808, 16
Ostlie, A. & Carroll, W. 1996, Modern Stellar Astrophysics, Addison-Wesley Publishing Company
Robitaille, T. P. et al. 2013, A&A, 558, A33
Saavedra, J. 2019, Undergraduate Thesis, Universidad de los Andes, 59
Wang, B. et al. 2022, ApJS, 259, 28
Zakamska, N. & Alexandroff, R. 2023, arXiv preprint: [2306.06303]
dc.rights.en.fl_str_mv Attribution-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 90 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/722c98b7-8d80-444a-af7f-33df92046ecd/download
https://repositorio.uniandes.edu.co/bitstreams/af434a61-e669-4ca8-99b2-76fa4762c377/download
https://repositorio.uniandes.edu.co/bitstreams/2e10e364-ca4d-4a2c-8b97-4c42ac27f449/download
https://repositorio.uniandes.edu.co/bitstreams/4a61e99b-89af-433e-b7ab-0727c94d0236/download
https://repositorio.uniandes.edu.co/bitstreams/deb5d874-c65c-4830-8606-8a2b06da0635/download
https://repositorio.uniandes.edu.co/bitstreams/bf2b500c-380e-4942-ae3c-120420ca61b8/download
https://repositorio.uniandes.edu.co/bitstreams/0ee526bf-7ff0-47e7-92ca-84ef00e2679a/download
https://repositorio.uniandes.edu.co/bitstreams/47677845-0170-44a5-a690-3244189a4802/download
bitstream.checksum.fl_str_mv 27598f16c678eb476d46184ed5995aed
b32dd4560b3de3d63fdfa7ff3935fcb5
f7d494f61e544413a13e6ba1da2089cd
ae9e573a68e7f92501b6913cc846c39f
2d97f2b3431e8e7c07963c753243066d
104a6aa9d567e744b0253e6b088eda46
e1bd0384f4cdcc36561843701ed1ac58
832c934ff1059494e1906983fdefcc44
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133885785407488
spelling García Varela, José Alejandrovirtual::18957-1Fajardo Poveda, Daniel AndrésSabogal Martínez, Beatriz Eugeniavirtual::18958-1Facultad de Ciencias2024-07-16T19:42:13Z2024-07-16T19:42:13Z2024-07-16https://hdl.handle.net/1992/74561instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This is a work that implements spectra of distant celestial objects taken by the spectrograph of the DESI collaboration. It seeks to deal with the current problem of ambiguity in the classification of Seyfert-type galaxies, causars and stars. For this purpose, a set of spectrophotometric variables is proposed and the best models for the creation of spectral classifiers are found.This thesis focused on resolving the current ambiguity in the classification of galaxies, quasars, and stars. There are some classifiers like RedRock or QuasarNET that perform spectral classifications and redshift measurements for the targets observed by DESI (Dark Energy Spectroscopic Instrument). However, not all results obtained for all types of targets are satisfactory; there are ambiguous limits between the spectral characteristics of Seyfert-type galaxies, quasars, and some high-temperature stars. This complicates and biases the analysis of experimental data. In this project, the construction of spectral classifiers was carried out, which, using a set of spectrophotometric variables (proposed by us), are capable of resolving the ambiguity problem in the classification of galaxies, stars, and quasars reported by the DESI collaboration when using the presence of spectral emission lines as a determining parameter to establish the labels of spectra with redshifts less than 2.1. With the tools developed here, it is expected to contribute to the massive processing of the spectra taken by the DESI collaboration, considering and dealing with the ambiguity in the distinction of galaxies, quasars, and stars. Additionally, it is expected to contribute to the understanding of the physical nature of quasars.PregradoExtragalactic spectroscopy90 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learningMapeando el Universo: clasificación de galaxias y cuásares a través de variables espectrales esenciales con aprendizaje automáticoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPAstronomiaExtragalacticaGalaxiasQuasaresEstrellasClasificadoresFotometriaEspectroscopiaEspectrosDESIMachine learningRedshiftFísicaAdam, G. 2022, AJ, 163, 11Adame, A. G. et al. 2023, arXiv preprint: [2306.06308]Chaussidon, E. et al. 2023, ApJ, 944, 107Cárdenas, C. & Fajardo, D. 2023, Theoretical Project Report, Universidad de los AndesFarr, J. et al. 2020, Journal of Cosmology and Astroparticle Physics, 2020, 15Gallagher, S. C. et al. 2015, RAS, 451, 2991Ginsburg, A. et al. 2022, ApJ, 163, 291Karttunen, H. et al. 2007, Fundamental Astronomy, SpringerLi, R. et al. 2019, MNRAS, 482, 313Li, Z. et al. 2022, MNRAS, 517, 4875Myers, A. D. et al. 2023, Astron. J, 165, 50Ness, M. et al. 2015, ApJ, 808, 16Ostlie, A. & Carroll, W. 1996, Modern Stellar Astrophysics, Addison-Wesley Publishing CompanyRobitaille, T. P. et al. 2013, A&A, 558, A33Saavedra, J. 2019, Undergraduate Thesis, Universidad de los Andes, 59Wang, B. et al. 2022, ApJS, 259, 28Zakamska, N. & Alexandroff, R. 2023, arXiv preprint: [2306.06303]202022617Publication88a1271b-7c5b-4cba-a02a-87878aba01e4virtual::18957-188a1271b-7c5b-4cba-a02a-87878aba01e4virtual::18957-11d39bc41-f9d3-461b-a7cc-84296451800fvirtual::18958-11d39bc41-f9d3-461b-a7cc-84296451800f1d39bc41-f9d3-461b-a7cc-84296451800fvirtual::18958-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000382418virtual::18957-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000382310virtual::18958-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000382310ORIGINALautorizacion tesis_signed.pdfautorizacion tesis_signed.pdfHIDEapplication/pdf413216https://repositorio.uniandes.edu.co/bitstreams/722c98b7-8d80-444a-af7f-33df92046ecd/download27598f16c678eb476d46184ed5995aedMD51Mapping_the_universe_.pdfMapping_the_universe_.pdfapplication/pdf6734552https://repositorio.uniandes.edu.co/bitstreams/af434a61-e669-4ca8-99b2-76fa4762c377/downloadb32dd4560b3de3d63fdfa7ff3935fcb5MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/2e10e364-ca4d-4a2c-8b97-4c42ac27f449/downloadf7d494f61e544413a13e6ba1da2089cdMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/4a61e99b-89af-433e-b7ab-0727c94d0236/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis_signed.pdf.txtautorizacion tesis_signed.pdf.txtExtracted texttext/plain2095https://repositorio.uniandes.edu.co/bitstreams/deb5d874-c65c-4830-8606-8a2b06da0635/download2d97f2b3431e8e7c07963c753243066dMD55Mapping_the_universe_.pdf.txtMapping_the_universe_.pdf.txtExtracted texttext/plain100178https://repositorio.uniandes.edu.co/bitstreams/bf2b500c-380e-4942-ae3c-120420ca61b8/download104a6aa9d567e744b0253e6b088eda46MD57THUMBNAILautorizacion tesis_signed.pdf.jpgautorizacion tesis_signed.pdf.jpgGenerated Thumbnailimage/jpeg11058https://repositorio.uniandes.edu.co/bitstreams/0ee526bf-7ff0-47e7-92ca-84ef00e2679a/downloade1bd0384f4cdcc36561843701ed1ac58MD56Mapping_the_universe_.pdf.jpgMapping_the_universe_.pdf.jpgGenerated Thumbnailimage/jpeg8711https://repositorio.uniandes.edu.co/bitstreams/47677845-0170-44a5-a690-3244189a4802/download832c934ff1059494e1906983fdefcc44MD581992/74561oai:repositorio.uniandes.edu.co:1992/745612024-09-12 15:51:48.962http://creativecommons.org/licenses/by-nd/4.0/Attribution-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K