Mapping the Universe: classifying galaxies and quasars through essential spectral features with machine learning

This is a work that implements spectra of distant celestial objects taken by the spectrograph of the DESI collaboration. It seeks to deal with the current problem of ambiguity in the classification of Seyfert-type galaxies, causars and stars. For this purpose, a set of spectrophotometric variables i...

Full description

Autores:
Fajardo Poveda, Daniel Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74561
Acceso en línea:
https://hdl.handle.net/1992/74561
Palabra clave:
Astronomia
Extragalactica
Galaxias
Quasares
Estrellas
Clasificadores
Fotometria
Espectroscopia
Espectros
DESI
Machine learning
Redshift
Física
Rights
openAccess
License
Attribution-NoDerivatives 4.0 International