Desarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutos
La inexactitud de los diagnósticos visuales de deficiencias nutricionales en las plantas dificulta la toma de acciones correctivas en cultivos como el café. Los suelos del municipio de Acevedo presentan una tendencia a la retención de fósforo orgánico de manera que es necesario garantizar el aporte...
- Autores:
-
Losada Naranjo, Laura Daniela
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/10891
- Palabra clave:
- Procesamiento de imágenes
Diagnósticos visuales
Técnicas de visión artificial bajo condiciones de campo
Clasificadores
610.28
Image processing
Visual diagnostics
Machine vision techniques under field conditions
Classifiers
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNBOSQUE2_62191d980f4e5372957f3702c4da5f7e |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/10891 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutos |
dc.title.translated.spa.fl_str_mv |
Development of a diagnostic support method using artificial vision techniques to identify the nutritional deficiency of phosphorus in leaves of coffee plants (Coffea arabica L.) of the Castillo variety in the phenological phase of fruit formation and filling |
title |
Desarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutos |
spellingShingle |
Desarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutos Procesamiento de imágenes Diagnósticos visuales Técnicas de visión artificial bajo condiciones de campo Clasificadores 610.28 Image processing Visual diagnostics Machine vision techniques under field conditions Classifiers |
title_short |
Desarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutos |
title_full |
Desarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutos |
title_fullStr |
Desarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutos |
title_full_unstemmed |
Desarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutos |
title_sort |
Desarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutos |
dc.creator.fl_str_mv |
Losada Naranjo, Laura Daniela |
dc.contributor.advisor.none.fl_str_mv |
Avendaño Pérez, Jonathan Rodriguez Acevedo, María Eugenia |
dc.contributor.author.none.fl_str_mv |
Losada Naranjo, Laura Daniela |
dc.subject.spa.fl_str_mv |
Procesamiento de imágenes Diagnósticos visuales Técnicas de visión artificial bajo condiciones de campo Clasificadores |
topic |
Procesamiento de imágenes Diagnósticos visuales Técnicas de visión artificial bajo condiciones de campo Clasificadores 610.28 Image processing Visual diagnostics Machine vision techniques under field conditions Classifiers |
dc.subject.ddc.none.fl_str_mv |
610.28 |
dc.subject.keywords.spa.fl_str_mv |
Image processing Visual diagnostics Machine vision techniques under field conditions Classifiers |
description |
La inexactitud de los diagnósticos visuales de deficiencias nutricionales en las plantas dificulta la toma de acciones correctivas en cultivos como el café. Los suelos del municipio de Acevedo presentan una tendencia a la retención de fósforo orgánico de manera que es necesario garantizar el aporte de este nutriente para un adecuado desarrollo del fruto. Con el fin de automatizar los procesos de diagnósticos visuales bajo las condiciones de variabilidad del entorno agrícola se propuso en este trabajo de grado el desarrollo de cuatro fases: El diseño y construcción de un equipo de adquisición de imágenes, la construcción de un dataset con imágenes de hojas con la deficiencia nutricional de fósforo y hojas sanas, el desarrollo de un algoritmo qué lograra identificar la presencia de la deficiencia y la validación del método propuesto. El equipo de adquisición de imágenes digitales en campo fue construido con la finalidad de aislar el fondo y estandarizar una distancia de trabajo. Para la selección del color de fondo se evaluó la desviación estándar y se determinó que el fondo azul es aquel que permite una mayor separabilidad de píxeles entre el fondo y el color de la hoja. El equipo de adquisición de imágenes diseñado permitió la construcción de un dataset con imágenes de hojas de café con la sintomatología de la deficiencia nutricional de fósforo en plantas de fincas cafeteras del municipio de Acevedo, Huila que en contraste con un análisis foliar presentaron la limitación nutricional de fósforo. En la construcción del algoritmo se incluyeron técnicas de preprocesamiento de imágenes, de segmentación de imágenes por super pixeles y extracción de características de color y textura, las técnicas de reducción de características estudiadas fueron extra tree classifier, LDA y PCA, en donde su rendimiento fue evaluado en relación a cuatro tipos de clasificadores y un predictor acorde a las métricas de evaluación de matrices de confusión. El clasificador de árboles de decisión tuvo el mejor rendimiento según la curva ROC y AUC, la validación del clasificador demostró un F-score del 0.994 para el algoritmo de identificación de la deficiencia nutricional de fósforo en hojas de café bajo condiciones de campo lo cual indicó una alta capacidad de distinción entre las clases. Finalmente se discute el desempeño del método propuesto respecto a uno entrenado bajo condiciones controladas en donde este último presentó un desempeño superior del 6%. De esta manera se demostró que una metodología construida en campo permitió el desarrollo de soluciones aplicables a entornos reales y que aunque se haya presentado un buen desempeño aún es necesario seguir trabajando en técnicas que permitan alcanzar los resultados de algoritmos entrenados bajo condiciones controladas. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-06T14:11:06Z |
dc.date.available.none.fl_str_mv |
2023-07-06T14:11:06Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12495/10891 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unbosque.edu.co |
url |
http://hdl.handle.net/20.500.12495/10891 https://repositorio.unbosque.edu.co |
identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ Acceso abierto http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bioingeniería |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/0fe3a80f-2a50-44df-8fb9-f76ced1a951f/download https://repositorio.unbosque.edu.co/bitstreams/4e0daed3-ac05-47f5-ba7e-9c05dd4fc3a5/download https://repositorio.unbosque.edu.co/bitstreams/9f3d8013-55e4-428f-8f62-823cff0f1610/download https://repositorio.unbosque.edu.co/bitstreams/a58a44f6-5a61-4824-96cc-3b92f34de7af/download https://repositorio.unbosque.edu.co/bitstreams/e84e43f2-a5fb-4fc3-ac91-bf524c8f03bc/download https://repositorio.unbosque.edu.co/bitstreams/9a6ae0d4-e42c-4fdb-9e82-40a58a4e47a3/download |
bitstream.checksum.fl_str_mv |
464bebd79b470fa15047405671b00d2b bda978dd142c1a45f2ffb90f78e82e6c 24013099e9e6abb1575dc6ce0855efd5 17cc15b951e7cc6b3728a574117320f9 b1b3203aabf8f23fa8b8187a72f09f88 52c0cb0415e481579150b67538f0d733 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100695190601728 |
spelling |
Avendaño Pérez, JonathanRodriguez Acevedo, María EugeniaLosada Naranjo, Laura Daniela2023-07-06T14:11:06Z2023-07-06T14:11:06Z2023http://hdl.handle.net/20.500.12495/10891instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coLa inexactitud de los diagnósticos visuales de deficiencias nutricionales en las plantas dificulta la toma de acciones correctivas en cultivos como el café. Los suelos del municipio de Acevedo presentan una tendencia a la retención de fósforo orgánico de manera que es necesario garantizar el aporte de este nutriente para un adecuado desarrollo del fruto. Con el fin de automatizar los procesos de diagnósticos visuales bajo las condiciones de variabilidad del entorno agrícola se propuso en este trabajo de grado el desarrollo de cuatro fases: El diseño y construcción de un equipo de adquisición de imágenes, la construcción de un dataset con imágenes de hojas con la deficiencia nutricional de fósforo y hojas sanas, el desarrollo de un algoritmo qué lograra identificar la presencia de la deficiencia y la validación del método propuesto. El equipo de adquisición de imágenes digitales en campo fue construido con la finalidad de aislar el fondo y estandarizar una distancia de trabajo. Para la selección del color de fondo se evaluó la desviación estándar y se determinó que el fondo azul es aquel que permite una mayor separabilidad de píxeles entre el fondo y el color de la hoja. El equipo de adquisición de imágenes diseñado permitió la construcción de un dataset con imágenes de hojas de café con la sintomatología de la deficiencia nutricional de fósforo en plantas de fincas cafeteras del municipio de Acevedo, Huila que en contraste con un análisis foliar presentaron la limitación nutricional de fósforo. En la construcción del algoritmo se incluyeron técnicas de preprocesamiento de imágenes, de segmentación de imágenes por super pixeles y extracción de características de color y textura, las técnicas de reducción de características estudiadas fueron extra tree classifier, LDA y PCA, en donde su rendimiento fue evaluado en relación a cuatro tipos de clasificadores y un predictor acorde a las métricas de evaluación de matrices de confusión. El clasificador de árboles de decisión tuvo el mejor rendimiento según la curva ROC y AUC, la validación del clasificador demostró un F-score del 0.994 para el algoritmo de identificación de la deficiencia nutricional de fósforo en hojas de café bajo condiciones de campo lo cual indicó una alta capacidad de distinción entre las clases. Finalmente se discute el desempeño del método propuesto respecto a uno entrenado bajo condiciones controladas en donde este último presentó un desempeño superior del 6%. De esta manera se demostró que una metodología construida en campo permitió el desarrollo de soluciones aplicables a entornos reales y que aunque se haya presentado un buen desempeño aún es necesario seguir trabajando en técnicas que permitan alcanzar los resultados de algoritmos entrenados bajo condiciones controladas.BioingenieroPregradoThe inaccuracy of visual diagnoses of nutritional deficiencies in plants makes it difficult to take corrective actions in crops such as coffee. The soils of the municipality of Acevedo have a tendency to retain organic phosphorus, so it is necessary to guarantee the supply of this nutrient for an adequate development of the fruit. In order to automate the processes of visual diagnostics under the conditions of variability of the agricultural environment, the development of four phases was proposed in this degree work: The design and construction of an image acquisition equipment, the construction of a dataset with images of leaves with phosphorus nutritional deficiency and healthy leaves, the development of an algorithm to identify the presence of the deficiency and the validation of the proposed method. The digital image acquisition equipment in the field was built in order to isolate the background and standardize a working distance. For the selection of the background color, the standard deviation was evaluated and it was determined that the blue background is the one that allows a greater pixel separability between the background and the leaf color. The image acquisition equipment designed allowed the construction of a dataset with images of coffee leaves with the symptomatology of nutritional phosphorus deficiency in plants from coffee farms in the municipality of Acevedo, Huila, which in contrast to a foliar analysis presented nutritional phosphorus limitation. In the construction of the algorithm, image preprocessing techniques, image segmentation by super pixels and extraction of color and texture features were included, the feature reduction techniques studied were extra tree classifier, LDA and PCA, where its performance was evaluated in relation to four types of classifiers and a predictor according to the evaluation metrics of confusion matrices. The decision tree classifier had the best performance according to the ROC curve and AUC, the validation of the classifier showed an F-score of 0.994 for the algorithm of identification of nutritional phosphorus deficiency in coffee leaves under field conditions which indicated a high ability to distinguish between classes. Finally, the performance of the proposed method is discussed with respect to one trained under controlled conditions, where the latter presented a superior performance of 6%. In this way, it was demonstrated that a methodology built in the field allowed the development of solutions applicable to real environments and that although a good performance has been presented, it is still necessary to continue working on techniques that allow reaching the results of algorithms trained under controlled conditions.application/pdfspaAtribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procesamiento de imágenesDiagnósticos visualesTécnicas de visión artificial bajo condiciones de campoClasificadores610.28Image processingVisual diagnosticsMachine vision techniques under field conditionsClassifiersDesarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutosDevelopment of a diagnostic support method using artificial vision techniques to identify the nutritional deficiency of phosphorus in leaves of coffee plants (Coffea arabica L.) of the Castillo variety in the phenological phase of fruit formation and fillingBioingenieríaUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85THUMBNAILLosada,Laura final-Documento_de_grado_ producto_final_2023-1..pdf.jpgLosada,Laura final-Documento_de_grado_ producto_final_2023-1..pdf.jpgPortadaimage/jpeg46649https://repositorio.unbosque.edu.co/bitstreams/0fe3a80f-2a50-44df-8fb9-f76ced1a951f/download464bebd79b470fa15047405671b00d2bMD56ORIGINALLosada,Laura final-Documento_de_grado_ producto_final_2023-1..pdfLosada,Laura final-Documento_de_grado_ producto_final_2023-1..pdfDesarrollo de un método de apoyo diagnóstico utilizando técnicas de visión artificial para identificar la deficiencia nutricional de fósforo en hojas de plantas de café (Coffea arabica L.) de la variedad Castillo en la fase fenológica de formación y llenado de frutosapplication/pdf22080948https://repositorio.unbosque.edu.co/bitstreams/4e0daed3-ac05-47f5-ba7e-9c05dd4fc3a5/downloadbda978dd142c1a45f2ffb90f78e82e6cMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.unbosque.edu.co/bitstreams/9f3d8013-55e4-428f-8f62-823cff0f1610/download24013099e9e6abb1575dc6ce0855efd5MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/a58a44f6-5a61-4824-96cc-3b92f34de7af/download17cc15b951e7cc6b3728a574117320f9MD54_Carta de Autorizacion de uso de tesis y trabajos de grado a favor de la UEB.pdf_Carta de Autorizacion de uso de tesis y trabajos de grado a favor de la UEB.pdfCarta de autorizaciónapplication/pdf214361https://repositorio.unbosque.edu.co/bitstreams/e84e43f2-a5fb-4fc3-ac91-bf524c8f03bc/downloadb1b3203aabf8f23fa8b8187a72f09f88MD55TEXTLosada,Laura final-Documento_de_grado_ producto_final_2023-1..pdf.txtLosada,Laura final-Documento_de_grado_ producto_final_2023-1..pdf.txtExtracted texttext/plain102498https://repositorio.unbosque.edu.co/bitstreams/9a6ae0d4-e42c-4fdb-9e82-40a58a4e47a3/download52c0cb0415e481579150b67538f0d733MD5720.500.12495/10891oai:repositorio.unbosque.edu.co:20.500.12495/108912024-02-06 22:40:55.131http://creativecommons.org/licenses/by-nc-sa/4.0/Atribución-NoComercial-CompartirIgual 4.0 Internacionalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |