Desarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida
El término seta se refiere a un macrohongo con un cuerpo fructífero distintivo, el cual puede ser hipogeo o epigeo y lo suficientemente grande para ser visto a simple vista, por lo tanto pueden ser fácilmente recolectados a mano. Las setas comestibles son hongos filamentosos superiores, generalmente...
- Autores:
-
Ocampo Báez, Lía Victoria
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2023
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/12093
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/12093
- Palabra clave:
- Lentinula edodes
Hericium erinaceus
Grifola frondosa
Pleurotus ostreatus
Análisis proximal
Polisacáridos
Alimento funcional
Caracterización reológica
615.19
Lentinula edodes
Hericium erinaceus
Grifola frondosa
Pleurotus ostreatus
Proximate analysis
Polysaccharides
Functional food
Rheological characterisation
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNBOSQUE2_4919e5e1498c21ccf8d119a88133cc0b |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/12093 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Desarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida |
dc.title.translated.none.fl_str_mv |
Development of a functional food prototype based on polysaccharides from macromycete fungi. Phase I: proximate analysis and extraction of the polysaccharide fraction. |
title |
Desarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida |
spellingShingle |
Desarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida Lentinula edodes Hericium erinaceus Grifola frondosa Pleurotus ostreatus Análisis proximal Polisacáridos Alimento funcional Caracterización reológica 615.19 Lentinula edodes Hericium erinaceus Grifola frondosa Pleurotus ostreatus Proximate analysis Polysaccharides Functional food Rheological characterisation |
title_short |
Desarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida |
title_full |
Desarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida |
title_fullStr |
Desarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida |
title_full_unstemmed |
Desarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida |
title_sort |
Desarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida |
dc.creator.fl_str_mv |
Ocampo Báez, Lía Victoria |
dc.contributor.advisor.none.fl_str_mv |
Robayo Medina, Angie Tatiana Parra Amin, Jorge Emilio Velandia Paris, Maria Angélica |
dc.contributor.author.none.fl_str_mv |
Ocampo Báez, Lía Victoria |
dc.contributor.orcid.none.fl_str_mv |
Ocampo Báez, Lía Victoria [0009-0005-3528-9507] |
dc.subject.none.fl_str_mv |
Lentinula edodes Hericium erinaceus Grifola frondosa Pleurotus ostreatus Análisis proximal Polisacáridos Alimento funcional Caracterización reológica |
topic |
Lentinula edodes Hericium erinaceus Grifola frondosa Pleurotus ostreatus Análisis proximal Polisacáridos Alimento funcional Caracterización reológica 615.19 Lentinula edodes Hericium erinaceus Grifola frondosa Pleurotus ostreatus Proximate analysis Polysaccharides Functional food Rheological characterisation |
dc.subject.ddc.none.fl_str_mv |
615.19 |
dc.subject.keywords.none.fl_str_mv |
Lentinula edodes Hericium erinaceus Grifola frondosa Pleurotus ostreatus Proximate analysis Polysaccharides Functional food Rheological characterisation |
description |
El término seta se refiere a un macrohongo con un cuerpo fructífero distintivo, el cual puede ser hipogeo o epigeo y lo suficientemente grande para ser visto a simple vista, por lo tanto pueden ser fácilmente recolectados a mano. Las setas comestibles son hongos filamentosos superiores, generalmente de los filos Basidiomycota y Ascomycota, las cuales son ampliamente reconocidas por su riqueza nutricional, su bajo valor calórico, su sabor y sus propiedades nutracéuticas (1), dentro de las que podemos resaltar el fortalecimiento de la función inmunitaria, el equilibrio de los niveles sanguíneos de glucosa, la reducción del crecimiento de tumores y el riesgo de padecer cáncer (2). Los beneficios de sus compuestos bioactivos han sido aprovechados en la medicina tradicional, a través del consumo de setas enteras, extractos de cuerpos fructíferos o micelio, y fracciones enriquecidas o compuestos aislados (3). Distintas investigaciones han logrado dilucidar que algunos polisacáridos de Lentinula edodes, Trametes versicolor y Agaricus bisporus pueden prevenir el cáncer de mama y de próstata, gracias a la inhibición de las enzimas 5-alfa-reductasa y aromatasa, responsables del crecimiento de los tumores cancerosos (12). Estudios más recientes demostraron que los polisacáridos de basidiomicetos pueden inhibir la proliferación celular a través de la inducción de la apoptosis, de tal manera que muchos de estos polisacáridos, como el Lentinan aislado de Lentinula edodes, ya se utilizan en la terapia contra el cáncer, específicamente en la prevención de la oncogénesis y la metástasis inducida químicamente (4). Por tanto el objetivo principal de la presente investigación, en su primera parte busca determinar la composición proximal de cuatro especies de hongos cultivadas en la Sabana de Bogotá (Lentinula edodes, Hericium erinaceus, Pleurotus ostreatus y Grifola frondosa), siguiendo metodologías propias del análisis proximal de alimentos proporcionados por la AOAC (Asociación de Químicos Analíticos Oficiales por sus siglas en inglés), a partir de la determinación del contenido de nutrientes de las setas estudiadas; se destaca el alto contenido de proteínas (8-22%), alto contenido de fibra dietética (5-9%), además de su bajo porcentaje de grasa (1-4%). Adicionalmente, se determinó que el contenido de polisacáridos en estos cuatro hongos macromicetos comestibles se encuentra entre 1 y 21%. La caracterización reológica de esta fracción permitió clasificarlos como fluidos no- Newtonianos de tipo pseudoplásticos. Finalmente a partir de la información obtenida se pudo concluir que las setas estudiadas son una buena alternativa alimenticia para incorporación en un alimento funcional, atendiendo a sus propiedades nutracéuticas y tecnológicas. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-05 |
dc.date.accessioned.none.fl_str_mv |
2024-05-09T20:52:39Z |
dc.date.available.none.fl_str_mv |
2024-05-09T20:52:39Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/12093 |
dc.identifier.instname.spa.fl_str_mv |
Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/12093 |
identifier_str_mv |
Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Hernández-Martínez, R.; Navarro-Blasco, I. (2015). Surveillance of aflatoxin content in dairy cow feedstuff from Navarra (Spain). Anim. Feed Sci. Technol, 200, 35–46 Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. (2017) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study. Lancet. 2018; 392(10159): 1736–88. DOI: https://doi.org/10.1016/S0140-6736(18)32203-7 Production, consumption and MarkettingEdition: I Chapter: Nutritional and Medicinal values of MushroomsPublisher: Directorate of Mushroom Research, SolanEditors: Manjit Singh, B.Vijai, Shwet Kamal G.C. WakchauraeProject: Paddy straw genetic improvement Kong, Y.; Yang, X.; Ding, Q.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T.; Sun, Y. (2017) Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate. Food Res. Int. 2017, 102, 559–566 Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. (2017). Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932 Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrovi ́c, P.; Niksic, M.; Vrvic, M.M.; Van Griensven, L. (2015) Antioxidants of edible mushrooms. Molecules 2015, 20, 19489–19525. Hoeft B., Weber P., Eggersdorfer M.(2012) Micronutrients—A global perspective on intake, health benefits and economics. Int. J. Vitam. Nutr. Res. 2012;82:316–320. doi: 10.1024/0300-9831/a000125. Lemieszek M, Rzeski W. (2012). Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Wspolczesna Onkol. 4:285–289.10.5114/wo.2012.30055 Lang, M. (2020). Consumer acceptance of blending plant-based ingredients into traditional meat-based foods: Evidence from the meat-mushroom blend. Food Qual. Prefer. 2020, 79, 103758. Bruins, M. J., Van Dael, P., & Eggersdorfer, M. (2019). The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging. Nutrients, 11(1), 85. https://doi.org/10.3390/nu11010085 Zhuang C, Kawagishi C, Harry G. (2005). Glycoprotein with antidiabetic, antihypertensive, antiobesity and antihyperlipidemic effects from Grifola frondosa and a method for preparing sample. United States Patent Application, no 7.214.778, 2005. Nielsen, J.E., Beier, L., Otzen, D., Borchert, T.V., Frantzen, H.B., Andersen, K.V. and Svendsen, A. (1999), ‘‘Electrostatics in the active site of an -amylase’’, European J. Biochemistry, Vol. 264, pp. 816-24. Disis M. L. (2010). Immune regulation of cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28(29), 4531–4538. https://doi.org/10.1200/JCO.2009.27.2146 Steck SE, Murphy EA.(2020). Dietary patterns and cancer risk. Nat Rev Cancer. 2020 Feb;20(2):125-138. doi: 10.1038/s41568-019-0227-4. Epub 2019 Dec 17. PMID: 31848467. Stamets, P. (2000). “Growing gourmet and medicinal mushrooms”. Canadá. McGraw-Hill.25p. Varki, A. (2017). Biological roles of glycans. Glycobiology, 27, (1), 3-49. https://doi.org/10.1093/glycob/cww086. Deshpande, N., Wilkins, M. R., Packer, N., & Nevalainen, H. (2008). Protein glycosylation pathways in filamentous fungi. Glycobiology, 18, (8), 626-637. https://doi.org/10.1093/glycob/cwn044 Wasser, S. P., & Weis, A. L. (1999). Medicinal properties of substances occurring in Higher Basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms, 1, 31–62. Wasser, S.P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol , 60, 258–274. Sun, Y., Shi, X., Zheng, X., Nie, S., & Xu, X. (2019). Inhibition of dextran sodium sulfate-induced colitis in mice by baker’s yeast polysaccharides. Carbohydrate Polymers, 207, 371-381. https://doi.org/10.1016/j.carbpol.2018.11.087 Ruytinx, J., Kafle, A., Usman, M., Coninx, L., Zimmermann, S. D., & Garcia, K. (2020). Micronutrient transport in mycorrhizal symbiosis; zinc steals the show. Fungal Biology.Reviews, 34, (1), 1-9. https://doi.org/10.1016/j.fbr.2019.09.001. Usuldin, S. R. A., Mahmud, N., Ilham, Z., Ikram, N. K. K., Ahmad, R., & Wan, W. A. A. Q. I. (2020). In-depth spectral characterization of antioxidative (1, 3)-β-D-glucan from the mycelium of an identified tiger milk mushroom Lignosus rhinocerus strain ABI in a stirred-tank bioreactor. Department of Environmental Sciences and Public Health, University of Gdańsk, 63 Wita Stwosza Str., 80-308 Gdańsk, Poland Faculty of Science and Technology, Athabasca University, Athabasca, Alberta, T9S 3A3, Canada Mohammad-Fata Moradali; Hossein Mostafavi; Shirin Ghods; Ghorban-Ali Hedjaroude (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). , 7(6), 0–724. doi:10.1016/j.intimp.2007.01.008 Liang J, Melican D, Cafro L, Palace G, Fisette L, et al.(1998) Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int J Immunopharmacol 1998;20:595–614. Venkatesagowda, B. (2019). Enzymatic demethylation of lignin for potential biobased polymer applications. Fungal Biology Reviews, 33, (3-4), 190-224. https://doi.org/10.1016/j.fbr.2019.06.002. Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J.(1999). Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology 1999; 42: 61-74. Hamuro J, Chihara G. Lentinan. (1985). A T-cell oriented immunopotentiator: its experimental and clinical applications and possibile mechanism of immune modulation. W: Immunomodulation agents and their mechanisms. Fenichel RL, Chirigos MA (eds.). Dekker, New York 1985; 409-3. Burgaleta C, Territo MC, Quan SG, Golde DW. Glucanactivated macrophages: functional characteristics and surface morphology. J Reticuloendothel Soc 1978;23:195–204. European Commission report on functional foods. Eu-ropean Union (2010). Available from: http://www.euro-sfaire.prd.fr/7pc/documents/1276590504_functional_foods_en_publi_ce. pdf (18.12.2015) Llanes, Andrés (2015). Alimentos funcionales y biotecnología. Revista Colombiana de Biotecnología, 17(1), 5–8. doi:10.15446/rev.colomb.biote.v17n1.50997 Barbosa J. (2020). Occurrence and Possible Roles of Polysaccharides in Fungi and their Influence on the Development of New Technologies. Carbohydrate Polymers, (), 116613–. doi:10.1016/j.carbpol.2020.116613 Trigos, A. (1998). Química de los Hongos. En “Producción de vitamina D2 a partir de hongos macromicetos: Aspectos científicos, técnicos y económicos”. Bogotá. Editor: Dr.Augusto Rivera Umaña. Editorial Guadalupe. 19p. Melendez, S. (2003). Análisis de alimentos, fundamentos y técnicas. Universidad Nacional Autónoma de México. Facultad de química. p. 36. Mizuno, T. (1999). The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan (Review). International Journal of Medicinal Mushrooms, 1, 9-30. AOAC method 925.45 Ed. 18 (2004). AOAC International: Official methods of analysis. USA NTC 6383:2020. Determinación del contenido de fibra dietaria total (FDT) en los alimentos. Método enzimático / gravimétrico. Garcia , E y Fernandez, I (2018) Determinación de proteínas de un alimento por el método Kjeldahl. Valoración con un ácido fuerte. https://riunet.upv.es/bitstream/handle/10251/16338/Determinaci%C3%B3n%20de%20pro teinas.pdf. Palacios, I.(2015). “Extracción y caracterización de polisacáridos y estudio del perfil de compuestos volátiles en hongos comestibles”. Departamento de Biología Celular, Histología y Farmacología. Facultad de Medicina. Universidad de Valladolid, España. Setayesh, Z., Asoodeh, A. (2017). Biochemical Characterization of HL-7 and HL-10 Peptides Identified from Scorpion Venom of Hemiscorpius lepturus . International Journal of Peptide Research and Therapeutics, 24(3), 421–430. doi:10.1007/s10989-017-9625-1 Jiménez, R. A., Millán, D., Sosnik, A., & Fontanilla, M. R. (2022). Aloe vera–elutingcollagen I microgels: physicochemical characterization and in vitro biological performance. Materials Today Chemistry, 23. https://doi.org/10.1016/j.mtchem.2021.100722 Chang, S.-T. and P.G. Miles. (2004)., MUSHROOMS: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. 2nd ed, ed. B. Ratón: FL: CRC Press. 1-26. Barros, L., et a (2008). lWild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 2008. 46(8): p. 2742-2747. Diez, V. A., & Álvarez, A. (2001). Compositional and Nutritional studies on two wild edible mushrooms from North West Spain. Food Chemistry, 75 (4), 417-442 Badalyan SM. (2003) Edible and medicinal higher Basidiomycetes mushrooms as a source of natural antioxidants. International Journal of Medicinal Mushrooms 5, 153–163 Pavel, K. (2009). Chemical composition and nutritional value of European Species of Wild growing mushrooms: A review. Food Chemistry 113(1), 9-16 Bernás, E., Jaworska, G. & Lisiewska, Z. (2006). Edible mushrooms as a source of valuable constituents. Acta Sci. Pol, Technolo. Aliment., 5 (1), 5-20. Ayaz, F. A., Torun, H., Colak, A., Sesli, E., Milson, M. & Glew, R.H. (2011). Macro and Microelement Contents of Fruiting Bodies of Wild-Edible Mushrooms Growing in the East Black Sea Region of Turkey. Food and Nutrition Sciences, 2, 53-59 NIETO-RAMÍREZ, I. J., ROJAS-LUNA, R., & SUAREZ A., C. (2012). EVALUACIÓN DEL ESTÍPITE DE SHIITAKE COMO APORTANTE DE FIBRA Y BIOACTIVOS CON MIRAS A SU EMPLEO EN ALIMENTOS FUNCIONALES. Vitae, 19(1), S331-S333. Hong JS, Kim YH, Lee KR, Kim MK, Cho CI, Part KKH. (2004) Composition of organic abd fatty acid in Pleurotus ostreatus, Lentinus edodes and Agaricus bisporus . Korean Journal of Food Science and Technology. 1988;20:100–105. Barros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira. (2007) ICFR. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chemistry.;105(1):140–145. [Google Scholar] Greeshma, A., Sridhar, K. & Pavithra, M. (2018). Nutritional perspectives of an ectomycorrhizal edible mushroom Amanita of the southwestern India. Current Research in Environmental & Applied Mycology, 8 (1), 54-68 Pedneault, K., Angers, P. Gasselin, A. & Tweddell R. (2007). Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var. citrino- pileatus grown at different temperatures. Mycological Research, 111, 1128-1234. Pecora RP.(1989). Determination of protein in edible mushroom (Boletus spp). Int J Food Sci Technol 24(2):207–10. Stilinovic, N.; Capo, I.; Vukmirovic, S.; Raskovic, A.; Tomas, A.; Popovic, M.; Sabo, A.(2020).Chemical composition, nutritional profile and in vivo antioxidant properties of the cultivated mushroom Coprinus comatus. Royal Soc. Open Sci. 2020, 7, 200900. Morales, D.; Tejedor-Calvo, E.; Jurado-Chivato, N.; Polo, G.; Tabernero, M.; Ruiz-Rodriguez, A.; Largo, C.; Soler-Rivas, C.(2019).In vitro and in vivo testing of the hypocholesterolemic activity of ergosterol- and beta-glucan-enriched extracts obtained from shiitake mushrooms (Lentinula edodes). Food Funct. 2019, 10, 7325–7332. Su, C.H.; Lai, M.N.; Lin, C.C.; Ng, L.T. (2016).Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Appl. Microbiol. Biotechnol. 2016, 100, 4385–4393. Kalač, P. (2009). Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry, 113 (1), 9-16. Kalač, Pavel (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218. doi:10.1002/jsfa.5960 Fukushima, M.; Ohashi, T.; Fujiwara, Y.; Sonoyama, K.; Nakano, M.(2001). Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp. Biol. Med. 2001, 226, 758–765. Cohen, Nachshol; Cohen, Jacob; Asatiani, Mikheil D.; Varshney, Vinay K.; Yu, Hui-Tzu; Yang, Yi-Chi; Li, Yu-Hsuan; Mau, Jeng-Leun; Wasser, Solomon P. (2014). Chemical Composition and Nutritional and Medicinal Value of Fruit Bodies and Submerged Cultured Mycelia of Culinary-Medicinal Higher Basidiomycetes Mushrooms. International Journal of Medicinal Mushrooms, 16(3), 273–291. doi:10.1615/intjmedmushr.v16.i3.80 Liwen Wang;Margaret A. Brennan;Wenqiang Guan;Jianfu Liu;Hui Zhao;Charles S. Brennan; (2021). Edible mushrooms dietary fibre and antioxidants: Effects on glycaemic load manipulation and their correlations pre-and post-simulated in vitro digestion . Food Chemistry, (), –. doi:10.1016/j.foodchem.2021.129320 Y.Z. Tao, L. Zhang, P.C.K. Cheung. (2006). Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides, Carbohydr. Res. 3412261–2269 Macharia JM, Zhang L, et al. (2022) Are chemical compounds in medical mushrooms potent against colorectal cancer carcinogenesis and antimicrobial growth? Cancer Cell Int. 2022 Dec 1;22(1):379. doi: 10.1186/s12935-022-02798-2. PMID: 36457023; PMCID: PMC9714114. Zhang, M., et al. (2007)., Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science & Technology, 2007. 18(1): p. 4-19. Zhang, Y.,et al.(2011), Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocolloids.25(2): p. 196-206. Zhu, F., Du, B., & Xu, B. (2014). Preparation and Characterization of Polysaccharides from Mushrooms. Polysaccharides, 1–16. doi:10.1007/978-3-319-03751-6_10-1 Villares A, Mateo-Vivaracho L, Guillamón E.(2012).Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture 2:452–471 Alves, V. D., Freitas, F., Costa, N., Carvalheira, M., Oliveira, R., Gonc ̧ alves, M. P., et al. (2010). Effect of temperature on the dynamic and steady-shear rheology of a new microbial extracellular polysaccharide produced from glycerol byproduct. Carbohydrate Polymers, 79(4), 981–988. Murray, B. S. (2002). Interfacial rheology of food emulsifiers and proteins. Current Opinion in Colloid & Interface Science, 7(5), 426–431. Velasco, S. E., Areizaga, J., Irastorza, A., Duenas, M. T., Santamaria, A., & Munoz, ̃ M. E. (2009). Chemical and rheological properties of the -glucan produced by Pediococcus parvulus 2.6. Journal of Agricultural and Food Chemistry, 57(5), 1827–1834 Choi, H., Mitchell, J. R., Gaddipati, S. R., Hill, S. E., & Wolf, B. (2014). Shear rheology and filament stretching behaviour of xanthan gum and carboxymethyl cellulose solution in presence of saliva. Food Hydrocolloids, 40, 71–75. Xu, J.-L., Zhang, J.-C., Liu, Y., Sun, H.-J., & Wang, J.-H. (2016). Rheological properties of a polysaccharide from floral mushrooms cultivated in Huangshan Mountain. Carbohydrate Polymers, 139, 43–49. doi:10.1016/j.carbpol.2015.12.01110.1016/j.carbpol.2015.12.011 Tovar. E., (2010). “Evaluación de las propiedades reológicas de pulpas de frutas y productos derivados en una planta procesadora de jugos”. Trabajo de grado presentado ante la Universidad del Oriente como requisito parcial para optar al Título de Ingeniero Químico. Universidad de Oriente. Núcleo de Anzoátegui. Escuela de Ingeniería y Ciencias Aplicadas. Departamento de Ingeniería Química. Bourne M. (2002). Food texture and viscosity: Concept and measurement. Food Science and Technology, International Series. 2da. Edición, Academic Press. New York, U.S.A. pp. 73-93, 77, 229-242 Panchi, A.(2013). DETERMINACIÓN DE PARÁMETROS REOLÓGICOS EN BEBIDAS DE FRUTAS CON DIFERENTES CONCENTRACIONES DE SÓLIDOS SOLUBLES MEDIANTE EL USO DEL EQUIPO UNIVERSAL TA – XT2i. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE CIENCIA E INGENIERÍA EN ALIMENTOS. Hu, Hewen & Teng, Xu & Zhang, Shanshan & Liu, Tingting & Li, Xiao & Wang, Dawei. (2021). Structural Characteristics, Rheological Properties, and Antioxidant Activity of Novel Polysaccharides from “Deer Tripe Mushroom”. Journal of Food Quality. 2021. 1-12. 10.1155/2021/6593293. S. B. Nair, A. N. Jyothi, M. S. Sajeev, and R. Misra. (2019) “Rheo-logical, mechanical and moisture sorption characteristics of cassava starch-Konjac glucomannan blend films,” Starch -St ̈arke, vol. 63, no. 11, pp. 728–739 R. Moorehouse, M. D. Walkinshaw, and S. Arnott, (2020).“Xanthangum-molecular conformation and interactions,” in Extra-cellular Microbial Polysaccharides, P. Sanford and A. Laskin,Eds., pp. 90–102, ACS Publications, Washington, DC, USA Gomez, A.(2009). Ácido linoleico conjugado. Un nuevo ingrediente funcional.Offarm https://www.elsevier.es/es-revista-offarm-4-articulo-acido-linoleico-conjugado-un-nuevo-13132747. Oyetayo, F. L.; Akindahunsi, A. A.; Oyetayo, V. O. (2007). Chemical Profile and Amino Acids Composition of Edible Mushrooms Pleurotus sajor-caju. Nutrition and Health, 18(4), 383–389. doi:10.1177/026010600701800407 Podkowa, A., Kryczyk-Poprawa, A., Opoka, W. et al.(2021). Culinary–medicinal mushrooms: a review of organic compounds and bioelements with antioxidant activity. Eur Food Res Technol 247, 513–533 . https://doi.org/10.1007/s00217-020-03646-1 Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. (2007). Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch Intern Med 2007; 167:956-65. |
dc.rights.en.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ Acceso abierto http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Química Farmacéutica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/5ee2be6c-f127-4f6a-b87b-646caf754423/download https://repositorio.unbosque.edu.co/bitstreams/41c37df7-4bad-42ec-87f8-a6f5a28fd5e3/download https://repositorio.unbosque.edu.co/bitstreams/9a98183a-eb52-412e-834d-427862036523/download https://repositorio.unbosque.edu.co/bitstreams/79c4a37f-4276-4e74-b0f7-d1ec214ade56/download https://repositorio.unbosque.edu.co/bitstreams/856f376e-964f-44b3-b644-1453c595d316/download https://repositorio.unbosque.edu.co/bitstreams/aef7ba8c-9372-4d94-807b-7499daacda88/download https://repositorio.unbosque.edu.co/bitstreams/d9bdd0ba-abf0-4672-8df8-1b7483104ce2/download |
bitstream.checksum.fl_str_mv |
17cc15b951e7cc6b3728a574117320f9 36724d6b03d99ff901dcc915217da4df 3b70f7220bbefa910641570dec587be5 326edd4fa00eed5c6704e46e173b4001 adb7af3ef071a784ffe1b544b9a344ab 9041b38ba933a9819ef440dca89e3740 521ce3b6f05e5ffe5b8c3deba7d4daf0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100674630123520 |
spelling |
Robayo Medina, Angie TatianaParra Amin, Jorge EmilioVelandia Paris, Maria AngélicaOcampo Báez, Lía VictoriaOcampo Báez, Lía Victoria [0009-0005-3528-9507]2024-05-09T20:52:39Z2024-05-09T20:52:39Z2023-05https://hdl.handle.net/20.500.12495/12093Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl término seta se refiere a un macrohongo con un cuerpo fructífero distintivo, el cual puede ser hipogeo o epigeo y lo suficientemente grande para ser visto a simple vista, por lo tanto pueden ser fácilmente recolectados a mano. Las setas comestibles son hongos filamentosos superiores, generalmente de los filos Basidiomycota y Ascomycota, las cuales son ampliamente reconocidas por su riqueza nutricional, su bajo valor calórico, su sabor y sus propiedades nutracéuticas (1), dentro de las que podemos resaltar el fortalecimiento de la función inmunitaria, el equilibrio de los niveles sanguíneos de glucosa, la reducción del crecimiento de tumores y el riesgo de padecer cáncer (2). Los beneficios de sus compuestos bioactivos han sido aprovechados en la medicina tradicional, a través del consumo de setas enteras, extractos de cuerpos fructíferos o micelio, y fracciones enriquecidas o compuestos aislados (3). Distintas investigaciones han logrado dilucidar que algunos polisacáridos de Lentinula edodes, Trametes versicolor y Agaricus bisporus pueden prevenir el cáncer de mama y de próstata, gracias a la inhibición de las enzimas 5-alfa-reductasa y aromatasa, responsables del crecimiento de los tumores cancerosos (12). Estudios más recientes demostraron que los polisacáridos de basidiomicetos pueden inhibir la proliferación celular a través de la inducción de la apoptosis, de tal manera que muchos de estos polisacáridos, como el Lentinan aislado de Lentinula edodes, ya se utilizan en la terapia contra el cáncer, específicamente en la prevención de la oncogénesis y la metástasis inducida químicamente (4). Por tanto el objetivo principal de la presente investigación, en su primera parte busca determinar la composición proximal de cuatro especies de hongos cultivadas en la Sabana de Bogotá (Lentinula edodes, Hericium erinaceus, Pleurotus ostreatus y Grifola frondosa), siguiendo metodologías propias del análisis proximal de alimentos proporcionados por la AOAC (Asociación de Químicos Analíticos Oficiales por sus siglas en inglés), a partir de la determinación del contenido de nutrientes de las setas estudiadas; se destaca el alto contenido de proteínas (8-22%), alto contenido de fibra dietética (5-9%), además de su bajo porcentaje de grasa (1-4%). Adicionalmente, se determinó que el contenido de polisacáridos en estos cuatro hongos macromicetos comestibles se encuentra entre 1 y 21%. La caracterización reológica de esta fracción permitió clasificarlos como fluidos no- Newtonianos de tipo pseudoplásticos. Finalmente a partir de la información obtenida se pudo concluir que las setas estudiadas son una buena alternativa alimenticia para incorporación en un alimento funcional, atendiendo a sus propiedades nutracéuticas y tecnológicas.PregradoQuímico FarmacéuticoThe term mushroom refers to a macrofungus with a distinctive fruiting body, which may be hypogeous or epigeous and large enough to be seen with the naked eye, therefore they can be easily harvested by hand. Edible mushrooms are higher filamentous fungi, generally of the phyla Basidiomycota and Ascomycota, which are widely recognised for their nutritional richness, low calorific value, taste and nutraceutical properties (1), including strengthening immune function, balancing blood glucose levels, reducing tumor growth and cancer risk (2). The benefits of its bioactive compounds have been harnessed in traditional medicine, through the consumption of whole mushrooms, extracts of fruiting bodies or mycelium, and enriched fractions or isolated compounds (3). Research has shown that polysaccharides from Lentinula edodes, Trametes versicolor and Agaricus bisporus can prevent breast and prostate cancer by inhibiting the enzymes 5-alpha-reductase and aromatase, which are responsible for the growth of cancerous tumors (12). More recent studies have shown that polysaccharides from basidiomycetes can inhibit cell proliferation through the induction of apoptosis, such that many of these polysaccharides, such as Lentinan isolated from Lentinula edodes, are already used in cancer therapy, specifically in the prevention of oncogenesis and chemically induced metastasis (4). Therefore, the main objective of this research, in its first part, is to determine the proximal composition of four species of mushrooms cultivated in the Sabana de Bogotá (Lentinula edodes, Hericium erinaceus, Pleurotus ostreatus and Grifola frondosa), following methodologies for the proximal analysis of food provided by the AOAC (Association of Official Analytical Chemists), based on the determination of the nutrient content of the mushrooms studied; The high protein content (8-22%), high dietary fiber content (5-9%) and low fat content (1-4%) are highlighted. In addition, the polysaccharide content of these four edible macromycete mushrooms was found to be between 1 and 21%. The rheological characterisation of this fraction allowed classifying them as non-Newtonian fluids of the pseudoplastic type. Finally, based on the information obtained, it was possible to conclude that the mushrooms studied are a good food alternative for incorporation into a functional food, due to their nutraceutical and technological properties.application/pdfAtribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lentinula edodesHericium erinaceusGrifola frondosaPleurotus ostreatusAnálisis proximalPolisacáridosAlimento funcionalCaracterización reológica615.19Lentinula edodesHericium erinaceusGrifola frondosaPleurotus ostreatusProximate analysisPolysaccharidesFunctional foodRheological characterisationDesarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacáridaDevelopment of a functional food prototype based on polysaccharides from macromycete fungi. Phase I: proximate analysis and extraction of the polysaccharide fraction.Química FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaHernández-Martínez, R.; Navarro-Blasco, I. (2015). Surveillance of aflatoxin content in dairy cow feedstuff from Navarra (Spain). Anim. Feed Sci. Technol, 200, 35–46Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. (2017) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study. Lancet. 2018; 392(10159): 1736–88. DOI: https://doi.org/10.1016/S0140-6736(18)32203-7Production, consumption and MarkettingEdition: I Chapter: Nutritional and Medicinal values of MushroomsPublisher: Directorate of Mushroom Research, SolanEditors: Manjit Singh, B.Vijai, Shwet Kamal G.C. WakchauraeProject: Paddy straw genetic improvementKong, Y.; Yang, X.; Ding, Q.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T.; Sun, Y. (2017) Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate. Food Res. Int. 2017, 102, 559–566Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. (2017). Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrovi ́c, P.; Niksic, M.; Vrvic, M.M.; Van Griensven, L. (2015) Antioxidants of edible mushrooms. Molecules 2015, 20, 19489–19525.Hoeft B., Weber P., Eggersdorfer M.(2012) Micronutrients—A global perspective on intake, health benefits and economics. Int. J. Vitam. Nutr. Res. 2012;82:316–320. doi: 10.1024/0300-9831/a000125.Lemieszek M, Rzeski W. (2012). Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Wspolczesna Onkol. 4:285–289.10.5114/wo.2012.30055Lang, M. (2020). Consumer acceptance of blending plant-based ingredients into traditional meat-based foods: Evidence from the meat-mushroom blend. Food Qual. Prefer. 2020, 79, 103758.Bruins, M. J., Van Dael, P., & Eggersdorfer, M. (2019). The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging. Nutrients, 11(1), 85. https://doi.org/10.3390/nu11010085Zhuang C, Kawagishi C, Harry G. (2005). Glycoprotein with antidiabetic, antihypertensive, antiobesity and antihyperlipidemic effects from Grifola frondosa and a method for preparing sample. United States Patent Application, no 7.214.778, 2005.Nielsen, J.E., Beier, L., Otzen, D., Borchert, T.V., Frantzen, H.B., Andersen, K.V. and Svendsen, A. (1999), ‘‘Electrostatics in the active site of an -amylase’’, European J. Biochemistry, Vol. 264, pp. 816-24.Disis M. L. (2010). Immune regulation of cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28(29), 4531–4538. https://doi.org/10.1200/JCO.2009.27.2146Steck SE, Murphy EA.(2020). Dietary patterns and cancer risk. Nat Rev Cancer. 2020 Feb;20(2):125-138. doi: 10.1038/s41568-019-0227-4. Epub 2019 Dec 17. PMID: 31848467.Stamets, P. (2000). “Growing gourmet and medicinal mushrooms”. Canadá. McGraw-Hill.25p.Varki, A. (2017). Biological roles of glycans. Glycobiology, 27, (1), 3-49. https://doi.org/10.1093/glycob/cww086.Deshpande, N., Wilkins, M. R., Packer, N., & Nevalainen, H. (2008). Protein glycosylation pathways in filamentous fungi. Glycobiology, 18, (8), 626-637. https://doi.org/10.1093/glycob/cwn044Wasser, S. P., & Weis, A. L. (1999). Medicinal properties of substances occurring in Higher Basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms, 1, 31–62.Wasser, S.P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol , 60, 258–274.Sun, Y., Shi, X., Zheng, X., Nie, S., & Xu, X. (2019). Inhibition of dextran sodium sulfate-induced colitis in mice by baker’s yeast polysaccharides. Carbohydrate Polymers, 207, 371-381. https://doi.org/10.1016/j.carbpol.2018.11.087Ruytinx, J., Kafle, A., Usman, M., Coninx, L., Zimmermann, S. D., & Garcia, K. (2020). Micronutrient transport in mycorrhizal symbiosis; zinc steals the show. Fungal Biology.Reviews, 34, (1), 1-9. https://doi.org/10.1016/j.fbr.2019.09.001.Usuldin, S. R. A., Mahmud, N., Ilham, Z., Ikram, N. K. K., Ahmad, R., & Wan, W. A. A. Q. I. (2020). In-depth spectral characterization of antioxidative (1, 3)-β-D-glucan from the mycelium of an identified tiger milk mushroom Lignosus rhinocerus strain ABI in a stirred-tank bioreactor.Department of Environmental Sciences and Public Health, University of Gdańsk, 63 Wita Stwosza Str., 80-308 Gdańsk, PolandFaculty of Science and Technology, Athabasca University, Athabasca, Alberta, T9S 3A3, CanadaMohammad-Fata Moradali; Hossein Mostafavi; Shirin Ghods; Ghorban-Ali Hedjaroude (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). , 7(6), 0–724. doi:10.1016/j.intimp.2007.01.008Liang J, Melican D, Cafro L, Palace G, Fisette L, et al.(1998) Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int J Immunopharmacol 1998;20:595–614.Venkatesagowda, B. (2019). Enzymatic demethylation of lignin for potential biobased polymer applications. Fungal Biology Reviews, 33, (3-4), 190-224. https://doi.org/10.1016/j.fbr.2019.06.002.Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J.(1999). Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology 1999; 42: 61-74.Hamuro J, Chihara G. Lentinan. (1985). A T-cell oriented immunopotentiator: its experimental and clinical applications and possibile mechanism of immune modulation. W: Immunomodulation agents and their mechanisms. Fenichel RL, Chirigos MA (eds.). Dekker, New York 1985; 409-3.Burgaleta C, Territo MC, Quan SG, Golde DW. Glucanactivated macrophages: functional characteristics and surface morphology. J Reticuloendothel Soc 1978;23:195–204.European Commission report on functional foods. Eu-ropean Union (2010). Available from: http://www.euro-sfaire.prd.fr/7pc/documents/1276590504_functional_foods_en_publi_ce. pdf (18.12.2015)Llanes, Andrés (2015). Alimentos funcionales y biotecnología. Revista Colombiana de Biotecnología, 17(1), 5–8. doi:10.15446/rev.colomb.biote.v17n1.50997Barbosa J. (2020). Occurrence and Possible Roles of Polysaccharides in Fungi and their Influence on the Development of New Technologies. Carbohydrate Polymers, (), 116613–. doi:10.1016/j.carbpol.2020.116613Trigos, A. (1998). Química de los Hongos. En “Producción de vitamina D2 a partir de hongos macromicetos: Aspectos científicos, técnicos y económicos”. Bogotá. Editor: Dr.Augusto Rivera Umaña. Editorial Guadalupe. 19p.Melendez, S. (2003). Análisis de alimentos, fundamentos y técnicas. Universidad Nacional Autónoma de México. Facultad de química. p. 36.Mizuno, T. (1999). The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan (Review). International Journal of Medicinal Mushrooms, 1, 9-30.AOAC method 925.45 Ed. 18 (2004). AOAC International: Official methods of analysis. USANTC 6383:2020. Determinación del contenido de fibra dietaria total (FDT) en los alimentos. Método enzimático / gravimétrico.Garcia , E y Fernandez, I (2018) Determinación de proteínas de un alimento por el método Kjeldahl. Valoración con un ácido fuerte. https://riunet.upv.es/bitstream/handle/10251/16338/Determinaci%C3%B3n%20de%20pro teinas.pdf.Palacios, I.(2015). “Extracción y caracterización de polisacáridos y estudio del perfil de compuestos volátiles en hongos comestibles”. Departamento de Biología Celular, Histología y Farmacología. Facultad de Medicina. Universidad de Valladolid, España.Setayesh, Z., Asoodeh, A. (2017). Biochemical Characterization of HL-7 and HL-10 Peptides Identified from Scorpion Venom of Hemiscorpius lepturus . International Journal of Peptide Research and Therapeutics, 24(3), 421–430. doi:10.1007/s10989-017-9625-1Jiménez, R. A., Millán, D., Sosnik, A., & Fontanilla, M. R. (2022). Aloe vera–elutingcollagen I microgels: physicochemical characterization and in vitro biological performance. Materials Today Chemistry, 23. https://doi.org/10.1016/j.mtchem.2021.100722Chang, S.-T. and P.G. Miles. (2004)., MUSHROOMS: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. 2nd ed, ed. B. Ratón: FL: CRC Press. 1-26.Barros, L., et a (2008). lWild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 2008. 46(8): p. 2742-2747.Diez, V. A., & Álvarez, A. (2001). Compositional and Nutritional studies on two wild edible mushrooms from North West Spain. Food Chemistry, 75 (4), 417-442Badalyan SM. (2003) Edible and medicinal higher Basidiomycetes mushrooms as a source of natural antioxidants. International Journal of Medicinal Mushrooms 5, 153–163Pavel, K. (2009). Chemical composition and nutritional value of European Species of Wild growing mushrooms: A review. Food Chemistry 113(1), 9-16Bernás, E., Jaworska, G. & Lisiewska, Z. (2006). Edible mushrooms as a source of valuable constituents. Acta Sci. Pol, Technolo. Aliment., 5 (1), 5-20.Ayaz, F. A., Torun, H., Colak, A., Sesli, E., Milson, M. & Glew, R.H. (2011). Macro and Microelement Contents of Fruiting Bodies of Wild-Edible Mushrooms Growing in the East Black Sea Region of Turkey. Food and Nutrition Sciences, 2, 53-59NIETO-RAMÍREZ, I. J., ROJAS-LUNA, R., & SUAREZ A., C. (2012). EVALUACIÓN DEL ESTÍPITE DE SHIITAKE COMO APORTANTE DE FIBRA Y BIOACTIVOS CON MIRAS A SU EMPLEO EN ALIMENTOS FUNCIONALES. Vitae, 19(1), S331-S333.Hong JS, Kim YH, Lee KR, Kim MK, Cho CI, Part KKH. (2004) Composition of organic abd fatty acid in Pleurotus ostreatus, Lentinus edodes and Agaricus bisporus . Korean Journal of Food Science and Technology. 1988;20:100–105.Barros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira. (2007) ICFR. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chemistry.;105(1):140–145. [Google Scholar]Greeshma, A., Sridhar, K. & Pavithra, M. (2018). Nutritional perspectives of an ectomycorrhizal edible mushroom Amanita of the southwestern India. Current Research in Environmental & Applied Mycology, 8 (1), 54-68Pedneault, K., Angers, P. Gasselin, A. & Tweddell R. (2007). Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var. citrino- pileatus grown at different temperatures. Mycological Research, 111, 1128-1234.Pecora RP.(1989). Determination of protein in edible mushroom (Boletus spp). Int J Food Sci Technol 24(2):207–10.Stilinovic, N.; Capo, I.; Vukmirovic, S.; Raskovic, A.; Tomas, A.; Popovic, M.; Sabo, A.(2020).Chemical composition, nutritional profile and in vivo antioxidant properties of the cultivated mushroom Coprinus comatus. Royal Soc. Open Sci. 2020, 7, 200900.Morales, D.; Tejedor-Calvo, E.; Jurado-Chivato, N.; Polo, G.; Tabernero, M.; Ruiz-Rodriguez, A.; Largo, C.; Soler-Rivas, C.(2019).In vitro and in vivo testing of the hypocholesterolemic activity of ergosterol- and beta-glucan-enriched extracts obtained from shiitake mushrooms (Lentinula edodes). Food Funct. 2019, 10, 7325–7332.Su, C.H.; Lai, M.N.; Lin, C.C.; Ng, L.T. (2016).Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Appl. Microbiol. Biotechnol. 2016, 100, 4385–4393.Kalač, P. (2009). Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry, 113 (1), 9-16.Kalač, Pavel (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218. doi:10.1002/jsfa.5960Fukushima, M.; Ohashi, T.; Fujiwara, Y.; Sonoyama, K.; Nakano, M.(2001). Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp. Biol. Med. 2001, 226, 758–765.Cohen, Nachshol; Cohen, Jacob; Asatiani, Mikheil D.; Varshney, Vinay K.; Yu, Hui-Tzu; Yang, Yi-Chi; Li, Yu-Hsuan; Mau, Jeng-Leun; Wasser, Solomon P. (2014). Chemical Composition and Nutritional and Medicinal Value of Fruit Bodies and Submerged Cultured Mycelia of Culinary-Medicinal Higher Basidiomycetes Mushrooms. International Journal of Medicinal Mushrooms, 16(3), 273–291. doi:10.1615/intjmedmushr.v16.i3.80Liwen Wang;Margaret A. Brennan;Wenqiang Guan;Jianfu Liu;Hui Zhao;Charles S. Brennan; (2021). Edible mushrooms dietary fibre and antioxidants: Effects on glycaemic load manipulation and their correlations pre-and post-simulated in vitro digestion . Food Chemistry, (), –. doi:10.1016/j.foodchem.2021.129320Y.Z. Tao, L. Zhang, P.C.K. Cheung. (2006). Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides, Carbohydr. Res. 3412261–2269Macharia JM, Zhang L, et al. (2022) Are chemical compounds in medical mushrooms potent against colorectal cancer carcinogenesis and antimicrobial growth? Cancer Cell Int. 2022 Dec 1;22(1):379. doi: 10.1186/s12935-022-02798-2. PMID: 36457023; PMCID: PMC9714114.Zhang, M., et al. (2007)., Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science & Technology, 2007. 18(1): p. 4-19.Zhang, Y.,et al.(2011), Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocolloids.25(2): p. 196-206.Zhu, F., Du, B., & Xu, B. (2014). Preparation and Characterization of Polysaccharides from Mushrooms. Polysaccharides, 1–16. doi:10.1007/978-3-319-03751-6_10-1Villares A, Mateo-Vivaracho L, Guillamón E.(2012).Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture 2:452–471Alves, V. D., Freitas, F., Costa, N., Carvalheira, M., Oliveira, R., Gonc ̧ alves, M. P., et al. (2010). Effect of temperature on the dynamic and steady-shear rheology of a new microbial extracellular polysaccharide produced from glycerol byproduct. Carbohydrate Polymers, 79(4), 981–988.Murray, B. S. (2002). Interfacial rheology of food emulsifiers and proteins. Current Opinion in Colloid & Interface Science, 7(5), 426–431.Velasco, S. E., Areizaga, J., Irastorza, A., Duenas, M. T., Santamaria, A., & Munoz, ̃ M. E. (2009). Chemical and rheological properties of the -glucan produced by Pediococcus parvulus 2.6. Journal of Agricultural and Food Chemistry, 57(5), 1827–1834Choi, H., Mitchell, J. R., Gaddipati, S. R., Hill, S. E., & Wolf, B. (2014). Shear rheology and filament stretching behaviour of xanthan gum and carboxymethyl cellulose solution in presence of saliva. Food Hydrocolloids, 40, 71–75.Xu, J.-L., Zhang, J.-C., Liu, Y., Sun, H.-J., & Wang, J.-H. (2016). Rheological properties of a polysaccharide from floral mushrooms cultivated in Huangshan Mountain. Carbohydrate Polymers, 139, 43–49. doi:10.1016/j.carbpol.2015.12.01110.1016/j.carbpol.2015.12.011Tovar. E., (2010). “Evaluación de las propiedades reológicas de pulpas de frutas y productos derivados en una planta procesadora de jugos”. Trabajo de grado presentado ante la Universidad del Oriente como requisito parcial para optar al Título de Ingeniero Químico. Universidad de Oriente. Núcleo de Anzoátegui. Escuela de Ingeniería y Ciencias Aplicadas. Departamento de Ingeniería Química.Bourne M. (2002). Food texture and viscosity: Concept and measurement. Food Science and Technology, International Series. 2da. Edición, Academic Press. New York, U.S.A. pp. 73-93, 77, 229-242Panchi, A.(2013). DETERMINACIÓN DE PARÁMETROS REOLÓGICOS EN BEBIDAS DE FRUTAS CON DIFERENTES CONCENTRACIONES DE SÓLIDOS SOLUBLES MEDIANTE EL USO DEL EQUIPO UNIVERSAL TA – XT2i. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE CIENCIA E INGENIERÍA EN ALIMENTOS.Hu, Hewen & Teng, Xu & Zhang, Shanshan & Liu, Tingting & Li, Xiao & Wang, Dawei. (2021). Structural Characteristics, Rheological Properties, and Antioxidant Activity of Novel Polysaccharides from “Deer Tripe Mushroom”. Journal of Food Quality. 2021. 1-12. 10.1155/2021/6593293.S. B. Nair, A. N. Jyothi, M. S. Sajeev, and R. Misra. (2019) “Rheo-logical, mechanical and moisture sorption characteristics of cassava starch-Konjac glucomannan blend films,” Starch -St ̈arke, vol. 63, no. 11, pp. 728–739R. Moorehouse, M. D. Walkinshaw, and S. Arnott, (2020).“Xanthangum-molecular conformation and interactions,” in Extra-cellular Microbial Polysaccharides, P. Sanford and A. Laskin,Eds., pp. 90–102, ACS Publications, Washington, DC, USAGomez, A.(2009). Ácido linoleico conjugado. Un nuevo ingrediente funcional.Offarm https://www.elsevier.es/es-revista-offarm-4-articulo-acido-linoleico-conjugado-un-nuevo-13132747.Oyetayo, F. L.; Akindahunsi, A. A.; Oyetayo, V. O. (2007). Chemical Profile and Amino Acids Composition of Edible Mushrooms Pleurotus sajor-caju. Nutrition and Health, 18(4), 383–389. doi:10.1177/026010600701800407Podkowa, A., Kryczyk-Poprawa, A., Opoka, W. et al.(2021). Culinary–medicinal mushrooms: a review of organic compounds and bioelements with antioxidant activity. Eur Food Res Technol 247, 513–533 . https://doi.org/10.1007/s00217-020-03646-1Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. (2007). Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch Intern Med 2007; 167:956-65.spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/5ee2be6c-f127-4f6a-b87b-646caf754423/download17cc15b951e7cc6b3728a574117320f9MD51Anexo 1 Acta de aprobacion.pdfapplication/pdf1060119https://repositorio.unbosque.edu.co/bitstreams/41c37df7-4bad-42ec-87f8-a6f5a28fd5e3/download36724d6b03d99ff901dcc915217da4dfMD518Carta de autorizacion.pdfapplication/pdf267181https://repositorio.unbosque.edu.co/bitstreams/9a98183a-eb52-412e-834d-427862036523/download3b70f7220bbefa910641570dec587be5MD519ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf611568https://repositorio.unbosque.edu.co/bitstreams/79c4a37f-4276-4e74-b0f7-d1ec214ade56/download326edd4fa00eed5c6704e46e173b4001MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81154https://repositorio.unbosque.edu.co/bitstreams/856f376e-964f-44b3-b644-1453c595d316/downloadadb7af3ef071a784ffe1b544b9a344abMD57TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain95353https://repositorio.unbosque.edu.co/bitstreams/aef7ba8c-9372-4d94-807b-7499daacda88/download9041b38ba933a9819ef440dca89e3740MD510THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg3232https://repositorio.unbosque.edu.co/bitstreams/d9bdd0ba-abf0-4672-8df8-1b7483104ce2/download521ce3b6f05e5ffe5b8c3deba7d4daf0MD51120.500.12495/12093oai:repositorio.unbosque.edu.co:20.500.12495/120932024-07-04 11:45:27.22http://creativecommons.org/licenses/by-nc-sa/4.0/Atribución-NoComercial-CompartirIgual 4.0 Internacionalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |