Un enfoque basado en redes neuronales para el reconocimiento de emociones como funciones temporales usando señales EEG y estímulos musicales
Identificar la expresión de emociones de un individuo por medio del análisis de señales de electroencefalografía (EEG) es importante para el diseño de sistemas computacionales en el campo de la computación afectiva. Estos sistemas buscan extraer información de las señales EEG y relacionarla con las...
- Autores:
-
Beltrán Velandia, Ferney
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79367
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/79367
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales
Redes neuronales
Neural networks
Computación afectiva
Señales EEG
Música
Emociones
Redes neuronales
Affective computing
EEG signals
Music
Emotions
Neural networks
Informática
Computer science
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_ff66b22f453a3a04d69368e2d3438d7b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79367 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Un enfoque basado en redes neuronales para el reconocimiento de emociones como funciones temporales usando señales EEG y estímulos musicales |
title |
Un enfoque basado en redes neuronales para el reconocimiento de emociones como funciones temporales usando señales EEG y estímulos musicales |
spellingShingle |
Un enfoque basado en redes neuronales para el reconocimiento de emociones como funciones temporales usando señales EEG y estímulos musicales 000 - Ciencias de la computación, información y obras generales Redes neuronales Neural networks Computación afectiva Señales EEG Música Emociones Redes neuronales Affective computing EEG signals Music Emotions Neural networks Informática Computer science |
title_short |
Un enfoque basado en redes neuronales para el reconocimiento de emociones como funciones temporales usando señales EEG y estímulos musicales |
title_full |
Un enfoque basado en redes neuronales para el reconocimiento de emociones como funciones temporales usando señales EEG y estímulos musicales |
title_fullStr |
Un enfoque basado en redes neuronales para el reconocimiento de emociones como funciones temporales usando señales EEG y estímulos musicales |
title_full_unstemmed |
Un enfoque basado en redes neuronales para el reconocimiento de emociones como funciones temporales usando señales EEG y estímulos musicales |
title_sort |
Un enfoque basado en redes neuronales para el reconocimiento de emociones como funciones temporales usando señales EEG y estímulos musicales |
dc.creator.fl_str_mv |
Beltrán Velandia, Ferney |
dc.contributor.advisor.none.fl_str_mv |
Gómez Perdomo, Jonatan |
dc.contributor.author.none.fl_str_mv |
Beltrán Velandia, Ferney |
dc.contributor.researchgroup.spa.fl_str_mv |
ALIFE: Grupo de Investigación en Vida Artificial |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales |
topic |
000 - Ciencias de la computación, información y obras generales Redes neuronales Neural networks Computación afectiva Señales EEG Música Emociones Redes neuronales Affective computing EEG signals Music Emotions Neural networks Informática Computer science |
dc.subject.other.none.fl_str_mv |
Redes neuronales Neural networks |
dc.subject.proposal.spa.fl_str_mv |
Computación afectiva Señales EEG Música Emociones Redes neuronales |
dc.subject.proposal.eng.fl_str_mv |
Affective computing EEG signals Music Emotions Neural networks |
dc.subject.unesco.none.fl_str_mv |
Informática Computer science |
description |
Identificar la expresión de emociones de un individuo por medio del análisis de señales de electroencefalografía (EEG) es importante para el diseño de sistemas computacionales en el campo de la computación afectiva. Estos sistemas buscan extraer información de las señales EEG y relacionarla con las emociones de forma autónoma, tal que pueda ser aplicado en diferentes contextos, por ejemplo en el apoyo de procesos musicoterapéuticos. En esta tesis se construyen dos modelos computacionales basados en aprendizaje supervisado y no-supervisado: una red neuronal convolucional-recurrente (CRNN) y un conjunto de mapas auto-organizados (SOM). El principal objetivo consiste en identificar emociones como funciones temporales a partir del estudio de señales EEG, que son registradas por medio de la diadema EPOC+. La fuente de estímulo son 8 piezas musicales, las cuales se componen para evocar 4 emociones en un grupo de personas: alegría, tristeza, calma y furia. Adicionalmente, a través de la prueba de auto-evaluación SAM, un individuo marca un puntaje emocional por cada estímulo en términos de las dimensiones Actividad y Valencia. Se aplica un protocolo experimental para registrar las señales EEG de 30 participantes, mientras que ellos escuchan las piezas musicales compuestas. Se construye el conjunto de datos EEGLife a partir del procesamiento de las señales EEG puras, con el fin de reducir o remover ruido de diferentes artefactos. Algunas características se extraen de las señales EEG tales como: la correlación cruzada entre señales, la potencia relativa de las bandas de frecuencia, y los escalogramas basados en la transformada Wavelet. Las características extraídas y los puntajes emocionales conforman el conjunto de entrenamiento-validación para las redes neuronales propuestas. Para cada uno de los modelos se escoge la arquitectura y los hiperparámetros dependiendo de los conjuntos de entrenamiento-validación. Se utiliza un esquema de entrenamiento basado en el sujeto con 20% de cada participante para validación sobre el conjunto de datos EEGLife y sobre un conjunto de referencia, el conjunto DEAP. Se realiza una etapa de validación para comparar el desempeño de las redes neuronales en términos de las medidas Precisión, Exhaustividad, Valor-F1 y Exactitud. Los resultados muestran que los modelos extraen la información relacionada con la expresión emocional más fácil para el conjunto EEGLife que para el conjunto DEAP. Los resultados también muestran que el modelo SOM tiene mejor desempeño que el modelo CRNN principalmente por dos razones: el modelo SOM no contempla los puntajes emocionales en el entrenamiento sino en asignar un significado a los grupos resultantes en los mapas, y la asignación de puntajes emocionales contempla la contribución de varios participantes por medio de un sistema difuso. Finalmente, el modelo SOM tiene una propiedad de interpretabilidad que no tiene el modelo CRNN, lo que permite analizar la representación de las señales EEG de forma intuitiva en los mapas auto-organizados. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-12-12 |
dc.date.accessioned.none.fl_str_mv |
2021-03-23T16:02:45Z |
dc.date.available.none.fl_str_mv |
2021-03-23T16:02:45Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79367 |
url |
https://repositorio.unal.edu.co/handle/unal/79367 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] Appriou, A. ; Cichocki, A. ; Lotte, F.: Modern Machine-Learning Algorithms: For Classifying Cognitive and A ective States From Electroencephalography Signals. En: IEEE Systems, Man, and Cybernetics Magazine 6 (2020), Nr. 3, p. 29-38 [2] Balkwill, Laura-Lee ; Thompson, William F.: A Cross-Cultural Investigation of the Perception of Emotion in Music: Psychophysical and Cultural Cues. En: Music Perception: An Interdisciplinary Journal 17 (1999), Nr. 1, p. 43-64. - ISSN 0730-7829 [3] Basheer, Imad A. ; Hajmeer, Maha N.: Artificial neural networks: fundamentals, computing, design, and application. En: Journal of microbiological methods 43 1 (2000), p. 3-31 [4] Bella, Simone D. ; Peretz, Isabelle ; Rousseau, Luc ; Gosselin, Nathalie: A developmental study of the affective value of tempo and mode in music. En: Cognition 80 (2001), Nr. 3, p. B1 - B10. - ISSN 0010-0277 [5] Berger, Hans: Über das Elektrenkephalogramm des Menschen. En: Archiv für Psychiatrie und Nervenkrankheiten 94 (1931), Dec, Nr. 1, p. 16-60. - ISSN 1433-8491 [6] Bhatti, Adnan M. ; Majid, Muhammad ; Anwar, Syed M. ; Khan, Bilal: Human emotion recognition and analysis in response to audio music using brain signals. En: Computers in Human Behavior 65 (2016), p. 267-275. - ISSN 07475632 [7] Blankertz, B. ; Tomioka, R. ; Lemm, S. ; Kawanabe, M. ; K., Muller: Optimizing Spatial filters for Robust EEG Single-Trial Analysis. En: IEEE Signal Processing Magazine 25 (2008), Nr. 1, p. 41-56 [8] Bolós, V. J. ; Benítez., R.: The wavelet scalogram in the study of time series. En: Advances in Differential Equations and Applications Vol. 4, Springer, Cham, 2014. - ISBN 978-3-319-06953-1, p. 147-154 [9] Bradley, M. M. ; Greenwald, M. K. ; Petry, M. C. ; Lang, P. J.: Remembering pictures: pleasure and arousal in memory. En: Journal of experimental psychology 18 (1992), Nr. 2, p. 379-390 [10] Bradley, M. M. ; Lang, P. J.: Measuring emotion: The self-assessment manikin and the semantic differential. En: Journal of Behavior Therapy and Experimental Psychiatry 25 (1994), p. 49-59 [11] Brocious, Cody ; Machulis, Kyle. Emokit. 2017 [12] Bruscia, Kenneth E.: Defining Music Therapy. Barcelona Publishers, 2014. - ISBN 9781937440572 [13] Candra, Henry ; Yuwono, Mitchell ; Handojoseno, Ardi ; Chai, Rifai ; Su, Steven; Nguyen, Hung T.: Recognizing emotions from EEG subbands using wavelet analysis. En: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem (2015), p. 6030-6033. - ISBN 9781424492718 [14] Clinic, London. What are brainwaves? 2019 [15] Cohen, Marc A.: Against basic emotions, and toward a comprehensive theory, 2005 [16] Cooke, D.: The Language of Music. Oxford University Press, 1989 (Clarendon paperbacks). - ISBN 9780198161806 [17] Cox, Dennis D.: Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. En: Technometrics 38 (1996), Nr. 3, p. 294-294 [18] Daly, Ian ; Malik, Asad ; Weaver, James ; Hwang, Faustina ; Nasuto, Slawmoir J. ; Williams, Duncan ; Kirke, Alexis ; Miranda, Eduardo: Identifying music-induced emotions from EEG for use in brain-computer music interfacing. En: 2015 International Conference on Affective Computing and Intelligent Interaction, ACII 2015 22 (2015), p. 923-929. ISBN 9781479999538 [19] Daly, Ian ; Malik, Asad ; Weaver, James ; Hwang, Faustina ; Nasuto, Slawomir J. ; Williams, Duncan ; Kirke, Alexis ; Miranda, Eduardo: Towards human-computer music interaction: Evaluation of an affectively-driven music generator via galvanic skin response measures. En: 2015 7th Computer Science and Electronic Engineering Conference, CEEC 2015 - Conference Proceedings (2015), p. 87-92 [20] Developers, MNE. Background information on filtering. 2019 [21] Ekman, P. ; Friesen, W.V.: Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues. Malor Books, 2003 (A spectrum book). - ISBN 9781883536367 [22] Ekman, Paul: An argument for basic emotions, 1992 [23] Engelberg, Shlomo.: Digital Signal Processing, An experimental approach. Springer, 2008. - ISBN 978-1-84800-118-3 [24] of Florida, Univesity. The center for the study of emotion and attention. 2019 [25] Fraga, Tania ; Pichiliani, Mauro ; Louro, Donizetti: Experimental Art with Brain Controlled Interface. En: Stephanidis, Constantine (Ed.) ; Antona, Margherita (Ed.): Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for eInclusion. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013, p. 642-651 [26] Friberg, Anders ; Bresin, Roberto ; Sundberg, Johan: Overview of the KTH rule system for musical performance. En: Advances in Cognitive Psychology 2 (2006), Nr. 2-3, p. 145-161 [27] Gabrielsson, Alf: Strong Experiences with Music. En: Juslin, Patrik N. (Ed.) ; Sloboda, John (Ed.): Handbook of Music and Emotion: Theory, Research, Applications. Oxford University Press, 2011 [28] Goebel, Randy: Lecture Notes in Artificial Intelligence Subseries of Lecture Notes in Computer Science LNAI Series Editors. 2011. - ISBN 9783642341816 [29] Goyal, M. ; Singh, M. ; Singh, M.: Classification of emotions based on ERP feature extraction. En: 2015 1st International Conference on Next Generation Computing Technologies (NGCT), 2015, p. 660-662 [30] Gramfort, Alexandre ; Luessi, Martin ; Larson, Eric ; Engemann, Denis A. ; Strohmeier, Daniel ; Brodbeck, Christian ; Goj, Roman ; Jas, Mainak ; Brooks, Teon ; Parkkonen, Lauri ; H am al ainen, Matti: MEG and EEG data analysis with MNE-Python. En: Frontiers in Neuroscience 7 (2013), Nr. 7 DEC, p. 1-13. - ISSN 1662453X [31] Haykin, S. ; Haykin, S.S.: Neural Networks and Learning Machines. Prentice Hall, 2009 (Neural networks and learning machines v. 10). - ISBN 9780131471399 [32] HEVNER, K.: Experimental studies of the elements of expression in music. En: American Journal of Psychology 48 (1936), p. 246-268 [33] Hussain, Zahir M. ; Sadik, Amin Z. ; OShea, Peter: Digital Signal Processing, An introduction with MATLAB and applications. Springer, 2011. - ISBN 978-3-642-15590-1 [34] Hyvärinen, A. ; Oja, E.: Independent component analysis: algorithms and applications. En: Neural Networks 13 (2000), Nr. 4, p. 411 - 430. - ISSN 0893-6080 [35] Jenke, R. ; Peer, A. ; Buss, M.: Feature Extraction and Selection for Emotion Recognition from EEG. En: IEEE Transactions on Affective Computing 5 (2014), July, Nr. 3, p. 327-339 [36] Juslin, Patrik N.: Communicating emotion in music performance: A review and a theoretical framework, 2001 [37] Katsigiannis, Stamos ; Ramzan, Naeem. DREAMER: A Database for Emotion Recognition through EEG and ECG Signals from Wireless Low-cost O -the-Shelf Devices.April 2017 [38] Kivy, Peter: Music Alone: Philosophical Reflections on the Purely Musical Experience. Cornell University Press, 1990 [39] Koelstra, Sander ; Muhl, Christian ; Soleymani, Mohammad ; Lee, Jong-Seok ; Yazdani, Ashkan ; Ebrahimi, Touradj ; Pun, Thierry ; Nijholt, Anton ; Patras, Ioannis: DEAP: A Database for Emotion Analysis ;Using Physiological Signals. En: IEEE Trans. Affect. Comput. 3 (2012), Januar, Nr. 1, p. 18-31. - ISSN 1949-3045 [40] Kohonen, T. ; Schroeder, M. R. ; Huang, T. S.: Self-Organizing Maps. 3rd. Berlin, Heidelberg : Springer-Verlag, 2001. - ISBN 3540679219 [41] Lahane, Prashant ; Sangaiah, Arun K.: An Approach to EEG Based Emotion Recognition and Classification Using Kernel Density Estimation. En: Procedia Computer Science 48 (2015), p. 574-581 [42] Lang, P. J.: Behavioral treatment and bio-behavioral assessment: Computer applications. En: Sidowski, J. B. (Ed.) ; Johnson, J. H. (Ed.) ; Williams, T. A. (Ed.): Technology in mental health care delivery systems. Norwood, NJ: Ablex, 1980, p. 119 - 137 [43] Langer, S.K.: Philosophy In A New Key. 1951 [44] Li, Xiang ; Song, Dawei ; Zhang, Peng ; Yu, Guangliang ; Hou, Yuexian ; Hu, Bin ; Kindom, United: Emotion Recognition from Multi-Channel EEG Data through Convolutional Recurrent Neural Network. (2016), p. 352-359. ISBN 9781509016105 [45] Liu, Yisi ; Sourina, Olga: EEG-based Subject-Dependent Emotion Recognition Algorithm Using Fractal Dimension. En: IEEE International Conference on Systems, Man, and Cybernetics (2014), p. 3166-3171. - ISBN 9781479938407 [46] Livingstone, Steven R. ; Muhlberger, Ralf ; Brown, Andrew R. ; Thompson, William F.: Changing Musical Emotion: A Computational Rule System for Modifying Score and Performance. En: Computer Music Journal 34 (2010), Nr. 1, p. 41-64. - ISSN 01489267, 15315169 [47] Lopatovska, Irene ; Arapakis, Ioannis: Theories, methods and current research on emotions in library and information science, information retrieval and human-computer interaction. En: Information Processing & Management 47 (2011), Nr. 4, p. 575 - 592. - ISSN 0306-4573 [48] Matlovic, Tomas ; Gáspár, Péter ; Móro, Róbert ; Simko, Jakub ; Bieliková, Mária: Emotions detection using facial expressions recognition and EEG. En: 2016 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP) (2016), p. 18-23 [49] Mattek, Alison: Computational Methods for Portraying Emotion in Generative Music Composition., Tesis de Grado, 01 2010 [50] Mehrabian, Albert ; Russell, James A.: An approach to environmental psychology, 1974 [51] Meyer, L.B.: Emotion and Meaning in Music. University of Chicago Press, 1961 (Jeff borrow list). - ISBN 9780226521398 [52] Niu, X. ; Chen, L. ; Chen, Q.: Research on genetic algorithm based on emotion recognition using physiological signals. En: 2011 International Conference on Computational Problem-Solving (ICCP), 2011, p. 614-618 [53] Picard, Rosalind W.: Affective computing: challenges. En: International Journal of Human-Computer Studies 59 (2003), Nr. 1, p. 55 - 64. - Applications of Affective Computing in Human-Computer Interaction. - ISSN 1071-5819 [54] PLUTCHIK, ROBERT: Chapter 1 - A GENERAL PSYCHOEVOLUTIONARY THEORY OF EMOTION. En: Plutchik, Robert (Ed.) ; Kellerman, Henry (Ed.): Theories of Emotion. Academic Press, 1980. - ISBN 978-0-12-558701-3, p. 3 - 33 [55] Prerau, Michael J. ; Brown, Ritchie E. ; Bianchi, Matt T. ; Ellenbogen, Jeffrey M. ; Purdon, Patrick L.: Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis. En: Physiology (Bethesda, Md.) 32 (2017), January, Nr. 1, p. 60|92. - ISSN 1548-9213 [56] Raschka, S. ; Mirjalili, V.: Python Machine Learning. 2nd. Marcombo, 2016 [57] Remington, N. A. ; Fabrigar, L. R. ; Visser, P. S.: Reexamining the circumplex model of a ect. En: Journal of Personality and Social Psychology 79 (2000), p. 286-300 [58] Rodriguez, Alex ; Laio, Alessandro: Clustering by fast search and nd of density peaks. En: Science 344 (2014), Nr. 6191, p. 1492-1496. - ISSN 0036-8075 [59] Rubin, David C. ; Talarico, Jennifer M.: A comparison of dimensional models of emotion: Evidence from emotions, prototypical events, autobiographical memories, and words. En: Memory 17 (2009), Nr. 8, p. 802-808 [60] Rumelhart, David E. ; Hinton, Geo rey E. ; Williams, Ronald J.: Learning representations by back-propagating errors. En: Nature 323 (1986), p. 533-536 [61] Russell, J.A.: A circumplex model of affect. En: Journal of personality and social psychology 39 (1980), Nr. 6, p. 1161-1178. - ISSN 0022-3514 [62] Schlosberg, Harold: Three dimensions of emotion. En: Psychological review 61 2 (1954), p. 81-8 [63] Soleymani, M. ; Asghari-Esfeden, S. ; Fu, Y. ; Pantic, M.: Analysis of EEG Signals and Facial Expressions for Continuous Emotion Detection. En: IEEE Transactions on Affective Computing 7 (2016), Jan, Nr. 1, p. 17-28 [64] Soleymani, M. ; Lichtenauer, J. ; Pun, T. ; Pantic, M.: A Multimodal Database for Affect Recognition and Implicit Tagging. En: IEEE Transactions on Affective Computing 3 (2012), Jan, Nr. 1, p. 42-55. - ISSN 1949-3045 [65] Takahashi, Kazuhiko: Remarks on emotion recognition from bio-potential signals. En: 2nd International Conference on Autonomous Robots and Agents (2004), 01 [66] Tan, S.L. ; Pfordresher, P. ; Harré, R.: Psychology of Music: From Sound to Significance. Psychology Press, 2010. - ISBN 9781841698687 [67] Uma, M ; Sridhar, S S.: A feasibility study for developing an emotional control system through brain computer interface. En: 2013 International Conference on Human Computer Interactions (ICHCI) (2013), p. 1-6. ISBN 978-1-4673-5703-6 [68] Wallis, Isaac ; Ingalls, Todd ; Campana, Ellen. COMPUTER-GENERATING EMOTIONAL MUSIC: THE DESIGN OF AN AFFECTIVE MUSIC ALGORITHM. 2008 [69] Wang, Haohan ; Raj, Bhiksha. On the Origin of Deep Learning. 2017 [70] Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall PTR, 1997. - ISBN 9780135408827 [71] Welch, P.: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modi ed periodograms. En: IEEE Transactions on Audio and Electroacoustics 15 (1967), Nr. 2, p. 70-73 [72] Williams, Duncan R. ; Kirke, Alexis ; Eaton, Joel ; Miranda, Eduardo ; Daly, Ian; Hallowell, James ; Roesch, Etienne B. ; Hwang, Faustina ; Nasuto, Slawomir: Dynamic game soundtrack generation in response to a continuously varying emotional trayectory, 2015 [73] Wolpaw, J. R. ; Birbaumer, N. ; Heetderks, W. J. ; McFarland, D. J. ; Peckham, P. H. ; Schalk, G. ; Donchin, E. ; Quatrano, L. A. ; Robinson, C. J. ; Vaughan, T. M.: Brain-computer interface technology: a review of the first international meeting. En: IEEE Transactions on Rehabilitation Engineering 8 (2000), June, Nr. 2, p. 164-173. - ISSN 1063-6528 [74] Wundt, W. ; Titchener, E.B.: Principles of physiological psychology. I. 1904 [75] Xu, H ; Plataniotis, K N.: Subject independent affective states classification using EEG signals. En: IEEE Global Conference on Signal and Information Processing, GlobalSIP 2015 (2015), p. 1312-1316. ISBN 9781479975914 (ISBN) [76] Z., Jiang X. Bian GB. T.: Removal of Artifacts from EEG Signals: A Review. En: Sensors 19 (2019), p. 987 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en línea (106 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería de Sistemas e Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79367/1/1018441004.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/79367/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/79367/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79367/4/1018441004.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
b9584841a68e6841c662ead29d516e07 cccfe52f796b7c63423298c2d3365fc6 0175ea4a2d4caec4bbcc37e300941108 9af81db5fc4dd846c96146067ebfced7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089337663389696 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Perdomo, Jonatan2f9d2cf2487ee9d391eb9f4ab72124edBeltrán Velandia, Ferneya7d340f85c053a6cf360af16dd477508ALIFE: Grupo de Investigación en Vida Artificial2021-03-23T16:02:45Z2021-03-23T16:02:45Z2020-12-12https://repositorio.unal.edu.co/handle/unal/79367Identificar la expresión de emociones de un individuo por medio del análisis de señales de electroencefalografía (EEG) es importante para el diseño de sistemas computacionales en el campo de la computación afectiva. Estos sistemas buscan extraer información de las señales EEG y relacionarla con las emociones de forma autónoma, tal que pueda ser aplicado en diferentes contextos, por ejemplo en el apoyo de procesos musicoterapéuticos. En esta tesis se construyen dos modelos computacionales basados en aprendizaje supervisado y no-supervisado: una red neuronal convolucional-recurrente (CRNN) y un conjunto de mapas auto-organizados (SOM). El principal objetivo consiste en identificar emociones como funciones temporales a partir del estudio de señales EEG, que son registradas por medio de la diadema EPOC+. La fuente de estímulo son 8 piezas musicales, las cuales se componen para evocar 4 emociones en un grupo de personas: alegría, tristeza, calma y furia. Adicionalmente, a través de la prueba de auto-evaluación SAM, un individuo marca un puntaje emocional por cada estímulo en términos de las dimensiones Actividad y Valencia. Se aplica un protocolo experimental para registrar las señales EEG de 30 participantes, mientras que ellos escuchan las piezas musicales compuestas. Se construye el conjunto de datos EEGLife a partir del procesamiento de las señales EEG puras, con el fin de reducir o remover ruido de diferentes artefactos. Algunas características se extraen de las señales EEG tales como: la correlación cruzada entre señales, la potencia relativa de las bandas de frecuencia, y los escalogramas basados en la transformada Wavelet. Las características extraídas y los puntajes emocionales conforman el conjunto de entrenamiento-validación para las redes neuronales propuestas. Para cada uno de los modelos se escoge la arquitectura y los hiperparámetros dependiendo de los conjuntos de entrenamiento-validación. Se utiliza un esquema de entrenamiento basado en el sujeto con 20% de cada participante para validación sobre el conjunto de datos EEGLife y sobre un conjunto de referencia, el conjunto DEAP. Se realiza una etapa de validación para comparar el desempeño de las redes neuronales en términos de las medidas Precisión, Exhaustividad, Valor-F1 y Exactitud. Los resultados muestran que los modelos extraen la información relacionada con la expresión emocional más fácil para el conjunto EEGLife que para el conjunto DEAP. Los resultados también muestran que el modelo SOM tiene mejor desempeño que el modelo CRNN principalmente por dos razones: el modelo SOM no contempla los puntajes emocionales en el entrenamiento sino en asignar un significado a los grupos resultantes en los mapas, y la asignación de puntajes emocionales contempla la contribución de varios participantes por medio de un sistema difuso. Finalmente, el modelo SOM tiene una propiedad de interpretabilidad que no tiene el modelo CRNN, lo que permite analizar la representación de las señales EEG de forma intuitiva en los mapas auto-organizados.Identifying emotional expressions from individuals is important to build computational systems in the field of affective computing when Electroencephalography signals (EEG) are analyzed. Such systems are designed to autonomously extract pieces of information from EEG signals regarding to emotions. This process can be applied in different areas, for example, to support music-therapeutical processes. In this thesis, supervised and unsupervised learning techniques are applied to train two models of neural networks: convolutional-recurrent neural networks CRNN and a set of self-organizing maps SOM. The main goal is the identification of emotions as temporal representations from EEG signals, which are collected by an EPOC+ neuroheadset. The source of stimuli are 8 pieces of music that are composed to theoretically evoke 4 emotions on people: happiness, sadness, calmness and anger. Additionally, through the self-assessment manikin test SAM, an individual provides a score for each stimulus in terms of emotional dimensions Arousal and Valence. EEG signals from 30 participants are recorded while they listen to the composed pieces of music. The EEGLife dataset is built by applying digital signal processing techniques to the raw EEG signals to reduce noise and to remove artifacts. Some features are extracted from EEG signals such as cross-correlation, bandpower and wavelet scalograms. These features and scores coming from people form the dataset for training and validating the proposed neural networks. Architectures and hyper-parameters are chosen for each neural network according to their training-test datasets. A subject-specific training schema with 20% per participant for validation is used not only for the EEGLife dataset, but also from a benchmark dataset, the DEAP dataset. A validation stage is made to compare the performance of all the models by using Precision, Recall, F1-Score and Accuracy metrics. Results show that both models can extract the emotional expression information easier from EEGLife than DEAP dataset. Additionally, results show that SOM model performs better than CRNN model mainly for two factors: SOM model does not consider emotional scores during the training, but just to assign meaning to the resulting groups in maps; the final emotional scores are calculated by a fuzzy system, which computes the contribution of more than one participant. Finally, the SOM model has an interpretability property not found in CRNN model, which allows to intuitively analyze represented EEG signals on the self-organized maps.MaestríaCon el objetivo de diseñar un modelo computacional para el reconocimiento de emociones como funciones temporales, esta tesis se divide en cuatro etapas: Protocolo experimental para el registro de señales EEG y puntajes emocionales: El primer paso es escoger un modelo de emociones como el punto de referencia, tal como el modelo circunflejo de emociones, el modelo vectorial o el modelo PANA. El siguiente paso consiste en escoger un conjunto de emociones susceptible de ser inducidas por piezas de música, las cuales deben ajustarse al modelo dimensional de emociones escogido previamente. Algunas características musicales guían la composición de las piezas musicales. El siguiente paso consiste en diseñar un protocolo experimental en términos del número de participantes, los descriptores demográfi cos de la población, cuántas sesiones por participante, cuántos estímulos por sesión, la duración de cada sesión y qué mecanismo se aplica para evaluar la percepción de los participantes en cuanto a las dimensiones emocionales. Antes de aplicar el protocolo experimental, se desarrolla una herramienta de software para registrar las señales EEG usando una diadema EPOC+. Construcción del conjunto de datos a partir de la información registrada: Una vez analizado el protocolo experimental, algunas técnicas de procesamiento digital de señales se aplican a las señales EEG como etapas de limpieza y pre-procesamiento de los datos. Esta señales están contaminadas de ruido o artefactos, provenientes de diferentes fuentes intrínsecas o extrínsecas. La primera hace referencia a fuentes biológicas de ruido como el ritmo cardíaco, el movimiento ocular o muscular. Las fuentes extrínsecas o externas hacen referencia a ruidos eléctricos o electromagénticos de dispositivos cercanos a la intefaz cerebro-computador. Dependiendo del tipo de artefacto que se busque atenuar o corregir, es posible aplicar diferentes técnicas como filtros digitales, imputación de datos, análisis de componentes independientes. Al finalizar esta etapa, se obtiene un conjunto de datos donde cada ejemplo es una pareja de señales EEG limpias y los puntajes emocionales dados por los participantes. Extracción de características: Las señales EEG contienen una gran cantidad de información, parte de ella relacionada con la expresión de emociones. Manejar esta cantidad de información pura puede dificultar la tarea de un modelo computacional para extraer patrones emocionales. Por tanto, representar la información pura como un conjunto de características es un paso fundamental para que un modelo computacional encuentre patrones emocionales, dado que ahora trabaja con información agregada de la señales EEG. Para extraer características de señales EEG, se aplican análisis en el dominio del tiempo, de la frecuencia o tiempo-frecuencia. Algunos ejemplos de características son medidas estadísticas, correlación entre señales, el espectro de potencia de las bandas de frecuencia, coe cientes de la transformada Wavelet, dimensiones fractales, entre otras. La elección de cuáles características usar depende principalmente de su utilidad en el problema específico de identi cación de patrones emocionales y cuáles de ellas han sido efectivas en otros trabajos. Finalmente, el resultado de esta etapa es un conjunto de datos que se compone de las características extraídas y los puntajes emocionales, este se denomina conjunto de datos de características. Modelo computacional: Una vez se obtiene el conjunto de datos de características, se de ne el esquema de entrenamiento-validación y cuál es la partición de datos. Después de esto, independiente de la red neuronal que se escoja, se seleccionan los hiperparámetros del modelo computacional como número de neuronas, algoritmo de aprendizaje, si es necesario entrenar más de una red neuronal para obtener el modelo completo. También se de fine(n) la(s) medida(s) de desempeño del modelo computacional, teniendo en cuenta que se debe tomar como referencia una métrica de similitud entre la salida de la red neuronal y los puntajes emocionales dados por los participantes para cada estímulo escuchado. Posterior a esto, se entrena el modelo computacional y se realizan los experimentos para evaluar el desempeño del modelo en términos de la(s) medida(s) planteadas. Finalmente, se realiza el análisis de resultados, las conclusiones y el trabajo futuro que pueda surgir de todo el proyecto de tesis.Computación afectiva1 recurso en línea (106 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generalesRedes neuronalesNeural networksComputación afectivaSeñales EEGMúsicaEmocionesRedes neuronalesAffective computingEEG signalsMusicEmotionsNeural networksInformáticaComputer scienceUn enfoque basado en redes neuronales para el reconocimiento de emociones como funciones temporales usando señales EEG y estímulos musicalesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] Appriou, A. ; Cichocki, A. ; Lotte, F.: Modern Machine-Learning Algorithms: For Classifying Cognitive and A ective States From Electroencephalography Signals. En: IEEE Systems, Man, and Cybernetics Magazine 6 (2020), Nr. 3, p. 29-38[2] Balkwill, Laura-Lee ; Thompson, William F.: A Cross-Cultural Investigation of the Perception of Emotion in Music: Psychophysical and Cultural Cues. En: Music Perception: An Interdisciplinary Journal 17 (1999), Nr. 1, p. 43-64. - ISSN 0730-7829[3] Basheer, Imad A. ; Hajmeer, Maha N.: Artificial neural networks: fundamentals, computing, design, and application. En: Journal of microbiological methods 43 1 (2000), p. 3-31[4] Bella, Simone D. ; Peretz, Isabelle ; Rousseau, Luc ; Gosselin, Nathalie: A developmental study of the affective value of tempo and mode in music. En: Cognition 80 (2001), Nr. 3, p. B1 - B10. - ISSN 0010-0277[5] Berger, Hans: Über das Elektrenkephalogramm des Menschen. En: Archiv für Psychiatrie und Nervenkrankheiten 94 (1931), Dec, Nr. 1, p. 16-60. - ISSN 1433-8491[6] Bhatti, Adnan M. ; Majid, Muhammad ; Anwar, Syed M. ; Khan, Bilal: Human emotion recognition and analysis in response to audio music using brain signals. En: Computers in Human Behavior 65 (2016), p. 267-275. - ISSN 07475632[7] Blankertz, B. ; Tomioka, R. ; Lemm, S. ; Kawanabe, M. ; K., Muller: Optimizing Spatial filters for Robust EEG Single-Trial Analysis. En: IEEE Signal Processing Magazine 25 (2008), Nr. 1, p. 41-56[8] Bolós, V. J. ; Benítez., R.: The wavelet scalogram in the study of time series. En: Advances in Differential Equations and Applications Vol. 4, Springer, Cham, 2014. - ISBN 978-3-319-06953-1, p. 147-154[9] Bradley, M. M. ; Greenwald, M. K. ; Petry, M. C. ; Lang, P. J.: Remembering pictures: pleasure and arousal in memory. En: Journal of experimental psychology 18 (1992), Nr. 2, p. 379-390[10] Bradley, M. M. ; Lang, P. J.: Measuring emotion: The self-assessment manikin and the semantic differential. En: Journal of Behavior Therapy and Experimental Psychiatry 25 (1994), p. 49-59[11] Brocious, Cody ; Machulis, Kyle. Emokit. 2017[12] Bruscia, Kenneth E.: Defining Music Therapy. Barcelona Publishers, 2014. - ISBN 9781937440572[13] Candra, Henry ; Yuwono, Mitchell ; Handojoseno, Ardi ; Chai, Rifai ; Su, Steven; Nguyen, Hung T.: Recognizing emotions from EEG subbands using wavelet analysis. En: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem (2015), p. 6030-6033. - ISBN 9781424492718[14] Clinic, London. What are brainwaves? 2019[15] Cohen, Marc A.: Against basic emotions, and toward a comprehensive theory, 2005[16] Cooke, D.: The Language of Music. Oxford University Press, 1989 (Clarendon paperbacks). - ISBN 9780198161806[17] Cox, Dennis D.: Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. En: Technometrics 38 (1996), Nr. 3, p. 294-294[18] Daly, Ian ; Malik, Asad ; Weaver, James ; Hwang, Faustina ; Nasuto, Slawmoir J. ; Williams, Duncan ; Kirke, Alexis ; Miranda, Eduardo: Identifying music-induced emotions from EEG for use in brain-computer music interfacing. En: 2015 International Conference on Affective Computing and Intelligent Interaction, ACII 2015 22 (2015), p. 923-929. ISBN 9781479999538[19] Daly, Ian ; Malik, Asad ; Weaver, James ; Hwang, Faustina ; Nasuto, Slawomir J. ; Williams, Duncan ; Kirke, Alexis ; Miranda, Eduardo: Towards human-computer music interaction: Evaluation of an affectively-driven music generator via galvanic skin response measures. En: 2015 7th Computer Science and Electronic Engineering Conference, CEEC 2015 - Conference Proceedings (2015), p. 87-92[20] Developers, MNE. Background information on filtering. 2019[21] Ekman, P. ; Friesen, W.V.: Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues. Malor Books, 2003 (A spectrum book). - ISBN 9781883536367[22] Ekman, Paul: An argument for basic emotions, 1992[23] Engelberg, Shlomo.: Digital Signal Processing, An experimental approach. Springer, 2008. - ISBN 978-1-84800-118-3[24] of Florida, Univesity. The center for the study of emotion and attention. 2019[25] Fraga, Tania ; Pichiliani, Mauro ; Louro, Donizetti: Experimental Art with Brain Controlled Interface. En: Stephanidis, Constantine (Ed.) ; Antona, Margherita (Ed.): Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for eInclusion. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013, p. 642-651[26] Friberg, Anders ; Bresin, Roberto ; Sundberg, Johan: Overview of the KTH rule system for musical performance. En: Advances in Cognitive Psychology 2 (2006), Nr. 2-3, p. 145-161[27] Gabrielsson, Alf: Strong Experiences with Music. En: Juslin, Patrik N. (Ed.) ; Sloboda, John (Ed.): Handbook of Music and Emotion: Theory, Research, Applications. Oxford University Press, 2011[28] Goebel, Randy: Lecture Notes in Artificial Intelligence Subseries of Lecture Notes in Computer Science LNAI Series Editors. 2011. - ISBN 9783642341816[29] Goyal, M. ; Singh, M. ; Singh, M.: Classification of emotions based on ERP feature extraction. En: 2015 1st International Conference on Next Generation Computing Technologies (NGCT), 2015, p. 660-662[30] Gramfort, Alexandre ; Luessi, Martin ; Larson, Eric ; Engemann, Denis A. ; Strohmeier, Daniel ; Brodbeck, Christian ; Goj, Roman ; Jas, Mainak ; Brooks, Teon ; Parkkonen, Lauri ; H am al ainen, Matti: MEG and EEG data analysis with MNE-Python. En: Frontiers in Neuroscience 7 (2013), Nr. 7 DEC, p. 1-13. - ISSN 1662453X[31] Haykin, S. ; Haykin, S.S.: Neural Networks and Learning Machines. Prentice Hall, 2009 (Neural networks and learning machines v. 10). - ISBN 9780131471399[32] HEVNER, K.: Experimental studies of the elements of expression in music. En: American Journal of Psychology 48 (1936), p. 246-268[33] Hussain, Zahir M. ; Sadik, Amin Z. ; OShea, Peter: Digital Signal Processing, An introduction with MATLAB and applications. Springer, 2011. - ISBN 978-3-642-15590-1[34] Hyvärinen, A. ; Oja, E.: Independent component analysis: algorithms and applications. En: Neural Networks 13 (2000), Nr. 4, p. 411 - 430. - ISSN 0893-6080[35] Jenke, R. ; Peer, A. ; Buss, M.: Feature Extraction and Selection for Emotion Recognition from EEG. En: IEEE Transactions on Affective Computing 5 (2014), July, Nr. 3, p. 327-339[36] Juslin, Patrik N.: Communicating emotion in music performance: A review and a theoretical framework, 2001[37] Katsigiannis, Stamos ; Ramzan, Naeem. DREAMER: A Database for Emotion Recognition through EEG and ECG Signals from Wireless Low-cost O -the-Shelf Devices.April 2017[38] Kivy, Peter: Music Alone: Philosophical Reflections on the Purely Musical Experience. Cornell University Press, 1990[39] Koelstra, Sander ; Muhl, Christian ; Soleymani, Mohammad ; Lee, Jong-Seok ; Yazdani, Ashkan ; Ebrahimi, Touradj ; Pun, Thierry ; Nijholt, Anton ; Patras, Ioannis: DEAP: A Database for Emotion Analysis ;Using Physiological Signals. En: IEEE Trans. Affect. Comput. 3 (2012), Januar, Nr. 1, p. 18-31. - ISSN 1949-3045[40] Kohonen, T. ; Schroeder, M. R. ; Huang, T. S.: Self-Organizing Maps. 3rd. Berlin, Heidelberg : Springer-Verlag, 2001. - ISBN 3540679219[41] Lahane, Prashant ; Sangaiah, Arun K.: An Approach to EEG Based Emotion Recognition and Classification Using Kernel Density Estimation. En: Procedia Computer Science 48 (2015), p. 574-581[42] Lang, P. J.: Behavioral treatment and bio-behavioral assessment: Computer applications. En: Sidowski, J. B. (Ed.) ; Johnson, J. H. (Ed.) ; Williams, T. A. (Ed.): Technology in mental health care delivery systems. Norwood, NJ: Ablex, 1980, p. 119 - 137[43] Langer, S.K.: Philosophy In A New Key. 1951[44] Li, Xiang ; Song, Dawei ; Zhang, Peng ; Yu, Guangliang ; Hou, Yuexian ; Hu, Bin ; Kindom, United: Emotion Recognition from Multi-Channel EEG Data through Convolutional Recurrent Neural Network. (2016), p. 352-359. ISBN 9781509016105[45] Liu, Yisi ; Sourina, Olga: EEG-based Subject-Dependent Emotion Recognition Algorithm Using Fractal Dimension. En: IEEE International Conference on Systems, Man, and Cybernetics (2014), p. 3166-3171. - ISBN 9781479938407[46] Livingstone, Steven R. ; Muhlberger, Ralf ; Brown, Andrew R. ; Thompson, William F.: Changing Musical Emotion: A Computational Rule System for Modifying Score and Performance. En: Computer Music Journal 34 (2010), Nr. 1, p. 41-64. - ISSN 01489267, 15315169[47] Lopatovska, Irene ; Arapakis, Ioannis: Theories, methods and current research on emotions in library and information science, information retrieval and human-computer interaction. En: Information Processing & Management 47 (2011), Nr. 4, p. 575 - 592. - ISSN 0306-4573[48] Matlovic, Tomas ; Gáspár, Péter ; Móro, Róbert ; Simko, Jakub ; Bieliková, Mária: Emotions detection using facial expressions recognition and EEG. En: 2016 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP) (2016), p. 18-23[49] Mattek, Alison: Computational Methods for Portraying Emotion in Generative Music Composition., Tesis de Grado, 01 2010[50] Mehrabian, Albert ; Russell, James A.: An approach to environmental psychology, 1974[51] Meyer, L.B.: Emotion and Meaning in Music. University of Chicago Press, 1961 (Jeff borrow list). - ISBN 9780226521398[52] Niu, X. ; Chen, L. ; Chen, Q.: Research on genetic algorithm based on emotion recognition using physiological signals. En: 2011 International Conference on Computational Problem-Solving (ICCP), 2011, p. 614-618[53] Picard, Rosalind W.: Affective computing: challenges. En: International Journal of Human-Computer Studies 59 (2003), Nr. 1, p. 55 - 64. - Applications of Affective Computing in Human-Computer Interaction. - ISSN 1071-5819[54] PLUTCHIK, ROBERT: Chapter 1 - A GENERAL PSYCHOEVOLUTIONARY THEORY OF EMOTION. En: Plutchik, Robert (Ed.) ; Kellerman, Henry (Ed.): Theories of Emotion. Academic Press, 1980. - ISBN 978-0-12-558701-3, p. 3 - 33[55] Prerau, Michael J. ; Brown, Ritchie E. ; Bianchi, Matt T. ; Ellenbogen, Jeffrey M. ; Purdon, Patrick L.: Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis. En: Physiology (Bethesda, Md.) 32 (2017), January, Nr. 1, p. 60|92. - ISSN 1548-9213[56] Raschka, S. ; Mirjalili, V.: Python Machine Learning. 2nd. Marcombo, 2016[57] Remington, N. A. ; Fabrigar, L. R. ; Visser, P. S.: Reexamining the circumplex model of a ect. En: Journal of Personality and Social Psychology 79 (2000), p. 286-300[58] Rodriguez, Alex ; Laio, Alessandro: Clustering by fast search and nd of density peaks. En: Science 344 (2014), Nr. 6191, p. 1492-1496. - ISSN 0036-8075[59] Rubin, David C. ; Talarico, Jennifer M.: A comparison of dimensional models of emotion: Evidence from emotions, prototypical events, autobiographical memories, and words. En: Memory 17 (2009), Nr. 8, p. 802-808[60] Rumelhart, David E. ; Hinton, Geo rey E. ; Williams, Ronald J.: Learning representations by back-propagating errors. En: Nature 323 (1986), p. 533-536[61] Russell, J.A.: A circumplex model of affect. En: Journal of personality and social psychology 39 (1980), Nr. 6, p. 1161-1178. - ISSN 0022-3514[62] Schlosberg, Harold: Three dimensions of emotion. En: Psychological review 61 2 (1954), p. 81-8[63] Soleymani, M. ; Asghari-Esfeden, S. ; Fu, Y. ; Pantic, M.: Analysis of EEG Signals and Facial Expressions for Continuous Emotion Detection. En: IEEE Transactions on Affective Computing 7 (2016), Jan, Nr. 1, p. 17-28[64] Soleymani, M. ; Lichtenauer, J. ; Pun, T. ; Pantic, M.: A Multimodal Database for Affect Recognition and Implicit Tagging. En: IEEE Transactions on Affective Computing 3 (2012), Jan, Nr. 1, p. 42-55. - ISSN 1949-3045[65] Takahashi, Kazuhiko: Remarks on emotion recognition from bio-potential signals. En: 2nd International Conference on Autonomous Robots and Agents (2004), 01[66] Tan, S.L. ; Pfordresher, P. ; Harré, R.: Psychology of Music: From Sound to Significance. Psychology Press, 2010. - ISBN 9781841698687[67] Uma, M ; Sridhar, S S.: A feasibility study for developing an emotional control system through brain computer interface. En: 2013 International Conference on Human Computer Interactions (ICHCI) (2013), p. 1-6. ISBN 978-1-4673-5703-6[68] Wallis, Isaac ; Ingalls, Todd ; Campana, Ellen. COMPUTER-GENERATING EMOTIONAL MUSIC: THE DESIGN OF AN AFFECTIVE MUSIC ALGORITHM. 2008[69] Wang, Haohan ; Raj, Bhiksha. On the Origin of Deep Learning. 2017[70] Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall PTR, 1997. - ISBN 9780135408827[71] Welch, P.: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modi ed periodograms. En: IEEE Transactions on Audio and Electroacoustics 15 (1967), Nr. 2, p. 70-73[72] Williams, Duncan R. ; Kirke, Alexis ; Eaton, Joel ; Miranda, Eduardo ; Daly, Ian; Hallowell, James ; Roesch, Etienne B. ; Hwang, Faustina ; Nasuto, Slawomir: Dynamic game soundtrack generation in response to a continuously varying emotional trayectory, 2015[73] Wolpaw, J. R. ; Birbaumer, N. ; Heetderks, W. J. ; McFarland, D. J. ; Peckham, P. H. ; Schalk, G. ; Donchin, E. ; Quatrano, L. A. ; Robinson, C. J. ; Vaughan, T. M.: Brain-computer interface technology: a review of the first international meeting. En: IEEE Transactions on Rehabilitation Engineering 8 (2000), June, Nr. 2, p. 164-173. - ISSN 1063-6528[74] Wundt, W. ; Titchener, E.B.: Principles of physiological psychology. I. 1904[75] Xu, H ; Plataniotis, K N.: Subject independent affective states classification using EEG signals. En: IEEE Global Conference on Signal and Information Processing, GlobalSIP 2015 (2015), p. 1312-1316. ISBN 9781479975914 (ISBN)[76] Z., Jiang X. Bian GB. T.: Removal of Artifacts from EEG Signals: A Review. En: Sensors 19 (2019), p. 987ORIGINAL1018441004.2020.pdf1018441004.2020.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf17150429https://repositorio.unal.edu.co/bitstream/unal/79367/1/1018441004.2020.pdfb9584841a68e6841c662ead29d516e07MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79367/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79367/3/license_rdf0175ea4a2d4caec4bbcc37e300941108MD53THUMBNAIL1018441004.2020.pdf.jpg1018441004.2020.pdf.jpgGenerated Thumbnailimage/jpeg4794https://repositorio.unal.edu.co/bitstream/unal/79367/4/1018441004.2020.pdf.jpg9af81db5fc4dd846c96146067ebfced7MD54unal/79367oai:repositorio.unal.edu.co:unal/793672024-07-31 23:13:00.602Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |