Desarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvo

gráficas, ilustraciones, tablas

Autores:
Patarroyo Leon, Kelly Johanna
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81818
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81818
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::664 - Tecnología de alimentos
Autenticidad
Fraude alimentario
Seguridad alimentaria
Especia
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_fd63bfe452c175850500565bc1f423a8
oai_identifier_str oai:repositorio.unal.edu.co:unal/81818
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvo
dc.title.translated.eng.fl_str_mv Development of a model for identification of adulterants for quality control of garlic powder
title Desarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvo
spellingShingle Desarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvo
660 - Ingeniería química::664 - Tecnología de alimentos
Autenticidad
Fraude alimentario
Seguridad alimentaria
Especia
title_short Desarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvo
title_full Desarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvo
title_fullStr Desarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvo
title_full_unstemmed Desarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvo
title_sort Desarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvo
dc.creator.fl_str_mv Patarroyo Leon, Kelly Johanna
dc.contributor.advisor.none.fl_str_mv Sánchez Sáenz, Carolina María
dc.contributor.author.none.fl_str_mv Patarroyo Leon, Kelly Johanna
dc.contributor.researcher.none.fl_str_mv Triana Fonseca, Laura Valentina
Gutierrez Rico, Tatiana
Vásquez Santana, Gabriel Mateo
Peña Muñetón, Nicolás
Matiz Ulloa, Julián David
dc.contributor.researchgroup.spa.fl_str_mv Ingeniería de Biosistemas
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::664 - Tecnología de alimentos
topic 660 - Ingeniería química::664 - Tecnología de alimentos
Autenticidad
Fraude alimentario
Seguridad alimentaria
Especia
dc.subject.proposal.spa.fl_str_mv Autenticidad
Fraude alimentario
Seguridad alimentaria
Especia
description gráficas, ilustraciones, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-09T14:05:27Z
dc.date.available.none.fl_str_mv 2022-08-09T14:05:27Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81818
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81818
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
eng
language spa
eng
dc.relation.references.spa.fl_str_mv Administración Nacional de Medicamentos Alimentos y Tecnología Médica [ANMAT]. (2019). Boletín oficial de la República Argentina (p. Disposición 4069/2019). https://www.boletinoficial.gob.ar/detalleAviso/primera/207652/20190516?busqueda=1#
Aenugu, H., Kumar, D. S., Srisudharson, Parthiban, N., Ghosh, S. & Banji, D. (2011). Near Infra-Red Spectroscopy - An overview. International Journal of ChemTech Research, 3(2), 825–836. https://www.researchgate.net/publication/286061794_Near_infra_red_spectroscopy-_An_overview
Agencia Española de Seguridad Alimentaria y Nutrición [AESAN]. (2021). Advertencia para personas alérgicas a los sulfitos: Presencia de sulfitos en canela en polvo procedente del Reino Unido. https://www.aesan.gob.es/AECOSAN/web/seguridad_alimentaria/alertas_alimentarias/2021_329.htm
Allianz Global Corporate and Speciality. (n.d.). Product recall - Drivers and trends. https://www.agcs.allianz.com/news-and-insights/expert-risk-articles/product-recall-drivers-and-trends.html
Amirvaresi, A., Rashidi, M., Kamyar, M., Amirahmadi, M., Daraei, B. & Parastar, H. (2020). Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection. Journal of Chromatography A, 1628, 461461. https://doi.org/10.1016/j.chroma.2020.461461
AOAC International. (2012a). AOAC Official Method 916.01- Adulterants in Spices. In G. W. Latimer (Ed.), Official methods of analysis of AOAC International (19th ed., pp. 1002–1004).
AOAC International. (2012b). Official methods of analysis of AOAC International. In G. W. Latimer (Ed.), Official Methods of Analysis of AOAC International (19th ed., pp. 4–6).
Arévalo, M. (2013). Determinaciones cuantitativas en naranja mediante tecnologías NIRS. In [Master thesis, Universidad Pública de Navarra].
Arizio, O. P. & Curioni, A. O. (2014). Global and regional exchange of spices in terms of value, 1992-2011. Revista Colombiana de Ciencias Hortícolas, 8(1), 142–154. www.fao.org
Artigue, H. & Smith, G. (2019). The principal problem with principal components regression. Cogent Mathematics & Statistics, 6. https://doi.org/10.1080/25742558.2019.1622190
Attrey, D. P. (2017). Chapter 10 - Detection of food adulterants/contaminants BT - Food Safety in the 21st Century. In Food Safety in the 21st Century. Elsevier Inc. https://doi.org/https://doi.org/10.1016/B978-0-12-801773-9.00010-8
Bansal, S., Thakur, S., Mangal, M., Mangal, A. K. & Gupta, R. K. (2018). DNA barcoding for specific and sensitive detection of Cuminum cyminum adulteration in Bunium persicum. Phytomedicine, 50(November 2017), 178–183. https://doi.org/10.1016/j.phymed.2018.04.023
Barros, B., Scarminio, I. & Bruns, R. (2010). Como fazer Experimentos. Pesquisa e Desenvolvimento Na Ciência e Na Indústria, 4, 413.
Bennett, P. (2015). Inside the Peanut-Tainted Cumin Recalls: What Happened? Food Allergy, Peanut & Tree Nut, Recalls. https://www.allergicliving.com/2015/02/14/inside-the-peanut-tainted-cumin-recalls-what-happened/
Berrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, 1, 542–545.
Bhattacharyya, N. & Bandhopadhyay, R. (2010). Nondestructive evaluation of food quality: Theory and practice. Nondestructive Evaluation of Food Quality: Theory and Practice, 1–288. https://doi.org/10.1007/978-3-642-15796-7
Bhattacharyya, N., Bandyopadhyay, R. & Bhuyan Met, A. L. (2005). Correlation of multi-sensor array data with “tasters” panel evaluation for objective assessment of black tea flavor. Proceedings of ISOEN.
Bhooma, V., Nagasathiya, K., Vairamani, M. & Parani, M. (2020). Identification of synthetic dyes magenta III (new fuchsin) and rhodamine B as common adulterants in commercial saffron. Food Chemistry, 309(October 2019). https://doi.org/10.1016/j.foodchem.2019.125793
Bjorsvik, H.-R. & Martens, H. (2007). Calibration of NIR Instruments by PLS Regression. In Handbook of Near-Infrared Analysis (3rd ed., pp. 189–205). Press Taylor & Francis Group.
Black, C., Haughey, S. A., Chevallier, O. P., Galvin-King, P. & Elliott, C. T. (2016). A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Food Chemistry, 210, 551–557. https://doi.org/10.1016/j.foodchem.2016.05.004
Bouzembrak, Y. & Marvin, H. J. P. (2016). Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control, 61, 180–187. https://doi.org/10.1016/j.foodcont.2015.09.026
British Retail Consortium [BRC], Food and Drink Federation [FDF] & Seasoning and Spice Association [SSA]. (2016). Guidance on authenticity of herbs and spices (pp. 1–19). http://www.brc.org.uk/downloads/Guidance_on_Authenticity_of_Herbs_and_Spices_June_2016.pdf
Burns, D. A. & Ciurczak, E. W. (2008). Handbook of Near-Infrared Analysis, Third Edition. https://books.google.ru/books?id=6EEd1a0uka0C
Cantarelli, M. A., Moldes, C. A., Marchevsky, E. J., Azcarate, S. M. & Camiña, J. M. (2020). Low-cost analytic method for the identification of Cinnamon adulteration. Microchemical Journal, 159(September). https://doi.org/10.1016/j.microc.2020.105513
Carmona, I. (2013). Situación global de especias y condimentos: una oportunidad para el ají procesado picante. Agrimundo, Inteligencia Competitiva Para El Sector Agroalimentario, 6(Junio), 1–5.
Cetó, X., Sánchez, C., Serrano, N., Díaz-Cruz, J. M. & Núñez, O. (2020). Authentication of paprika using HPLC-UV fingerprints. LWT - Food Science and Tecnology, 124(February), 1–5. https://doi.org/10.1016/j.lwt.2020.109153
Chaminda Bandara, W. G., Kasun Prabhath, G. W., Sahan Chinthana Bandara Dissanayake, D. W., Herath, V. R., Roshan Indika Godaliyadda, G. M., Bandara Ekanayake, M. P., Demini, D. & Madhujith, T. (2019). Validation of multispectral imaging for the detection of selected adulterants in turmeric samples. Journal of Food Engineering, 266(August 2019), 109700. https://doi.org/10.1016/j.jfoodeng.2019.109700
Chen, H., Tan, C. & Lin, Z. (2018). Quantitative determination of wool in textile by near-infrared spectroscopy and multivariate models. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 201, 229–235. https://doi.org/10.1016/j.saa.2018.05.010
Codex Alimentarius. (1995). Code of Hygienic Practice for Spices and Dried Aromatic Plants Code of Hygienic Practice for Spices and Dried Aromatic Plants. 1–17.
connect2india. (2020). GARLIC POWDER IMPORTERS IN COLOMBIA. Marzo 2020. https://connect2india.com/global/Garlic-Powder-importers-in-Colombia
Dai, H., Gao, Q. & He, L. (2020). Rapid Determination of Saffron Grade and Adulteration by Thin-Layer Chromatography Coupled with Raman Spectroscopy. Food Analytical Methods, 13(11), 2128–2137. https://doi.org/10.1007/s12161-020-01828-x
Danciu, V., Hosu, A. & Cimpoiu, C. (2018). Thin-layer chromatography in spices analysis. Journal of Liquid Chromatography and Related Technologies, 41(6), 282–300. https://doi.org/10.1080/10826076.2018.1447895
Dhakal, S., Chao, K., Kim, M., Qin, J. & Bae, A. (2018). Detection of color dye contamination in spice powder using 1064 nm Raman chemical imaging system. Sensing for Agriculture and Food Quality and Safety X, 1066509(May 2018), 1–7. https://doi.org/10.1117/12.2303832
Dhakal, S., Schmidt, W., Kim, M., Tang, X., Peng, Y. & Chao, K. (2019). Detection of additives and chemical contaminants in turmeric powder using FT-IR spectroscopy. Foods, 8(143), 1–15. https://doi.org/10.3390/foods8050143
Dhanya, K. & Sasikumar, B. (2010). Molecular marker based adulteration detection in traded food and agricultural commodities of plant origin with special reference to spices. Current Trends in Biotechnology and Pharmacy, 4(1), 454–489.
Direction générale de la concurrence, de la consommation et de la répression des fraudes. (2018). Contrôle de la qualité des épices. Le Portail de l’Économie, Des Finances, de l’Action et Des Comptes Publics. https://www.economie.gouv.fr/dgccrf/controle-qualite-des-epices
Elliott, C. (2014). The new phenomenon of criminal fraud in the food supply chain. NSF International Report. NSF International Report, 1–17.
Esslinger, S., Riedl, J. & Fauhl-Hassek, C. (2014). Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Research International, 60, 189–204. https://doi.org/10.1016/j.foodres.2013.10.015
European Commission. (2017). The EU Food Fraud Network and the System for Administrative Assistance & Food Fraud- Annual Report 2017. 1–17.
European Commission. (2018). The EU Food Fraud Network And The System For Administrative Assistance & Food Fraud - Annual Report 2018. 1–19. https://ec.europa.eu/food/sites/food/files/safety/docs/food-fraud_network_activity_report_2016.pdf
European Commission. (2019). 2019 Annual Report - The EU Food Fraud Network and the Administrative Assistance & Cooperation System. 1–19. https://doi.org/10.2875/326318
EUROPOL & INTERPOL. (2019). Over €100 million worth of fake food and drinks seized in latest Europol-INTERPOL operation. https://www.europol.europa.eu/newsroom/news/over-€100-million-worth-of-fake-food-and-drinks-seized-in-latest-europol-interpol-operation
Everstine, K. (2013). Economically motivated adulteration: implications for food protection and alternate approaches to detection. May.
Falkheimer, J. & Heide, M. (2015). Trust and Brand Recovery Campaigns in Crisis: Findus Nordic and the Horsemeat Scandal. International Journal of Strategic Communication, 9(2), 134–147. https://doi.org/10.1080/1553118X.2015.1008636
FAOSTAT. (2019a). Detailed Trade Matrix. Food and Agriculture Organization [FAO]. http://www.fao.org/faostat/en/#data/TM
FAOSTAT. (2019b). Spice production in the world 2009-2019. FAO. http://www.fao.org/faostat/en/#data/QCL
Farag, M., Hegazi, N., Dokhalahy, E. & Khattab, A. (2020). Chemometrics based GC-MS aroma profiling for revealing freshness, origin and roasting indices in saffron spice and its adulteration. Food Chemistry, 331(May), 127358. https://doi.org/10.1016/j.foodchem.2020.127358
Ferreira, D. S. (2013). Aplicação de espectroscopia no infravermelho e análise multivariada para previsão de parâmetros de qualidade em soja e quinoa. Unicamp, 119.
Fonovich, T. M. (2013). Sudan dyes: Are they dangerous for human health. Drug and Chemical Toxicology, 36(3), 343–352. https://doi.org/10.3109/01480545.2012.710626
Food and Drugs Administration [FDA]. (2009). Economically Motivated Adulteration; Public Meeting. Federal Register, 74(64), 15497–15499. https://www.govinfo.gov/content/pkg/FR-2009-04-06/pdf/E9-7843.pdf
Food and Drugs Administration [FDA]. (2015). FDA Consumer Advice on Products Containing Ground Cumin with Undeclared Peanuts. U.S. Food and Drug Administration. http://wayback.archive-it.org/7993/20171114232613/https://www.fda.gov/Food/RecallsOutbreaksEmergencies/SafetyAlertsAdvisories/ucm434274.htm
Fried, B. & Mcdonnell, M. (2000). Rocks and minerals (Hands-on S). J. Weston Walch.
Galvin-King, P., Haughey, S. A. & Elliott, C. T. (2018). Herb and spice fraud; the drivers, challenges and detection. Food Control, 88, 85–97. https://doi.org/10.1016/j.foodcont.2017.12.031
Galvin-King, P., Haughey, S. A. & Elliott, C. T. (2019). Spices. In Foodintegrity Handbook A Guide to Food Authenticity Issues and Analytical Solutions (pp. 173–192).
Galvin-King, P., Haughey, S. A. & Elliott, C. T. (2021). Garlic adulteration detection using NIR and FTIR spectroscopy and chemometrics. Journal of Food Composition and Analysis, 96, 103757. https://doi.org/10.1016/j.jfca.2020.103757
Galvin-King, P., Haughey, S. & Elliott, C. (2020). The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools. Foods, 9(944), 1–15. https://doi.org/10.3390/foods9070944
Gao, F., Hu, Y., Chen, D., Li-Chan, E. C. Y., Grant, E. & Lu, X. (2015). Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor. Talanta, 143, 344–352. https://doi.org/10.1016/j.talanta.2015.05.003
Garber, E. A. E., Parker, C. H., Handy, S. M., Cho, C. Y., Panda, R., Samadpour, M., Reynaud, D. H. & Ziobro, G. C. (2016). Presence of undeclared food allergens in cumin: The need for multiplex methods. Journal of Agricultural and Food Chemistry, 64(5), 1202–1211. https://doi.org/10.1021/acs.jafc.5b05497
Goel, S., Patidar, R., Baxi, K. & Thakur, R. S. (2015). Investigation of particulate matter performances in relation to chalk selection in classroom environment. Indoor and Built Environment, 26(1), 119–131. https://doi.org/10.1177/1420326X15607951
Gossner, C., Schlundt, J., Embarek, P., Hird, S., Lo-Fo-Wong, D., Ocampo, J., Teoh, K. & Tritscher, A. (2009). The Melamine Incident: Implications for International Food and Feed Safety. Environmental Health Perspectives, 117(12), 1803–1808. https://doi.org/10.1289/ehp.0900949
Grand View Research. (2020). Seasoning And Spices Market Size, Share & Trends Analysis Report By Product (Herbs, Salt & Salts Substitutes, Spices), By Application, By Region, And Segment Forecasts, 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/seasonings-spices-market
Heidarbeigi, K., Mohtasebi, S. S., Serrano-Diaz, J., Medina-Plaza, C., Ghasemi-Varnamkhasti, M., Alonso, G. L., Garcia-Rodriguez, M. v., Rafiee, S., Rezaei, K., Garcia-Hernandez, C., de Saja, J. A. & Rodriguez-Mendez, M. L. (2016). Flavour characteristics of Spanish and Iranian saffron analysed by electronic tongue. Quality Assurance and Safety of Crops and Foods, 8(3), 359–368. https://doi.org/10.3920/QAS2015.0591
Heidarbeigi, Kobra, Mohtasebi, S. S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S. & Rezaei, K. (2015). Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties, 18(7), 1391–1401. https://doi.org/10.1080/10942912.2014.915850
Heidarbeigi, Kobra, Mohtasebi, S. S., Rafiee, S., Ghasemi-Varnamkhasti, M., Rezaei, K. & Rodriguez-Mendez, M. L. (2016). An electronic tongue design for the detection of adulteration in saffron samples. Irani Journal of Biosystem Engineering, 46(4), Pages 405-413. https://doi.org/10.22059/IJBSE.2015.57347
Heigi Library. (2019). Spice Consumption. https://www.helgilibrary.com/indicators/spice-consumption-total/
Hellberg, R. S., Everstine, K. & Sklare, S. A. (2021). Food Fraud: A Global Threat with Public Health and Economic Consequences. In Academic Press. https://doi.org/10.1016/j.jneb.2021.06.004
Hofmann, A. (2010). Spectrophotometric techniques: I Spectrophotometric Techniques.
Hu, Y., Wang, S. S., Wang, S. S. & Lu, X. (2017). Application of nuclear magnetic resonance spectroscopy in food adulteration determination: The example of Sudan dye i in paprika powder. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-02921-8
Ichim, M. C. (2019). The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. Frontiers in Pharmacology, 10(October), 1–9. https://doi.org/10.3389/fphar.2019.01227
ICONTEC. (1989). NTC 2555 Industria Agrícola. Especias y condimentos. Determinación del contenido de materia extraña.
ICONTEC. (1998). NTC 4423 Industria Alimentaria. Especias y Condimentos.
Instituto Nacional de Vigilancia de Medicamentos y Alimentos [INVIMA]. (2019). Reporte del resultado de la inspección realizada en el Puertos, Aeropuertos y Pasos Fronterizos para alimentos, materias primas e ingredientes secundarios en alimentos de consumo humano. https://www.invima.gov.co/web/guest
International Organization for Standardization [ISO]. (1987). ISO 7954:1987 - Microbiology — General guidance for enumeration of yeasts and moulds — Colony count technique at 25 degrees C. https://www.iso.org/standard/14931.html
International Organization for Standardization [ISO]. (2012). ISO 9308-2:2012 - Water quality — Enumeration of Escherichia coli and coliform bacteria — Part 2: Most probable number method. https://www.iso.org/standard/55832.html
International Organization for Standardization [ISO]. (2017). ISO 6579-1:2017 - Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella — Part 1: Detection of Salmonella spp. https://www.iso.org/standard/56712.html
Jamshidi, B. (2020). Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Ability of near-infrared spectroscopy for non-destructive detection of internal insect infestation in fruits : Meta-analysis of spectral ranges and optical measurement modes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 225, 117479. https://doi.org/10.1016/j.saa.2019.117479
Jia, X., Huang, J., Luan, H., Rozelle, S. & Swinnen, J. (2012). China’s Milk Scandal, government policy and production decisions of dairy farmers: The case of Greater Beijing. Food Policy, 37(4), 390–400. https://doi.org/10.1016/j.foodpol.2012.03.008
Kar, S, Tudu, B., Jana, A. & Bandyopadhyay, R. (2019). FT-NIR spectroscopy coupled with multivariate analysis for detection of starch adulteration in turmeric powder. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 36(6), 863–875. https://doi.org/10.1080/19440049.2019.1600746
Kar, Saumita, Tudu, B. & Bandyopadhyay, R. (2018). Comparison of Different Pre-processing Techniques towards Discrimination of Turmeric Powders using Near-infrared Spectra and Exploratory Data Analysis. 2018 IEEE Applied Signal Processing Conference (ASPCON), 193–197. https://doi.org/10.1109/ASPCON.2018.8748565
Kiani, S., Minaei, S. & Ghasemi-Varnamkhasti, M. (2017). Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection. Computers and Electronics in Agriculture, 141, 46–53. https://doi.org/10.1016/j.compag.2017.06.018
Kong, W., An, H., Zhang, J., Sun, L., Nan, Y., Song, A. & Zhou, L. (2019). Development of a high-performance liquid chromatography with tandem mass spectrometry method for identifying common adulterant content in saffron (Crocus sativus L.). Journal of Pharmacy and Pharmacology, 71(12), 1864–1870. https://doi.org/10.1111/jphp.13152
Lakshmi, V. (2012). Food Adulteration. International Journal of Science Inventions Today, 1(2), 106–113. https://doi.org/10.1001/jama.1909.02540310058013
Lang, J., Mcnitt, L. & Robertson, I. (2014). Determination of Levels of Spice Adulteration using Near-infrared Spectroscopy.
Lee, S., Lohumi, S., Lim, H., Gotoh, T., Cho, B. & Kim, M. S. (2015). Development of a detection method for adulterated onion powder using raman spectroscopy. Journal of the Faculty of Agriculture Kyushu University, 60(1), 151–156.
Leng, T., Li, F., Xiong, L., Xiong, Q., Zhu, M. & Chen, Y. (2020). Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control, 113, 107–203. https://doi.org/10.1016/j.foodcont.2020.107203
Lima, A. B. S. de, Batista, A. S., Jesus, J. C. de, Silva, J. de J., Araújo, A. C. M. de & Santos, L. S. (2020). Fast quantitative detection of black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling. Food Control, 107(July 2019), 106802. https://doi.org/10.1016/j.foodcont.2019.106802
Lohumi, S., Joshi, R., Kandpal, L. M., Lee, H., Kim, M. S., Cho, H., Mo, C., Seo, Y. W., Rahman, A. & Cho, B. K. (2017). Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 34(5), 678–686. https://doi.org/10.1080/19440049.2017.1290828
Lohumi, S., Lee, S. & Cho, B. K. (2015). Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder. Sensors and Actuators B-Chemical, 216, 622–628. https://doi.org/10.1016/j.snb.2015.04.060
Lohumi, S., Lee, S., Lee, H. & Cho, B. K. (2015). A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science and Technology, 46(1), 85–98. https://doi.org/10.1016/j.tifs.2015.08.003
Lohumi, S., Lee, S., Lee, W. H., Kim, M. S., Mo, C., Bae, H. & Cho, B. K. (2014). Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy. Journal of Agricultural and Food Chemistry, 62(38), 9246–9251. https://doi.org/10.1021/jf500574m
Mabood, F., Boqué, R., Alkindi, A. Y., Al-Harrasi, A., al Amri, I. S., Boukra, S., Jabeen, F., Hussain, J., Abbas, G., Naureen, Z., Haq, Q. M. I., Shah, H. H., Khan, A., Khalaf, S. K. & Kadim, I. (2020). Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Science, 163(February), 108084. https://doi.org/10.1016/j.meatsci.2020.108084
Martínez, J.a, B., Loria, J. c & Nava, A. A. (2008). Accidental poisoning with “Chinese chalk.” Acta Biomedica de l’Ateneo Parmense, 79(1), 36–38.
Matthews, M. & Jack, M. (2011). Spices and herbs for home and market. In FAO diversification booklet No. 20.
Mazivila, S. J., Páscoa, R. N. M. J., Castro, R. C., Ribeiro, D. S. M. & Santos, J. L. M. (2020). Detection of melamine and sucrose as adulterants in milk powder using near-infrared spectroscopy with DD-SIMCA as one-class classifier and MCR-ALS as a means to provide pure profiles of milk and of both adulterants with forensic evidence: A short communic. Talanta, 216(February), 120937. https://doi.org/10.1016/j.talanta.2020.120937
McGrath, T. F., Haughey, S. A., Patterson, J., Fauhl-Hassek, C., Donarski, J., Alewijn, M., van Ruth, S. & Elliott, C. T. (2018). What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed? – Spectroscopy case study. Trends in Food Science and Technology, 76(December 2017), 38–55. https://doi.org/10.1016/j.tifs.2018.04.001
Merieux NutriSciences. (2019). Fraude alimentario y autenticidad : Condimentos y Especias (pp. 1–2).
Miller, J. (2009). Chromatography. In D. Andrews (Ed.), Encyclopedia of Applied Spectroscopy (pp. 1055–1102). WILEY-VCH Verlag GmbH & Co. KGaA.
Mohiuddin, A. K. (2019). Health Hazards with Adulterated Spices: Save the “Onion Tears.” International Research Journal of Public Health, 1(3), 1–6. https://doi.org/10.28933/irjph-2019-11-1205
Monago-Maraña, O., Eskildsen, C. E., Galeano-Díaz, T., Muñoz de la Peña, A. & Wold, J. P. (2021). Untargeted classification for paprika powder authentication using visible – Near infrared spectroscopy (VIS-NIRS). Food Control, 121(June 2020). https://doi.org/10.1016/j.foodcont.2020.107564
Moore, Jeffrey, Ganguly, A., Smeller, J., Botros, L., Mossoba, M. & Bergana, M. M. (2012). Standardisation of Non-Targeted Screening Tools to Detect Adulterations in Skim Milk Powder Using NIR Spectroscopy and Chemometrics. NIR News, 23(5), 9–11. https://doi.org/10.1255/nirn.1314
Moore, Jeffrey, Spink, J. & Lipp, M. (2012). Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. Journal of Food Science, 77(4). https://doi.org/10.1111/j.1750-3841.2012.02657.x
Moore, Jessica. (2020). For Garlic Powder They Got Maltodextrin. Constantine Cannon. https://constantinecannon.com/2020/08/28/for-garlic-powder-they-got-maltodextrin/
Morgano, M. (2005). Aplicação de Métodos Quimiométricos em Análise de Alimentos.
Morozzi, P., Zappi, A., Gottardi, F., Locatelli, M. & Melucci, D. (2019). A quick and efficient non-targeted screening test for saffron authentication: Application of chemometrics to gas-chromatographic data. Molecules, 24(14), 1–13. https://doi.org/10.3390/molecules24142602
Naes, T., Isaksson, T., Fearn, T. & Davies, T. (2004). User-friendly guide to multivariate Calibration and Classification. In NIR Publications.
Nallan, S., Cevoli, C., Balestra, F., Fabbri, A. & Dalla, M. (2019). Evaluation of drying of edible coating on bread using NIR spectroscopy. Journal of Food Engineering, 240, 29–37. https://doi.org/10.1016/j.jfoodeng.2018.07.009
Nallappan, K., Dash, J., Ray, S. & Pesala, B. (2013). Identification of adulterants in turmeric powder using terahertz spectroscopy. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. https://doi.org/10.1109/IRMMW-THz.2013.6665688
Navarro, C. (2007). Posibilidades terapeuticas del bulbo de ajo (Allium sativum). Revista Fitoter, 7(2), 132–135.
Netzel, M. E. (2020). Garlic: Much more than a common spice. Foods, 9(11), 16–18. https://doi.org/10.3390/foods9111544
Nielsen, S. (2010). Food Analysis (Fourth). Springer US. https://doi.org/10.1002/9780470723791.ch23
Oliveira, M. M., Cruz-Tirado, J. P. & Barbin, D. F. (2019). Nontargeted Analytical Methods as a Powerful Tool for the Authentication of Spices and Herbs: A Review. Comprehensive Reviews in Food Science and Food Safety, 18(3), 670–689. https://doi.org/10.1111/1541-4337.12436
Osborne, B. G. (2006). Near-Infrared Spectroscopy in Food Analysis. Encyclopedia of Analytical Chemistry, 1–14. https://doi.org/10.1002/9780470027318.a1018
Osman, A. G., Raman, V., Haider, S., Ali, Z., Chittiboyina, A. G. & Khan, I. A. (2019). Overview of analytical tools for the identification of adulterants in commonly traded herbs and spices. Journal of AOAC International, 102(2), 376–385. https://doi.org/10.5740/jaoacint.18-0389
Parastar, H., van Kollenburg, G., Weesepoel, Y., van den Doel, A., Buydens, L. & Jansen, J. (2020). Integration of handheld NIR and machine learning to “Measure & Monitor” chicken meat authenticity. Food Control, 112(December 2019), 107149. https://doi.org/10.1016/j.foodcont.2020.107149
Parvathy, V. A., Swetha, V. P., Sheeja, T. E., Leela, N. K., Chempakam, B. & Sasikumar, B. (2014). DNA barcoding to detect chilli adulteration in traded black pepper powder. Food Biotechnology, 28(1), 25–40. https://doi.org/10.1080/08905436.2013.870078
Parvathy, V. A., Swetha, V. P., Sheeja, T. E. & Sasikumar, B. (2015). Detection of plant-based adulterants in turmeric powder using DNA barcoding. Pharmaceutical Biology, 53(12), 1774–1779. https://doi.org/10.3109/13880209.2015.1005756
Pereira, E., Fernandes, D., de Araújo, M., Diniz, P. & Maciel, M. (2020). Simultaneous determination of goat milk adulteration with cow milk and their fat and protein contents using NIR spectroscopy and PLS algorithms. Lwt - Food Science and Technology, 127(November 2019), 109427. https://doi.org/10.1016/j.lwt.2020.109427
Peris, M. & Escuder-Gilabert, L. (2016). Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science and Technology, 58, 40–54. https://doi.org/10.1016/j.tifs.2016.10.014
Perkin Elmer. (2018). Safeguarding Herb and Spice Authenticity.
Petrakis, E. A., Cagliani, L. R., Polissiou, M. G. & Consonni, R. (2015). Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by1H NMR metabolite fingerprinting. Food Chemistry, 173, 890–896. https://doi.org/10.1016/j.foodchem.2014.10.107
Petrakis, E. A., Cagliani, L. R., Tarantilis, P. A., Polissiou, M. G. & Consonni, R. (2017). Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by 1H NMR. Food Chemistry, 217, 418–424. https://doi.org/10.1016/j.foodchem.2016.08.078
Petrakis, E. A. & Polissiou, M. G. (2017). Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics. Talanta, 162(August 2016), 558–566. https://doi.org/10.1016/j.talanta.2016.10.072
Pollack, K. (2016). Contamination Continues to Challenge Food Industry. Manufacturing.Net. https://www.manufacturing.net/safety/article/13162850/contamination-continues-to-challenge-food-industry
PwC & SSAFE. (2016). Food fraud vulnerability assessment. www.pwc.com/foodfraud
Ramírez, H., Castro, L. & Martínez, E. (2016). Efectos Terapéuticos del Ajo (Allium Sativum). Salud y Administración, 3(8), 39–47. http://www.unsis.edu.mx/revista/doc/vol3num8/A4_Efectos_Terapeuticos_Ajo.pdf
Rani, R., Medhe, S. & Srivastava, M. M. (2015). HPTLC–MS based method development and validation for the detection of adulterants in spices. Journal of Food Measurement and Characterization, 9(2), 186–194. https://doi.org/10.1007/s11694-015-9223-x
Ravindran, A., Nesamani, F. P. & De, N. (2018). A Study on the use of Spectroscopic Techniques to Identify Food Adulteration. 2018 International Conference on Circuits and Systems in Digital Enterprise Technology, ICCSDET 2018, 1–6. https://doi.org/10.1109/ICCSDET.2018.8821197
Reveles, M., Velásquez, R. & Bravo, Á. (2009). TECNOLOGÍA PARA CULTIVAR AJO EN ZACATECAS Rodolfo Velásquez-Valle. INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRICOLAS Y PECUARIAS. http://zacatecas.inifap.gob.mx/publicaciones/Tecnologia para cultivar ajo en Zac.pdf
Rinnan, A., van den Berg, F. & Engelsen, S. (2009). Review of the most common pre-processing techniques for near-infrared spectra. Trends in Analytical Chemistry, 28(10), 1201–1222. https://doi.org/10.1016/j.trac.2009.07.007
Rosmino, C. (2020). Preventing food fraud: Europe’s battle against the spice pirates. Euronews. https://www.euronews.com/next/2020/11/02/preventing-food-fraud-europe-s-battle-against-the-spice-pirates
Sahu, P. K., Panda, J., Jogendra Kumar, Y. V. V. & Ranjitha, S. K. (2020). A robust RP-HPLC method for determination of turmeric adulteration. Journal of Liquid Chromatography and Related Technologies, 43(7–8), 247–254. https://doi.org/10.1080/10826076.2020.1722162
Saif, S., Hanif, M., Rehman, R. & Riaz, M. (2020). Garlic. In M. A. Hanif, H. Nawaz, M. M. Khan & H. J. Byrne (Eds.), Medicinal Plants of South Asia (pp. 301–315). Elsevier Ltd. https://doi.org/https://doi.org/10.1016/C2017-0-02046-3
Sasikumar, B., Swetha, V. P., Parvathy, V. A. & Sheeja, T. E. (2016). Advances in Adulteration and Authenticity Testing of Herbs and Spices. In Advances in Food Authenticity Testing. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100220-9.00022-9
Sebaei, A. S., Youssif, M. I. & Abdel-Maksoud Ghazi, A. (2019). Determination of seven illegal dyes in Egyptian spices by HPLC with gel permeation chromatography clean up. Journal of Food Composition and Analysis, 84(March), 103304. https://doi.org/10.1016/j.jfca.2019.103304
Shaffer, R., Rose-Pehrsson, S. & McGill, A. (1998). Probabilistic Neural Networks for Chemical Sensor Array Pattern Recognition : Comparison Studies , Improvements and Automated Outlier Rejection. In Naval Research Laboratory.
Sherman, E. (2017). Garlic Powder Diluted with Chalk Might be the Latest Food Fraud. Food & Wine. https://www.foodandwine.com/news/garlic-powder-might-be-diluted-chalk
Siesler, H., Ozaki, Y., Kawata, S. & Heise, H. (2006). Near-Infrared Spectroscopy Principles, Instruments, Applications. WILEY-VCH.
Silvis, I. C. J., van Ruth, S. M., van der Fels-Klerx, H. J. & Luning, P. A. (2017). Assessment of food fraud vulnerability in the spices chain: An explorative study. Food Control, 81, 80–87. https://doi.org/10.1016/j.foodcont.2017.05.019
Singh, R., Singh, K. & Radha Singh, C. (2019). Garlic: A spice with wide medicinal actions. ~ 1349 ~ Journal of Pharmacognosy and Phytochemistry, 8(1), 1349–1355. https://www.phytojournal.com/archives/?year=2019&vol=8&issue=1&ArticleId=6946
Soldado, A., Modroño, S., Casal, C., Martínez-Fernández, A., Roza-Delgado, D. la & B. (2015). Implantación de la tecnología NIRS en el control de calidad de ensilados a nivel de explotación. Reunión Científica de La Sociedad Española Para El Estudio de Los Pastos, 54.
Spink, J. & Moyer, D. C. (2011). Defining the Public Health Threat of Food Fraud. Journal of Food Science, 76(9), 157–163. https://doi.org/10.1111/j.1750-3841.2011.02417.x
Su, W. H. & Sun, D. W. (2018). Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations of Powdery Foods: A Review. Comprehensive Reviews in Food Science and Food Safety, 17(1), 104–122. https://doi.org/10.1111/1541-4337.12314
Suárez, M. (2016, July 16). Productos El Rey explora Suramérica para exportar. La República. https://www.larepublica.co/empresas/productos-el-rey-explora-suramerica-para-exportar-2400506#:~:text=El Rey cuenta con una,mercado nacional como nuestras exportaciones.
Sun, X. S. (2012). Overview of Plant Polymers: Resources, Demands, and Sustainability. Resources, Demands, and Sustainability. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, 2005, 1–10. https://doi.org/10.1016/B978-1-4557-2834-3.00001-X
Swetha, V. P., Parvathy, V. A., Sheeja, T. E. & Sasikumar, B. (2014). DNA Barcoding for Discriminating the Economically Important Cinnamomum verum from Its Adulterants. Food Biotechnology, 28(3), 183–194. https://doi.org/10.1080/08905436.2014.931239
Tahri, K., Tiebe, C., el Bari, N., Hübert, T. & Bouchikhi, B. (2016). Geographical provenience differentiation and adulteration detection of cumin by means of electronic sensing systems and SPME-GC-MS in combination with different chemometric approaches. Analytical Methods, 8(42), 7638–7649. https://doi.org/10.1039/c6ay01906d
Tapsell, L. C., Hemphill, I., Cobiac, L., Patch, C. S., Sullivan, D. R., Fenech, M., Roodenrys, S., Keogh, J. B., Clifton, P. M., Williams, P. G., Fazio, V. A. & Inge, K. E. (2006). Health benefits of herbs and spices: the past, the present, the future. The Medical Journal of Australia., 185(4 Suppl). https://doi.org/10.5694/j.1326-5377.2006.tb00548.x
Tarantelli, T. (2017). Adulteration with Sudan Dye Has Triggered Several Spice Recalls. Food Safety Tech. https://foodsafetytech.com/feature_article/adulteration-sudan-dye-triggered-several-spice-recalls/
Temizkan, R., Can, A., Dogan, M. A., Mortas, M. & Ayvaz, H. (2020). Rapid detection of milk fat adulteration in yoghurts using near and mid-infrared spectroscopy. International Dairy Journal, 110, 104795. https://doi.org/10.1016/j.idairyj.2020.104795
Thangavel, K. & Dhivya, K. (2019). Determination of curcumin, starch and moisture content in turmeric by Fourier transform near infrared spectroscopy (FT-NIR). Engineering in Agriculture, Environment and Food, 12(2), 264–269. https://doi.org/10.1016/j.eaef.2019.02.003
Times of india. (2020). UP factory making fake spices using donkey dung, husk and acids busted. The Times of India. https://timesofindia.indiatimes.com/life-style/food-news/up-factory-making-fake-spices-using-donkey-dung-husk-and-acids-busted/articleshow/79774790.cms
Torelli, A., Marieschi, M. & Bruni, R. (2014). Authentication of saffron (Crocus sativus L.) in different processed, retail products by means of SCAR markers. Food Control, 36(1), 126–131. https://doi.org/10.1016/j.foodcont.2013.08.001
Tremlová, B. (2001). Evidence of spice black pepper adulteration. Czech Journal of Food Science, 19, 235–238.
Wang, H., Peng, J., Xie, C., Bao, Y. & He, Y. (2015). Fruit Quality Evaluation Using Spectroscopy Technology: A review. Sensors, 15(5), 11889–11927.
Wilde, A. S., Haughey, S. A., Galvin-King, P. & Elliott, C. T. (2019). The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control, 100(January), 1–7. https://doi.org/10.1016/j.foodcont.2018.12.039
Wittenberger, K. & Dohlman, E. (2010). Peanut outlook: impacts of the 2008-09 foodborne illness outbreak linked to salmonella in peanuts. In Economic Research Service of the United States Department of Agriculture. https://www.ers.usda.gov/webdocs/publications/37835/8684_ocs10a01_1_.pdf
Zhang, M., Shi, Y., Sun, W., Wu, L., Xiong, C., Zhu, Z., Zhao, H., Zhang, B., Wang, C. & Liu, X. (2019). An efficient DNA barcoding based method for the authentication and adulteration detection of the powdered natural spices. Food Control, 106(February). https://doi.org/10.1016/j.foodcont.2019.106745
Zhang, Y., Yang, Z., Li, R., Geng, H. & Dong, C. (2015). Investigation of fine chalk dust particles’ chemical compositions and toxicities on alveolar macrophages in vitro. Chemosphere, 120, 500–506. https://doi.org/10.1016/j.chemosphere.2014.09.009
Zhu, F. (2018). Relationships between amylopectin internal molecular structure and physicochemical properties of starch. Trends in Food Science and Technology, 78(May), 234–242. https://doi.org/10.1016/j.tifs.2018.05.024
Zossi, S., Ruiz, R., Sorol, N. & Sastre, M. (2010). Espectroscopía por Infrarrojo cercano (NIRS). Su aplicación en análisis de jugos de caña de azúcar. Revista Industrial y Agrícola de Tucumán, 87(1), 1–6.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 92 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisher.department.spa.fl_str_mv Instituto de Ciencia y Tecnología de Alimentos (ICTA)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81818/3/1018483673.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81818/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81818/4/1018483673.2022.pdf.jpg
bitstream.checksum.fl_str_mv f1e12a29a6a0abec22e86136ce41503f
8153f7789df02f0a4c9e079953658ab2
4064560f8c6b6369a4149745f84f136e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089815236280320
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sánchez Sáenz, Carolina María5e09f1fe2c4356ff06992b9975847772Patarroyo Leon, Kelly Johanna8371a820582f31b37d3e4c0ae4fbf636600Triana Fonseca, Laura ValentinaGutierrez Rico, TatianaVásquez Santana, Gabriel MateoPeña Muñetón, NicolásMatiz Ulloa, Julián DavidIngeniería de Biosistemas2022-08-09T14:05:27Z2022-08-09T14:05:27Z2022https://repositorio.unal.edu.co/handle/unal/81818Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/gráficas, ilustraciones, tablasEl fraude alimentario constituye una problemática global que no sólo afecta la economía sino también la salud y confianza del consumidor. El ajo en polvo es una especia susceptible a la adulteración con sustancias de bajo costo y apariencia similar: tiza blanca y almidón de maíz. Dado que los métodos existentes para identificar adulterantes en especias requieren equipos sofisticados y un elevado consumo de tiempo, es necesario recurrir a técnicas alternativas. El objetivo de esta investigación fue desarrollar modelos de predicción basados en espectroscopía en infrarrojo cercano, que identifiquen la presencia de tiza blanca o almidón de maíz en ajo en polvo y que cuantifiquen estos compuestos en las muestras adulteradas. Para este fin, se prepararon 626 muestras de dicha especia adulteradas en concentraciones entre 0 y 30% (w/w), se distribuyeron 500 muestras para calibración y 126 muestras para validación. Luego, se desarrollaron los modelos de clasificación por regresión de mínimos cuadrados parciales (PLS) con análisis discriminante y los modelos de cuantificación por PLS, con validación cruzada y externa, utilizando tratamientos de Variable Normal Estándar, Correlación de Dispersión Multiplicativa y las derivadas de Savitzky-Golay. El modelo de clasificación permitió identificar las muestras adulteradas y el tipo de adulterante, en tanto los modelos de cuantificación de cada adulterante permitieron conocer el porcentaje de adulteración en las muestras de ajo en polvo, con valores del error cuadrático medio de predicción (RMSEP) entre 0.6490% - 1.576%. Los resultados indicaron que es posible utilizar modelos espectrales para determinar la autenticación del ajo en polvo. (Texto tomado de la fuente)Food fraud is a global problem that not only affects the economy but also consumer health and confidence. Garlic powder is a spice that is susceptible to adulteration with low-cost substances of similar appearance: white chalk and corn starch. Since existing methods to identify adulterants in spices require high-tech and time-consuming equipment, alternative techniques are required. The objective of this research was to develop predictive models based on near infrared spectroscopy to identify the presence of white chalk or corn starch in garlic powder and quantify these compounds in adulterated samples. For this purpose, 626 samples of this spice adulterated in concentrations between 0 and 30% (w/w) were used, 500 samples were distributed for calibration and 126 samples for validation. Then, classification models were developed by partial least squares (PLS) regression with discriminant analysis and quantification models by PLS, with cross-validation and external validation, using Standard Normal Variable, Multiplicative Dispersion Correlation and Savitzky-Golay derivatives treatments. The classification model allowed the identification of adulterated samples and the type of adulterant, while the quantification models for each adulterant allowed knowing the percentage of adulteration in garlic powder samples, with root mean square error of prediction (RMSEP) values between 0.6490% - 1.576%. The results indicated that it is possible to use spectral models to determine the authentication of garlic powder. (Tex taken from the source)La financiación se obtuvo a través de la Convocatoria de Apoyo a Semilleros de Investigación de la Facultad de Ingeniería 2019 y la Convocatoria para el apoyo a Proyectos de Investigación y Creación artística de la Sede Bogotá de la Universidad Nacional de Colombia - 2019.Un resumen del Capitulo 2 fue publicado en la revista estudiantil de divulgación y cultura agrícola INNAGRI, ISSN en línea 2806-0490: http://bienestar.bogota.unal.edu.co/pgp/Publicaciones/innagri/innagri.htmlMaestríaMagíster en Ciencia y Tecnología de AlimentosMetología utilizada en quimiometría para el análisis espectral y contrucción de modelos de predicción.Calidad de aimentos92 páginasapplication/pdfspaengUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosInstituto de Ciencia y Tecnología de Alimentos (ICTA)Facultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::664 - Tecnología de alimentosAutenticidadFraude alimentarioSeguridad alimentariaEspeciaDesarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvoDevelopment of a model for identification of adulterants for quality control of garlic powderTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdministración Nacional de Medicamentos Alimentos y Tecnología Médica [ANMAT]. (2019). Boletín oficial de la República Argentina (p. Disposición 4069/2019). https://www.boletinoficial.gob.ar/detalleAviso/primera/207652/20190516?busqueda=1#Aenugu, H., Kumar, D. S., Srisudharson, Parthiban, N., Ghosh, S. & Banji, D. (2011). Near Infra-Red Spectroscopy - An overview. International Journal of ChemTech Research, 3(2), 825–836. https://www.researchgate.net/publication/286061794_Near_infra_red_spectroscopy-_An_overviewAgencia Española de Seguridad Alimentaria y Nutrición [AESAN]. (2021). Advertencia para personas alérgicas a los sulfitos: Presencia de sulfitos en canela en polvo procedente del Reino Unido. https://www.aesan.gob.es/AECOSAN/web/seguridad_alimentaria/alertas_alimentarias/2021_329.htmAllianz Global Corporate and Speciality. (n.d.). Product recall - Drivers and trends. https://www.agcs.allianz.com/news-and-insights/expert-risk-articles/product-recall-drivers-and-trends.htmlAmirvaresi, A., Rashidi, M., Kamyar, M., Amirahmadi, M., Daraei, B. & Parastar, H. (2020). Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection. Journal of Chromatography A, 1628, 461461. https://doi.org/10.1016/j.chroma.2020.461461AOAC International. (2012a). AOAC Official Method 916.01- Adulterants in Spices. In G. W. Latimer (Ed.), Official methods of analysis of AOAC International (19th ed., pp. 1002–1004).AOAC International. (2012b). Official methods of analysis of AOAC International. In G. W. Latimer (Ed.), Official Methods of Analysis of AOAC International (19th ed., pp. 4–6).Arévalo, M. (2013). Determinaciones cuantitativas en naranja mediante tecnologías NIRS. In [Master thesis, Universidad Pública de Navarra].Arizio, O. P. & Curioni, A. O. (2014). Global and regional exchange of spices in terms of value, 1992-2011. Revista Colombiana de Ciencias Hortícolas, 8(1), 142–154. www.fao.orgArtigue, H. & Smith, G. (2019). The principal problem with principal components regression. Cogent Mathematics & Statistics, 6. https://doi.org/10.1080/25742558.2019.1622190Attrey, D. P. (2017). Chapter 10 - Detection of food adulterants/contaminants BT - Food Safety in the 21st Century. In Food Safety in the 21st Century. Elsevier Inc. https://doi.org/https://doi.org/10.1016/B978-0-12-801773-9.00010-8Bansal, S., Thakur, S., Mangal, M., Mangal, A. K. & Gupta, R. K. (2018). DNA barcoding for specific and sensitive detection of Cuminum cyminum adulteration in Bunium persicum. Phytomedicine, 50(November 2017), 178–183. https://doi.org/10.1016/j.phymed.2018.04.023Barros, B., Scarminio, I. & Bruns, R. (2010). Como fazer Experimentos. Pesquisa e Desenvolvimento Na Ciência e Na Indústria, 4, 413.Bennett, P. (2015). Inside the Peanut-Tainted Cumin Recalls: What Happened? Food Allergy, Peanut & Tree Nut, Recalls. https://www.allergicliving.com/2015/02/14/inside-the-peanut-tainted-cumin-recalls-what-happened/Berrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, 1, 542–545.Bhattacharyya, N. & Bandhopadhyay, R. (2010). Nondestructive evaluation of food quality: Theory and practice. Nondestructive Evaluation of Food Quality: Theory and Practice, 1–288. https://doi.org/10.1007/978-3-642-15796-7Bhattacharyya, N., Bandyopadhyay, R. & Bhuyan Met, A. L. (2005). Correlation of multi-sensor array data with “tasters” panel evaluation for objective assessment of black tea flavor. Proceedings of ISOEN.Bhooma, V., Nagasathiya, K., Vairamani, M. & Parani, M. (2020). Identification of synthetic dyes magenta III (new fuchsin) and rhodamine B as common adulterants in commercial saffron. Food Chemistry, 309(October 2019). https://doi.org/10.1016/j.foodchem.2019.125793Bjorsvik, H.-R. & Martens, H. (2007). Calibration of NIR Instruments by PLS Regression. In Handbook of Near-Infrared Analysis (3rd ed., pp. 189–205). Press Taylor & Francis Group.Black, C., Haughey, S. A., Chevallier, O. P., Galvin-King, P. & Elliott, C. T. (2016). A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Food Chemistry, 210, 551–557. https://doi.org/10.1016/j.foodchem.2016.05.004Bouzembrak, Y. & Marvin, H. J. P. (2016). Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control, 61, 180–187. https://doi.org/10.1016/j.foodcont.2015.09.026British Retail Consortium [BRC], Food and Drink Federation [FDF] & Seasoning and Spice Association [SSA]. (2016). Guidance on authenticity of herbs and spices (pp. 1–19). http://www.brc.org.uk/downloads/Guidance_on_Authenticity_of_Herbs_and_Spices_June_2016.pdfBurns, D. A. & Ciurczak, E. W. (2008). Handbook of Near-Infrared Analysis, Third Edition. https://books.google.ru/books?id=6EEd1a0uka0CCantarelli, M. A., Moldes, C. A., Marchevsky, E. J., Azcarate, S. M. & Camiña, J. M. (2020). Low-cost analytic method for the identification of Cinnamon adulteration. Microchemical Journal, 159(September). https://doi.org/10.1016/j.microc.2020.105513Carmona, I. (2013). Situación global de especias y condimentos: una oportunidad para el ají procesado picante. Agrimundo, Inteligencia Competitiva Para El Sector Agroalimentario, 6(Junio), 1–5.Cetó, X., Sánchez, C., Serrano, N., Díaz-Cruz, J. M. & Núñez, O. (2020). Authentication of paprika using HPLC-UV fingerprints. LWT - Food Science and Tecnology, 124(February), 1–5. https://doi.org/10.1016/j.lwt.2020.109153Chaminda Bandara, W. G., Kasun Prabhath, G. W., Sahan Chinthana Bandara Dissanayake, D. W., Herath, V. R., Roshan Indika Godaliyadda, G. M., Bandara Ekanayake, M. P., Demini, D. & Madhujith, T. (2019). Validation of multispectral imaging for the detection of selected adulterants in turmeric samples. Journal of Food Engineering, 266(August 2019), 109700. https://doi.org/10.1016/j.jfoodeng.2019.109700Chen, H., Tan, C. & Lin, Z. (2018). Quantitative determination of wool in textile by near-infrared spectroscopy and multivariate models. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 201, 229–235. https://doi.org/10.1016/j.saa.2018.05.010Codex Alimentarius. (1995). Code of Hygienic Practice for Spices and Dried Aromatic Plants Code of Hygienic Practice for Spices and Dried Aromatic Plants. 1–17.connect2india. (2020). GARLIC POWDER IMPORTERS IN COLOMBIA. Marzo 2020. https://connect2india.com/global/Garlic-Powder-importers-in-ColombiaDai, H., Gao, Q. & He, L. (2020). Rapid Determination of Saffron Grade and Adulteration by Thin-Layer Chromatography Coupled with Raman Spectroscopy. Food Analytical Methods, 13(11), 2128–2137. https://doi.org/10.1007/s12161-020-01828-xDanciu, V., Hosu, A. & Cimpoiu, C. (2018). Thin-layer chromatography in spices analysis. Journal of Liquid Chromatography and Related Technologies, 41(6), 282–300. https://doi.org/10.1080/10826076.2018.1447895Dhakal, S., Chao, K., Kim, M., Qin, J. & Bae, A. (2018). Detection of color dye contamination in spice powder using 1064 nm Raman chemical imaging system. Sensing for Agriculture and Food Quality and Safety X, 1066509(May 2018), 1–7. https://doi.org/10.1117/12.2303832Dhakal, S., Schmidt, W., Kim, M., Tang, X., Peng, Y. & Chao, K. (2019). Detection of additives and chemical contaminants in turmeric powder using FT-IR spectroscopy. Foods, 8(143), 1–15. https://doi.org/10.3390/foods8050143Dhanya, K. & Sasikumar, B. (2010). Molecular marker based adulteration detection in traded food and agricultural commodities of plant origin with special reference to spices. Current Trends in Biotechnology and Pharmacy, 4(1), 454–489.Direction générale de la concurrence, de la consommation et de la répression des fraudes. (2018). Contrôle de la qualité des épices. Le Portail de l’Économie, Des Finances, de l’Action et Des Comptes Publics. https://www.economie.gouv.fr/dgccrf/controle-qualite-des-epicesElliott, C. (2014). The new phenomenon of criminal fraud in the food supply chain. NSF International Report. NSF International Report, 1–17.Esslinger, S., Riedl, J. & Fauhl-Hassek, C. (2014). Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Research International, 60, 189–204. https://doi.org/10.1016/j.foodres.2013.10.015European Commission. (2017). The EU Food Fraud Network and the System for Administrative Assistance & Food Fraud- Annual Report 2017. 1–17.European Commission. (2018). The EU Food Fraud Network And The System For Administrative Assistance & Food Fraud - Annual Report 2018. 1–19. https://ec.europa.eu/food/sites/food/files/safety/docs/food-fraud_network_activity_report_2016.pdfEuropean Commission. (2019). 2019 Annual Report - The EU Food Fraud Network and the Administrative Assistance & Cooperation System. 1–19. https://doi.org/10.2875/326318EUROPOL & INTERPOL. (2019). Over €100 million worth of fake food and drinks seized in latest Europol-INTERPOL operation. https://www.europol.europa.eu/newsroom/news/over-€100-million-worth-of-fake-food-and-drinks-seized-in-latest-europol-interpol-operationEverstine, K. (2013). Economically motivated adulteration: implications for food protection and alternate approaches to detection. May.Falkheimer, J. & Heide, M. (2015). Trust and Brand Recovery Campaigns in Crisis: Findus Nordic and the Horsemeat Scandal. International Journal of Strategic Communication, 9(2), 134–147. https://doi.org/10.1080/1553118X.2015.1008636FAOSTAT. (2019a). Detailed Trade Matrix. Food and Agriculture Organization [FAO]. http://www.fao.org/faostat/en/#data/TMFAOSTAT. (2019b). Spice production in the world 2009-2019. FAO. http://www.fao.org/faostat/en/#data/QCLFarag, M., Hegazi, N., Dokhalahy, E. & Khattab, A. (2020). Chemometrics based GC-MS aroma profiling for revealing freshness, origin and roasting indices in saffron spice and its adulteration. Food Chemistry, 331(May), 127358. https://doi.org/10.1016/j.foodchem.2020.127358Ferreira, D. S. (2013). Aplicação de espectroscopia no infravermelho e análise multivariada para previsão de parâmetros de qualidade em soja e quinoa. Unicamp, 119.Fonovich, T. M. (2013). Sudan dyes: Are they dangerous for human health. Drug and Chemical Toxicology, 36(3), 343–352. https://doi.org/10.3109/01480545.2012.710626Food and Drugs Administration [FDA]. (2009). Economically Motivated Adulteration; Public Meeting. Federal Register, 74(64), 15497–15499. https://www.govinfo.gov/content/pkg/FR-2009-04-06/pdf/E9-7843.pdfFood and Drugs Administration [FDA]. (2015). FDA Consumer Advice on Products Containing Ground Cumin with Undeclared Peanuts. U.S. Food and Drug Administration. http://wayback.archive-it.org/7993/20171114232613/https://www.fda.gov/Food/RecallsOutbreaksEmergencies/SafetyAlertsAdvisories/ucm434274.htmFried, B. & Mcdonnell, M. (2000). Rocks and minerals (Hands-on S). J. Weston Walch.Galvin-King, P., Haughey, S. A. & Elliott, C. T. (2018). Herb and spice fraud; the drivers, challenges and detection. Food Control, 88, 85–97. https://doi.org/10.1016/j.foodcont.2017.12.031Galvin-King, P., Haughey, S. A. & Elliott, C. T. (2019). Spices. In Foodintegrity Handbook A Guide to Food Authenticity Issues and Analytical Solutions (pp. 173–192).Galvin-King, P., Haughey, S. A. & Elliott, C. T. (2021). Garlic adulteration detection using NIR and FTIR spectroscopy and chemometrics. Journal of Food Composition and Analysis, 96, 103757. https://doi.org/10.1016/j.jfca.2020.103757Galvin-King, P., Haughey, S. & Elliott, C. (2020). The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools. Foods, 9(944), 1–15. https://doi.org/10.3390/foods9070944Gao, F., Hu, Y., Chen, D., Li-Chan, E. C. Y., Grant, E. & Lu, X. (2015). Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor. Talanta, 143, 344–352. https://doi.org/10.1016/j.talanta.2015.05.003Garber, E. A. E., Parker, C. H., Handy, S. M., Cho, C. Y., Panda, R., Samadpour, M., Reynaud, D. H. & Ziobro, G. C. (2016). Presence of undeclared food allergens in cumin: The need for multiplex methods. Journal of Agricultural and Food Chemistry, 64(5), 1202–1211. https://doi.org/10.1021/acs.jafc.5b05497Goel, S., Patidar, R., Baxi, K. & Thakur, R. S. (2015). Investigation of particulate matter performances in relation to chalk selection in classroom environment. Indoor and Built Environment, 26(1), 119–131. https://doi.org/10.1177/1420326X15607951Gossner, C., Schlundt, J., Embarek, P., Hird, S., Lo-Fo-Wong, D., Ocampo, J., Teoh, K. & Tritscher, A. (2009). The Melamine Incident: Implications for International Food and Feed Safety. Environmental Health Perspectives, 117(12), 1803–1808. https://doi.org/10.1289/ehp.0900949Grand View Research. (2020). Seasoning And Spices Market Size, Share & Trends Analysis Report By Product (Herbs, Salt & Salts Substitutes, Spices), By Application, By Region, And Segment Forecasts, 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/seasonings-spices-marketHeidarbeigi, K., Mohtasebi, S. S., Serrano-Diaz, J., Medina-Plaza, C., Ghasemi-Varnamkhasti, M., Alonso, G. L., Garcia-Rodriguez, M. v., Rafiee, S., Rezaei, K., Garcia-Hernandez, C., de Saja, J. A. & Rodriguez-Mendez, M. L. (2016). Flavour characteristics of Spanish and Iranian saffron analysed by electronic tongue. Quality Assurance and Safety of Crops and Foods, 8(3), 359–368. https://doi.org/10.3920/QAS2015.0591Heidarbeigi, Kobra, Mohtasebi, S. S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S. & Rezaei, K. (2015). Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties, 18(7), 1391–1401. https://doi.org/10.1080/10942912.2014.915850Heidarbeigi, Kobra, Mohtasebi, S. S., Rafiee, S., Ghasemi-Varnamkhasti, M., Rezaei, K. & Rodriguez-Mendez, M. L. (2016). An electronic tongue design for the detection of adulteration in saffron samples. Irani Journal of Biosystem Engineering, 46(4), Pages 405-413. https://doi.org/10.22059/IJBSE.2015.57347Heigi Library. (2019). Spice Consumption. https://www.helgilibrary.com/indicators/spice-consumption-total/Hellberg, R. S., Everstine, K. & Sklare, S. A. (2021). Food Fraud: A Global Threat with Public Health and Economic Consequences. In Academic Press. https://doi.org/10.1016/j.jneb.2021.06.004Hofmann, A. (2010). Spectrophotometric techniques: I Spectrophotometric Techniques.Hu, Y., Wang, S. S., Wang, S. S. & Lu, X. (2017). Application of nuclear magnetic resonance spectroscopy in food adulteration determination: The example of Sudan dye i in paprika powder. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-02921-8Ichim, M. C. (2019). The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. Frontiers in Pharmacology, 10(October), 1–9. https://doi.org/10.3389/fphar.2019.01227ICONTEC. (1989). NTC 2555 Industria Agrícola. Especias y condimentos. Determinación del contenido de materia extraña.ICONTEC. (1998). NTC 4423 Industria Alimentaria. Especias y Condimentos.Instituto Nacional de Vigilancia de Medicamentos y Alimentos [INVIMA]. (2019). Reporte del resultado de la inspección realizada en el Puertos, Aeropuertos y Pasos Fronterizos para alimentos, materias primas e ingredientes secundarios en alimentos de consumo humano. https://www.invima.gov.co/web/guestInternational Organization for Standardization [ISO]. (1987). ISO 7954:1987 - Microbiology — General guidance for enumeration of yeasts and moulds — Colony count technique at 25 degrees C. https://www.iso.org/standard/14931.htmlInternational Organization for Standardization [ISO]. (2012). ISO 9308-2:2012 - Water quality — Enumeration of Escherichia coli and coliform bacteria — Part 2: Most probable number method. https://www.iso.org/standard/55832.htmlInternational Organization for Standardization [ISO]. (2017). ISO 6579-1:2017 - Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella — Part 1: Detection of Salmonella spp. https://www.iso.org/standard/56712.htmlJamshidi, B. (2020). Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Ability of near-infrared spectroscopy for non-destructive detection of internal insect infestation in fruits : Meta-analysis of spectral ranges and optical measurement modes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 225, 117479. https://doi.org/10.1016/j.saa.2019.117479Jia, X., Huang, J., Luan, H., Rozelle, S. & Swinnen, J. (2012). China’s Milk Scandal, government policy and production decisions of dairy farmers: The case of Greater Beijing. Food Policy, 37(4), 390–400. https://doi.org/10.1016/j.foodpol.2012.03.008Kar, S, Tudu, B., Jana, A. & Bandyopadhyay, R. (2019). FT-NIR spectroscopy coupled with multivariate analysis for detection of starch adulteration in turmeric powder. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 36(6), 863–875. https://doi.org/10.1080/19440049.2019.1600746Kar, Saumita, Tudu, B. & Bandyopadhyay, R. (2018). Comparison of Different Pre-processing Techniques towards Discrimination of Turmeric Powders using Near-infrared Spectra and Exploratory Data Analysis. 2018 IEEE Applied Signal Processing Conference (ASPCON), 193–197. https://doi.org/10.1109/ASPCON.2018.8748565Kiani, S., Minaei, S. & Ghasemi-Varnamkhasti, M. (2017). Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection. Computers and Electronics in Agriculture, 141, 46–53. https://doi.org/10.1016/j.compag.2017.06.018Kong, W., An, H., Zhang, J., Sun, L., Nan, Y., Song, A. & Zhou, L. (2019). Development of a high-performance liquid chromatography with tandem mass spectrometry method for identifying common adulterant content in saffron (Crocus sativus L.). Journal of Pharmacy and Pharmacology, 71(12), 1864–1870. https://doi.org/10.1111/jphp.13152Lakshmi, V. (2012). Food Adulteration. International Journal of Science Inventions Today, 1(2), 106–113. https://doi.org/10.1001/jama.1909.02540310058013Lang, J., Mcnitt, L. & Robertson, I. (2014). Determination of Levels of Spice Adulteration using Near-infrared Spectroscopy.Lee, S., Lohumi, S., Lim, H., Gotoh, T., Cho, B. & Kim, M. S. (2015). Development of a detection method for adulterated onion powder using raman spectroscopy. Journal of the Faculty of Agriculture Kyushu University, 60(1), 151–156.Leng, T., Li, F., Xiong, L., Xiong, Q., Zhu, M. & Chen, Y. (2020). Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control, 113, 107–203. https://doi.org/10.1016/j.foodcont.2020.107203Lima, A. B. S. de, Batista, A. S., Jesus, J. C. de, Silva, J. de J., Araújo, A. C. M. de & Santos, L. S. (2020). Fast quantitative detection of black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling. Food Control, 107(July 2019), 106802. https://doi.org/10.1016/j.foodcont.2019.106802Lohumi, S., Joshi, R., Kandpal, L. M., Lee, H., Kim, M. S., Cho, H., Mo, C., Seo, Y. W., Rahman, A. & Cho, B. K. (2017). Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 34(5), 678–686. https://doi.org/10.1080/19440049.2017.1290828Lohumi, S., Lee, S. & Cho, B. K. (2015). Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder. Sensors and Actuators B-Chemical, 216, 622–628. https://doi.org/10.1016/j.snb.2015.04.060Lohumi, S., Lee, S., Lee, H. & Cho, B. K. (2015). A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science and Technology, 46(1), 85–98. https://doi.org/10.1016/j.tifs.2015.08.003Lohumi, S., Lee, S., Lee, W. H., Kim, M. S., Mo, C., Bae, H. & Cho, B. K. (2014). Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy. Journal of Agricultural and Food Chemistry, 62(38), 9246–9251. https://doi.org/10.1021/jf500574mMabood, F., Boqué, R., Alkindi, A. Y., Al-Harrasi, A., al Amri, I. S., Boukra, S., Jabeen, F., Hussain, J., Abbas, G., Naureen, Z., Haq, Q. M. I., Shah, H. H., Khan, A., Khalaf, S. K. & Kadim, I. (2020). Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Science, 163(February), 108084. https://doi.org/10.1016/j.meatsci.2020.108084Martínez, J.a, B., Loria, J. c & Nava, A. A. (2008). Accidental poisoning with “Chinese chalk.” Acta Biomedica de l’Ateneo Parmense, 79(1), 36–38.Matthews, M. & Jack, M. (2011). Spices and herbs for home and market. In FAO diversification booklet No. 20.Mazivila, S. J., Páscoa, R. N. M. J., Castro, R. C., Ribeiro, D. S. M. & Santos, J. L. M. (2020). Detection of melamine and sucrose as adulterants in milk powder using near-infrared spectroscopy with DD-SIMCA as one-class classifier and MCR-ALS as a means to provide pure profiles of milk and of both adulterants with forensic evidence: A short communic. Talanta, 216(February), 120937. https://doi.org/10.1016/j.talanta.2020.120937McGrath, T. F., Haughey, S. A., Patterson, J., Fauhl-Hassek, C., Donarski, J., Alewijn, M., van Ruth, S. & Elliott, C. T. (2018). What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed? – Spectroscopy case study. Trends in Food Science and Technology, 76(December 2017), 38–55. https://doi.org/10.1016/j.tifs.2018.04.001Merieux NutriSciences. (2019). Fraude alimentario y autenticidad : Condimentos y Especias (pp. 1–2).Miller, J. (2009). Chromatography. In D. Andrews (Ed.), Encyclopedia of Applied Spectroscopy (pp. 1055–1102). WILEY-VCH Verlag GmbH & Co. KGaA.Mohiuddin, A. K. (2019). Health Hazards with Adulterated Spices: Save the “Onion Tears.” International Research Journal of Public Health, 1(3), 1–6. https://doi.org/10.28933/irjph-2019-11-1205Monago-Maraña, O., Eskildsen, C. E., Galeano-Díaz, T., Muñoz de la Peña, A. & Wold, J. P. (2021). Untargeted classification for paprika powder authentication using visible – Near infrared spectroscopy (VIS-NIRS). Food Control, 121(June 2020). https://doi.org/10.1016/j.foodcont.2020.107564Moore, Jeffrey, Ganguly, A., Smeller, J., Botros, L., Mossoba, M. & Bergana, M. M. (2012). Standardisation of Non-Targeted Screening Tools to Detect Adulterations in Skim Milk Powder Using NIR Spectroscopy and Chemometrics. NIR News, 23(5), 9–11. https://doi.org/10.1255/nirn.1314Moore, Jeffrey, Spink, J. & Lipp, M. (2012). Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. Journal of Food Science, 77(4). https://doi.org/10.1111/j.1750-3841.2012.02657.xMoore, Jessica. (2020). For Garlic Powder They Got Maltodextrin. Constantine Cannon. https://constantinecannon.com/2020/08/28/for-garlic-powder-they-got-maltodextrin/Morgano, M. (2005). Aplicação de Métodos Quimiométricos em Análise de Alimentos.Morozzi, P., Zappi, A., Gottardi, F., Locatelli, M. & Melucci, D. (2019). A quick and efficient non-targeted screening test for saffron authentication: Application of chemometrics to gas-chromatographic data. Molecules, 24(14), 1–13. https://doi.org/10.3390/molecules24142602Naes, T., Isaksson, T., Fearn, T. & Davies, T. (2004). User-friendly guide to multivariate Calibration and Classification. In NIR Publications.Nallan, S., Cevoli, C., Balestra, F., Fabbri, A. & Dalla, M. (2019). Evaluation of drying of edible coating on bread using NIR spectroscopy. Journal of Food Engineering, 240, 29–37. https://doi.org/10.1016/j.jfoodeng.2018.07.009Nallappan, K., Dash, J., Ray, S. & Pesala, B. (2013). Identification of adulterants in turmeric powder using terahertz spectroscopy. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. https://doi.org/10.1109/IRMMW-THz.2013.6665688Navarro, C. (2007). Posibilidades terapeuticas del bulbo de ajo (Allium sativum). Revista Fitoter, 7(2), 132–135.Netzel, M. E. (2020). Garlic: Much more than a common spice. Foods, 9(11), 16–18. https://doi.org/10.3390/foods9111544Nielsen, S. (2010). Food Analysis (Fourth). Springer US. https://doi.org/10.1002/9780470723791.ch23Oliveira, M. M., Cruz-Tirado, J. P. & Barbin, D. F. (2019). Nontargeted Analytical Methods as a Powerful Tool for the Authentication of Spices and Herbs: A Review. Comprehensive Reviews in Food Science and Food Safety, 18(3), 670–689. https://doi.org/10.1111/1541-4337.12436Osborne, B. G. (2006). Near-Infrared Spectroscopy in Food Analysis. Encyclopedia of Analytical Chemistry, 1–14. https://doi.org/10.1002/9780470027318.a1018Osman, A. G., Raman, V., Haider, S., Ali, Z., Chittiboyina, A. G. & Khan, I. A. (2019). Overview of analytical tools for the identification of adulterants in commonly traded herbs and spices. Journal of AOAC International, 102(2), 376–385. https://doi.org/10.5740/jaoacint.18-0389Parastar, H., van Kollenburg, G., Weesepoel, Y., van den Doel, A., Buydens, L. & Jansen, J. (2020). Integration of handheld NIR and machine learning to “Measure & Monitor” chicken meat authenticity. Food Control, 112(December 2019), 107149. https://doi.org/10.1016/j.foodcont.2020.107149Parvathy, V. A., Swetha, V. P., Sheeja, T. E., Leela, N. K., Chempakam, B. & Sasikumar, B. (2014). DNA barcoding to detect chilli adulteration in traded black pepper powder. Food Biotechnology, 28(1), 25–40. https://doi.org/10.1080/08905436.2013.870078Parvathy, V. A., Swetha, V. P., Sheeja, T. E. & Sasikumar, B. (2015). Detection of plant-based adulterants in turmeric powder using DNA barcoding. Pharmaceutical Biology, 53(12), 1774–1779. https://doi.org/10.3109/13880209.2015.1005756Pereira, E., Fernandes, D., de Araújo, M., Diniz, P. & Maciel, M. (2020). Simultaneous determination of goat milk adulteration with cow milk and their fat and protein contents using NIR spectroscopy and PLS algorithms. Lwt - Food Science and Technology, 127(November 2019), 109427. https://doi.org/10.1016/j.lwt.2020.109427Peris, M. & Escuder-Gilabert, L. (2016). Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science and Technology, 58, 40–54. https://doi.org/10.1016/j.tifs.2016.10.014Perkin Elmer. (2018). Safeguarding Herb and Spice Authenticity.Petrakis, E. A., Cagliani, L. R., Polissiou, M. G. & Consonni, R. (2015). Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by1H NMR metabolite fingerprinting. Food Chemistry, 173, 890–896. https://doi.org/10.1016/j.foodchem.2014.10.107Petrakis, E. A., Cagliani, L. R., Tarantilis, P. A., Polissiou, M. G. & Consonni, R. (2017). Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by 1H NMR. Food Chemistry, 217, 418–424. https://doi.org/10.1016/j.foodchem.2016.08.078Petrakis, E. A. & Polissiou, M. G. (2017). Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics. Talanta, 162(August 2016), 558–566. https://doi.org/10.1016/j.talanta.2016.10.072Pollack, K. (2016). Contamination Continues to Challenge Food Industry. Manufacturing.Net. https://www.manufacturing.net/safety/article/13162850/contamination-continues-to-challenge-food-industryPwC & SSAFE. (2016). Food fraud vulnerability assessment. www.pwc.com/foodfraudRamírez, H., Castro, L. & Martínez, E. (2016). Efectos Terapéuticos del Ajo (Allium Sativum). Salud y Administración, 3(8), 39–47. http://www.unsis.edu.mx/revista/doc/vol3num8/A4_Efectos_Terapeuticos_Ajo.pdfRani, R., Medhe, S. & Srivastava, M. M. (2015). HPTLC–MS based method development and validation for the detection of adulterants in spices. Journal of Food Measurement and Characterization, 9(2), 186–194. https://doi.org/10.1007/s11694-015-9223-xRavindran, A., Nesamani, F. P. & De, N. (2018). A Study on the use of Spectroscopic Techniques to Identify Food Adulteration. 2018 International Conference on Circuits and Systems in Digital Enterprise Technology, ICCSDET 2018, 1–6. https://doi.org/10.1109/ICCSDET.2018.8821197Reveles, M., Velásquez, R. & Bravo, Á. (2009). TECNOLOGÍA PARA CULTIVAR AJO EN ZACATECAS Rodolfo Velásquez-Valle. INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRICOLAS Y PECUARIAS. http://zacatecas.inifap.gob.mx/publicaciones/Tecnologia para cultivar ajo en Zac.pdfRinnan, A., van den Berg, F. & Engelsen, S. (2009). Review of the most common pre-processing techniques for near-infrared spectra. Trends in Analytical Chemistry, 28(10), 1201–1222. https://doi.org/10.1016/j.trac.2009.07.007Rosmino, C. (2020). Preventing food fraud: Europe’s battle against the spice pirates. Euronews. https://www.euronews.com/next/2020/11/02/preventing-food-fraud-europe-s-battle-against-the-spice-piratesSahu, P. K., Panda, J., Jogendra Kumar, Y. V. V. & Ranjitha, S. K. (2020). A robust RP-HPLC method for determination of turmeric adulteration. Journal of Liquid Chromatography and Related Technologies, 43(7–8), 247–254. https://doi.org/10.1080/10826076.2020.1722162Saif, S., Hanif, M., Rehman, R. & Riaz, M. (2020). Garlic. In M. A. Hanif, H. Nawaz, M. M. Khan & H. J. Byrne (Eds.), Medicinal Plants of South Asia (pp. 301–315). Elsevier Ltd. https://doi.org/https://doi.org/10.1016/C2017-0-02046-3Sasikumar, B., Swetha, V. P., Parvathy, V. A. & Sheeja, T. E. (2016). Advances in Adulteration and Authenticity Testing of Herbs and Spices. In Advances in Food Authenticity Testing. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100220-9.00022-9Sebaei, A. S., Youssif, M. I. & Abdel-Maksoud Ghazi, A. (2019). Determination of seven illegal dyes in Egyptian spices by HPLC with gel permeation chromatography clean up. Journal of Food Composition and Analysis, 84(March), 103304. https://doi.org/10.1016/j.jfca.2019.103304Shaffer, R., Rose-Pehrsson, S. & McGill, A. (1998). Probabilistic Neural Networks for Chemical Sensor Array Pattern Recognition : Comparison Studies , Improvements and Automated Outlier Rejection. In Naval Research Laboratory.Sherman, E. (2017). Garlic Powder Diluted with Chalk Might be the Latest Food Fraud. Food & Wine. https://www.foodandwine.com/news/garlic-powder-might-be-diluted-chalkSiesler, H., Ozaki, Y., Kawata, S. & Heise, H. (2006). Near-Infrared Spectroscopy Principles, Instruments, Applications. WILEY-VCH.Silvis, I. C. J., van Ruth, S. M., van der Fels-Klerx, H. J. & Luning, P. A. (2017). Assessment of food fraud vulnerability in the spices chain: An explorative study. Food Control, 81, 80–87. https://doi.org/10.1016/j.foodcont.2017.05.019Singh, R., Singh, K. & Radha Singh, C. (2019). Garlic: A spice with wide medicinal actions. ~ 1349 ~ Journal of Pharmacognosy and Phytochemistry, 8(1), 1349–1355. https://www.phytojournal.com/archives/?year=2019&vol=8&issue=1&ArticleId=6946Soldado, A., Modroño, S., Casal, C., Martínez-Fernández, A., Roza-Delgado, D. la & B. (2015). Implantación de la tecnología NIRS en el control de calidad de ensilados a nivel de explotación. Reunión Científica de La Sociedad Española Para El Estudio de Los Pastos, 54.Spink, J. & Moyer, D. C. (2011). Defining the Public Health Threat of Food Fraud. Journal of Food Science, 76(9), 157–163. https://doi.org/10.1111/j.1750-3841.2011.02417.xSu, W. H. & Sun, D. W. (2018). Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations of Powdery Foods: A Review. Comprehensive Reviews in Food Science and Food Safety, 17(1), 104–122. https://doi.org/10.1111/1541-4337.12314Suárez, M. (2016, July 16). Productos El Rey explora Suramérica para exportar. La República. https://www.larepublica.co/empresas/productos-el-rey-explora-suramerica-para-exportar-2400506#:~:text=El Rey cuenta con una,mercado nacional como nuestras exportaciones.Sun, X. S. (2012). Overview of Plant Polymers: Resources, Demands, and Sustainability. Resources, Demands, and Sustainability. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, 2005, 1–10. https://doi.org/10.1016/B978-1-4557-2834-3.00001-XSwetha, V. P., Parvathy, V. A., Sheeja, T. E. & Sasikumar, B. (2014). DNA Barcoding for Discriminating the Economically Important Cinnamomum verum from Its Adulterants. Food Biotechnology, 28(3), 183–194. https://doi.org/10.1080/08905436.2014.931239Tahri, K., Tiebe, C., el Bari, N., Hübert, T. & Bouchikhi, B. (2016). Geographical provenience differentiation and adulteration detection of cumin by means of electronic sensing systems and SPME-GC-MS in combination with different chemometric approaches. Analytical Methods, 8(42), 7638–7649. https://doi.org/10.1039/c6ay01906dTapsell, L. C., Hemphill, I., Cobiac, L., Patch, C. S., Sullivan, D. R., Fenech, M., Roodenrys, S., Keogh, J. B., Clifton, P. M., Williams, P. G., Fazio, V. A. & Inge, K. E. (2006). Health benefits of herbs and spices: the past, the present, the future. The Medical Journal of Australia., 185(4 Suppl). https://doi.org/10.5694/j.1326-5377.2006.tb00548.xTarantelli, T. (2017). Adulteration with Sudan Dye Has Triggered Several Spice Recalls. Food Safety Tech. https://foodsafetytech.com/feature_article/adulteration-sudan-dye-triggered-several-spice-recalls/Temizkan, R., Can, A., Dogan, M. A., Mortas, M. & Ayvaz, H. (2020). Rapid detection of milk fat adulteration in yoghurts using near and mid-infrared spectroscopy. International Dairy Journal, 110, 104795. https://doi.org/10.1016/j.idairyj.2020.104795Thangavel, K. & Dhivya, K. (2019). Determination of curcumin, starch and moisture content in turmeric by Fourier transform near infrared spectroscopy (FT-NIR). Engineering in Agriculture, Environment and Food, 12(2), 264–269. https://doi.org/10.1016/j.eaef.2019.02.003Times of india. (2020). UP factory making fake spices using donkey dung, husk and acids busted. The Times of India. https://timesofindia.indiatimes.com/life-style/food-news/up-factory-making-fake-spices-using-donkey-dung-husk-and-acids-busted/articleshow/79774790.cmsTorelli, A., Marieschi, M. & Bruni, R. (2014). Authentication of saffron (Crocus sativus L.) in different processed, retail products by means of SCAR markers. Food Control, 36(1), 126–131. https://doi.org/10.1016/j.foodcont.2013.08.001Tremlová, B. (2001). Evidence of spice black pepper adulteration. Czech Journal of Food Science, 19, 235–238.Wang, H., Peng, J., Xie, C., Bao, Y. & He, Y. (2015). Fruit Quality Evaluation Using Spectroscopy Technology: A review. Sensors, 15(5), 11889–11927.Wilde, A. S., Haughey, S. A., Galvin-King, P. & Elliott, C. T. (2019). The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control, 100(January), 1–7. https://doi.org/10.1016/j.foodcont.2018.12.039Wittenberger, K. & Dohlman, E. (2010). Peanut outlook: impacts of the 2008-09 foodborne illness outbreak linked to salmonella in peanuts. In Economic Research Service of the United States Department of Agriculture. https://www.ers.usda.gov/webdocs/publications/37835/8684_ocs10a01_1_.pdfZhang, M., Shi, Y., Sun, W., Wu, L., Xiong, C., Zhu, Z., Zhao, H., Zhang, B., Wang, C. & Liu, X. (2019). An efficient DNA barcoding based method for the authentication and adulteration detection of the powdered natural spices. Food Control, 106(February). https://doi.org/10.1016/j.foodcont.2019.106745Zhang, Y., Yang, Z., Li, R., Geng, H. & Dong, C. (2015). Investigation of fine chalk dust particles’ chemical compositions and toxicities on alveolar macrophages in vitro. Chemosphere, 120, 500–506. https://doi.org/10.1016/j.chemosphere.2014.09.009Zhu, F. (2018). Relationships between amylopectin internal molecular structure and physicochemical properties of starch. Trends in Food Science and Technology, 78(May), 234–242. https://doi.org/10.1016/j.tifs.2018.05.024Zossi, S., Ruiz, R., Sorol, N. & Sastre, M. (2010). Espectroscopía por Infrarrojo cercano (NIRS). Su aplicación en análisis de jugos de caña de azúcar. Revista Industrial y Agrícola de Tucumán, 87(1), 1–6.47611 - Uso de espectroscopía en infrarrojo cercano (NIR) en la Identificación de un adulterante en ajo en polvo48522 - Uso de espectroscopía NIR en la identificación de adulterantes en ajo en polvoeSistema de Información Hermes - Universidad Nacional de ColombiaPúblico generalORIGINAL1018483673.2022.pdf1018483673.2022.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf1575565https://repositorio.unal.edu.co/bitstream/unal/81818/3/1018483673.2022.pdff1e12a29a6a0abec22e86136ce41503fMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81818/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1018483673.2022.pdf.jpg1018483673.2022.pdf.jpgGenerated Thumbnailimage/jpeg4678https://repositorio.unal.edu.co/bitstream/unal/81818/4/1018483673.2022.pdf.jpg4064560f8c6b6369a4149745f84f136eMD54unal/81818oai:repositorio.unal.edu.co:unal/818182023-08-06 23:04:02.755Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK