Evaluación de la impregnación al vacío de una proteasa en un alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinaje
Ilustraciones, graficas, fotografías, tablas
- Autores:
-
Cuatin Inguilan, Milton Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80398
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Procesamiento de alimentos
food processing
proteases
Alimento extruido
Aprovechamiento nutricional
Digestibilidad
Impregnación al vacío
Proteasa
Tilapia
Extruded fish feed
Nutritional use
Digestibility
Vacuum impregnation
Tilapia
Protease
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_fc354c3bec73ef62dac12ec69624f599 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80398 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de la impregnación al vacío de una proteasa en un alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinaje |
dc.title.translated.eng.fl_str_mv |
Evaluation of the vacuum impregnation of a protease in an extruded fish feed for red tilapia (Oreochromis spp) in the fry stage |
title |
Evaluación de la impregnación al vacío de una proteasa en un alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinaje |
spellingShingle |
Evaluación de la impregnación al vacío de una proteasa en un alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinaje 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Procesamiento de alimentos food processing proteases Alimento extruido Aprovechamiento nutricional Digestibilidad Impregnación al vacío Proteasa Tilapia Extruded fish feed Nutritional use Digestibility Vacuum impregnation Tilapia Protease |
title_short |
Evaluación de la impregnación al vacío de una proteasa en un alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinaje |
title_full |
Evaluación de la impregnación al vacío de una proteasa en un alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinaje |
title_fullStr |
Evaluación de la impregnación al vacío de una proteasa en un alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinaje |
title_full_unstemmed |
Evaluación de la impregnación al vacío de una proteasa en un alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinaje |
title_sort |
Evaluación de la impregnación al vacío de una proteasa en un alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinaje |
dc.creator.fl_str_mv |
Cuatin Inguilan, Milton Fernando |
dc.contributor.advisor.none.fl_str_mv |
Gómez Peñaranda, José Ader Hoyos Concha, José Luis |
dc.contributor.author.none.fl_str_mv |
Cuatin Inguilan, Milton Fernando |
dc.contributor.researchgroup.spa.fl_str_mv |
Aprovechamiento de Subproductos Agroindustriales -Asubagroin |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Procesamiento de alimentos food processing proteases Alimento extruido Aprovechamiento nutricional Digestibilidad Impregnación al vacío Proteasa Tilapia Extruded fish feed Nutritional use Digestibility Vacuum impregnation Tilapia Protease |
dc.subject.agrovoc.none.fl_str_mv |
Procesamiento de alimentos food processing proteases |
dc.subject.proposal.spa.fl_str_mv |
Alimento extruido Aprovechamiento nutricional Digestibilidad Impregnación al vacío Proteasa Tilapia |
dc.subject.proposal.eng.fl_str_mv |
Extruded fish feed Nutritional use Digestibility Vacuum impregnation Tilapia Protease |
description |
Ilustraciones, graficas, fotografías, tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-06 |
dc.date.accessioned.none.fl_str_mv |
2021-10-06T04:42:18Z |
dc.date.available.none.fl_str_mv |
2021-10-06T04:42:18Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80398 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80398 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aarseth, K. A., Sørensen, M., & Storebakken, T. (2006). Effects of red yeast inclusions in diets for salmonids and extrusion temperature on pellet tensile strength : Weibull analysis. 126, 75–91. https://doi.org/10.1016/j.anifeedsci.2005.06.005 Abdel-Ghany, H. M., Salem, M. E. S., Abouelkhier, S. S., & Helal, A. M. (2020). Effect of a cocktail of enzymes and probiotics on the growth and the bacterial enumeration in gut and effluents of red tilapia (Oreochromis niloticus × O. mossambicus). Egyptian Journal of Aquatic Research, 46(3), 289–294. https://doi.org/10.1016/j.ejar.2020.07.001 Abeykoon, C., Martin, P. J., Li, K., & Kelly, A. L. (2014). Dynamic modelling of die melt temperature profile in polymer extrusion : Effects of process settings , screw geometry and material. Applied Mathematical Modelling, 38(4), 1224–1236. http://doi.org/10.1016/j.apm.2013.08.004 Adeoye, A. A., Jaramillo-Torres, A., Fox, S. W., Merrifield, D. L., & Davies, S. J. (2016). Supplementation of formulated diets for tilapia (Oreochromis niloticus) with selected exogenous enzymes: Overall performance and effects on intestinal histology and microbiota. Animal Feed Science and Technology, 215, 133–143. https://doi.org/10.1016/j.anifeedsci.2016.03.002 Adeoye, Ayodeji A., Yomla, R., Jaramillo-Torres, A., Rodiles, A., Merrifield, D. L., & Davies, S. J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture, 463, 61–70. https://doi.org/10.1016/j.aquaculture.2016.05.028 Adler-Nissen, J., & Olsen, H, S. (1982). Taste and taste evaluation of soy protein hydrolyzates. in. G.C Inglett (ED.). Chemestry of Food and Beverages Reecnt Developments, 149–169. Aguilar-Palazuelos, E., Zazueta-Morales, J. de J., Harumi, E. N., & Martínez-Bustos, F. (2012). Optimization of extrusion process for production of nutritious pellets. Food Science and Technology, 32(1), 34–42. https://doi.org/10.1590/s0101-20612012005000005 Ah-Hen, K., Lehnebach, G., Lemus-Mondaca, R., Zura-Bravo, L., Leyton, P., Vega-G??lvez, A., & Figuerola, F. (2014). Evaluation of different starch sources in extruded feed for Atlantic salmon. Aquaculture Nutrition, 20(2), 183–191. https://doi.org/10.1111/anu.12064 Alam, M. S., Pathania, S., & Sharma, A. (2016). Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings. LWT - Food Science and Technology, 74, 135–144. https://doi.org/10.1016/j.lwt.2016.07.031 Alarcón López, F. J., & Martínez Díaz, M. I. (1998). Fisiología de la Digestión en Larvas de Peces Marinos y sus Aplicaciones al Cultivo Larvario en Masa. AquaTIC. Revista Científica Internacional de Acuicultura En Español, 0(5). Alisis, A. N., & Whitaker, S. (2011). Starch components of lentil / banana blends : response surface. http://www.scielo.org.mx/pdf/rmiq/v10n3/v10n3a7.pdf Altan, A., & Maskan, M. (2011). Advances in food extrusion technology (A. Altan & M. Maskan (eds.); 2011th ed.). CRC Press Tylor & Francis Group. Antonio, J., & Hasbun, N. (2010). Comparación de alevines de tilapia roja adquiridos en diferentes centros de producción en Honduras. https://bdigital.zamorano.edu/bitstream/11036/611/1/T2968.pdf AUNAP, FAO, & MADR. (2014). Plan Nacional para el Desarrollo de la Acuicultura Sostenible en Colombia - PlaNDAS. In MinAgricultura, Ministerio de Agricultura y Desarrollo Rural. http://www.racua.org/uploads/media/Plan_Nac_Desar_Acuic_Sost_CO.pdf Azari, A. H., Hashim, R., Rezaei, M. H., Baei, M. S., Roohi, A., & Darvishi, M. (2011). The Effects of Commercial Probiotic and Prebiotic Usage on Growth Performance , Body Composition and Digestive Enzyme Activities in Juvenile Rainbow Trout ( Oncorhynchus mykiss ) Department of Marin Chemistry Science and Technology ,. 14, 26–35. Badillo, G. M., Segura, L. A., & Laurindo, J. B. (2011). Theoretical and experimental aspects of vacuum impregnation of porous media using transparent etched networks. International Journal of Multiphase Flow, 37(9), 1219–1226. https://doi.org/10.1016/j.ijmultiphaseflow.2011.06.002 Balon, E. K. (2002). Epigenetic processes, when natura non facit saltum becomes a myth, and alternative ontogenies a mechanism of evolution. Environmental Biology of Fishes, 65(1), 1–35. https://doi.org/10.1023/A:1019619206215 Banerjee, G., & Ray, A. K. (2017). The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115, 66–77. https://doi.org/10.1016/j.rvsc.2017.01.016 Barrows, F. T., Gaylord, T. G., Sealey, W. M., Porter, L., & Smith, C. E. (2008). The effect of vitamin premix in extruded plant-based and fi sh meal based diets on growth ef fi ciency and health of rainbow trout , Oncorhynchus mykiss ☆. 283, 148–155. https://doi.org/10.1016/j.aquaculture.2008.07.014 Basantes Bermeo, C. F. (2015). Evaluación del uso de balanceado orgánico vs el alimento industrial sobre la conversión alimenticia de la Orechromis sp (Tilapia) criada en cultivo intensivo. 1–70. http://repositorio.ug.edu.ec/bitstream/redug/6944/1/TESIS DE TILAPIA apa apa.pdf Bellmann, C., Tipping, A., & Sumaila, U. R. (2015). Global trade in fish and fishery products: An overview. Marine Policy, 1–8. https://doi.org/10.1016/j.marpol.2015.12.019 Betoret, E., Betoret, N., Rocculi, P., & Dalla, M. (2015). Trends in Food Science & Technology Strategies to improve food functionality : Structure e property relationships on high pressures homogenization , vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 1–12. https://doi.org/10.1016/j.tifs.2015.07.006 Beveridge, M., & McAndrew, B. (2001). Tilapias: biology and explotation. Publishers Fish and Fisheries, 505. Castillo, S., & Gatlin, D. M. (2015). Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: A review. Aquaculture, 435, 286–292. https://doi.org/10.1016/j.aquaculture.2014.10.011 Castillo, S., Rosales, M., Pohlenz, C., & Iii, D. M. G. (2014). Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture, 433, 6–12. https://doi.org/10.1016/j.aquaculture.2014.05.038 Castro-Ceseña, A. B., del Pilar Sánchez-Saavedra, M., & Márquez-Rocha, F. J. (2012). Characterisation and partial purification of proteolytic enzymes from sardine by-products to obtain concentrated hydrolysates. Food Chemistry, 135(2), 583–589. https://doi.org/10.1016/j.foodchem.2012.05.024 Chaabani, A., Labonne, L., Tercero, C. A., Picard, J. P., Advenier, C., Durrieu, V., Rouilly, A., Skiba, F., & Evon, P. (2020). Optimization of vacuum coating conditions to improve oil retention in Trout feed. Aquacultural Engineering, 91(May), 102127. https://doi.org/10.1016/j.aquaeng.2020.102127 Chevanan, N., Muthukumarappan, K., & Rosentrater, K. A. (2009). Extrusion Studies of Aquaculture Feed Using Distillers Dried Grains with Solubles and Whey. Food and Bioprocess Technology, 2(2), 177–185. https://doi.org/10.1007/s11947-007-0036-8 Cian, R. E., Bacchetta, C., Cazenave, J., & Drago, S. R. (2017). Optimization of single screw extrusion process for producing fish feeds based on vegetable meals and evaluation of nutritional effects using a juvenile Piaractus mesopotamicus model. Animal Feed Science and Technology, 234, 54–64. https://doi.org/10.1016/j.anifeedsci.2017.09.004 Cortés, M., Guardiola, L., & Pacheco, R. (2007). Aplicación de la ingeniería de matrices en la fortificación de mango (VARTOMMY ATKINS) con calcio. 19–26. Cruz, R. M. S., Vieira, M. C., & Silva, C. L. M. (2009). The response of watercress ( Nasturtium officinale ) to vacuum impregnation : Effect of an antifreeze protein type I. Journal of Food Engineering, 95(2), 339–345. https://doi.org/10.1016/j.jfoodeng.2009.05.013 Cuenca, C. (2013). Fisiología digestiva de la mojarra castarrica Cichlasoma urophthalmus (Teleostei: Cichlidae). 170. https://www.repositoriodigital.ipn.mx/bitstream/123456789/21728/1/cuencaso2.pdf Cuenca Soria, C. A. (2013). Fisiología digestiva de la mojarra castarrica Cichlasoma uropthalmus. Tesis Doctoral, 152. Dalsgaard, J., Verlhac, V., Hjermitslev, N. H., Ekmann, K. S., & Fischer, M. (2012). Effects of exogenous enzymes on apparent nutrient digestibility in rainbow trout ( Oncorhynchus mykiss ) fed diets with high inclusion of plant-based protein. Animal Feed Science and Technology, 171(2–4), 181–191. https://doi.org/10.1016/j.anifeedsci.2011.10.005 de Cruz, C. R., Kamarudin, M. S., Saad, C. R., & Ramezani-Fard, E. (2015). Effects of extruder die temperature on the physical properties of extruded fish pellets containing taro and broken rice starch. Animal Feed Science and Technology, 199, 137–145. https://doi.org/10.1016/j.anifeedsci.2014.11.010 De Keyser, K., Kuterna, L., Kaczmarek, S., Rutkowski, A., & Vanderbeke, E. (2016). High dosing NSP enzymes for total protein and digestible amino acid reformulation in a wheat/corn/soybean meal diet in broilers. Journal of Applied Poultry Research, 25(2), 239–246. https://doi.org/10.3382/japr/pfw006 Dehghan-Shoar, Z., Hardacre, A. K., & Brennan, C. S. (2010). The physico-chemical characteristics of extruded snacks enriched with tomato lycopene. Food Chemistry, 123(4), 1117–1122. https://doi.org/10.1016/j.foodchem.2010.05.071 Deng, J., Li, K., Harkin-jones, E., Price, M., Karnachi, N., Kelly, A., & Fei, M. (2014). Extruder, Energy monitoring and quality control of a single screw. Applied Energy, 113, 1775–1785. http://doi.org/10.1016/j.apenergy.2013.08.084 Derossi, A., Pilli, T. De, & Severini, C. (2014). The Application of Vacuum Impregnation Techniques in Food Industry. February. https://doi.org/10.5772/31435 Diógenes, A. F., Castro, C., Carvalho, M., Magalhães, R., Estevão-Rodrigues, T. T., Serra, C. R., Oliva-Teles, A., & Peres, H. (2018). Exogenous enzymes supplementation enhances diet digestibility and digestive function and affects intestinal microbiota of turbot (Scophthalmus maximus) juveniles fed distillers’ dried grains with solubles (DDGS) based diets. Aquaculture, 486(December 2017), 42–50. https://doi.org/10.1016/j.aquaculture.2017.12.013 Dosal, M. A., & Villanueva, M. (2008). INTRODUCCIÓN A LA METROLOGÍA QUÍMICA:Curvas de calibración en los métodos analíticos. Antología De Química Analítica Experimental, 18–25. http://depa.fquim.unam.mx/amyd/archivero/CURVASDECALIBRACION_23498.pdf Drew, M. D., Racz, V. J., Gauthier, R., & Thiessen, D. L. (2005). Effect of adding protease to coextruded flax : pea or canola : pea products on nutrient digestibility and growth performance of rainbow trout ( Oncorhynchus mykiss ). 119, 117–128. https://doi.org/10.1016/j.anifeedsci.2004.10.010 Eitzlmayr, A., Koscher, G., Reynolds, G., Huang, Z., Booth, J., Shering, P., & Khinast, J. (2014). Mechanistic modeling of modular co-rotating twin-screw extruders. International Journal of Pharmaceutics, 474(1–2), 157–176. http://doi.org/10.1016/j.ijpharm.2014.08.005 EKlund, A. (1976). On determination of available lysine in casein and rapeseed protein concentrates using 2,4,6-trinitrobenzenesulphonic acid (TNBS) as a reagent for free epsilon amino group of lysine. Analyticalbiochemestry, 70 (2), 434–439. https://doi.org/doi: http://dx.doi.org/10.1016/j.aquaculture.2007.09.026 Encarnação, P. (2015). Functional feed additives in aquaculture feeds. Aquafeed Formulation, 217–237. https://doi.org/10.1016/B978-0-12-800873-7.00005-1 Enciso Contreras, S. I. (2016). Efecto de la sumplementación en dieta de la inulina, el B-glucano y el qutosano sobre la capacidad digestiba y la inmunidad no especifica de la totoaba (Totoaba macdonaldi). https://riunet.upv.es/bitstream/handle/10251/85679/MESEGUER - ESTUDIO DEL BIOFOULING ASOCIADO A CULTIVOS MARINOS %22OFFSHORE%22 EN EL MEDITERRÁNEO ESPA....pdf?sequence= FAO. (2011). Manual básico de sanidad piscicola. Ministerio de Agricultura y Ganadería. Viceministerio de Ganadería, 1–52. FAO. (2020). El estado mundial de la pesca y acuicultura-La sostenibilidad en accion, Versión resumida. http://www.fao.org/3/ca9231es/CA9231ES.pdf Fito, P., Andrb, A., Chiralt, A., & Pardo, P. (1996). Coupling of Hydrodynamic Mechanism and Phenomena During Vacuum Ikeatments in Solid Porous Food-Liquid Systems. 21, 229–240. Franklin, B. (1995). Las enzimas. 41–137. https://addi.ehu.es/bitstream/10810/14292/4/4- Cap�tulo I. Las enzimas.pdf Ghosh, K. (2015). Application of Enzymes in Aqua Feeds. January 2006. Gisbert, E., Piedrahita, R. H., & Conklin, D. E. (2004). Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices. Aquaculture, 232(1–4), 455–470. https://doi.org/10.1016/S0044-8486(03)00457-5 Govoni, J. J., Boehlert, G. W., Watanabe, Y., & Soao, U. (1986). The physiology of digestion in fish larvae. Hunter 1981, 2–3. Guerreiro, I., Vareilles, M. De, Pousão-ferreira, P., Rodrigues, V., Teresa, M., & Ribeiro, L. (2010). Effect of age-at-weaning on digestive capacity of white seabream ( Diplodus sargus ). Aquaculture, 300(1–4), 194–205. https://doi.org/10.1016/j.aquaculture.2009.11.019 Guevara, W. (2003). FORMULACIÓN Y ELABORACIÓN DE DIETAS PARA PECES Y CRUSTÁCEOS. Universidad Nacional Jorge Basadre Grohmann. Guitiérrez Pulido, H. (2008). Análisis y diseño de experimentos. Hai, N. Van. (2015). Research findings from the use of probiotics in tilapia aquaculture: A review. Fish and Shellfish Immunology, 45(2), 592–597. https://doi.org/10.1016/j.fsi.2015.05.026 Hassaan, M. S., El-Sayed, A. I. M., Soltan, M. A., Iraqi, M. M., Goda, A. M., Davies, S. J., El-Haroun, E. R., & Ramadan, H. A. (2019). Partial dietary fish meal replacement with cotton seed meal and supplementation with exogenous protease alters growth, feed performance, hematological indices and associated gene expression markers (GH, IGF-I) for Nile tilapia, Oreochromis niloticus. Aquaculture, 503(August 2018), 282–292. https://doi.org/10.1016/j.aquaculture.2019.01.009 Hassaan, Mohamed S., Soltan, M. A., & Abdel-Moez, A. M. (2015). Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Animal Feed Science and Technology, 201, 89–98. https://doi.org/10.1016/j.anifeedsci.2015.01.007 He, Q., Zhu, L., Shen, Y., Lin, X., & Xiao, K. (2015). Evaluation of the effects of frozen storage on the microstructure of tilapia (Perciformes: Cichlidae) through fractal dimension method. LWT - Food Science and Technology, 64(2), 1283–1288. https://doi.org/10.1016/j.lwt.2015.07.036 Hernández S, A. (2012). COMPORTAMIENTO PRODUCTIVO EN TILAPIA Oreochromis COMPORTAMIENTO PRODUCTIVO EN TILAPIA Oreochromis. Hettich, M. (2004). Evaluación de la digestibilidad de dietas en Trucha arcoiris (Oncorhynchus mykiss): sustitución parcial de harina de pescado por tres niveles de harina de Lupino blanco (Lupinus albus). Chile. Universidad Católica de Temuco. Hlophe-Ginindza, S. N., Moyo, N. A. G., Ngambi, J. W., & Ncube, I. (2016). The effect of exogenous enzyme supplementation on growth performance and digestive enzyme activities in Oreochromis mossambicus fed kikuyu-based diets. Aquaculture Research, 47(12), 3777–3787. https://doi.org/10.1111/are.12828 Infante, J. L. Z., & Cahu, C. L. (2001). Ontogeny of the gastrointestinal tract of marine fish. 477–487. Jovanovic´, R., Levic´, J., Sredanovic´, S., Milisavljevic´, D., German, Đ., Đuragic´, O., & Obradovic´, S. (2009). New technologies and quality of trout and carp aquafeed. Archiva Zootechnica, 12(1), 18–26. Kaliyan, N., & Vance Morey, R. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337–359. https://doi.org/10.1016/j.biombioe.2008.08.005 Kamarudin, M. S., Cruz, C. R. De, Saad, C. R., Romano, N., & Ramezani-fard, E. (2018). E ff ects of extruder die head temperature and pre-gelatinized taro and broken rice fl our level on physical properties of fl oating fi sh pellets. 236(December 2017), 122–130. https://doi.org/10.1016/j.anifeedsci.2017.12.007 Kannadhason, S., Rosentrater, K. A., Muthukumarappan, K., & Brown, M. L. (2010). Twin Screw Extrusion of DDGS-Based Aquaculture Feeds. Journal of the World Aquaculture Society, 41(SUPPL. 1), 1–15. https://doi.org/10.1111/j.1749-7345.2009.00328.x Ketnawa, S., Benjakul, S., Martínez-alvarez, O., & Rawdkuen, S. (2014). Three-phase partitioning and proteins hydrolysis patterns of alkaline proteases derived from fish viscera. SEPARATION AND PURIFICATION TECHNOLOGY, 132, 174–181. https://doi.org/10.1016/j.seppur.2014.05.006 Khalafalla, M., Bassiouni, M., Eweedah, N., Elmezyne, & Elmezyne Heba, M. (2010). Performance of Nile tilapia (Oreochromis niloticus) fingerlings fed on diets containing different levels of amecozyme®. Journal of Agriculture Research, 36, 111–122. Klomklao, S., Kishimura, H., & Benjakul, S. (2013). Use of viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus) for the production of protein hydrolysate from toothed ponyfish (Gazza minuta) muscle. Food Chemistry, 136(2), 1006–1012. https://doi.org/10.1016/j.foodchem.2012.09.037 Kraugerud, O. F., Jorgensen, H. Y., & Svihus, B. (2011). Physical properties of extruded fish feed with inclusion of different plant (legumes, oilseeds, or cereals) meals. Animal Feed Science and Technology, 163(2–4), 244–254. https://doi.org/10.1016/j.anifeedsci.2010.11.010 Krogdahl, Å., Sundby, A., & Holm, H. (2015). Characteristics of digestive processes in Atlantic salmon (Salmo salar). Enzyme pH optima, chyme pH, and enzyme activities. Aquaculture, 449, 27–36. https://doi.org/10.1016/j.aquaculture.2015.02.032 Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23(4), 411–456. https://doi.org/10.1016/S0168-6445(99)00006-6 Kumar, N., Sarkar, B. C., & Sharma, H. K. (2010). Development and characterization of extruded product of carrot pomace , rice flour and pulse powder. 4(November), 703–717. Kurt.A.R., Muthukumarappan,K. and Kannadhason, S. (2009). Effects of in gredients and extrusion parameters on aquafeeds containing DDGS and potato starch. Journal of Aquaculture Feed Science and Nutrition, 1(1), 22–38. Lall, S. P., & Dumas, A. (2015). Nutritional requirements of cultured fish. In Feed and Feeding Practices in Aquaculture (Issue iii). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100506-4.00003-9 Lamichhane, S., Sahtout, K., Smillie, J., & Scott, T. A. (2015). Vacuum coating of pelleted feed for broilers: Opportunities and challenges. Animal Feed Science and Technology, 200(1), 1–7. https://doi.org/10.1016/j.anifeedsci.2014.11.015 Lamichhane, Santosh. (2015). Evaluation of vacuum post-pellet applications of bioactives to broiler feed on efficacy and protected delivery. July. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1019.6922&rep=rep1&type=pdf Latuz, O. M. (2004). Comparación entre Extruído y Pelletizado en Alimentos de Camarones. Lauff, M., & Hofer, R. (1984). Proteolytic enzymes in fish development and the importance of dietary enzymes. 37, 335–346. Li, X. Q., Zhang, X. Q., Kabir Chowdhury, M. A., Zhang, Y., & Leng, X. J. (2019). Dietary phytase and protease improved growth and nutrient utilization in tilapia (Oreochromis niloticus × Oreochromis aureus) fed low phosphorus and fishmeal-free diets. Aquaculture Nutrition, 25(1), 46–55. https://doi.org/10.1111/anu.12828 Lin, S., Mai, K., & Tan, B. (2007). Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus x O. aureus. Aquaculture Research, 38(15), 1645–1653. https://doi.org/10.1111/j.1365-2109.2007.01825.x Lopez Villagomez, B. R., & Cruz Benavidez, L. adalberto. (2011). Elaboración de un probiótico a base de microoganismo nativos y evaluación de su efecto benéfico al procesodigestivo de la tilapia roja (Oreochromis spp) en etapa de engorde en la zona de santo Domingo. Lückstädts, C. (2007). The use of acidifiers in fisheries and aquaculture. Acidifiers in Animal Nutrition: A Guide to Feed Preservation and Acidification to Promote Animal Performance, 044, 71 – 79. https://doi.org/10.1079/PAVSNNR20083044 Maas, R. M., Verdegem, M. C. J., Dersjant-Li, Y., & Schrama, J. W. (2018). The effect of phytase, xylanase and their combination on growth performance and nutrient utilization in Nile tilapia. Aquaculture, 487(September 2017), 7–14. https://doi.org/10.1016/j.aquaculture.2017.12.040 Maas, R. M., Verdegem, M. C. J., & Schrama, J. W. (2019). Effect of non-starch polysaccharide composition and enzyme supplementation on growth performance and nutrient digestibility in Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, 25(3), 622–632. https://doi.org/10.1111/anu.12884 Magalhães, R., Lopes, T., Martins, N., Díaz-Rosales, P., Couto, A., Pousão-Ferreira, P., Oliva-Teles, A., & Peres, H. (2016). Carbohydrases supplementation increased nutrient utilization in white seabream (Diplodus sargus) juveniles fed high soybean meal diets. Aquaculture, 463, 43–50. https://doi.org/10.1016/j.aquaculture.2016.05.019 Martelo, Y., Cortés, M., & Restrepo, D. (2011). Dinámica de impregnación al vacío en apio (Apium graveolens L.) y pepino (Cucumis sativus L.). Revista MVZ Cordoba, 16(2), 2584–2592. Meng, X., Threinen, D., Hansen, M., & Driedger, D. (2010). Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack. Food Research International, 43(2), 650–658. https://doi.org/10.1016/j.foodres.2009.07.016 Mesenguer H, E. (2017). Estudio del biofouling asociado a cultivos marinos “ offshore ” en el mediterr á neo espa ñ ol. https://riunet.upv.es/bitstream/handle/10251/85679/MESEGUER - ESTUDIO DEL BIOFOULING ASOCIADO A CULTIVOS MARINOS %22OFFSHORE%22 EN EL MEDITERRÁNEO ESPA....pdf?sequence=1 Minagricultura, M. de A. y D. R. (2018). Cadena de la AcuiculturaI, direccion de cadenas pecuarias, pesqueras y acuicolas. Ministerio de Agricultura y Desarrollo Rural, 20. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2018-09-30 Cifras Sectoriales.pdf Minagricultura, M. de A. y D. R. (2019a). Cadena de la Acuicultura Dirección de cadenas pecuarias, pesqueras y acuícolas. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2019-03-30 Cifras Sectoriales.pdf Minagricultura, M. de A. y D. R. (2019b). Estrategia de política para el sector de pesca y acuicultura. 21. https://sioc.minagricultura.gov.co/Documentos/6. Documento de Politica pesca y acuicultura Abril8de2019 31 Jul 2019.pdf Minagricultura, M. de A. y D. R., DANE, D. A. N. de E., & SIPSA, S. de información de precios y abastecimiento del sector agropecuario. (2014). El cultivo de la tilapia roja (Orechromis sp.) en estanques de tierra, fuente de proteína animal de excelente calidad. Boletín Mensual Insumos y Factores Asociados a La Producción Agropecuaria, 21. Minagricultura, M. de A. y D. R., Unicauca, U. del C., & Crepic, C. regional de productividad e innovación del C. (2010). Evaluación de ensilaje biologico de residuos de pescado en la alimentación de tilapia roja (Oreochromis Spp). Mirzakhani, M. K., Abedian Kenari, A., & Motamedzadegan, A. (2018). Prediction of apparent protein digestibility by in vitro pH-stat degree of protein hydrolysis with species-specific enzymes for Siberian sturgeon (Acipenser baeri, Brandt 1869). Aquaculture, 496(April), 73–78. https://doi.org/10.1016/j.aquaculture.2018.07.014 Montgomery. (2001). Design and Analysis of Experiments, New York. Morken, T., Fjeld, O., Barrows, F. T., Sørensen, M., Storebakken, T., & Øverland, M. (2011). Sodium diformate and extrusion temperature affect nutrient digestibility and physical quality of diets with fi sh meal and barley protein concentrate for rainbow trout ( Oncorhynchus mykiss ). Aquaculture, 317(1–4), 138–145. https://doi.org/10.1016/j.aquaculture.2011.04.020 Moura, G. D. S., Arruda, E., Lanna, T., Filer, K., Luciano, D., Donzele, J. L., Goreti, M., Oliveira, D. A., & De, S. T. (2012). Revista Brasileira de Zootecnia Effects of enzyme complex SSF ( solid state fermentation ) in pellet diets for Nile tilapia. 2139–2143. Natabirwa, H., Nakimbugwe, D., Lung, M., & Muyonga, J. H. (2018). LWT - Food Science and Technology Optimization of Roba1 extrusion conditions and bean extrudate properties using response surface methodology and multi-response desirability function. LWT - Food Science and Technology, 96(January), 411–418. https://doi.org/10.1016/j.lwt.2018.05.040 Ng, W. K., & Romano, N. (2014). A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Reviews in Aquaculture, 5(4), 220–254. https://doi.org/10.1111/raq.12014 Nicovita. (2010). Manual de crianza Tilapia. No name. (2003). Acerca del cultivo de tilapia nilotica y tilapia roja. https://www.agroindustria.gob.ar/sitio/areas/acuicultura/cultivos/especies/_archivos//000008-Tilapia/071201_Acerca del Cultivo de Tilapia Roja o Del Nilo.pdf Ovissipour, M., Abedian, A., Motamedzadeganb, A., Rasco, B., Safari, R., & Shahiri, H. (2009). the effect of enzymatic hydrolysis time and temperature on the propierties of protein hydrolysatea from persian sturgeon (acipenser persicus) viscera. Food chemistry (pp. 238–242). Palacios, J., Santander, C., Zambrano, A., & López, J. (2007). Evaluación comparativa de prebióticos y probióticos incorporados en el elimento comercial sobre el crecimiento y sobre la sobrevivencia de una especie nativa, el Sábalo amazónico (Brycon melanopterus) y una especie foránea, trucha arcoiris (Oncorhynchus m. Revista Electrónica de Ingenieria En Producción Acuícola, 2, 191–229. Panarese, V., Dejmek, P., Rocculi, P., & Gómez Galindo, F. (2013). Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innovative Food Science and Emerging Technologies, 18, 169–176. https://doi.org/10.1016/j.ifset.2013.01.008 Panné, S. (2015). Digestibilidad proteica de dietas para “Rhamdia Qhelen” utilizando fuentes alternativas de proteina en remplazo de la harina de pescado. In Escuela para graduado ing. agr. Alberto Soriano (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004 Pantoja, J. O., Sanchez, S. M., & Hoyos, J. L. (2011). Obtención de un alimento extruido para tilapia roja (Oreochormis spp) utilizando ensilaje biologico de pescado. Biotenologia En El Sector Agropecuario y Agroindustrial, 9 N° 2, 178–187. Pardo, X. M. (2010). Evaluacion del cultivo de tilapia del nilo ( oreochromis niloticus ) y tilapia roja ( oreochromis sp .) en diferentes sistemas intensivos de cultivo en colombia. Paredes Ruiz, F. M. H. (2013). Universidad autónoma metropolitana unidad iztapalapa ". http://148.206.53.84/tesiuami/UAMI15809.pdf Pariza, M. W., & Cook, M. (2010). Determining the safety of enzymes used in animal feed. Regulatory Toxicology and Pharmacology, 56(3), 332–342. https://doi.org/10.1016/j.yrtph.2009.10.005 Peña, M. A. R., Muñoz, L. S., & Leterme, P. (2005). Desarrollo de una metodología in vitro para estimar la tasa de fermentación de los forrajes en el intestino grueso del cerdo. Acta Agronómica, 54(4), 47–54. http://www.revistas.unal.edu.co/index.php/acta_agronomica/article/view/124/346 Perdomo, D. A., Corredor, Z., & Ramirez Iglesias, L. (2012). Características físico-quimicas y morfométricas en la crianza en cautiverio de la tilapia roja (Oreochromis spp) en zona cálida tropical. Mundo Pecuario, VIII, 166–171. http://www.saber.ula.ve/bitstream/123456789/36078/1/articulo3.pdf Perea, C., Garcés, Y. J., & Hoyos, J. L. (2011). EVALUATION OF FISH WASTE BIOLOGICAL SILAGE IN RED TILAPIA FEEDING (Oreochromis spp). Biotecnología En El Sector Agropecuario y Agroindustrial, 9(1), 60–68. Perera, E., Fraga, I., Carrillo, O., Díaz-Iglesias, E., Cruz, R., Báez, M., & Galich, G. S. (2005). Evaluation of practical diets for the Caribbean spiny lobster Panulirus argus (Latreille, 1804): Effects of protein sources on substrate metabolism and digestive proteases. Aquaculture, 244(1–4), 251–262. https://doi.org/10.1016/j.aquaculture.2004.11.022 Pérez, M., & Ramos, I. (2015). Crecimiento de las tilapias Oreochromis. 30–93. http://riul.unanleon.edu.ni:8080/jspui/bitstream/123456789/3501/1/228251.pdf Pokniak, J., Cornejo, S., Galleguillos, C., Larraí, C., & Battaglia, J. (1990). Efectos de la extrusión o peletización de la dieta de engorda sobre la respuesta productiva de la trucha arco iris (Oncorhynchus mykiss) tamaño plato. Scielo. Portilla, M., Erazo, S., Galé, C., Garcia, I., Moler, J., & Blanca, M. (2006). Manual práctico del paquete estadistico SPSS para Windows (3a edición revisada). Universidad Pública de Navarra, Navarra. Rakhi, Kumari, Gupta, S., Singh, A. R., Ferosekhan, S., Kothari, D. C., Pal, A. K., & Jadhao, S. B. (2013). Chitosan Nanosincapsulado Exógena Tripsina Biomimics Zymogen-Like Enzyme in Fish Gastrointestinal Tract. Ramos, L. M. (2017). Tesis Doctoral Tesis Doctoral - Pdf. Universidad Compluense de Madrid, 1–85. https://docplayer.es/77540368-Tesis-doctoral-tesis-doctoral.html Reda, R. M., Mahmoud, R., Selim, K. M., & El-araby, I. E. (2016). Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 50, 255–262. https://doi.org/10.1016/j.fsi.2016.01.040 Restrepo, A., Cortés, M., & Rojano, B. (2009). Shelf life of strawberry ( fragaria ananassa duch . ) fortified with vitamin E. Scielo, 163–175. Rodriguez, Y. E., Laitano, M. V, Pereira, N. A., López-Zavala, A. A., Haran, N. S., & Fernández-Gimenez, A. V. (2018). Exogenous enzymes in aquaculture: Alginate and alginate-bentonite microcapsules for the intestinal delivery of shrimp proteases to Nile tilapia. Aquaculture, 490(February), 35–43. https://doi.org/10.1016/j.aquaculture.2018.02.022 Ronald., W. (2015). New developments in aquatic feed ingredients, and potential of enzyme supplements. Hagerman Fish Culture Experiment Station, University of Idaho, 3059F National Fish Hatchery Road, Hagerman, ID 83332, USA. Rosero, V., Cuatin, Mi., & Hoyos, J. L. (2016). Calidad física de un alimento extruido para tilapia ( Oreochromis spp .) con inclusión de ácidos orgánicos Physical quality of an extruded food for tilapia ( Oreochromis spp .) including organic acids. 34, 1163–1165. https://doi.org/10.15446/agron.colomb.v34n1supl.58333 Ruiz, K. (2017). Selección de bacterias con potencial probiótico y su efecto en el crecimiento y sobrevivencia de alevinos de tilapia roja (oreochromis spp) (Vol. 2003). Saavedra Martínez, M. A. (2006). Manejo del cultivo de tilapia. http://www.crc.uri.edu/download/MANEJO-DEL-CULTIVO-DE-TILAPIA-CIDEA.pdf Samidjan, I., Dody, S., & Rachmawati, D. (2019). Technology engineering of rearing red tilapia saline (oreochromis niloticus) fed on artificial diet enriched with protease enzymes in an eroded brackish water pond. IOP Conference Series: Earth and Environmental Science, 406(1). https://doi.org/10.1088/1755-1315/406/1/012030 Samuelsen, T. A., Mjøs, S. A., & Oterhals, Å. (2013). Impact of variability in fishmeal physicochemical properties on the extrusion process , starch gelatinization and pellet durability and hardness. Animal Feed Science and Technology, 179(1–4), 77–84. https://doi.org/10.1016/j.anifeedsci.2012.10.009 Sanchez, S. (2019). Establecimiento del proceso de impregnación para la obtención de un concentrado con potencial probiótico para la alimentación piscícola. 23(3), 2019 Sanchez, S., & Pantoja, J. (2011). Obtención de un alimento para tilapia roja (oreochromis spp), elaborado mediante procesos de peletizado y extrusión, utilizando ensilaje biológico de pescado como fuente de proteína. Sánchez Trujillo, S. M. (2019). Establecimiento Del Proceso De Impregnación Para La Obtención De Un Concentrado Con Potencial Probiótico Para La Alimentación Piscícola (Vol. 4, Issue 1). Universidad Católica de Manizales. Santamaria, S. (2013). Nutricion y alimentacion en peces nativos. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004 Sanz, F. (2009). La nutrición y alimentación en piscicultura. https://books.google.com.co/books?id=NEqkj2By-kEC&printsec=frontcover&dq=La+nutrición+y+alimentación+en+piscicultura&hl=es&sa=X&ved=0ahUKEwjx39vV09rZAhUMzFMKHaoNCUIQ6AEIJzAA#v=onepage&q=La nutrición y alimentación en piscicultura&f=false Sharawy, Z., Goda, A. M. A.-S., & Hassaan, M. S. (2016). Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, Postlarvae. Animal Feed Science and Technology, 212, 90–99. http://linkinghub.elsevier.com/retrieve/pii/S0377840115300821 Shi, Z., Li, X. Q., Chowdhury, M. A. K., Chen, J. N., & Leng, X. J. (2016). Effects of protease supplementation in low fish meal pelleted and extruded diets on growth, nutrient retention and digestibility of gibel carp, Carassius auratus gibelio. Aquaculture, 460, 37–44. https://doi.org/10.1016/j.aquaculture.2016.03.049 Singh, B., Rachna, Hussain, S. Z., & Sharma, S. (2015). Response Surface Analysis and Process Optimization of Twin Screw Extrusion Cooking of Potato-Based Snacks. Journal of Food Processing and Preservation, 39(3), 270–281. https://doi.org/10.1111/jfpp.12230 Singh, R., Singh, S., & Hashmi, M. S. J. (2017). Polymer Twin Screw Extrusion With Filler Powder Reinforcement. In Reference Module in Materials Science and Materials Engineering. Elsevier Ltd. https://doi.org/10.1016/b978-0-12-803581-8.04162-x Smith, G., Guillemin, A., Degraeve, P., & Noe, C. (2008). Influence of impregnation solution viscosity and osmolarity on solute uptake during vacuum impregnation of apple cubes. 86, 475–483. https://doi.org/10.1016/j.jfoodeng.2007.10.023 Soares, M., Jr, S., Assumpç, F., Melo, C., Moura, A. De, Victoria, M., & Grossmann, E. (2015). LWT - Food Science and Technology Physical quality of snacks and technological properties of pre-gelatinized fl ours formulated with cassava starch and dehydrated cassava bagasse as a function of extrusion variables. 62, 1112–1119. https://doi.org/10.1016/j.lwt.2015.02.030 Song, H., Tan, B., Chi, S., Liu, Y., & Chowdhury, M. A. K. (2017). The effects of a dietary protease-complex on performance , digestive and immune enzyme activity , and disease resistance of Litopenaeus vannamei fed high plant protein diets. 2550–2560. https://doi.org/10.1111/are.13091 Song, S. K., Beck, B. R., Kim, D., Park, J., Kim, J., Kim, H. D., & Ringø, E. (2014). Prebiotics as immunostimulants in aquaculture: A review. Fish and Shellfish Immunology, 40(1), 40–48. https://doi.org/10.1016/j.fsi.2014.06.016 Sørensen, M. (2012). Aquaculture Nutrition 2012 18 ; 233–248. Aquaculture Nutrition. https://doi.org/10.1111/j.1365-2095.2011.00924.x Sørensen, M., Stjepanovic, N., Romarheim, O. H., Krekling, T., & Storebakken, T. (2009). Soybean meal improves the physical quality of extruded fish feed. Animal Feed Science and Technology, 149(1–2), 149–161. https://doi.org/10.1016/j.anifeedsci.2008.05.010 Strauch, W. (n.d.). High-energy poultry feed with vacuum technology. 5(8), 28–31. Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1–11. https://doi.org/10.1016/j.molcatb.2013.01.011 Thiry, J., Krier, F., & Evrard, B. (2015). A review of pharmaceutical extrusion : Critical process parameters. International Journal of Pharmaceutics, 479(1), 227–240. http://doi.org/10.1016/j.ijpharm.2014.12.036 Thomas, M., & van der Poel, A. F. B. (1996). Physical quality of pelleted animal feed 1. Criteria for pellet quality. Animal Feed Science and Technology, 61(96), 89–112. https://doi.org/10.1016/0377-8401(96)00949-2 Tumuluru, J. S., Tabil, L., Opoku, A., Mosqueda, M. R., & Fadeyi, O. (2010). Effect of process variables on the quality characteristics of pelleted wheat distiller’s dried grains with solubles. Biosystems Engineering, 105(4), 466–475. https://doi.org/10.1016/j.biosystemseng.2010.01.005 Tyapkova, O., Osen, R., Wagenstaller, M., Baier, B., Specht, F., & Zacherl, C. (2016). Replacing fishmeal with oilseed cakes in fish feed – A study on the influence of processing parameters on the extrusion behavior and quality properties of the feed pellets. Journal of Food Engineering, 191, 28–36. https://doi.org/10.1016/j.jfoodeng.2016.07.006 Umar, S., Kamarudin, M. S., & Ramezani-Fard, E. (2013). Physical properties of extruded aquafeed with a combination of sago and tapioca starches at different moisture contents. Animal Feed Science and Technology, 183(1–2), 51–55. https://doi.org/10.1016/j.anifeedsci.2013.03.009 Universidad del Cauca, A. (2016). Manejo de laboratorio de bioensayos y digestibilidad in vivo (No. 1). Usgame, D., Usgame, G., Valverde, C., & Espinosa, A. (2008). Informe general del estudio de prospectiva tecnológica de la cadena colombiana de la tilapia en colombia. 1–95. Vásquez-González, A., Arredondo-Figueroa, J. L., Mendoza-Martínez, G. D., Teresa Viana-Castrillón, M., Plata-Pérez, F. X., Arredondo-Figueroa, J. L., & Mendoza, G. D. (2018). Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana, Unidad Xochimilco. Calzada del Hueso 1100, col. Villa Quietud. 28(1), 121–127. Vásquez-Salazar, R. D., Pupo Urrutia, A. C., & Jiménez Aguas, H. J. (2014). Sistema energéticamente eficiente y de bajo costo para controlar la temperatura y aumentar el oxígeno en estanques de cultivo de alevines de tilapia roja An Energy Efficient and Low Cost System, to Control the Temperature and the Oxygen Increase, in the R. Revista Facultad de Ingeniería (Fac. Ing.), 23(36), 9–23. http://www.scielo.org.co/pdf/rfing/v23n36/v23n36a02.pdf Villamuel Castillo, L. W. (2011). II. Revisión Literaria. http://repositorio.utn.edu.ec/bitstream/123456789/211/10/03 AGP 85 REVICION LITERARIA.pdf Visbal B., T. E., Morillo S., M., Altuve P., D., Aguirre, P., & Medina G., A. L. (2013). Nivel óptimo de proteínas en la dieta para alevines de Prochilodus mariae. Revista Chilena de Nutricion, 40(2), 141–146. https://doi.org/10.4067/S0717-75182013000200008 von Danwitz, A., van Bussel, C. G. J., Klatt, S. F., & Schulz, C. (2016). Dietary phytase supplementation in rapeseed protein based diets influences growth performance, digestibility and nutrient utilisation in turbot (Psetta maxima L.). Aquaculture, 450, 405–411. https://doi.org/10.1016/j.aquaculture.2015.07.026 Vu, T. (1983). Etude histoenzymologique des activities proteasiques dans le tube digestif des larves et des adultes de bar, Dicentrarhus labrax (L). Aquaculture, 32, 57–69. Walford, J., & Lam, T. J. (1993). Development of digestive tract and proteolytic. 109, 187–205. Wijnoogst, J., & Wohnsen, F. (2017). Process for manufacture of feed for aquaculture species. https://doi.org/10.1016/j.(73) Wolska, J., Jonkers, J., Holst, O., & Adlercreutz, P. (2015). The addition of transglutaminase improves the physical quality of extruded fish feed. Biotechnology Letters, 37(11), 2265–2270. https://doi.org/10.1007/s10529-015-1911-4 Yag, S. (2008). Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from. 86, 122–132. https://doi.org/10.1016/j.jfoodeng.2007.09.018 Yasumaru, F., & Lemos, D. (2014). Species specific in vitro protein digestion (pH-stat) for fish: Method development and application for juvenile rainbow trout (Oncorhynchus mykiss), cobia (Rachycentron canadum), and Nile tilapia (Oreochromis niloticus). Aquaculture, 426–427, 74–84. https://doi.org/10.1016/j.aquaculture.2014.01.012 Yu, G., Chen, D., Yu, B., He, J., Zheng, P., Mao, X., Huang, Z., Luo, J., Zhang, Z., & Yu, J. (2016). Coated protease increases ileal digestibility of protein and amino acids in weaned piglets. Animal Feed Science and Technology. https://doi.org/10.1016/j.anifeedsci.2016.02.006 Yu, Z.-L., Zeng, W.-C., Zhang, W.-H., Liao, X.-P., & Shi, B. (2014). Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin. Ultrasonics Sonochemistry, 21(3), 930–936. https://doi.org/10.1016/j.ultsonch.2013.11.002 Zavala-leal, I., & Dumas, S. (2011). Organogénesis durante el período larval en peces. January. Zhou, Y., Yuan, X., Liang, X. F., Fang, L., Li, J., Guo, X., Bai, X., & He, S. (2013). Enhancement of growth and intestinal flora in grass carp: The effect of exogenous cellulase. Aquaculture, 416–417, 1–7. https://doi.org/10.1016/j.aquaculture.2013.08.023 Zhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers, 122, 456–480. https://doi.org/10.1016/j.carbpol.2014.10.063 López.A, F. ., & Martinez Díaz, M. . (1998). Fisiología de la Digestión en Larvas de Peces Marinos y sus Aplicaciones al Cultivo Larvario en Masa. AquaTIC. Revista Científica Internacional de Acuicultura En Español, 5(5). |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 129 páginas + anexos |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.region.none.fl_str_mv |
Guacas, Popayán, Cauca, Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Administración |
dc.publisher.place.spa.fl_str_mv |
Palmira, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80398/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80398/2/1061719053.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/80398/3/1061719053.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 d59de8349b4c69ef91187e43e4ba9185 5e37ab1e9d4093d36df43419c654d6cf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089912048156672 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Peñaranda, José Ader67bc4a07122b439dbdbd952a3eeb162eHoyos Concha, José Luisfaf210b96bcb6024786bc1cf01220375Cuatin Inguilan, Milton Fernando0d4ed2de91e774372fce11d3db4563caAprovechamiento de Subproductos Agroindustriales -Asubagroin2021-10-06T04:42:18Z2021-10-06T04:42:18Z2020-06https://repositorio.unal.edu.co/handle/unal/80398Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, graficas, fotografías, tablasEl objetivo de este estudio fue evaluar el efecto de la impregnación al vacío de una proteasa en alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinaje, inicialmente se optimizó el proceso de extrusión empleando la metodología de superficie de respuesta y evaluada sobre la calidad física del alimento. Las condiciones óptimas del proceso de extrusión fueron 131,6°C temperatura del barril y 408,3 rpm velocidad de tornillo, el alimento extruido experimental presentó para flotabilidad 95,6 ± 1,53%, índice de expansión 1,54 ± 0,03 y durabilidad 95,03 ± 0,92%. Seguidamente se incorporó una proteasa en el alimento usando la tecnología de impregnación al vacío, se evaluó presión de vacío (1013,25 mbar y 550 mbar) y velocidad de canasta (9 rpm y 15 rpm) sobre la calidad física del alimento y digestibilidad de proteína realizada por la proteasa. El tratamiento 3 (550 mbar y 9 rpm) mostró buenos resultados, presentó para flotabilidad 95,33 ± 1,53%, 95,43 ± 0,12% en durabilidad y un grado de hidrólisis de 1,14 ± 0,05%. Finalmente, el alimento funcional se evaluó en alevines de tilapia roja (Oreochromis spp) sobre los parámetros de crecimiento y aprovechamiento nutritivo. Los resultados positivos fueron para tasa de crecimiento específico 6,40 ± 0,04 %/día (tratamiento) y 5,31 ± 0,01 %/día (Control), el índice de conversión alimenticia arrojó 1,20 ± 0,01 (tratamiento) y 1,53 ± 0,10 (control), el coeficiente de eficiencia proteica presentó 1,84 ± 0,02 (tratamiento) y 1,45 ± 0,10 (control) y en digestibilidad aparente de proteína no presentó diferencia significativa (texto tomado de la fuente).The aim of this study was evaluating the effect of vacuum impregnation of a protease in extruded aquafeed for red tilapia (Oreochromis spp) in fry phase, initially the extrusion process was optimized using the response surface methodology and evaluated on the physical quality of aquafeed. The optimal conditions of the extrusion process were 131,6 ° C barrel temperature and 408,3 rpm screw speed, the experimental extruded aquafeed presented to floatability 95,6 ± 1,53%, expansion index 1,54 ± 0,03 and durability 9,03 ± 0,92%. Then a protease was impregnated into aquafeed using vacuum impregnation technology, vacuum pressure (1013.25 mbar and 550 mbar) and basket speed (9 rpm and 15 rpm) were evaluated on the physical quality of aquafeed and digestibility of protein done by the protease. The treatment 3 (550 mbar and 9 rpm) showed good results, presented to floatability 95,33 ± 1.53%, 95,43 ± 0,12% in durability and a degree of hydrolysis of 1,14 ±0,05%. Finally, the functional aquafeed was evaluated in red tilapia fry (Oreochromis spp) on growth parameters and nutritional use. The positives results were to specific growth rate 6,40 ± 0,04%/day (treatment) and 5,31 ±0,01 %/day (control), feed conversion ratio showed 1,20 ± 0,01 (treatment) and 1,53 ± 0,10 (control), protein efficiency coefficient presented 1,84 ± 0,02 (treatment) and 1,45 ± 0,10 (control) and in apparent protein digestibility did not present significant difference.PROGRAMA NACIONAL DE CIENCIA Y TECNOLOGÍA AGROPECUARIA-COLCIENCIASMaestríaMaestría en Ingeniería AgroindustrialLa dieta fue procesada en un extrusor de doble tornillo marca Thermo Scientific equipo alemán, modelo Haake Polylab OS, dispone a lo largo del barril un sistema de calentamiento con resistencias eléctricas en 7 zonas y se acopla a un sistema de enfriamiento, en la salida existe una zona de expansión con la posibilidad de intercambiar boquillas de salida y se usó una boquilla circular de diámetro 1 mm. Para este estudio se tuvo en cuenta variables de proceso como la temperatura promedio de las 7 zonas del equipo y la velocidad del tornillo, al final el cordón obtenido fue peletizado por una cortadora prefabricada por Molinos Pulverizadores J.A (Bogotá) y los pellets obtenidos o granos de alimento extruido se procedió a secar a 50°C por 30 minutos en un horno de convección forzada (Binder FD 115L, Tuttlingen, Alemania) hasta obtener un contenido de humedad menor a 10% (Barrows et al., 2008; Pantoja et al., 2011). Para determinar de las condiciones del proceso de extrusión, se realizó de acuerdo al método de superficie de respuesta (MSR), se utilizó un diseño central compuesto (DCC) (22 ); el primer factor del diseño experimental evaluado fue temperatura promedio del barril del extrusor con dos niveles (127 °C y 131 °C) y el segundo factor del diseño experimental es velocidad de tornillo con dos niveles (360 rpm y 400 rpm), los niveles de cada factor fueron fijados por investigaciones previas y en la tabla 6-3 se muestra las variables independientes y de respuesta para el diseño central compuesto, se obtuvo 9 tratamientos que corresponden a los 4 tratamientos del diseño factorial 2^2, 4 tratamientos que corresponde a los puntos estrella y un tratamiento del punto central que se realizó con 5 repeticiones para un total de 13 unidades experimentales y se realizó para cada unidad experimental un duplicado; para un total de 26 corridas experimentales.Acuicultura continental de agua cálidasxvi, 129 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ingeniería y Administración - Maestría en Ingeniería AgroindustrialFacultad de Ingeniería y AdministraciónPalmira, ColombiaUniversidad Nacional de Colombia - Sede Palmira620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaProcesamiento de alimentosfood processingproteasesAlimento extruidoAprovechamiento nutricionalDigestibilidadImpregnación al vacíoProteasaTilapiaExtruded fish feedNutritional useDigestibilityVacuum impregnationTilapiaProteaseEvaluación de la impregnación al vacío de una proteasa en un alimento extruido para tilapia roja (Oreochromis spp) en fase de alevinajeEvaluation of the vacuum impregnation of a protease in an extruded fish feed for red tilapia (Oreochromis spp) in the fry stageTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMGuacas, Popayán, Cauca, ColombiaAarseth, K. A., Sørensen, M., & Storebakken, T. (2006). Effects of red yeast inclusions in diets for salmonids and extrusion temperature on pellet tensile strength : Weibull analysis. 126, 75–91. https://doi.org/10.1016/j.anifeedsci.2005.06.005Abdel-Ghany, H. M., Salem, M. E. S., Abouelkhier, S. S., & Helal, A. M. (2020). Effect of a cocktail of enzymes and probiotics on the growth and the bacterial enumeration in gut and effluents of red tilapia (Oreochromis niloticus × O. mossambicus). Egyptian Journal of Aquatic Research, 46(3), 289–294. https://doi.org/10.1016/j.ejar.2020.07.001Abeykoon, C., Martin, P. J., Li, K., & Kelly, A. L. (2014). Dynamic modelling of die melt temperature profile in polymer extrusion : Effects of process settings , screw geometry and material. Applied Mathematical Modelling, 38(4), 1224–1236. http://doi.org/10.1016/j.apm.2013.08.004Adeoye, A. A., Jaramillo-Torres, A., Fox, S. W., Merrifield, D. L., & Davies, S. J. (2016). Supplementation of formulated diets for tilapia (Oreochromis niloticus) with selected exogenous enzymes: Overall performance and effects on intestinal histology and microbiota. Animal Feed Science and Technology, 215, 133–143. https://doi.org/10.1016/j.anifeedsci.2016.03.002Adeoye, Ayodeji A., Yomla, R., Jaramillo-Torres, A., Rodiles, A., Merrifield, D. L., & Davies, S. J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture, 463, 61–70. https://doi.org/10.1016/j.aquaculture.2016.05.028Adler-Nissen, J., & Olsen, H, S. (1982). Taste and taste evaluation of soy protein hydrolyzates. in. G.C Inglett (ED.). Chemestry of Food and Beverages Reecnt Developments, 149–169.Aguilar-Palazuelos, E., Zazueta-Morales, J. de J., Harumi, E. N., & Martínez-Bustos, F. (2012). Optimization of extrusion process for production of nutritious pellets. Food Science and Technology, 32(1), 34–42. https://doi.org/10.1590/s0101-20612012005000005Ah-Hen, K., Lehnebach, G., Lemus-Mondaca, R., Zura-Bravo, L., Leyton, P., Vega-G??lvez, A., & Figuerola, F. (2014). Evaluation of different starch sources in extruded feed for Atlantic salmon. Aquaculture Nutrition, 20(2), 183–191. https://doi.org/10.1111/anu.12064Alam, M. S., Pathania, S., & Sharma, A. (2016). Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings. LWT - Food Science and Technology, 74, 135–144. https://doi.org/10.1016/j.lwt.2016.07.031Alarcón López, F. J., & Martínez Díaz, M. I. (1998). Fisiología de la Digestión en Larvas de Peces Marinos y sus Aplicaciones al Cultivo Larvario en Masa. AquaTIC. Revista Científica Internacional de Acuicultura En Español, 0(5).Alisis, A. N., & Whitaker, S. (2011). Starch components of lentil / banana blends : response surface. http://www.scielo.org.mx/pdf/rmiq/v10n3/v10n3a7.pdfAltan, A., & Maskan, M. (2011). Advances in food extrusion technology (A. Altan & M. Maskan (eds.); 2011th ed.). CRC Press Tylor & Francis Group.Antonio, J., & Hasbun, N. (2010). Comparación de alevines de tilapia roja adquiridos en diferentes centros de producción en Honduras. https://bdigital.zamorano.edu/bitstream/11036/611/1/T2968.pdfAUNAP, FAO, & MADR. (2014). Plan Nacional para el Desarrollo de la Acuicultura Sostenible en Colombia - PlaNDAS. In MinAgricultura, Ministerio de Agricultura y Desarrollo Rural. http://www.racua.org/uploads/media/Plan_Nac_Desar_Acuic_Sost_CO.pdfAzari, A. H., Hashim, R., Rezaei, M. H., Baei, M. S., Roohi, A., & Darvishi, M. (2011). The Effects of Commercial Probiotic and Prebiotic Usage on Growth Performance , Body Composition and Digestive Enzyme Activities in Juvenile Rainbow Trout ( Oncorhynchus mykiss ) Department of Marin Chemistry Science and Technology ,. 14, 26–35.Badillo, G. M., Segura, L. A., & Laurindo, J. B. (2011). Theoretical and experimental aspects of vacuum impregnation of porous media using transparent etched networks. International Journal of Multiphase Flow, 37(9), 1219–1226. https://doi.org/10.1016/j.ijmultiphaseflow.2011.06.002Balon, E. K. (2002). Epigenetic processes, when natura non facit saltum becomes a myth, and alternative ontogenies a mechanism of evolution. Environmental Biology of Fishes, 65(1), 1–35. https://doi.org/10.1023/A:1019619206215Banerjee, G., & Ray, A. K. (2017). The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115, 66–77. https://doi.org/10.1016/j.rvsc.2017.01.016Barrows, F. T., Gaylord, T. G., Sealey, W. M., Porter, L., & Smith, C. E. (2008). The effect of vitamin premix in extruded plant-based and fi sh meal based diets on growth ef fi ciency and health of rainbow trout , Oncorhynchus mykiss ☆. 283, 148–155. https://doi.org/10.1016/j.aquaculture.2008.07.014Basantes Bermeo, C. F. (2015). Evaluación del uso de balanceado orgánico vs el alimento industrial sobre la conversión alimenticia de la Orechromis sp (Tilapia) criada en cultivo intensivo. 1–70. http://repositorio.ug.edu.ec/bitstream/redug/6944/1/TESIS DE TILAPIA apa apa.pdfBellmann, C., Tipping, A., & Sumaila, U. R. (2015). Global trade in fish and fishery products: An overview. Marine Policy, 1–8. https://doi.org/10.1016/j.marpol.2015.12.019Betoret, E., Betoret, N., Rocculi, P., & Dalla, M. (2015). Trends in Food Science & Technology Strategies to improve food functionality : Structure e property relationships on high pressures homogenization , vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 1–12. https://doi.org/10.1016/j.tifs.2015.07.006Beveridge, M., & McAndrew, B. (2001). Tilapias: biology and explotation. Publishers Fish and Fisheries, 505.Castillo, S., & Gatlin, D. M. (2015). Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: A review. Aquaculture, 435, 286–292. https://doi.org/10.1016/j.aquaculture.2014.10.011Castillo, S., Rosales, M., Pohlenz, C., & Iii, D. M. G. (2014). Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture, 433, 6–12. https://doi.org/10.1016/j.aquaculture.2014.05.038Castro-Ceseña, A. B., del Pilar Sánchez-Saavedra, M., & Márquez-Rocha, F. J. (2012). Characterisation and partial purification of proteolytic enzymes from sardine by-products to obtain concentrated hydrolysates. Food Chemistry, 135(2), 583–589. https://doi.org/10.1016/j.foodchem.2012.05.024Chaabani, A., Labonne, L., Tercero, C. A., Picard, J. P., Advenier, C., Durrieu, V., Rouilly, A., Skiba, F., & Evon, P. (2020). Optimization of vacuum coating conditions to improve oil retention in Trout feed. Aquacultural Engineering, 91(May), 102127. https://doi.org/10.1016/j.aquaeng.2020.102127Chevanan, N., Muthukumarappan, K., & Rosentrater, K. A. (2009). Extrusion Studies of Aquaculture Feed Using Distillers Dried Grains with Solubles and Whey. Food and Bioprocess Technology, 2(2), 177–185. https://doi.org/10.1007/s11947-007-0036-8Cian, R. E., Bacchetta, C., Cazenave, J., & Drago, S. R. (2017). Optimization of single screw extrusion process for producing fish feeds based on vegetable meals and evaluation of nutritional effects using a juvenile Piaractus mesopotamicus model. Animal Feed Science and Technology, 234, 54–64. https://doi.org/10.1016/j.anifeedsci.2017.09.004Cortés, M., Guardiola, L., & Pacheco, R. (2007). Aplicación de la ingeniería de matrices en la fortificación de mango (VARTOMMY ATKINS) con calcio. 19–26.Cruz, R. M. S., Vieira, M. C., & Silva, C. L. M. (2009). The response of watercress ( Nasturtium officinale ) to vacuum impregnation : Effect of an antifreeze protein type I. Journal of Food Engineering, 95(2), 339–345. https://doi.org/10.1016/j.jfoodeng.2009.05.013Cuenca, C. (2013). Fisiología digestiva de la mojarra castarrica Cichlasoma urophthalmus (Teleostei: Cichlidae). 170. https://www.repositoriodigital.ipn.mx/bitstream/123456789/21728/1/cuencaso2.pdfCuenca Soria, C. A. (2013). Fisiología digestiva de la mojarra castarrica Cichlasoma uropthalmus. Tesis Doctoral, 152.Dalsgaard, J., Verlhac, V., Hjermitslev, N. H., Ekmann, K. S., & Fischer, M. (2012). Effects of exogenous enzymes on apparent nutrient digestibility in rainbow trout ( Oncorhynchus mykiss ) fed diets with high inclusion of plant-based protein. Animal Feed Science and Technology, 171(2–4), 181–191. https://doi.org/10.1016/j.anifeedsci.2011.10.005de Cruz, C. R., Kamarudin, M. S., Saad, C. R., & Ramezani-Fard, E. (2015). Effects of extruder die temperature on the physical properties of extruded fish pellets containing taro and broken rice starch. Animal Feed Science and Technology, 199, 137–145. https://doi.org/10.1016/j.anifeedsci.2014.11.010De Keyser, K., Kuterna, L., Kaczmarek, S., Rutkowski, A., & Vanderbeke, E. (2016). High dosing NSP enzymes for total protein and digestible amino acid reformulation in a wheat/corn/soybean meal diet in broilers. Journal of Applied Poultry Research, 25(2), 239–246. https://doi.org/10.3382/japr/pfw006Dehghan-Shoar, Z., Hardacre, A. K., & Brennan, C. S. (2010). The physico-chemical characteristics of extruded snacks enriched with tomato lycopene. Food Chemistry, 123(4), 1117–1122. https://doi.org/10.1016/j.foodchem.2010.05.071Deng, J., Li, K., Harkin-jones, E., Price, M., Karnachi, N., Kelly, A., & Fei, M. (2014). Extruder, Energy monitoring and quality control of a single screw. Applied Energy, 113, 1775–1785. http://doi.org/10.1016/j.apenergy.2013.08.084Derossi, A., Pilli, T. De, & Severini, C. (2014). The Application of Vacuum Impregnation Techniques in Food Industry. February. https://doi.org/10.5772/31435Diógenes, A. F., Castro, C., Carvalho, M., Magalhães, R., Estevão-Rodrigues, T. T., Serra, C. R., Oliva-Teles, A., & Peres, H. (2018). Exogenous enzymes supplementation enhances diet digestibility and digestive function and affects intestinal microbiota of turbot (Scophthalmus maximus) juveniles fed distillers’ dried grains with solubles (DDGS) based diets. Aquaculture, 486(December 2017), 42–50. https://doi.org/10.1016/j.aquaculture.2017.12.013Dosal, M. A., & Villanueva, M. (2008). INTRODUCCIÓN A LA METROLOGÍA QUÍMICA:Curvas de calibración en los métodos analíticos. Antología De Química Analítica Experimental, 18–25. http://depa.fquim.unam.mx/amyd/archivero/CURVASDECALIBRACION_23498.pdfDrew, M. D., Racz, V. J., Gauthier, R., & Thiessen, D. L. (2005). Effect of adding protease to coextruded flax : pea or canola : pea products on nutrient digestibility and growth performance of rainbow trout ( Oncorhynchus mykiss ). 119, 117–128. https://doi.org/10.1016/j.anifeedsci.2004.10.010Eitzlmayr, A., Koscher, G., Reynolds, G., Huang, Z., Booth, J., Shering, P., & Khinast, J. (2014). Mechanistic modeling of modular co-rotating twin-screw extruders. International Journal of Pharmaceutics, 474(1–2), 157–176. http://doi.org/10.1016/j.ijpharm.2014.08.005EKlund, A. (1976). On determination of available lysine in casein and rapeseed protein concentrates using 2,4,6-trinitrobenzenesulphonic acid (TNBS) as a reagent for free epsilon amino group of lysine. Analyticalbiochemestry, 70 (2), 434–439. https://doi.org/doi: http://dx.doi.org/10.1016/j.aquaculture.2007.09.026Encarnação, P. (2015). Functional feed additives in aquaculture feeds. Aquafeed Formulation, 217–237. https://doi.org/10.1016/B978-0-12-800873-7.00005-1Enciso Contreras, S. I. (2016). Efecto de la sumplementación en dieta de la inulina, el B-glucano y el qutosano sobre la capacidad digestiba y la inmunidad no especifica de la totoaba (Totoaba macdonaldi). https://riunet.upv.es/bitstream/handle/10251/85679/MESEGUER - ESTUDIO DEL BIOFOULING ASOCIADO A CULTIVOS MARINOS %22OFFSHORE%22 EN EL MEDITERRÁNEO ESPA....pdf?sequence=FAO. (2011). Manual básico de sanidad piscicola. Ministerio de Agricultura y Ganadería. Viceministerio de Ganadería, 1–52.FAO. (2020). El estado mundial de la pesca y acuicultura-La sostenibilidad en accion, Versión resumida. http://www.fao.org/3/ca9231es/CA9231ES.pdfFito, P., Andrb, A., Chiralt, A., & Pardo, P. (1996). Coupling of Hydrodynamic Mechanism and Phenomena During Vacuum Ikeatments in Solid Porous Food-Liquid Systems. 21, 229–240.Franklin, B. (1995). Las enzimas. 41–137. https://addi.ehu.es/bitstream/10810/14292/4/4- Cap�tulo I. Las enzimas.pdfGhosh, K. (2015). Application of Enzymes in Aqua Feeds. January 2006.Gisbert, E., Piedrahita, R. H., & Conklin, D. E. (2004). Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices. Aquaculture, 232(1–4), 455–470. https://doi.org/10.1016/S0044-8486(03)00457-5Govoni, J. J., Boehlert, G. W., Watanabe, Y., & Soao, U. (1986). The physiology of digestion in fish larvae. Hunter 1981, 2–3.Guerreiro, I., Vareilles, M. De, Pousão-ferreira, P., Rodrigues, V., Teresa, M., & Ribeiro, L. (2010). Effect of age-at-weaning on digestive capacity of white seabream ( Diplodus sargus ). Aquaculture, 300(1–4), 194–205. https://doi.org/10.1016/j.aquaculture.2009.11.019Guevara, W. (2003). FORMULACIÓN Y ELABORACIÓN DE DIETAS PARA PECES Y CRUSTÁCEOS. Universidad Nacional Jorge Basadre Grohmann.Guitiérrez Pulido, H. (2008). Análisis y diseño de experimentos.Hai, N. Van. (2015). Research findings from the use of probiotics in tilapia aquaculture: A review. Fish and Shellfish Immunology, 45(2), 592–597. https://doi.org/10.1016/j.fsi.2015.05.026Hassaan, M. S., El-Sayed, A. I. M., Soltan, M. A., Iraqi, M. M., Goda, A. M., Davies, S. J., El-Haroun, E. R., & Ramadan, H. A. (2019). Partial dietary fish meal replacement with cotton seed meal and supplementation with exogenous protease alters growth, feed performance, hematological indices and associated gene expression markers (GH, IGF-I) for Nile tilapia, Oreochromis niloticus. Aquaculture, 503(August 2018), 282–292. https://doi.org/10.1016/j.aquaculture.2019.01.009Hassaan, Mohamed S., Soltan, M. A., & Abdel-Moez, A. M. (2015). Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Animal Feed Science and Technology, 201, 89–98. https://doi.org/10.1016/j.anifeedsci.2015.01.007He, Q., Zhu, L., Shen, Y., Lin, X., & Xiao, K. (2015). Evaluation of the effects of frozen storage on the microstructure of tilapia (Perciformes: Cichlidae) through fractal dimension method. LWT - Food Science and Technology, 64(2), 1283–1288. https://doi.org/10.1016/j.lwt.2015.07.036Hernández S, A. (2012). COMPORTAMIENTO PRODUCTIVO EN TILAPIA Oreochromis COMPORTAMIENTO PRODUCTIVO EN TILAPIA Oreochromis.Hettich, M. (2004). Evaluación de la digestibilidad de dietas en Trucha arcoiris (Oncorhynchus mykiss): sustitución parcial de harina de pescado por tres niveles de harina de Lupino blanco (Lupinus albus). Chile. Universidad Católica de Temuco.Hlophe-Ginindza, S. N., Moyo, N. A. G., Ngambi, J. W., & Ncube, I. (2016). The effect of exogenous enzyme supplementation on growth performance and digestive enzyme activities in Oreochromis mossambicus fed kikuyu-based diets. Aquaculture Research, 47(12), 3777–3787. https://doi.org/10.1111/are.12828Infante, J. L. Z., & Cahu, C. L. (2001). Ontogeny of the gastrointestinal tract of marine fish. 477–487.Jovanovic´, R., Levic´, J., Sredanovic´, S., Milisavljevic´, D., German, Đ., Đuragic´, O., & Obradovic´, S. (2009). New technologies and quality of trout and carp aquafeed. Archiva Zootechnica, 12(1), 18–26.Kaliyan, N., & Vance Morey, R. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337–359. https://doi.org/10.1016/j.biombioe.2008.08.005Kamarudin, M. S., Cruz, C. R. De, Saad, C. R., Romano, N., & Ramezani-fard, E. (2018). E ff ects of extruder die head temperature and pre-gelatinized taro and broken rice fl our level on physical properties of fl oating fi sh pellets. 236(December 2017), 122–130. https://doi.org/10.1016/j.anifeedsci.2017.12.007Kannadhason, S., Rosentrater, K. A., Muthukumarappan, K., & Brown, M. L. (2010). Twin Screw Extrusion of DDGS-Based Aquaculture Feeds. Journal of the World Aquaculture Society, 41(SUPPL. 1), 1–15. https://doi.org/10.1111/j.1749-7345.2009.00328.xKetnawa, S., Benjakul, S., Martínez-alvarez, O., & Rawdkuen, S. (2014). Three-phase partitioning and proteins hydrolysis patterns of alkaline proteases derived from fish viscera. SEPARATION AND PURIFICATION TECHNOLOGY, 132, 174–181. https://doi.org/10.1016/j.seppur.2014.05.006Khalafalla, M., Bassiouni, M., Eweedah, N., Elmezyne, & Elmezyne Heba, M. (2010). Performance of Nile tilapia (Oreochromis niloticus) fingerlings fed on diets containing different levels of amecozyme®. Journal of Agriculture Research, 36, 111–122.Klomklao, S., Kishimura, H., & Benjakul, S. (2013). Use of viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus) for the production of protein hydrolysate from toothed ponyfish (Gazza minuta) muscle. Food Chemistry, 136(2), 1006–1012. https://doi.org/10.1016/j.foodchem.2012.09.037Kraugerud, O. F., Jorgensen, H. Y., & Svihus, B. (2011). Physical properties of extruded fish feed with inclusion of different plant (legumes, oilseeds, or cereals) meals. Animal Feed Science and Technology, 163(2–4), 244–254. https://doi.org/10.1016/j.anifeedsci.2010.11.010Krogdahl, Å., Sundby, A., & Holm, H. (2015). Characteristics of digestive processes in Atlantic salmon (Salmo salar). Enzyme pH optima, chyme pH, and enzyme activities. Aquaculture, 449, 27–36. https://doi.org/10.1016/j.aquaculture.2015.02.032Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23(4), 411–456. https://doi.org/10.1016/S0168-6445(99)00006-6Kumar, N., Sarkar, B. C., & Sharma, H. K. (2010). Development and characterization of extruded product of carrot pomace , rice flour and pulse powder. 4(November), 703–717.Kurt.A.R., Muthukumarappan,K. and Kannadhason, S. (2009). Effects of in gredients and extrusion parameters on aquafeeds containing DDGS and potato starch. Journal of Aquaculture Feed Science and Nutrition, 1(1), 22–38.Lall, S. P., & Dumas, A. (2015). Nutritional requirements of cultured fish. In Feed and Feeding Practices in Aquaculture (Issue iii). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100506-4.00003-9Lamichhane, S., Sahtout, K., Smillie, J., & Scott, T. A. (2015). Vacuum coating of pelleted feed for broilers: Opportunities and challenges. Animal Feed Science and Technology, 200(1), 1–7. https://doi.org/10.1016/j.anifeedsci.2014.11.015Lamichhane, Santosh. (2015). Evaluation of vacuum post-pellet applications of bioactives to broiler feed on efficacy and protected delivery. July. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1019.6922&rep=rep1&type=pdfLatuz, O. M. (2004). Comparación entre Extruído y Pelletizado en Alimentos de Camarones.Lauff, M., & Hofer, R. (1984). Proteolytic enzymes in fish development and the importance of dietary enzymes. 37, 335–346.Li, X. Q., Zhang, X. Q., Kabir Chowdhury, M. A., Zhang, Y., & Leng, X. J. (2019). Dietary phytase and protease improved growth and nutrient utilization in tilapia (Oreochromis niloticus × Oreochromis aureus) fed low phosphorus and fishmeal-free diets. Aquaculture Nutrition, 25(1), 46–55. https://doi.org/10.1111/anu.12828Lin, S., Mai, K., & Tan, B. (2007). Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus x O. aureus. Aquaculture Research, 38(15), 1645–1653. https://doi.org/10.1111/j.1365-2109.2007.01825.xLopez Villagomez, B. R., & Cruz Benavidez, L. adalberto. (2011). Elaboración de un probiótico a base de microoganismo nativos y evaluación de su efecto benéfico al procesodigestivo de la tilapia roja (Oreochromis spp) en etapa de engorde en la zona de santo Domingo.Lückstädts, C. (2007). The use of acidifiers in fisheries and aquaculture. Acidifiers in Animal Nutrition: A Guide to Feed Preservation and Acidification to Promote Animal Performance, 044, 71 – 79. https://doi.org/10.1079/PAVSNNR20083044Maas, R. M., Verdegem, M. C. J., Dersjant-Li, Y., & Schrama, J. W. (2018). The effect of phytase, xylanase and their combination on growth performance and nutrient utilization in Nile tilapia. Aquaculture, 487(September 2017), 7–14. https://doi.org/10.1016/j.aquaculture.2017.12.040Maas, R. M., Verdegem, M. C. J., & Schrama, J. W. (2019). Effect of non-starch polysaccharide composition and enzyme supplementation on growth performance and nutrient digestibility in Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, 25(3), 622–632. https://doi.org/10.1111/anu.12884Magalhães, R., Lopes, T., Martins, N., Díaz-Rosales, P., Couto, A., Pousão-Ferreira, P., Oliva-Teles, A., & Peres, H. (2016). Carbohydrases supplementation increased nutrient utilization in white seabream (Diplodus sargus) juveniles fed high soybean meal diets. Aquaculture, 463, 43–50. https://doi.org/10.1016/j.aquaculture.2016.05.019Martelo, Y., Cortés, M., & Restrepo, D. (2011). Dinámica de impregnación al vacío en apio (Apium graveolens L.) y pepino (Cucumis sativus L.). Revista MVZ Cordoba, 16(2), 2584–2592.Meng, X., Threinen, D., Hansen, M., & Driedger, D. (2010). Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack. Food Research International, 43(2), 650–658. https://doi.org/10.1016/j.foodres.2009.07.016Mesenguer H, E. (2017). Estudio del biofouling asociado a cultivos marinos “ offshore ” en el mediterr á neo espa ñ ol. https://riunet.upv.es/bitstream/handle/10251/85679/MESEGUER - ESTUDIO DEL BIOFOULING ASOCIADO A CULTIVOS MARINOS %22OFFSHORE%22 EN EL MEDITERRÁNEO ESPA....pdf?sequence=1Minagricultura, M. de A. y D. R. (2018). Cadena de la AcuiculturaI, direccion de cadenas pecuarias, pesqueras y acuicolas. Ministerio de Agricultura y Desarrollo Rural, 20. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2018-09-30 Cifras Sectoriales.pdfMinagricultura, M. de A. y D. R. (2019a). Cadena de la Acuicultura Dirección de cadenas pecuarias, pesqueras y acuícolas. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2019-03-30 Cifras Sectoriales.pdfMinagricultura, M. de A. y D. R. (2019b). Estrategia de política para el sector de pesca y acuicultura. 21. https://sioc.minagricultura.gov.co/Documentos/6. Documento de Politica pesca y acuicultura Abril8de2019 31 Jul 2019.pdfMinagricultura, M. de A. y D. R., DANE, D. A. N. de E., & SIPSA, S. de información de precios y abastecimiento del sector agropecuario. (2014). El cultivo de la tilapia roja (Orechromis sp.) en estanques de tierra, fuente de proteína animal de excelente calidad. Boletín Mensual Insumos y Factores Asociados a La Producción Agropecuaria, 21.Minagricultura, M. de A. y D. R., Unicauca, U. del C., & Crepic, C. regional de productividad e innovación del C. (2010). Evaluación de ensilaje biologico de residuos de pescado en la alimentación de tilapia roja (Oreochromis Spp).Mirzakhani, M. K., Abedian Kenari, A., & Motamedzadegan, A. (2018). Prediction of apparent protein digestibility by in vitro pH-stat degree of protein hydrolysis with species-specific enzymes for Siberian sturgeon (Acipenser baeri, Brandt 1869). Aquaculture, 496(April), 73–78. https://doi.org/10.1016/j.aquaculture.2018.07.014Montgomery. (2001). Design and Analysis of Experiments, New York.Morken, T., Fjeld, O., Barrows, F. T., Sørensen, M., Storebakken, T., & Øverland, M. (2011). Sodium diformate and extrusion temperature affect nutrient digestibility and physical quality of diets with fi sh meal and barley protein concentrate for rainbow trout ( Oncorhynchus mykiss ). Aquaculture, 317(1–4), 138–145. https://doi.org/10.1016/j.aquaculture.2011.04.020Moura, G. D. S., Arruda, E., Lanna, T., Filer, K., Luciano, D., Donzele, J. L., Goreti, M., Oliveira, D. A., & De, S. T. (2012). Revista Brasileira de Zootecnia Effects of enzyme complex SSF ( solid state fermentation ) in pellet diets for Nile tilapia. 2139–2143.Natabirwa, H., Nakimbugwe, D., Lung, M., & Muyonga, J. H. (2018). LWT - Food Science and Technology Optimization of Roba1 extrusion conditions and bean extrudate properties using response surface methodology and multi-response desirability function. LWT - Food Science and Technology, 96(January), 411–418. https://doi.org/10.1016/j.lwt.2018.05.040Ng, W. K., & Romano, N. (2014). A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Reviews in Aquaculture, 5(4), 220–254. https://doi.org/10.1111/raq.12014Nicovita. (2010). Manual de crianza Tilapia.No name. (2003). Acerca del cultivo de tilapia nilotica y tilapia roja. https://www.agroindustria.gob.ar/sitio/areas/acuicultura/cultivos/especies/_archivos//000008-Tilapia/071201_Acerca del Cultivo de Tilapia Roja o Del Nilo.pdfOvissipour, M., Abedian, A., Motamedzadeganb, A., Rasco, B., Safari, R., & Shahiri, H. (2009). the effect of enzymatic hydrolysis time and temperature on the propierties of protein hydrolysatea from persian sturgeon (acipenser persicus) viscera. Food chemistry (pp. 238–242).Palacios, J., Santander, C., Zambrano, A., & López, J. (2007). Evaluación comparativa de prebióticos y probióticos incorporados en el elimento comercial sobre el crecimiento y sobre la sobrevivencia de una especie nativa, el Sábalo amazónico (Brycon melanopterus) y una especie foránea, trucha arcoiris (Oncorhynchus m. Revista Electrónica de Ingenieria En Producción Acuícola, 2, 191–229.Panarese, V., Dejmek, P., Rocculi, P., & Gómez Galindo, F. (2013). Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innovative Food Science and Emerging Technologies, 18, 169–176. https://doi.org/10.1016/j.ifset.2013.01.008Panné, S. (2015). Digestibilidad proteica de dietas para “Rhamdia Qhelen” utilizando fuentes alternativas de proteina en remplazo de la harina de pescado. In Escuela para graduado ing. agr. Alberto Soriano (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004Pantoja, J. O., Sanchez, S. M., & Hoyos, J. L. (2011). Obtención de un alimento extruido para tilapia roja (Oreochormis spp) utilizando ensilaje biologico de pescado. Biotenologia En El Sector Agropecuario y Agroindustrial, 9 N° 2, 178–187.Pardo, X. M. (2010). Evaluacion del cultivo de tilapia del nilo ( oreochromis niloticus ) y tilapia roja ( oreochromis sp .) en diferentes sistemas intensivos de cultivo en colombia.Paredes Ruiz, F. M. H. (2013). Universidad autónoma metropolitana unidad iztapalapa ". http://148.206.53.84/tesiuami/UAMI15809.pdfPariza, M. W., & Cook, M. (2010). Determining the safety of enzymes used in animal feed. Regulatory Toxicology and Pharmacology, 56(3), 332–342. https://doi.org/10.1016/j.yrtph.2009.10.005Peña, M. A. R., Muñoz, L. S., & Leterme, P. (2005). Desarrollo de una metodología in vitro para estimar la tasa de fermentación de los forrajes en el intestino grueso del cerdo. Acta Agronómica, 54(4), 47–54. http://www.revistas.unal.edu.co/index.php/acta_agronomica/article/view/124/346Perdomo, D. A., Corredor, Z., & Ramirez Iglesias, L. (2012). Características físico-quimicas y morfométricas en la crianza en cautiverio de la tilapia roja (Oreochromis spp) en zona cálida tropical. Mundo Pecuario, VIII, 166–171. http://www.saber.ula.ve/bitstream/123456789/36078/1/articulo3.pdfPerea, C., Garcés, Y. J., & Hoyos, J. L. (2011). EVALUATION OF FISH WASTE BIOLOGICAL SILAGE IN RED TILAPIA FEEDING (Oreochromis spp). Biotecnología En El Sector Agropecuario y Agroindustrial, 9(1), 60–68.Perera, E., Fraga, I., Carrillo, O., Díaz-Iglesias, E., Cruz, R., Báez, M., & Galich, G. S. (2005). Evaluation of practical diets for the Caribbean spiny lobster Panulirus argus (Latreille, 1804): Effects of protein sources on substrate metabolism and digestive proteases. Aquaculture, 244(1–4), 251–262. https://doi.org/10.1016/j.aquaculture.2004.11.022Pérez, M., & Ramos, I. (2015). Crecimiento de las tilapias Oreochromis. 30–93. http://riul.unanleon.edu.ni:8080/jspui/bitstream/123456789/3501/1/228251.pdfPokniak, J., Cornejo, S., Galleguillos, C., Larraí, C., & Battaglia, J. (1990). Efectos de la extrusión o peletización de la dieta de engorda sobre la respuesta productiva de la trucha arco iris (Oncorhynchus mykiss) tamaño plato. Scielo.Portilla, M., Erazo, S., Galé, C., Garcia, I., Moler, J., & Blanca, M. (2006). Manual práctico del paquete estadistico SPSS para Windows (3a edición revisada). Universidad Pública de Navarra, Navarra.Rakhi, Kumari, Gupta, S., Singh, A. R., Ferosekhan, S., Kothari, D. C., Pal, A. K., & Jadhao, S. B. (2013). Chitosan Nanosincapsulado Exógena Tripsina Biomimics Zymogen-Like Enzyme in Fish Gastrointestinal Tract.Ramos, L. M. (2017). Tesis Doctoral Tesis Doctoral - Pdf. Universidad Compluense de Madrid, 1–85. https://docplayer.es/77540368-Tesis-doctoral-tesis-doctoral.htmlReda, R. M., Mahmoud, R., Selim, K. M., & El-araby, I. E. (2016). Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 50, 255–262. https://doi.org/10.1016/j.fsi.2016.01.040Restrepo, A., Cortés, M., & Rojano, B. (2009). Shelf life of strawberry ( fragaria ananassa duch . ) fortified with vitamin E. Scielo, 163–175.Rodriguez, Y. E., Laitano, M. V, Pereira, N. A., López-Zavala, A. A., Haran, N. S., & Fernández-Gimenez, A. V. (2018). Exogenous enzymes in aquaculture: Alginate and alginate-bentonite microcapsules for the intestinal delivery of shrimp proteases to Nile tilapia. Aquaculture, 490(February), 35–43. https://doi.org/10.1016/j.aquaculture.2018.02.022Ronald., W. (2015). New developments in aquatic feed ingredients, and potential of enzyme supplements. Hagerman Fish Culture Experiment Station, University of Idaho, 3059F National Fish Hatchery Road, Hagerman, ID 83332, USA.Rosero, V., Cuatin, Mi., & Hoyos, J. L. (2016). Calidad física de un alimento extruido para tilapia ( Oreochromis spp .) con inclusión de ácidos orgánicos Physical quality of an extruded food for tilapia ( Oreochromis spp .) including organic acids. 34, 1163–1165. https://doi.org/10.15446/agron.colomb.v34n1supl.58333Ruiz, K. (2017). Selección de bacterias con potencial probiótico y su efecto en el crecimiento y sobrevivencia de alevinos de tilapia roja (oreochromis spp) (Vol. 2003).Saavedra Martínez, M. A. (2006). Manejo del cultivo de tilapia. http://www.crc.uri.edu/download/MANEJO-DEL-CULTIVO-DE-TILAPIA-CIDEA.pdfSamidjan, I., Dody, S., & Rachmawati, D. (2019). Technology engineering of rearing red tilapia saline (oreochromis niloticus) fed on artificial diet enriched with protease enzymes in an eroded brackish water pond. IOP Conference Series: Earth and Environmental Science, 406(1). https://doi.org/10.1088/1755-1315/406/1/012030Samuelsen, T. A., Mjøs, S. A., & Oterhals, Å. (2013). Impact of variability in fishmeal physicochemical properties on the extrusion process , starch gelatinization and pellet durability and hardness. Animal Feed Science and Technology, 179(1–4), 77–84. https://doi.org/10.1016/j.anifeedsci.2012.10.009Sanchez, S. (2019). Establecimiento del proceso de impregnación para la obtención de un concentrado con potencial probiótico para la alimentación piscícola. 23(3), 2019Sanchez, S., & Pantoja, J. (2011). Obtención de un alimento para tilapia roja (oreochromis spp), elaborado mediante procesos de peletizado y extrusión, utilizando ensilaje biológico de pescado como fuente de proteína.Sánchez Trujillo, S. M. (2019). Establecimiento Del Proceso De Impregnación Para La Obtención De Un Concentrado Con Potencial Probiótico Para La Alimentación Piscícola (Vol. 4, Issue 1). Universidad Católica de Manizales.Santamaria, S. (2013). Nutricion y alimentacion en peces nativos. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004Sanz, F. (2009). La nutrición y alimentación en piscicultura. https://books.google.com.co/books?id=NEqkj2By-kEC&printsec=frontcover&dq=La+nutrición+y+alimentación+en+piscicultura&hl=es&sa=X&ved=0ahUKEwjx39vV09rZAhUMzFMKHaoNCUIQ6AEIJzAA#v=onepage&q=La nutrición y alimentación en piscicultura&f=falseSharawy, Z., Goda, A. M. A.-S., & Hassaan, M. S. (2016). Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, Postlarvae. Animal Feed Science and Technology, 212, 90–99. http://linkinghub.elsevier.com/retrieve/pii/S0377840115300821Shi, Z., Li, X. Q., Chowdhury, M. A. K., Chen, J. N., & Leng, X. J. (2016). Effects of protease supplementation in low fish meal pelleted and extruded diets on growth, nutrient retention and digestibility of gibel carp, Carassius auratus gibelio. Aquaculture, 460, 37–44. https://doi.org/10.1016/j.aquaculture.2016.03.049Singh, B., Rachna, Hussain, S. Z., & Sharma, S. (2015). Response Surface Analysis and Process Optimization of Twin Screw Extrusion Cooking of Potato-Based Snacks. Journal of Food Processing and Preservation, 39(3), 270–281. https://doi.org/10.1111/jfpp.12230Singh, R., Singh, S., & Hashmi, M. S. J. (2017). Polymer Twin Screw Extrusion With Filler Powder Reinforcement. In Reference Module in Materials Science and Materials Engineering. Elsevier Ltd. https://doi.org/10.1016/b978-0-12-803581-8.04162-xSmith, G., Guillemin, A., Degraeve, P., & Noe, C. (2008). Influence of impregnation solution viscosity and osmolarity on solute uptake during vacuum impregnation of apple cubes. 86, 475–483. https://doi.org/10.1016/j.jfoodeng.2007.10.023Soares, M., Jr, S., Assumpç, F., Melo, C., Moura, A. De, Victoria, M., & Grossmann, E. (2015). LWT - Food Science and Technology Physical quality of snacks and technological properties of pre-gelatinized fl ours formulated with cassava starch and dehydrated cassava bagasse as a function of extrusion variables. 62, 1112–1119. https://doi.org/10.1016/j.lwt.2015.02.030Song, H., Tan, B., Chi, S., Liu, Y., & Chowdhury, M. A. K. (2017). The effects of a dietary protease-complex on performance , digestive and immune enzyme activity , and disease resistance of Litopenaeus vannamei fed high plant protein diets. 2550–2560. https://doi.org/10.1111/are.13091Song, S. K., Beck, B. R., Kim, D., Park, J., Kim, J., Kim, H. D., & Ringø, E. (2014). Prebiotics as immunostimulants in aquaculture: A review. Fish and Shellfish Immunology, 40(1), 40–48. https://doi.org/10.1016/j.fsi.2014.06.016Sørensen, M. (2012). Aquaculture Nutrition 2012 18 ; 233–248. Aquaculture Nutrition. https://doi.org/10.1111/j.1365-2095.2011.00924.xSørensen, M., Stjepanovic, N., Romarheim, O. H., Krekling, T., & Storebakken, T. (2009). Soybean meal improves the physical quality of extruded fish feed. Animal Feed Science and Technology, 149(1–2), 149–161. https://doi.org/10.1016/j.anifeedsci.2008.05.010Strauch, W. (n.d.). High-energy poultry feed with vacuum technology. 5(8), 28–31.Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1–11. https://doi.org/10.1016/j.molcatb.2013.01.011Thiry, J., Krier, F., & Evrard, B. (2015). A review of pharmaceutical extrusion : Critical process parameters. International Journal of Pharmaceutics, 479(1), 227–240. http://doi.org/10.1016/j.ijpharm.2014.12.036Thomas, M., & van der Poel, A. F. B. (1996). Physical quality of pelleted animal feed 1. Criteria for pellet quality. Animal Feed Science and Technology, 61(96), 89–112. https://doi.org/10.1016/0377-8401(96)00949-2Tumuluru, J. S., Tabil, L., Opoku, A., Mosqueda, M. R., & Fadeyi, O. (2010). Effect of process variables on the quality characteristics of pelleted wheat distiller’s dried grains with solubles. Biosystems Engineering, 105(4), 466–475. https://doi.org/10.1016/j.biosystemseng.2010.01.005Tyapkova, O., Osen, R., Wagenstaller, M., Baier, B., Specht, F., & Zacherl, C. (2016). Replacing fishmeal with oilseed cakes in fish feed – A study on the influence of processing parameters on the extrusion behavior and quality properties of the feed pellets. Journal of Food Engineering, 191, 28–36. https://doi.org/10.1016/j.jfoodeng.2016.07.006Umar, S., Kamarudin, M. S., & Ramezani-Fard, E. (2013). Physical properties of extruded aquafeed with a combination of sago and tapioca starches at different moisture contents. Animal Feed Science and Technology, 183(1–2), 51–55. https://doi.org/10.1016/j.anifeedsci.2013.03.009Universidad del Cauca, A. (2016). Manejo de laboratorio de bioensayos y digestibilidad in vivo (No. 1).Usgame, D., Usgame, G., Valverde, C., & Espinosa, A. (2008). Informe general del estudio de prospectiva tecnológica de la cadena colombiana de la tilapia en colombia. 1–95.Vásquez-González, A., Arredondo-Figueroa, J. L., Mendoza-Martínez, G. D., Teresa Viana-Castrillón, M., Plata-Pérez, F. X., Arredondo-Figueroa, J. L., & Mendoza, G. D. (2018). Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana, Unidad Xochimilco. Calzada del Hueso 1100, col. Villa Quietud. 28(1), 121–127.Vásquez-Salazar, R. D., Pupo Urrutia, A. C., & Jiménez Aguas, H. J. (2014). Sistema energéticamente eficiente y de bajo costo para controlar la temperatura y aumentar el oxígeno en estanques de cultivo de alevines de tilapia roja An Energy Efficient and Low Cost System, to Control the Temperature and the Oxygen Increase, in the R. Revista Facultad de Ingeniería (Fac. Ing.), 23(36), 9–23. http://www.scielo.org.co/pdf/rfing/v23n36/v23n36a02.pdfVillamuel Castillo, L. W. (2011). II. Revisión Literaria. http://repositorio.utn.edu.ec/bitstream/123456789/211/10/03 AGP 85 REVICION LITERARIA.pdfVisbal B., T. E., Morillo S., M., Altuve P., D., Aguirre, P., & Medina G., A. L. (2013). Nivel óptimo de proteínas en la dieta para alevines de Prochilodus mariae. Revista Chilena de Nutricion, 40(2), 141–146. https://doi.org/10.4067/S0717-75182013000200008von Danwitz, A., van Bussel, C. G. J., Klatt, S. F., & Schulz, C. (2016). Dietary phytase supplementation in rapeseed protein based diets influences growth performance, digestibility and nutrient utilisation in turbot (Psetta maxima L.). Aquaculture, 450, 405–411. https://doi.org/10.1016/j.aquaculture.2015.07.026Vu, T. (1983). Etude histoenzymologique des activities proteasiques dans le tube digestif des larves et des adultes de bar, Dicentrarhus labrax (L). Aquaculture, 32, 57–69.Walford, J., & Lam, T. J. (1993). Development of digestive tract and proteolytic. 109, 187–205.Wijnoogst, J., & Wohnsen, F. (2017). Process for manufacture of feed for aquaculture species. https://doi.org/10.1016/j.(73)Wolska, J., Jonkers, J., Holst, O., & Adlercreutz, P. (2015). The addition of transglutaminase improves the physical quality of extruded fish feed. Biotechnology Letters, 37(11), 2265–2270. https://doi.org/10.1007/s10529-015-1911-4Yag, S. (2008). Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from. 86, 122–132. https://doi.org/10.1016/j.jfoodeng.2007.09.018Yasumaru, F., & Lemos, D. (2014). Species specific in vitro protein digestion (pH-stat) for fish: Method development and application for juvenile rainbow trout (Oncorhynchus mykiss), cobia (Rachycentron canadum), and Nile tilapia (Oreochromis niloticus). Aquaculture, 426–427, 74–84. https://doi.org/10.1016/j.aquaculture.2014.01.012Yu, G., Chen, D., Yu, B., He, J., Zheng, P., Mao, X., Huang, Z., Luo, J., Zhang, Z., & Yu, J. (2016). Coated protease increases ileal digestibility of protein and amino acids in weaned piglets. Animal Feed Science and Technology. https://doi.org/10.1016/j.anifeedsci.2016.02.006Yu, Z.-L., Zeng, W.-C., Zhang, W.-H., Liao, X.-P., & Shi, B. (2014). Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin. Ultrasonics Sonochemistry, 21(3), 930–936. https://doi.org/10.1016/j.ultsonch.2013.11.002Zavala-leal, I., & Dumas, S. (2011). Organogénesis durante el período larval en peces. January.Zhou, Y., Yuan, X., Liang, X. F., Fang, L., Li, J., Guo, X., Bai, X., & He, S. (2013). Enhancement of growth and intestinal flora in grass carp: The effect of exogenous cellulase. Aquaculture, 416–417, 1–7. https://doi.org/10.1016/j.aquaculture.2013.08.023Zhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers, 122, 456–480. https://doi.org/10.1016/j.carbpol.2014.10.063López.A, F. ., & Martinez Díaz, M. . (1998). Fisiología de la Digestión en Larvas de Peces Marinos y sus Aplicaciones al Cultivo Larvario en Masa. AquaTIC. Revista Científica Internacional de Acuicultura En Español, 5(5).EFECTO DE LA ADICIÓN DE ÁCIDOS ORGÁNICOS Y ENZIMAS EN LOS PARÁMETROS DE CALIDAD FÍSICA Y NUTRICIONAL DE UN ALIMENTO EXTRUIDO PARA TILAPIA (Oreochromis spp) EN LA FASE DE ALEVINAJEColcienciasInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80398/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1061719053.2020.pdf1061719053.2020.pdfTesis de Maestría en Ingeniería Agroindutrialapplication/pdf1842409https://repositorio.unal.edu.co/bitstream/unal/80398/2/1061719053.2020.pdfd59de8349b4c69ef91187e43e4ba9185MD52THUMBNAIL1061719053.2020.pdf.jpg1061719053.2020.pdf.jpgGenerated Thumbnailimage/jpeg5144https://repositorio.unal.edu.co/bitstream/unal/80398/3/1061719053.2020.pdf.jpg5e37ab1e9d4093d36df43419c654d6cfMD53unal/80398oai:repositorio.unal.edu.co:unal/803982023-07-29 23:03:47.327Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |