Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo
La regresión simbólica, ha tomado gran fuerza en los últimos años debido a su capacidad de deducir la ecuación y aquellos parámetros que mejor aproximan la relación entre la variable de salida y el conjunto de variables de entrada; sin embargo, al ser aplicada en la predicción de series de tiempo, p...
- Autores:
-
Martínez, Carlos Alberto
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/8483
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
Pronóstico, Series de tiempo, Regresión simbólica, Programación genética.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_fa88021f87619f4c8521fe05fe13dfb8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/8483 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo |
title |
Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo |
spellingShingle |
Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo 0 Generalidades / Computer science, information and general works Pronóstico, Series de tiempo, Regresión simbólica, Programación genética. |
title_short |
Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo |
title_full |
Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo |
title_fullStr |
Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo |
title_full_unstemmed |
Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo |
title_sort |
Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo |
dc.creator.fl_str_mv |
Martínez, Carlos Alberto |
dc.contributor.advisor.spa.fl_str_mv |
Velásquez Henao, Juan David (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Martínez, Carlos Alberto |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works |
topic |
0 Generalidades / Computer science, information and general works Pronóstico, Series de tiempo, Regresión simbólica, Programación genética. |
dc.subject.proposal.spa.fl_str_mv |
Pronóstico, Series de tiempo, Regresión simbólica, Programación genética. |
description |
La regresión simbólica, ha tomado gran fuerza en los últimos años debido a su capacidad de deducir la ecuación y aquellos parámetros que mejor aproximan la relación entre la variable de salida y el conjunto de variables de entrada; sin embargo, al ser aplicada en la predicción de series de tiempo, presenta limitaciones en la incorporación de todos los rezagos en los individuos, la inclusión de los modelos de predicción utilizados tradicionalmente en la literatura y la redundancia de operadores que no mejoran los resultados del modelo. Para abordarlos, en este trabajo se pretendió modificar el algoritmo de programación genética original, incorporando los bloques funcionales (funciones que se incorporan en los individuos del algoritmo de programación genética original correspondientes a modelos de predicción de la literatura) y modificando el operador de cruce, lo cual permitió la inclusión de los modelos actuales de predicción y la focalización de los individuos en regiones de interés durante el proceso de exploración. Adicionalmente las modificaciones propuestas fueron implementadas en un prototipo en el lenguaje R, y validado contra series de tiempo con ecuación de generación conocida (para verificar la capacidad de deducción de la ecuación a partir de los datos) y benchmark de la literatura de predicción de series de tiempo como son las series: AIRLINE, SUNSPOT, LYNX, INTERNET y POLLUTION, cuyos resultados en términos de medidas de error comparados contra modelos ARIMA, SVM, MLP, NN, DAN y el algoritmo original de GP, fueron mejores tanto en el entrenamiento como la predicción./Abstract.The symbolic regression has taken great strength in recent years due to its ability to deduce the equation and the parameters that best approximate the relationship between the output variable and the set of input variables, however, when applied to the prediction time series, has limited incorporation of all the lags in the individual, including predictive models traditionally used in the literature and the redundancy of operators that do not improve model results. To address in this paper we tried to modify the original genetic programming algorithm, incorporating the functional blocks (functions that are incorporated in the individuals in the original genetic programming algorithm for prediction models from the literature) and modifying the crossover operator, which allowed the inclusion of current predictive models and targeting individuals in regions of interest during the scanning process. Additionally, the proposed changes were implemented in a prototype in the R language, and validated against time series with known generating equation (to verify the deduction of the equation from the data) and literature benchmark series prediction time series such as: AIRLINE, Sunspot, Lynx, Internet and POLLUTION, the results in terms of error measures compared to ARIMA models, SVM, MLP NN, DAN and original GP algorithm were better in both training as the prediction. |
publishDate |
2011 |
dc.date.issued.spa.fl_str_mv |
2011-10-31 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-24T17:31:26Z |
dc.date.available.spa.fl_str_mv |
2019-06-24T17:31:26Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/8483 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/5133/ |
url |
https://repositorio.unal.edu.co/handle/unal/8483 http://bdigital.unal.edu.co/5133/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Sistemas Escuela de Sistemas |
dc.relation.references.spa.fl_str_mv |
Martínez, Carlos Alberto (2011) Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo. Maestría thesis, Universidad Nacional de Colombia Sede Medellín. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/8483/1/Problemas_abiertos_en_la_aplicaci%c3%b3n_de_la_Regresi%c3%b3n_Simb%c3%b3lica_en_el_pron%c3%b3stico_de_series_de_tiempo.pdf https://repositorio.unal.edu.co/bitstream/unal/8483/2/Problemas_abiertos_en_la_aplicaci%c3%b3n_de_la_Regresi%c3%b3n_Simb%c3%b3lica_en_el_pron%c3%b3stico_de_series_de_tiempo.pdf.jpg |
bitstream.checksum.fl_str_mv |
0a33f035ba87e9be06f8d49f375de07c dd69fecd53b1a243d8cdb19ee2e6bd60 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089684452638720 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velásquez Henao, Juan David (Thesis advisor)97c5eef3-0c5a-431e-af52-19251f9e98e1-1Martínez, Carlos Alberto10683375-6591-4c1e-879e-1bd1fb2d9e383002019-06-24T17:31:26Z2019-06-24T17:31:26Z2011-10-31https://repositorio.unal.edu.co/handle/unal/8483http://bdigital.unal.edu.co/5133/La regresión simbólica, ha tomado gran fuerza en los últimos años debido a su capacidad de deducir la ecuación y aquellos parámetros que mejor aproximan la relación entre la variable de salida y el conjunto de variables de entrada; sin embargo, al ser aplicada en la predicción de series de tiempo, presenta limitaciones en la incorporación de todos los rezagos en los individuos, la inclusión de los modelos de predicción utilizados tradicionalmente en la literatura y la redundancia de operadores que no mejoran los resultados del modelo. Para abordarlos, en este trabajo se pretendió modificar el algoritmo de programación genética original, incorporando los bloques funcionales (funciones que se incorporan en los individuos del algoritmo de programación genética original correspondientes a modelos de predicción de la literatura) y modificando el operador de cruce, lo cual permitió la inclusión de los modelos actuales de predicción y la focalización de los individuos en regiones de interés durante el proceso de exploración. Adicionalmente las modificaciones propuestas fueron implementadas en un prototipo en el lenguaje R, y validado contra series de tiempo con ecuación de generación conocida (para verificar la capacidad de deducción de la ecuación a partir de los datos) y benchmark de la literatura de predicción de series de tiempo como son las series: AIRLINE, SUNSPOT, LYNX, INTERNET y POLLUTION, cuyos resultados en términos de medidas de error comparados contra modelos ARIMA, SVM, MLP, NN, DAN y el algoritmo original de GP, fueron mejores tanto en el entrenamiento como la predicción./Abstract.The symbolic regression has taken great strength in recent years due to its ability to deduce the equation and the parameters that best approximate the relationship between the output variable and the set of input variables, however, when applied to the prediction time series, has limited incorporation of all the lags in the individual, including predictive models traditionally used in the literature and the redundancy of operators that do not improve model results. To address in this paper we tried to modify the original genetic programming algorithm, incorporating the functional blocks (functions that are incorporated in the individuals in the original genetic programming algorithm for prediction models from the literature) and modifying the crossover operator, which allowed the inclusion of current predictive models and targeting individuals in regions of interest during the scanning process. Additionally, the proposed changes were implemented in a prototype in the R language, and validated against time series with known generating equation (to verify the deduction of the equation from the data) and literature benchmark series prediction time series such as: AIRLINE, Sunspot, Lynx, Internet and POLLUTION, the results in terms of error measures compared to ARIMA models, SVM, MLP NN, DAN and original GP algorithm were better in both training as the prediction.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de SistemasEscuela de SistemasMartínez, Carlos Alberto (2011) Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo. Maestría thesis, Universidad Nacional de Colombia Sede Medellín.0 Generalidades / Computer science, information and general worksPronóstico, Series de tiempo, Regresión simbólica, Programación genética.Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALProblemas_abiertos_en_la_aplicación_de_la_Regresión_Simbólica_en_el_pronóstico_de_series_de_tiempo.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemasapplication/pdf1876646https://repositorio.unal.edu.co/bitstream/unal/8483/1/Problemas_abiertos_en_la_aplicaci%c3%b3n_de_la_Regresi%c3%b3n_Simb%c3%b3lica_en_el_pron%c3%b3stico_de_series_de_tiempo.pdf0a33f035ba87e9be06f8d49f375de07cMD51THUMBNAILProblemas_abiertos_en_la_aplicación_de_la_Regresión_Simbólica_en_el_pronóstico_de_series_de_tiempo.pdf.jpgProblemas_abiertos_en_la_aplicación_de_la_Regresión_Simbólica_en_el_pronóstico_de_series_de_tiempo.pdf.jpgGenerated Thumbnailimage/jpeg4758https://repositorio.unal.edu.co/bitstream/unal/8483/2/Problemas_abiertos_en_la_aplicaci%c3%b3n_de_la_Regresi%c3%b3n_Simb%c3%b3lica_en_el_pron%c3%b3stico_de_series_de_tiempo.pdf.jpgdd69fecd53b1a243d8cdb19ee2e6bd60MD52unal/8483oai:repositorio.unal.edu.co:unal/84832023-09-13 08:22:49.85Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |