Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización

ilustraciones, graficas

Autores:
Estupiñan Amaya, Mauren Rocio
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82200
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82200
https://repositorio.unal.edu.co/
Palabra clave:
080 - Colecciones generales::086 - Colecciones generales en español y portugués
Liofilización
Bioencapsulación
Freeze drying
Bioencapsulation
Agraz
Antocianinas
Compuestos bioactivos
Colorantes
Jugos de fruta
Polifenoles
Wild blueberry
Anthocyanins
Bioactive compounds
Colorants
Fruit juices
Polyphenols
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f36a3da0fd57a0cb4b33c982271b8377
oai_identifier_str oai:repositorio.unal.edu.co:unal/82200
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización
dc.title.translated.eng.fl_str_mv Andean Blueberry Juice Encapsulation in Microparticles of Maltodextrin and Gum Arabic by Freeze Drying and Spray Drying
title Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización
spellingShingle Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización
080 - Colecciones generales::086 - Colecciones generales en español y portugués
Liofilización
Bioencapsulación
Freeze drying
Bioencapsulation
Agraz
Antocianinas
Compuestos bioactivos
Colorantes
Jugos de fruta
Polifenoles
Wild blueberry
Anthocyanins
Bioactive compounds
Colorants
Fruit juices
Polyphenols
title_short Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización
title_full Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización
title_fullStr Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización
title_full_unstemmed Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización
title_sort Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización
dc.creator.fl_str_mv Estupiñan Amaya, Mauren Rocio
dc.contributor.advisor.none.fl_str_mv López Córdoba, Alex Fernando
Fuenmayor Bobadilla, Carlos Alberto
dc.contributor.author.none.fl_str_mv Estupiñan Amaya, Mauren Rocio
dc.subject.ddc.spa.fl_str_mv 080 - Colecciones generales::086 - Colecciones generales en español y portugués
topic 080 - Colecciones generales::086 - Colecciones generales en español y portugués
Liofilización
Bioencapsulación
Freeze drying
Bioencapsulation
Agraz
Antocianinas
Compuestos bioactivos
Colorantes
Jugos de fruta
Polifenoles
Wild blueberry
Anthocyanins
Bioactive compounds
Colorants
Fruit juices
Polyphenols
dc.subject.agrovoc.spa.fl_str_mv Liofilización
Bioencapsulación
dc.subject.agrovoc.eng.fl_str_mv Freeze drying
Bioencapsulation
dc.subject.proposal.spa.fl_str_mv Agraz
Antocianinas
Compuestos bioactivos
Colorantes
Jugos de fruta
Polifenoles
dc.subject.proposal.eng.fl_str_mv Wild blueberry
Anthocyanins
Bioactive compounds
Colorants
Fruit juices
Polyphenols
description ilustraciones, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-30T17:13:41Z
dc.date.available.none.fl_str_mv 2022-08-30T17:13:41Z
dc.date.issued.none.fl_str_mv 2022-08-29
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82200
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82200
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abad-García, B., Garmón-Lobato, S., Sánchez-Ilárduya, M. B., Berrueta, L. A., Gallo, B., Vicente, F., & Alonso-Salces, R. M. (2014). Polyphenolic contents in Citrus fruit juices: Authenticity assessment. European Food Research and Technology, 238(5), 803–818. https://doi.org/10.1007/s00217-014-2160-9
AGRONET. (2020). Reporte: área, producción y rendimiento nacional por cultivo. Obtenido de https:// www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Agudelo, C. D., Ceballos, N., Gómez-García, A., & Maldonado-Celis, M. E. (2018). Andean Berry (Vaccinium meridionale Swartz) Juice improves plasma antioxidant capacity and IL-6 levels in healthy people with dietary risk factors for colorectal cancer. Journal of Berry Research, 8(4), 251–261. https://doi.org/10.3233/JBR-180312
Ahmed, M., Akter, M. S., Lee, J. C., & Eun, J. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT - Food Science and Technology, 43(9), 1307–1312. https://doi.org/10.1016/j.lwt.2010.05.014
Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002
Alzate-Arbeláez, A. F., Dorta, E., López-Alarcón, C., Cortés, F. B., & Rojano, B. A. (2019). Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 294(September 2018), 503–517. https://doi.org/10.1016/j.foodchem.2019.05.085
Arango-Varela, S. S., Luzardo-Ocampo, I., Maldonado-Celis, M. E., & Campos-Vega, R. (2020). Andean berry (Vaccinium meridionale Swartz) juice in combination with Aspirin modulated anti-inflammatory markers on LPS-stimulated RAW 264.7 macrophages. Food Research International, 137(July), 109541. https://doi.org/10.1016/j.foodres.2020.109541
Arango-Varela, S. S., Luzardo-Ocampo, I., Reyes-Dieck, C., Yahia, E. M., & Maldonado-Celis, M. E. (2021). Antiproliferative potential of Andean Berry (Vaccinium meridionale Swartz) juice in combination with Aspirin in human SW480 colon adenocarcinoma cells. Journal of Food Biochemistry, 45(6), 1–16. https://doi.org/10.1111/jfbc.13760
Archaina, D., Vasile, F., Jiménez-Guzmán, J., Alamilla-Beltrán, L., & Schebor, C. (2019). Physical and functional properties of roselle (Hibiscus sabdariffa L.) extract spray dried with maltodextrin-gum arabic mixtures. Journal of Food Processing and Preservation, 43(9), e14065. https://doi.org/10.1111/jfpp.14065
Arocas, A., Varela, P., González-Miret, M. L., Salvador, A., Heredia, F. J., & Fiszman, S. M. (2013). Differences in Colour Gamut Obtained with Three Synthetic Red Food Colourants Compared with Three Natural Ones: pH and Heat Stability. International Journal of Food Properties, 16, 766–777
Arrazola, G., Herazo, I., & Alvis, A. (2014). Obtención y evaluación de la estabilidad de antocianinas de berenjena (Solanum melongena L.) en bebidas. Informacion Tecnologica, 25(3), 43–52. https://doi.org/10.4067/S0718-07642014000300007
Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/j.foodchem.2017.05.142
Barbosa Canovas, G. V., Ortega Rivas, E., Juliano, P., & Yan, H. (2005). Food Powders: Physical Properties, Processing, and Functionality. In Food Engineering Series (Issue 1). https://doi.org/10.1007/s13398-014-0173-7.2
Bastías-Montes, J. M., Choque-Chávez, M. C., Alarcón-Enos, J., Quevedo-León, R., Muñoz-Fariña, O., & Vidal-San-martín, C. (2019). Effect of spray drying at 150, 160, and 170 °c on the physical and chemical properties of maqui extract (Aristotelia chilensis (Molina) Stuntz). Chilean Journal of Agricultural Research, 79(1), 144–152. https://doi.org/10.4067/S0718-58392019000100144
Bednarska, M. A., & Janiszewska-Turak, E. (2020). The influence of spray drying parameters and carrier material on the physico-chemical properties and quality of chokeberry juice powder. Journal of Food Science and Technology, 57(2), 564–577. https://doi.org/10.1007/s13197-019-04088-8
Berk, Z. (2018). Food Process Engineering and Technology (A. P. is an imprint of Elsevier (ed.); Third edit)
Bernal, L. J., Melo, L. A., & Díaz Moreno, C. (2014). Evaluation of the Antioxidant Properties and Aromatic Profile During Maturation of The Blackberry (Rubus glaucus Benth) and The Bilberry (Vaccinium meridionale Swartz). Revista Facultad Nacional de Agronomía Medellín, 67(1), 7209–7218. https://doi.org/10.15446/rfnam.v67n1.42649
Bolson Moro, K. I., Beutinger Bender, A. B., Picolli da Silva, L., & Garcia Penna, N. (2021). Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. Food and Bioprocess Technology, 14(8), 1407–1431. https://doi.org/10.1007/s11947-021-02665-4
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm. Wiss. u. Technol, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Caliskan, G., & Dirim, S. N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308–314. https://doi.org/10.1016/j.powtec.2015.10.019
Casati, C. B., Baeza, R., & Sánchez, V. (2019). Physicochemical properties and bioactive compounds content in encapsulated freeze-dried powders obtained from blueberry, elderberry, blackcurrant and maqui berry. Journal of Berry Research, 9(3), 431–447. https://doi.org/10.3233/JBR-190409
Celis, M., Franco Tobon, Y., Agudelo, C., Arango, S., & Rojano, B. (2017). Andean Berry (Vaccinium meridionale Swartz). En E. Yahia (Ed.), Fruit and VegetablePhytochemicals: Chemistry and Human Health, 2nd ed (Vol. 2, págs. 869-882). Hoboken, NJ, USA: John Wiley & Sons Ltd.
Celis, M., Tobón, Y., Agudelo, C., Arango, S., & Rojano, B. (2017). Andean Berry (Vaccinium meridionale Swartz). En Fruit and Vegetable Phytochemicals: Chemistry and Human Health
Celli, G. B., Dibazar, R., Ghanem, A., & Brooks, M. S. L. (2016). Degradation kinetics of anthocyanins in freeze-dried microencapsulates from lowbush blueberries (Vaccinium angustifolium Aiton) and prediction of shelf-life. Drying Technology, 34(10), 1175–1184. https://doi.org/10.1080/07373937.2015.1099546
Cortés-Morales, E. A., Mendez-Montealvo, G., & Velazquez, G. (2021). Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Advances in Colloid and Interface Science, xxxx, 102398. https://doi.org/10.1016/j.cis.2021.102398
Espinosa Moncada, J., Marín Echeverri, C., Galvis Pérez, Y., Ciro Gómez, G., Aristizábal, J. C., Blesso, C. N., Fernandez, M. L., & Barona Acevedo, J. (2018). Evaluation of agraz consumption on adipocytokines, inflammation, and oxidative stress markers in women with metabolic syndrome. Nutrients, 10(11). https://doi.org/10.3390/nu10111639
Fejzié, A., & Cávar, S. (2014). Phenolic Compounds and Antioxidant Activity of Some Citruses. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 42(1–4), 2014
Fellows, P. J. (2017). Food Processing Technology Principles and Practice. In Food Processing Technology. https://doi.org/10.1016/b978-0-08-100522-4.00019-5
Fernandes, R. V. D. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101(1), 524–532. https://doi.org/10.1016/j.carbpol.2013.09.083
Ferrari, C. C., Marconi Germer, S. P., Alvim, I. D., & de Aguirre, J. M. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Drying Technology, 31(4), 470–478 https://doi.org/10.1080/07373937.2012.742103
Franceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2014). Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 32(2), 197–207. https://doi.org/10.1080/07373937.2013.814664
Franco Tobon, Y. N., Rojano, B. A., Arbeláez Alzate, A. F., Saavedra Morales, D. M., & Celis Maldonado, M. E. (2016). Efecto del tiempo de almacenamiento sobre las características fisicoquímicas, antioxidantes y antiproliferativa de néctar de agraz (Vaccinium meridionale Swartz). Archivos Latinoamericanos de Nutricion, 66(4), 261–271
Fredes, C., Becerra, C., Parada, J., & Robert, P. (2018). The microencapsulation of maqui (Aristotelia chilensis (Mol.) Stuntz) juice by spray-drying and freeze-drying produces powders with similar anthocyanin stability and bioaccessibility. Molecules, 23(5). https://doi.org/10.3390/molecules23051227
Gallego-Pelaez, E., Torres, D., Gomez, A., Posada, G., & Maldonado-Celis, M.-E. (2021). Consumption of osmo-dehydrated Andean Berry (Vaccinium meridionale Swartz) decreases levels of pro-inflammatory biomarkers of overweight and obese adults. Vitae, 28(2), 614–618. https://doi.org/10.17533/udea.vitae.v28n2a343810
Gallegos-Infante, J. A., Rocha-Guzmán, N. E., González-Laredo, R. F., Medina-Torres, L., Gomez-Aldapa, C. A., Ochoa-Martinéz, L. A., Martínez-Sánchez, C. E., Hernández-Santos, B., & Rodríguez-Ramírez, J. (2013). Physicochemical properties and antioxidant capacity of oak (Quercus resinosa) leaf infusions encapsulated by spray-drying. Food Bioscience, 2, 31–38. https://doi.org/10.1016/j.fbio.2013.03.009
Garrido Makinistian, F., Sette, P., Gallo, L., Bucalá, V., & Salvatori, D. (2019). Optimized aqueous extracts of maqui (Aristotelia chilensis) suitable for powder production. Journal of Food Science and Technology, 56(7), 3553–3560. https://doi.org/10.1007/s13197-019-03840-4
Garzón, G. A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017
Garzón, G. Astrid, Soto, C. Y., López-R, M., Riedl, K. M., Browmiller, C. R., & Howard, L. (2020). Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03845
Garzón, Gloria Astrid. (2012). Colombian bilberry (Vaccinium Meridionale Swartz): Chemical composition, antioxidant activity, anthocyanin and non-anthocyanin phenolic composition as compared to other Vaccinium species. In Berries: Properties, Consumption and Nutrition (pp. 157–167). Nova Science Publishers, Inc.
Garzón, Gloria Astrid, Medina, J. L., Montana, T. L., Sánchez, M., Novoa, C. F., & Gutiérrez, L. F. (2021). Utilization of Vaccinium meridionale S. pomace as an eco-friendly and functional colorant in Greek-style yogurt. Journal of Food Science, 86(9), 3896–3908. https://doi.org/10.1111/1750-3841.15872
Gaviria, C. A., Ochoa, C. I., Sanchez, N. Y., Medina, C. I., Lobo, M., Galeano, P. L., Mosquera, A. J., Tamayo, A., Lopera, Y. E., & Rojano, B. A. (2009). Propiedades antioxidantes de los frutos de agraz o mortiño (Vaccinium meridionale Swartz). In G. A. Ligarreto Moreno (Ed.), Perspectivas del cultivo de agraz o mortiño (Vaccinium meridionale Swartz) en la zona altoandina de Colombia (pp. 93–112). Universidad Nacional de Colombia. https://doi.org/10.13140/RG.2.1.3509.8084
Gironés-Vilaplana, A., Mena, P., Garcia-Vlguera, C., & Moreno-Fernandez, D. A. (2011). A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. Quality and Composition of a Novel Beverage Made of Maqui Berry and Lemon Juice
Gironés-Vilaplana, A., Mena, P., Moreno, D. A., & García-Viguera, C. (2014). Evaluation of sensorial, phytochemical and biological properties of new isotonic beverages enriched with lemon and berries during shelf life. Journal of the Science of Food and Agriculture, 94(6), 1090–1100. https://doi.org/10.1002/jsfa.6370
Gironés-Vilaplana, A., Villaño, D., Moreno, D. A., & García-Viguera, C. (2013). New isotonic drinks with antioxidant and biological capacities from berries (maqui, açaí and blackthorn) and lemon juice. International Journal of Food Sciences and Nutrition, 64(7), 897–906. https://doi.org/10.3109/09637486.2013.809406
Giusti, M., & Wrolstad, R. (2005). Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. Handbook of Food Analytical Chemistry, 2–2, 19–31. https://doi.org/10.1002/0471709085.ch18
Global Biodiversity Information Facility. (n.d.). Vaccinium meridionale Sw. Retrieved May 14, 2020, from https://www.gbif.org/es/species/4170835
González-Ortega, R., Faieta, M., Di Mattia, C. D., Valbonetti, L., & Pittia, P. (2020). Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. Journal of Food Engineering, 285. https://doi.org/10.1016/j.jfoodeng.2020.110089
González, M., Samudio, I., Sequeda Castañeda, L. G., Celis, C., Iglesias, J., & Morales, L. (2017). Cytotoxic and antioxidant capacity of extracts from Vaccinium meridionale Swartz (Ericaceae) in transformed leukemic cell lines. Journal of Applied Pharmaceutical Science, 7(3), 24–30. https://doi.org/10.7324/JAPS.2017.70305
Huang, K., Yuan, Y., & Baojun, X. (2021). A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. Food Reviews International
Ibarz, A., & Barbosa Canovas, G. (2005). OPERACIONES UNITARIAS EN LA INGENIERIA DE ALIMENTOS.
Ibrahim Silva, P., Stringheta, P. C., Teof́ilo, R. F., & De Oliveira, I. R. N. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039
ICONTEC. (2009). NTC 3837 BEBIDAS NO ALCOHÓLICAS. BEBIDAS HIDRATANTES PARA LA ACTIVIDAD FÍSICA Y EL DEPORTE (Issue 3837, pp. 1–8). Instituto Colommbiano de Normas Técnicas y Certificación
Jafari, S. M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 140, 20–25. https://doi.org/10.1016/j.carbpol.2015.11.079
Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107(November 2017), 227–247. https://doi.org/10.1016/j.foodres.2018.02.026
Lachowicz, S., Michalska-Ciechanowska, A., & Oszmiański, J. (2020). The impact of maltodextrin and inulin on the protection of natural antioxidants in powders made of Saskatoon berry fruit, juice, and pomace as functional food ingredients. Molecules, 25(8), 1–20. https://doi.org/10.3390/molecules25081805
Limanto, A., Simamora, A., Santoso, A. W., & Timotius, K. H. (2019). Antioxidant, α-Glucosidase Inhibitory Activity and Molecular Docking Study of Gallic Acid, Quercetin and Rutin: A Comparative Study. Molecular and Cellular Biomedical Sciences, 3(2), 67. https://doi.org/10.21705/mcbs.v3i2.60
López-Córdoba, A., Deladino, L., Agudelo-Mesa, L., & Martino, M. (2014). Yerba mate antioxidant powders obtained by co-crystallization: Stability during storage. Journal of Food Engineering, 124, 158–165. https://doi.org/10.1016/j.jfoodeng.2013.10.010
Lopez Córdoba, A. F., & Goyanes, S. N. (2017). Food Powder Properties. En S. Geoffrey (Ed.), Reference Module in Food Science (págs. 1-7). Elsevier. doi:http://dx.doi.org/10.1016/B978-0-08-100596-5-21198-0
Luzardo-Ocampo, I., Ramírez-Jiménez, A. K., Yañez, J., Mojica, L., & Luna-Vital, D. A. (2021). Technological applications of natural colorants in food systems: A review. Foods, 10(3), 1–34. https://doi.org/10.3390/foods10030634
Mahdavee Khazaei, K., Jafari, S. M., Ghorbani, M., & Hemmati Kakhki, A. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105(1), 57–62. https://doi.org/10.1016/j.carbpol.2014.01.042
Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85(April 2016), 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011
Maldonado-Celis, M. E., Arango-Varela, S. S., & Rojano, B. A. (2014). Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. agains colon cancer cell lines. Revista Cubana de Plantas Medicinales, 19(2), 172–184
Maldonado Celis, M. E., Franco Tobón, Y. N., Agudelo, C., Arango-Varela, S. S., & Rojano, B. A. (2017). Andean Berry (Vaccinium meridionale Swartz). In Y. Elhadi M (Ed.), Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition (2nd ed., Vol. 2, pp. 869–882). Wiley Blackwell. https://doi.org/10.1002/9781119158042
Mansour, M., Salah, M., & Xu, X. (2020). Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrasonics Sonochemistry, 63. https://doi.org/10.1016/j.ultsonch.2019.104927
MERCK. (2021). Sigmaaldrich. Obtenido de https://www.sigmaaldrich.com/CO/es
Nicoletti Telis, V. R., & Martinez Navarrete, N. (2012). Biopolymers Used as Drying Aids in Spray-Drying and Freeze-Drying of Fruit Juices and Pulps. En V. R. Nicoletti Telis, Biopolymer Engineering in Food Processing. NW, USA: CRC Press:Sound Parkway
Nogueira, G. F., Fakhouri, F. M., Velasco, J. I., & de Oliveira, R. A. (2019). Active Edible Films Based on Arrowroot Starch with Microparticles of Blackberry Pulp Obtained by Freeze-Drying for Food Packaging. Polymers, 11(9), 1382. https://doi.org/10.3390/polym11091382
Oyinloye, T. M., & Yoon, W. B. (2020). Effect of Freeze Drying on Quality and Grinding Process of Food Produce A Review. Processes, 8(354), 1–23
Pieczykolan, E., & Kurek, M. A. (2019). Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. International Journal of Biological Macromolecules, 129, 665–671. https://doi.org/10.1016/j.ijbiomac.2019.02.073
Porfírio, M. C. P., Gonçalves, M. S., Borges, M. V., Leite, C. X. D. S., Santos, M. R. C., da SILVA, A. G., Fontan, G. C. R., Leão, D. J., de JESUS, R. M., Gualberto, S. A., Lannes, S. C. da S., & da SILVA, M. V. (2020). Development of isotonic beverage with functional attributes based on extract of myrciaria jabuticaba (Vell) berg. Food Science and Technology, 40(3), 614–620. https://doi.org/10.1590/fst.14319
Pudziuvelyte, L., Marksa, M., Sosnowska, K., Winnicka, K., Morkuniene, R., & Bernatoniene, J. (2020). Freeze-Drying Technique for Microencapsulation of Elsholtzia ciliata Ethanolic Extract Using Different Coating Materials. Molecules, 1–16. https://www.mdpi.com/1420-3049/25/9/2237
Quevedo-Rubiano, S., Aranda-Camacho, Y., Ligarreto-Moreno, G. A., & Magnitskiy, S. (2021). Characterization of the Localized Agri-Food System (SYAL) for the Andean blueberry (Vaccinium meridionale Swartz) in the Boyaca Department, Colombia. Revista Colombiana de Ciencias Hortícolas, 15(1), 0–2. https://doi.org/10.17584/rcch.2021v15i1.11593
Quevedo Rubiano, S. (2020). Caracterización bajo el enfoque SIAL y análisis de la competitividad sistémica: el caso del agraz de las provincias de Occidente y Ricaurte (Boyacá – Colombia). Universidad Nacional de Colombia
Quintero Quiroz, J., Galvis Pérez, Y., Galeano Vásquez, S., Marín Echeverri, C., Franco Escobar, C., Ciro Gómez, G., Núñez Rangel, V., Aristizábal Rivera, J. C., & Barona Acevedo, J. (2019). Physico-chemical characterization and antioxidant capacity of the colombian berry (Vaccinium meridionale swartz) with a high-polyphenol content: Potential effects in people with metabolic syndrome. Food Science and Technology, 39(3), 573–582. https://doi.org/10.1590/fst.32817
Rattes, A. L. R., & Oliveira, W. P. (2007). Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technology, 171(1), 7–14. https://doi.org/10.1016/j.powtec.2006.09.007
Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, 45(7), 1386–1394. https://doi.org/10.1111/j.1365-2621.2010.02270.x
Romero-González, J., Shun Ah-Hen, K., Lemus-Mondaca, R., & Muñoz-Fariña, O. (2020). Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chemistry, 313(August 2019), 126115. https://doi.org/10.1016/j.foodchem.2019.126115
Różyło, R. (2020). Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends in Food Science and Technology, 102(March 2019), 39–50. https://doi.org/10.1016/j.tifs.2020.06.005
Santiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J. A., Calderas, F., González-Laredo, R. F., Rocha-Guzmán, N. E., Ochoa-Martínez, L. A., & Bernad-Bernad, M. J. (2015). Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT - Food Science and Technology, 64(2), 571–577. https://doi.org/10.1016/j.lwt.2015.06.020
Sarabandi, K., Jafari, S. M., Mahoonak, A. S., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133
Sarabandi, K., Peighambardoust, S. H., Sadeghi Mahoonak, A. R., & Samaei, S. P. (2018). Effect of different carriers on microstructure and physical characteristics of spray dried apple juice concentrate. Journal of Food Science and Technology, 55(8), 3098–3109. https://doi.org/10.1007/s13197-018-3235-6
ScienceDirect. (2021). ScienceDirect ®. Obtenido de Elsevier's premier plataform of peer-reviewed literature: https://www.sciencedirect.com/topics/materials-science/gum-arabic
Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 132. https://doi.org/10.1016/j.foodres.2020.109077
Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006
Silva, P. I., Stringheta, P. C., Teof́ilo, R. F., & Nolasco de Oliveira, I. R. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039
Singleton, V. L., Rossi, J. A., & Jr, J. (1999). Colorimetry of Total Phenolics With Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158
Song, G.-Q., & Hancock, J. (2011). Vaccinium. En C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources (págs. 197-221). Berlin, Heidelberg, Germany: Springer. doi:ISBN 978-3-642-16057-8
Stasiuk, E., & Przybyłowski, P. (2017). Osmolality of isotonic drinks in the aspect of their authenticity. Polish Journal of Natural Sciences, 32(1), 161–168
Stoll, L., Silva, A. M. da, Iahnke, A. O. e. S., Costa, T. M. H., Flôres, S. H., & Rios, A. de O. (2017). Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extra-virgin olive oil during storage. Journal of Food Processing and Preservation, 41(6), 1–9. https://doi.org/10.1111/jfpp.13218
Styburski, D., Dec, K., Baranowska-Bosiacka, I., Goschorska, M., Hołowko, J., Żwierełło, W., Skórka-Majewicz, M., Janda, K., Rosengardt, A., & Gutowska, I. (2020). Can Functional Beverages Serve as a Substantial Source of Macroelements and Microelements in Human Nutrition?—Analysis of Selected Minerals in Energy and Isotonic Drinks. Biological Trace Element Research, 197(1), 341–348. https://doi.org/10.1007/s12011-019-01973-3
Tao, Y., Wang, P., Wang, J., Wu, Y., Han, Y., & Zhou, J. (2017). Combining various wall materials for encapsulation of blueberry anthocyanin extracts: Optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technology, 311, 77–87. https://doi.org/10.1016/j.powtec.2017.01.078
Tapia, M. S., Alzamora, S. M., & Chirife, J. (2020). Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. In G. Barbosa-Canovas, A. J. Fontana Jr, S. J. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods (pp. 323–355). https://doi.org/10.1002/9781118765982.ch14
Tkacz, K., Wojdyło, A., Michalska-Ciechanowska, A., Turkiewicz, I. P., Lech, K., & Nowicka, P. (2020). Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules, 25(17). https://doi.org/10.3390/molecules25173801
Tomczyk, M., Zaguła, G., & Dżugan, M. (2020). A simple method of enrichment of honey powder with phytochemicals and its potential application in isotonic drink industry. Lwt, 125(September 2019). https://doi.org/10.1016/j.lwt.2020.109204
Turasan, H., Sahin, S., & Sumnu, G. (2015). Encapsulation of rosemary essential oil. LWT - Food Science and Technology, 64(1), 112–119. https://doi.org/10.1016/j.lwt.2015.05.036
United States Pharmacopeia - National Formulary. (2007). USP 30-NF 25. Rockville, MD, USA.
Vieira da Silva, B., Barreira, J. C. M., & Oliveira, M. B. P. P. (2016). Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science and Technology, 50, 144–158. https://doi.org/10.1016/j.tifs.2015.12.007
Wallace, T. C., & Giusti, M. M. (2011). Selective Removal of the Violet Color Produced by Anthocyanins in Procyanidin-Rich Unfermented Cocoa Extracts. Journal of Food Science, 76(7). https://doi.org/10.1111/j.1750-3841.2011.02322.x
Wandrey, C., Bartkowiak, A., & Harding, S. E. (2010). Materials for encapsulation. In Encapsulation Technologies for Active Food Ingredients and Food Processing (pp. 31–100). https://doi.org/10.1007/978-1-4419-1008-0_3
Wilkowska, A., Ambroziak, W., Czyzowska, A., & Adamiec, J. (2016). Effect of Microencapsulation by Spray-Drying and Freeze-Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds. Polish Journal of Food and Nutrition Sciences, 66(1), 11–16. https://doi.org/10.1515/pjfns-2015-0015
Wu, G., Hui, X., Stipkovits, L., Rachman, A., Tu, J., Brennan, M. A., & Brennan, C. S. (2021). Whey protein-blackcurrant concentrate particles obtained by spray-drying and freeze-drying for delivering structural and health benefits of cookies. Innovative Food Science and Emerging Technologies, 68(January), 102606. https://doi.org/10.1016/j.ifset.2021.102606
Xue, J., Su, F., Meng, Y., & Guo, Y. (2019). Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation. Journal of the Science of Food and Agriculture, 99(7), 3381–3390. https://doi.org/10.1002/jsfa.9555
Yu, Y., & Lv, Y. (2019). Degradation kinetic of anthocyanins from rose (Rosa rugosa) as prepared by microencapsulation in freeze-drying and spray-drying. International Journal of Food Properties, 22(1), 2009–2021. https://doi.org/10.1080/10942912.2019.1701011
Zapata, I. C., Sepúlveda Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con Mortiño (Vaccinium meridionale Sw). Informacion Tecnologica, 26(2), 17–28. https://doi.org/10.4067/S0718-07642015000200004
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
Derechos reservados al autor, 2022
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisher.department.spa.fl_str_mv Instituto de Ciencia y Tecnología de Alimentos (ICTA)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82200/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82200/2/46453296.2022.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
9f512140b3d0b35739f5fb874cc0ee23
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886559574654976
spelling Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2022http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Córdoba, Alex Fernando054b96b71d4bcf6f93208231ff8cc98dFuenmayor Bobadilla, Carlos Alberto744ac643a2abaf4839cf342a0bc879a2Estupiñan Amaya, Mauren Rociod527f138f8658eb7805d854a8a64c5742022-08-30T17:13:41Z2022-08-30T17:13:41Z2022-08-29https://repositorio.unal.edu.co/handle/unal/82200Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEl agraz (Vaccinium meridionale Swartz) es un arbusto que crece de forma silvestre en los Andes Sudamericanos entre los 2300 y 3300 m.s.n.m. En Colombia, esta planta se encuentra principalmente en los departamentos de Antioquia, Cundinamarca y Boyacá. El fruto de agraz es considerado una fuente de compuestos bioactivos (ej. Antocianinas, flavonoides y ácidos fenólicos) capaces de reducir el riesgo de aparición de enfermedades crónicas. Sin embargo, estos compuestos presentan una baja estabilidad química, por lo que sus aplicaciones a nivel industrial son limitadas. En el presente trabajo se desarrollaron jugos de agraz en polvo mediante liofilización y secado por atomización, empleando maltodextrina (MD) y/o goma arábiga (GA) como agentes encapsulantes. Los polvos obtenidos se caracterizaron en términos de su actividad de agua, contenido de humedad, solubilidad en agua, color, fluidez, morfología, conformación química, contenido de polifenoles totales y de antocianinas monoméricas totales, actividad antioxidante (DPPH•) y eficiencia de encapsulación de compuestos bioactivos. En general, los polvos obtenidos mediante las dos tecnologías mostraron eficiencias de encapsulación de polifenoles superiores a 64% y de retención de antocianinas monoméricas totales mayores a 66%, baja actividad acuosa (<0.5), alta solubilidad en agua (>91%) y buena fluidez (ángulo de reposo <37º). En el caso de los polvos obtenidos a partir de mezclas de jugo de agraz con diferentes concentraciones de maltodextrina (20, 30, 40 y 50%), se observó que a medida que aumentaba la concentración de maltodextrina, el contenido de polifenoles totales, de antocianinas monoméricas totales y la actividad antioxidante disminuyeron significativamente, en cambio la eficiencia de encapsulación de polifenoles totales se incrementaba. En todos los casos se obtuvieron porcentajes de retención de compuestos fenólicos superiores al 70% y eficiencias de encapsulación de antocianinas superiores al 66%, siendo los polvos con 50% y 30% de maltodextrina, respectivamente, los que presentaron los porcentajes de retención más altos. Los polvos de jugo de agraz con goma arábiga y mezclas de maltodextrina y goma arábiga obtenidos mediante liofilización presentaron contenidos más bajos de polifenoles totales y de antocianinas monoméricas totales que los polvos de jugo de agraz con solo maltodextrina. La eficiencia de encapsulación de compuestos fenólicos fue superior para las muestras en las cuales se utilizaron los dos materiales encapsulantes por separado (~81%). Mientras que la eficiencia de encapsulación de antocianinas fue la más baja (71%) para la muestra en la cual se utilizó como material encapsulante la mezcla de maltodextrina y goma arábiga en iguales proporciones. Con respecto a los polvos de jugo de agraz obtenidos mediante secado por atomización, la muestra con maltodextrina y goma arábiga en iguales proporciones presentó los valores más altos de: contenido de polifenoles totales (5.7±0.09 mgEAG/g), actividad antioxidante (2.5±0.02 mgEAG/g) y eficiencia de encapsulación de polifenoles (87%). Mientras que la muestra que utilizó únicamente maltodextrina presentó el mayor contenido de antocianinas monoméricas totales (0.9±0.02 mgC3G/g) y la más alta eficiencia de encapsulación de antocianinas (96%). La utilización de polvos de jugo de agraz con maltodextrina y/o goma arábiga obtenidos mediante liofilización y secado por atomización como ingredientes de bebidas hidratantes, permitieron obtener productos en tonalidades rojizas e incrementaron el contenido de polifenoles y de antocianinas monoméricas totales de las mismas. Las bebidas con polvo de jugo de agraz liofilizado presentaron los mayores contenidos de polifenoles totales (~119 mgEAG/100 mL) y de actividad antioxidante (~57 mgEAG/100 mL). Finalmente, las bebidas con polvo de jugo agraz obtenido mediante secado por atomización mostraron los contenidos más altos de antocianinas monoméricas totales (~3 mgC3G/100 mL). (Texto tomado de la fuente)Andean blueberry (Vaccinium meridionale Swartz) is a wild shrub that grows in the Andean region of South America at 2300-3300 m above sea level (m.a.s.l). In Colombia, the shrub is mainly located in the regions of Antioquia, Cundinamarca, and Boyacá. The Andean blueberry fruit is considered a source of bioactive compounds (eg anthocyanins, flavonoids and phenolic acids) which have been capable for reducing chronic diseases risk. However, bioactive compounds have low chemical stability, so Andean blueberry industrial applications are limited. In the present work, Andean blueberry juice powders were developed, using freeze drying and spray drying techniques, with maltodextrin (MD) and / or gum Arabic (GA) as encapsulating agents. The powders obtained were characterized in terms of their water activity, moisture content, water solubility, color, flow properties, morphology, chemical conformation, polyphenols content, anthocyanins content, scavenging capacity (DPPH•) and bioactive compounds recovery. In general terms, the powders obtained by the two technologies showed polyphenols recovery higher than 64% and monomeric anthocyanins recovery higher than 66%, low water activity (<0.5), high solubility (> 91%) and good flow properties (angle of repose <37º). In the case of powders obtained from mixtures of Andean blueberry juice with different maltodextrin concentrations (20, 30, 40 and 50%) by freeze drying, increased maltodextrin content resulted in significantly decreased of total polyphenols, total anthocyanins content and scavenging capacity, however, the polyphenols recovery increased. In all cases, phenolic compounds showed recovery higher than 70% and anthocyanins showed recovery higher than 66%, with the highest recovery obtained in powders with 50% and 30% maltodextrin, respectively. The Andean blueberry juice powders with gum Arabic and maltodextrin/gum Arabic mixtures obtained by freeze drying had lower contents of total polyphenols and total anthocyanins than powders of Andean blueberry with only maltodextrin. The polyphenols recovery was highest for the samples in which the two encapsulating materials were used separately (~ 81%). While the anthocyanin recovery was lowest (71%) for the sample with maltodextrin/gum Arabic mixture in equal proportions. With respect to Andean blueberry juice powders obtained by spray drying, the sample with maltodextrin/gum Arabic mixture in equal proportions presented the highest values of total polyphenols content (5.7 ± 0.09 mgEAG/g), scavenging capacity (2.5 ± 0.02 mgEAG/g) and phenolics recovery (87%). While the sample that used only maltodextrin was the highest monomeric anthocyanins content (0.9 ± 0.02 mgC3G/g) and the highest anthocyanins recovery (96%). The use of Andean blueberry juice powders with maltodextrin and / or gum Arabic obtained by freeze drying and spray drying as drinks ingredients, allowed the obtention of beverages in reddish tones with increased polyphenols and monomeric anthocyanins contents. Drinks with freeze drying Andean blueberry juice powder had the highest polyphenol content (~ 119 mgEAG/100 mL) and scavenging capacity (~ 57 mgEAG/100 mL). Finally, the beverages with spray drying Andean blueberry juice powder showed the highest anthocyanins content (~ 3 mgC3G/100 mL).MaestríaMagíster en Ciencia y Tecnología de AlimentosProcesamiento de alimentosapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosInstituto de Ciencia y Tecnología de Alimentos (ICTA)Facultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá080 - Colecciones generales::086 - Colecciones generales en español y portuguésLiofilizaciónBioencapsulaciónFreeze dryingBioencapsulationAgrazAntocianinasCompuestos bioactivosColorantesJugos de frutaPolifenolesWild blueberryAnthocyaninsBioactive compoundsColorantsFruit juicesPolyphenolsEncapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomizaciónAndean Blueberry Juice Encapsulation in Microparticles of Maltodextrin and Gum Arabic by Freeze Drying and Spray DryingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbad-García, B., Garmón-Lobato, S., Sánchez-Ilárduya, M. B., Berrueta, L. A., Gallo, B., Vicente, F., & Alonso-Salces, R. M. (2014). Polyphenolic contents in Citrus fruit juices: Authenticity assessment. European Food Research and Technology, 238(5), 803–818. https://doi.org/10.1007/s00217-014-2160-9AGRONET. (2020). Reporte: área, producción y rendimiento nacional por cultivo. Obtenido de https:// www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1Agudelo, C. D., Ceballos, N., Gómez-García, A., & Maldonado-Celis, M. E. (2018). Andean Berry (Vaccinium meridionale Swartz) Juice improves plasma antioxidant capacity and IL-6 levels in healthy people with dietary risk factors for colorectal cancer. Journal of Berry Research, 8(4), 251–261. https://doi.org/10.3233/JBR-180312Ahmed, M., Akter, M. S., Lee, J. C., & Eun, J. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT - Food Science and Technology, 43(9), 1307–1312. https://doi.org/10.1016/j.lwt.2010.05.014Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002Alzate-Arbeláez, A. F., Dorta, E., López-Alarcón, C., Cortés, F. B., & Rojano, B. A. (2019). Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 294(September 2018), 503–517. https://doi.org/10.1016/j.foodchem.2019.05.085Arango-Varela, S. S., Luzardo-Ocampo, I., Maldonado-Celis, M. E., & Campos-Vega, R. (2020). Andean berry (Vaccinium meridionale Swartz) juice in combination with Aspirin modulated anti-inflammatory markers on LPS-stimulated RAW 264.7 macrophages. Food Research International, 137(July), 109541. https://doi.org/10.1016/j.foodres.2020.109541Arango-Varela, S. S., Luzardo-Ocampo, I., Reyes-Dieck, C., Yahia, E. M., & Maldonado-Celis, M. E. (2021). Antiproliferative potential of Andean Berry (Vaccinium meridionale Swartz) juice in combination with Aspirin in human SW480 colon adenocarcinoma cells. Journal of Food Biochemistry, 45(6), 1–16. https://doi.org/10.1111/jfbc.13760Archaina, D., Vasile, F., Jiménez-Guzmán, J., Alamilla-Beltrán, L., & Schebor, C. (2019). Physical and functional properties of roselle (Hibiscus sabdariffa L.) extract spray dried with maltodextrin-gum arabic mixtures. Journal of Food Processing and Preservation, 43(9), e14065. https://doi.org/10.1111/jfpp.14065Arocas, A., Varela, P., González-Miret, M. L., Salvador, A., Heredia, F. J., & Fiszman, S. M. (2013). Differences in Colour Gamut Obtained with Three Synthetic Red Food Colourants Compared with Three Natural Ones: pH and Heat Stability. International Journal of Food Properties, 16, 766–777Arrazola, G., Herazo, I., & Alvis, A. (2014). Obtención y evaluación de la estabilidad de antocianinas de berenjena (Solanum melongena L.) en bebidas. Informacion Tecnologica, 25(3), 43–52. https://doi.org/10.4067/S0718-07642014000300007Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/j.foodchem.2017.05.142Barbosa Canovas, G. V., Ortega Rivas, E., Juliano, P., & Yan, H. (2005). Food Powders: Physical Properties, Processing, and Functionality. In Food Engineering Series (Issue 1). https://doi.org/10.1007/s13398-014-0173-7.2Bastías-Montes, J. M., Choque-Chávez, M. C., Alarcón-Enos, J., Quevedo-León, R., Muñoz-Fariña, O., & Vidal-San-martín, C. (2019). Effect of spray drying at 150, 160, and 170 °c on the physical and chemical properties of maqui extract (Aristotelia chilensis (Molina) Stuntz). Chilean Journal of Agricultural Research, 79(1), 144–152. https://doi.org/10.4067/S0718-58392019000100144Bednarska, M. A., & Janiszewska-Turak, E. (2020). The influence of spray drying parameters and carrier material on the physico-chemical properties and quality of chokeberry juice powder. Journal of Food Science and Technology, 57(2), 564–577. https://doi.org/10.1007/s13197-019-04088-8Berk, Z. (2018). Food Process Engineering and Technology (A. P. is an imprint of Elsevier (ed.); Third edit)Bernal, L. J., Melo, L. A., & Díaz Moreno, C. (2014). Evaluation of the Antioxidant Properties and Aromatic Profile During Maturation of The Blackberry (Rubus glaucus Benth) and The Bilberry (Vaccinium meridionale Swartz). Revista Facultad Nacional de Agronomía Medellín, 67(1), 7209–7218. https://doi.org/10.15446/rfnam.v67n1.42649Bolson Moro, K. I., Beutinger Bender, A. B., Picolli da Silva, L., & Garcia Penna, N. (2021). Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. Food and Bioprocess Technology, 14(8), 1407–1431. https://doi.org/10.1007/s11947-021-02665-4Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm. Wiss. u. Technol, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5Caliskan, G., & Dirim, S. N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308–314. https://doi.org/10.1016/j.powtec.2015.10.019Casati, C. B., Baeza, R., & Sánchez, V. (2019). Physicochemical properties and bioactive compounds content in encapsulated freeze-dried powders obtained from blueberry, elderberry, blackcurrant and maqui berry. Journal of Berry Research, 9(3), 431–447. https://doi.org/10.3233/JBR-190409Celis, M., Franco Tobon, Y., Agudelo, C., Arango, S., & Rojano, B. (2017). Andean Berry (Vaccinium meridionale Swartz). En E. Yahia (Ed.), Fruit and VegetablePhytochemicals: Chemistry and Human Health, 2nd ed (Vol. 2, págs. 869-882). Hoboken, NJ, USA: John Wiley & Sons Ltd.Celis, M., Tobón, Y., Agudelo, C., Arango, S., & Rojano, B. (2017). Andean Berry (Vaccinium meridionale Swartz). En Fruit and Vegetable Phytochemicals: Chemistry and Human HealthCelli, G. B., Dibazar, R., Ghanem, A., & Brooks, M. S. L. (2016). Degradation kinetics of anthocyanins in freeze-dried microencapsulates from lowbush blueberries (Vaccinium angustifolium Aiton) and prediction of shelf-life. Drying Technology, 34(10), 1175–1184. https://doi.org/10.1080/07373937.2015.1099546Cortés-Morales, E. A., Mendez-Montealvo, G., & Velazquez, G. (2021). Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Advances in Colloid and Interface Science, xxxx, 102398. https://doi.org/10.1016/j.cis.2021.102398Espinosa Moncada, J., Marín Echeverri, C., Galvis Pérez, Y., Ciro Gómez, G., Aristizábal, J. C., Blesso, C. N., Fernandez, M. L., & Barona Acevedo, J. (2018). Evaluation of agraz consumption on adipocytokines, inflammation, and oxidative stress markers in women with metabolic syndrome. Nutrients, 10(11). https://doi.org/10.3390/nu10111639Fejzié, A., & Cávar, S. (2014). Phenolic Compounds and Antioxidant Activity of Some Citruses. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 42(1–4), 2014Fellows, P. J. (2017). Food Processing Technology Principles and Practice. In Food Processing Technology. https://doi.org/10.1016/b978-0-08-100522-4.00019-5Fernandes, R. V. D. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101(1), 524–532. https://doi.org/10.1016/j.carbpol.2013.09.083Ferrari, C. C., Marconi Germer, S. P., Alvim, I. D., & de Aguirre, J. M. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Drying Technology, 31(4), 470–478 https://doi.org/10.1080/07373937.2012.742103Franceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2014). Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 32(2), 197–207. https://doi.org/10.1080/07373937.2013.814664Franco Tobon, Y. N., Rojano, B. A., Arbeláez Alzate, A. F., Saavedra Morales, D. M., & Celis Maldonado, M. E. (2016). Efecto del tiempo de almacenamiento sobre las características fisicoquímicas, antioxidantes y antiproliferativa de néctar de agraz (Vaccinium meridionale Swartz). Archivos Latinoamericanos de Nutricion, 66(4), 261–271Fredes, C., Becerra, C., Parada, J., & Robert, P. (2018). The microencapsulation of maqui (Aristotelia chilensis (Mol.) Stuntz) juice by spray-drying and freeze-drying produces powders with similar anthocyanin stability and bioaccessibility. Molecules, 23(5). https://doi.org/10.3390/molecules23051227Gallego-Pelaez, E., Torres, D., Gomez, A., Posada, G., & Maldonado-Celis, M.-E. (2021). Consumption of osmo-dehydrated Andean Berry (Vaccinium meridionale Swartz) decreases levels of pro-inflammatory biomarkers of overweight and obese adults. Vitae, 28(2), 614–618. https://doi.org/10.17533/udea.vitae.v28n2a343810Gallegos-Infante, J. A., Rocha-Guzmán, N. E., González-Laredo, R. F., Medina-Torres, L., Gomez-Aldapa, C. A., Ochoa-Martinéz, L. A., Martínez-Sánchez, C. E., Hernández-Santos, B., & Rodríguez-Ramírez, J. (2013). Physicochemical properties and antioxidant capacity of oak (Quercus resinosa) leaf infusions encapsulated by spray-drying. Food Bioscience, 2, 31–38. https://doi.org/10.1016/j.fbio.2013.03.009Garrido Makinistian, F., Sette, P., Gallo, L., Bucalá, V., & Salvatori, D. (2019). Optimized aqueous extracts of maqui (Aristotelia chilensis) suitable for powder production. Journal of Food Science and Technology, 56(7), 3553–3560. https://doi.org/10.1007/s13197-019-03840-4Garzón, G. A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017Garzón, G. Astrid, Soto, C. Y., López-R, M., Riedl, K. M., Browmiller, C. R., & Howard, L. (2020). Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03845Garzón, Gloria Astrid. (2012). Colombian bilberry (Vaccinium Meridionale Swartz): Chemical composition, antioxidant activity, anthocyanin and non-anthocyanin phenolic composition as compared to other Vaccinium species. In Berries: Properties, Consumption and Nutrition (pp. 157–167). Nova Science Publishers, Inc.Garzón, Gloria Astrid, Medina, J. L., Montana, T. L., Sánchez, M., Novoa, C. F., & Gutiérrez, L. F. (2021). Utilization of Vaccinium meridionale S. pomace as an eco-friendly and functional colorant in Greek-style yogurt. Journal of Food Science, 86(9), 3896–3908. https://doi.org/10.1111/1750-3841.15872Gaviria, C. A., Ochoa, C. I., Sanchez, N. Y., Medina, C. I., Lobo, M., Galeano, P. L., Mosquera, A. J., Tamayo, A., Lopera, Y. E., & Rojano, B. A. (2009). Propiedades antioxidantes de los frutos de agraz o mortiño (Vaccinium meridionale Swartz). In G. A. Ligarreto Moreno (Ed.), Perspectivas del cultivo de agraz o mortiño (Vaccinium meridionale Swartz) en la zona altoandina de Colombia (pp. 93–112). Universidad Nacional de Colombia. https://doi.org/10.13140/RG.2.1.3509.8084Gironés-Vilaplana, A., Mena, P., Garcia-Vlguera, C., & Moreno-Fernandez, D. A. (2011). A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. Quality and Composition of a Novel Beverage Made of Maqui Berry and Lemon JuiceGironés-Vilaplana, A., Mena, P., Moreno, D. A., & García-Viguera, C. (2014). Evaluation of sensorial, phytochemical and biological properties of new isotonic beverages enriched with lemon and berries during shelf life. Journal of the Science of Food and Agriculture, 94(6), 1090–1100. https://doi.org/10.1002/jsfa.6370Gironés-Vilaplana, A., Villaño, D., Moreno, D. A., & García-Viguera, C. (2013). New isotonic drinks with antioxidant and biological capacities from berries (maqui, açaí and blackthorn) and lemon juice. International Journal of Food Sciences and Nutrition, 64(7), 897–906. https://doi.org/10.3109/09637486.2013.809406Giusti, M., & Wrolstad, R. (2005). Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. Handbook of Food Analytical Chemistry, 2–2, 19–31. https://doi.org/10.1002/0471709085.ch18Global Biodiversity Information Facility. (n.d.). Vaccinium meridionale Sw. Retrieved May 14, 2020, from https://www.gbif.org/es/species/4170835González-Ortega, R., Faieta, M., Di Mattia, C. D., Valbonetti, L., & Pittia, P. (2020). Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. Journal of Food Engineering, 285. https://doi.org/10.1016/j.jfoodeng.2020.110089González, M., Samudio, I., Sequeda Castañeda, L. G., Celis, C., Iglesias, J., & Morales, L. (2017). Cytotoxic and antioxidant capacity of extracts from Vaccinium meridionale Swartz (Ericaceae) in transformed leukemic cell lines. Journal of Applied Pharmaceutical Science, 7(3), 24–30. https://doi.org/10.7324/JAPS.2017.70305Huang, K., Yuan, Y., & Baojun, X. (2021). A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. Food Reviews InternationalIbarz, A., & Barbosa Canovas, G. (2005). OPERACIONES UNITARIAS EN LA INGENIERIA DE ALIMENTOS.Ibrahim Silva, P., Stringheta, P. C., Teof́ilo, R. F., & De Oliveira, I. R. N. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039ICONTEC. (2009). NTC 3837 BEBIDAS NO ALCOHÓLICAS. BEBIDAS HIDRATANTES PARA LA ACTIVIDAD FÍSICA Y EL DEPORTE (Issue 3837, pp. 1–8). Instituto Colommbiano de Normas Técnicas y CertificaciónJafari, S. M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 140, 20–25. https://doi.org/10.1016/j.carbpol.2015.11.079Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107(November 2017), 227–247. https://doi.org/10.1016/j.foodres.2018.02.026Lachowicz, S., Michalska-Ciechanowska, A., & Oszmiański, J. (2020). The impact of maltodextrin and inulin on the protection of natural antioxidants in powders made of Saskatoon berry fruit, juice, and pomace as functional food ingredients. Molecules, 25(8), 1–20. https://doi.org/10.3390/molecules25081805Limanto, A., Simamora, A., Santoso, A. W., & Timotius, K. H. (2019). Antioxidant, α-Glucosidase Inhibitory Activity and Molecular Docking Study of Gallic Acid, Quercetin and Rutin: A Comparative Study. Molecular and Cellular Biomedical Sciences, 3(2), 67. https://doi.org/10.21705/mcbs.v3i2.60López-Córdoba, A., Deladino, L., Agudelo-Mesa, L., & Martino, M. (2014). Yerba mate antioxidant powders obtained by co-crystallization: Stability during storage. Journal of Food Engineering, 124, 158–165. https://doi.org/10.1016/j.jfoodeng.2013.10.010Lopez Córdoba, A. F., & Goyanes, S. N. (2017). Food Powder Properties. En S. Geoffrey (Ed.), Reference Module in Food Science (págs. 1-7). Elsevier. doi:http://dx.doi.org/10.1016/B978-0-08-100596-5-21198-0Luzardo-Ocampo, I., Ramírez-Jiménez, A. K., Yañez, J., Mojica, L., & Luna-Vital, D. A. (2021). Technological applications of natural colorants in food systems: A review. Foods, 10(3), 1–34. https://doi.org/10.3390/foods10030634Mahdavee Khazaei, K., Jafari, S. M., Ghorbani, M., & Hemmati Kakhki, A. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105(1), 57–62. https://doi.org/10.1016/j.carbpol.2014.01.042Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85(April 2016), 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011Maldonado-Celis, M. E., Arango-Varela, S. S., & Rojano, B. A. (2014). Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. agains colon cancer cell lines. Revista Cubana de Plantas Medicinales, 19(2), 172–184Maldonado Celis, M. E., Franco Tobón, Y. N., Agudelo, C., Arango-Varela, S. S., & Rojano, B. A. (2017). Andean Berry (Vaccinium meridionale Swartz). In Y. Elhadi M (Ed.), Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition (2nd ed., Vol. 2, pp. 869–882). Wiley Blackwell. https://doi.org/10.1002/9781119158042Mansour, M., Salah, M., & Xu, X. (2020). Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrasonics Sonochemistry, 63. https://doi.org/10.1016/j.ultsonch.2019.104927MERCK. (2021). Sigmaaldrich. Obtenido de https://www.sigmaaldrich.com/CO/esNicoletti Telis, V. R., & Martinez Navarrete, N. (2012). Biopolymers Used as Drying Aids in Spray-Drying and Freeze-Drying of Fruit Juices and Pulps. En V. R. Nicoletti Telis, Biopolymer Engineering in Food Processing. NW, USA: CRC Press:Sound ParkwayNogueira, G. F., Fakhouri, F. M., Velasco, J. I., & de Oliveira, R. A. (2019). Active Edible Films Based on Arrowroot Starch with Microparticles of Blackberry Pulp Obtained by Freeze-Drying for Food Packaging. Polymers, 11(9), 1382. https://doi.org/10.3390/polym11091382Oyinloye, T. M., & Yoon, W. B. (2020). Effect of Freeze Drying on Quality and Grinding Process of Food Produce A Review. Processes, 8(354), 1–23Pieczykolan, E., & Kurek, M. A. (2019). Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. International Journal of Biological Macromolecules, 129, 665–671. https://doi.org/10.1016/j.ijbiomac.2019.02.073Porfírio, M. C. P., Gonçalves, M. S., Borges, M. V., Leite, C. X. D. S., Santos, M. R. C., da SILVA, A. G., Fontan, G. C. R., Leão, D. J., de JESUS, R. M., Gualberto, S. A., Lannes, S. C. da S., & da SILVA, M. V. (2020). Development of isotonic beverage with functional attributes based on extract of myrciaria jabuticaba (Vell) berg. Food Science and Technology, 40(3), 614–620. https://doi.org/10.1590/fst.14319Pudziuvelyte, L., Marksa, M., Sosnowska, K., Winnicka, K., Morkuniene, R., & Bernatoniene, J. (2020). Freeze-Drying Technique for Microencapsulation of Elsholtzia ciliata Ethanolic Extract Using Different Coating Materials. Molecules, 1–16. https://www.mdpi.com/1420-3049/25/9/2237Quevedo-Rubiano, S., Aranda-Camacho, Y., Ligarreto-Moreno, G. A., & Magnitskiy, S. (2021). Characterization of the Localized Agri-Food System (SYAL) for the Andean blueberry (Vaccinium meridionale Swartz) in the Boyaca Department, Colombia. Revista Colombiana de Ciencias Hortícolas, 15(1), 0–2. https://doi.org/10.17584/rcch.2021v15i1.11593Quevedo Rubiano, S. (2020). Caracterización bajo el enfoque SIAL y análisis de la competitividad sistémica: el caso del agraz de las provincias de Occidente y Ricaurte (Boyacá – Colombia). Universidad Nacional de ColombiaQuintero Quiroz, J., Galvis Pérez, Y., Galeano Vásquez, S., Marín Echeverri, C., Franco Escobar, C., Ciro Gómez, G., Núñez Rangel, V., Aristizábal Rivera, J. C., & Barona Acevedo, J. (2019). Physico-chemical characterization and antioxidant capacity of the colombian berry (Vaccinium meridionale swartz) with a high-polyphenol content: Potential effects in people with metabolic syndrome. Food Science and Technology, 39(3), 573–582. https://doi.org/10.1590/fst.32817Rattes, A. L. R., & Oliveira, W. P. (2007). Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technology, 171(1), 7–14. https://doi.org/10.1016/j.powtec.2006.09.007Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, 45(7), 1386–1394. https://doi.org/10.1111/j.1365-2621.2010.02270.xRomero-González, J., Shun Ah-Hen, K., Lemus-Mondaca, R., & Muñoz-Fariña, O. (2020). Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chemistry, 313(August 2019), 126115. https://doi.org/10.1016/j.foodchem.2019.126115Różyło, R. (2020). Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends in Food Science and Technology, 102(March 2019), 39–50. https://doi.org/10.1016/j.tifs.2020.06.005Santiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J. A., Calderas, F., González-Laredo, R. F., Rocha-Guzmán, N. E., Ochoa-Martínez, L. A., & Bernad-Bernad, M. J. (2015). Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT - Food Science and Technology, 64(2), 571–577. https://doi.org/10.1016/j.lwt.2015.06.020Sarabandi, K., Jafari, S. M., Mahoonak, A. S., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133Sarabandi, K., Peighambardoust, S. H., Sadeghi Mahoonak, A. R., & Samaei, S. P. (2018). Effect of different carriers on microstructure and physical characteristics of spray dried apple juice concentrate. Journal of Food Science and Technology, 55(8), 3098–3109. https://doi.org/10.1007/s13197-018-3235-6ScienceDirect. (2021). ScienceDirect ®. Obtenido de Elsevier's premier plataform of peer-reviewed literature: https://www.sciencedirect.com/topics/materials-science/gum-arabicSharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 132. https://doi.org/10.1016/j.foodres.2020.109077Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006Silva, P. I., Stringheta, P. C., Teof́ilo, R. F., & Nolasco de Oliveira, I. R. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039Singleton, V. L., Rossi, J. A., & Jr, J. (1999). Colorimetry of Total Phenolics With Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158Song, G.-Q., & Hancock, J. (2011). Vaccinium. En C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources (págs. 197-221). Berlin, Heidelberg, Germany: Springer. doi:ISBN 978-3-642-16057-8Stasiuk, E., & Przybyłowski, P. (2017). Osmolality of isotonic drinks in the aspect of their authenticity. Polish Journal of Natural Sciences, 32(1), 161–168Stoll, L., Silva, A. M. da, Iahnke, A. O. e. S., Costa, T. M. H., Flôres, S. H., & Rios, A. de O. (2017). Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extra-virgin olive oil during storage. Journal of Food Processing and Preservation, 41(6), 1–9. https://doi.org/10.1111/jfpp.13218Styburski, D., Dec, K., Baranowska-Bosiacka, I., Goschorska, M., Hołowko, J., Żwierełło, W., Skórka-Majewicz, M., Janda, K., Rosengardt, A., & Gutowska, I. (2020). Can Functional Beverages Serve as a Substantial Source of Macroelements and Microelements in Human Nutrition?—Analysis of Selected Minerals in Energy and Isotonic Drinks. Biological Trace Element Research, 197(1), 341–348. https://doi.org/10.1007/s12011-019-01973-3Tao, Y., Wang, P., Wang, J., Wu, Y., Han, Y., & Zhou, J. (2017). Combining various wall materials for encapsulation of blueberry anthocyanin extracts: Optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technology, 311, 77–87. https://doi.org/10.1016/j.powtec.2017.01.078Tapia, M. S., Alzamora, S. M., & Chirife, J. (2020). Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. In G. Barbosa-Canovas, A. J. Fontana Jr, S. J. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods (pp. 323–355). https://doi.org/10.1002/9781118765982.ch14Tkacz, K., Wojdyło, A., Michalska-Ciechanowska, A., Turkiewicz, I. P., Lech, K., & Nowicka, P. (2020). Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules, 25(17). https://doi.org/10.3390/molecules25173801Tomczyk, M., Zaguła, G., & Dżugan, M. (2020). A simple method of enrichment of honey powder with phytochemicals and its potential application in isotonic drink industry. Lwt, 125(September 2019). https://doi.org/10.1016/j.lwt.2020.109204Turasan, H., Sahin, S., & Sumnu, G. (2015). Encapsulation of rosemary essential oil. LWT - Food Science and Technology, 64(1), 112–119. https://doi.org/10.1016/j.lwt.2015.05.036United States Pharmacopeia - National Formulary. (2007). USP 30-NF 25. Rockville, MD, USA.Vieira da Silva, B., Barreira, J. C. M., & Oliveira, M. B. P. P. (2016). Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science and Technology, 50, 144–158. https://doi.org/10.1016/j.tifs.2015.12.007Wallace, T. C., & Giusti, M. M. (2011). Selective Removal of the Violet Color Produced by Anthocyanins in Procyanidin-Rich Unfermented Cocoa Extracts. Journal of Food Science, 76(7). https://doi.org/10.1111/j.1750-3841.2011.02322.xWandrey, C., Bartkowiak, A., & Harding, S. E. (2010). Materials for encapsulation. In Encapsulation Technologies for Active Food Ingredients and Food Processing (pp. 31–100). https://doi.org/10.1007/978-1-4419-1008-0_3Wilkowska, A., Ambroziak, W., Czyzowska, A., & Adamiec, J. (2016). Effect of Microencapsulation by Spray-Drying and Freeze-Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds. Polish Journal of Food and Nutrition Sciences, 66(1), 11–16. https://doi.org/10.1515/pjfns-2015-0015Wu, G., Hui, X., Stipkovits, L., Rachman, A., Tu, J., Brennan, M. A., & Brennan, C. S. (2021). Whey protein-blackcurrant concentrate particles obtained by spray-drying and freeze-drying for delivering structural and health benefits of cookies. Innovative Food Science and Emerging Technologies, 68(January), 102606. https://doi.org/10.1016/j.ifset.2021.102606Xue, J., Su, F., Meng, Y., & Guo, Y. (2019). Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation. Journal of the Science of Food and Agriculture, 99(7), 3381–3390. https://doi.org/10.1002/jsfa.9555Yu, Y., & Lv, Y. (2019). Degradation kinetic of anthocyanins from rose (Rosa rugosa) as prepared by microencapsulation in freeze-drying and spray-drying. International Journal of Food Properties, 22(1), 2009–2021. https://doi.org/10.1080/10942912.2019.1701011Zapata, I. C., Sepúlveda Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con Mortiño (Vaccinium meridionale Sw). Informacion Tecnologica, 26(2), 17–28. https://doi.org/10.4067/S0718-07642015000200004Desarrollo de ingredientes naturales nativos a base de agraz (Vaccinium meridionale Swartz) para aplicación en la industria alimentariaMincienciasGobernación de BoyacáPrograma Colombia BioEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82200/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL46453296.2022.pdf46453296.2022.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf8919960https://repositorio.unal.edu.co/bitstream/unal/82200/2/46453296.2022.pdf9f512140b3d0b35739f5fb874cc0ee23MD52unal/82200oai:repositorio.unal.edu.co:unal/822002022-09-01 14:32:16.711Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=