Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización
ilustraciones, graficas
- Autores:
-
Estupiñan Amaya, Mauren Rocio
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82200
- Palabra clave:
- 080 - Colecciones generales::086 - Colecciones generales en español y portugués
Liofilización
Bioencapsulación
Freeze drying
Bioencapsulation
Agraz
Antocianinas
Compuestos bioactivos
Colorantes
Jugos de fruta
Polifenoles
Wild blueberry
Anthocyanins
Bioactive compounds
Colorants
Fruit juices
Polyphenols
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_f36a3da0fd57a0cb4b33c982271b8377 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82200 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización |
dc.title.translated.eng.fl_str_mv |
Andean Blueberry Juice Encapsulation in Microparticles of Maltodextrin and Gum Arabic by Freeze Drying and Spray Drying |
title |
Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización |
spellingShingle |
Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización 080 - Colecciones generales::086 - Colecciones generales en español y portugués Liofilización Bioencapsulación Freeze drying Bioencapsulation Agraz Antocianinas Compuestos bioactivos Colorantes Jugos de fruta Polifenoles Wild blueberry Anthocyanins Bioactive compounds Colorants Fruit juices Polyphenols |
title_short |
Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización |
title_full |
Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización |
title_fullStr |
Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización |
title_full_unstemmed |
Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización |
title_sort |
Encapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización |
dc.creator.fl_str_mv |
Estupiñan Amaya, Mauren Rocio |
dc.contributor.advisor.none.fl_str_mv |
López Córdoba, Alex Fernando Fuenmayor Bobadilla, Carlos Alberto |
dc.contributor.author.none.fl_str_mv |
Estupiñan Amaya, Mauren Rocio |
dc.subject.ddc.spa.fl_str_mv |
080 - Colecciones generales::086 - Colecciones generales en español y portugués |
topic |
080 - Colecciones generales::086 - Colecciones generales en español y portugués Liofilización Bioencapsulación Freeze drying Bioencapsulation Agraz Antocianinas Compuestos bioactivos Colorantes Jugos de fruta Polifenoles Wild blueberry Anthocyanins Bioactive compounds Colorants Fruit juices Polyphenols |
dc.subject.agrovoc.spa.fl_str_mv |
Liofilización Bioencapsulación |
dc.subject.agrovoc.eng.fl_str_mv |
Freeze drying Bioencapsulation |
dc.subject.proposal.spa.fl_str_mv |
Agraz Antocianinas Compuestos bioactivos Colorantes Jugos de fruta Polifenoles |
dc.subject.proposal.eng.fl_str_mv |
Wild blueberry Anthocyanins Bioactive compounds Colorants Fruit juices Polyphenols |
description |
ilustraciones, graficas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-30T17:13:41Z |
dc.date.available.none.fl_str_mv |
2022-08-30T17:13:41Z |
dc.date.issued.none.fl_str_mv |
2022-08-29 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82200 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82200 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abad-García, B., Garmón-Lobato, S., Sánchez-Ilárduya, M. B., Berrueta, L. A., Gallo, B., Vicente, F., & Alonso-Salces, R. M. (2014). Polyphenolic contents in Citrus fruit juices: Authenticity assessment. European Food Research and Technology, 238(5), 803–818. https://doi.org/10.1007/s00217-014-2160-9 AGRONET. (2020). Reporte: área, producción y rendimiento nacional por cultivo. Obtenido de https:// www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 Agudelo, C. D., Ceballos, N., Gómez-García, A., & Maldonado-Celis, M. E. (2018). Andean Berry (Vaccinium meridionale Swartz) Juice improves plasma antioxidant capacity and IL-6 levels in healthy people with dietary risk factors for colorectal cancer. Journal of Berry Research, 8(4), 251–261. https://doi.org/10.3233/JBR-180312 Ahmed, M., Akter, M. S., Lee, J. C., & Eun, J. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT - Food Science and Technology, 43(9), 1307–1312. https://doi.org/10.1016/j.lwt.2010.05.014 Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002 Alzate-Arbeláez, A. F., Dorta, E., López-Alarcón, C., Cortés, F. B., & Rojano, B. A. (2019). Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 294(September 2018), 503–517. https://doi.org/10.1016/j.foodchem.2019.05.085 Arango-Varela, S. S., Luzardo-Ocampo, I., Maldonado-Celis, M. E., & Campos-Vega, R. (2020). Andean berry (Vaccinium meridionale Swartz) juice in combination with Aspirin modulated anti-inflammatory markers on LPS-stimulated RAW 264.7 macrophages. Food Research International, 137(July), 109541. https://doi.org/10.1016/j.foodres.2020.109541 Arango-Varela, S. S., Luzardo-Ocampo, I., Reyes-Dieck, C., Yahia, E. M., & Maldonado-Celis, M. E. (2021). Antiproliferative potential of Andean Berry (Vaccinium meridionale Swartz) juice in combination with Aspirin in human SW480 colon adenocarcinoma cells. Journal of Food Biochemistry, 45(6), 1–16. https://doi.org/10.1111/jfbc.13760 Archaina, D., Vasile, F., Jiménez-Guzmán, J., Alamilla-Beltrán, L., & Schebor, C. (2019). Physical and functional properties of roselle (Hibiscus sabdariffa L.) extract spray dried with maltodextrin-gum arabic mixtures. Journal of Food Processing and Preservation, 43(9), e14065. https://doi.org/10.1111/jfpp.14065 Arocas, A., Varela, P., González-Miret, M. L., Salvador, A., Heredia, F. J., & Fiszman, S. M. (2013). Differences in Colour Gamut Obtained with Three Synthetic Red Food Colourants Compared with Three Natural Ones: pH and Heat Stability. International Journal of Food Properties, 16, 766–777 Arrazola, G., Herazo, I., & Alvis, A. (2014). Obtención y evaluación de la estabilidad de antocianinas de berenjena (Solanum melongena L.) en bebidas. Informacion Tecnologica, 25(3), 43–52. https://doi.org/10.4067/S0718-07642014000300007 Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/j.foodchem.2017.05.142 Barbosa Canovas, G. V., Ortega Rivas, E., Juliano, P., & Yan, H. (2005). Food Powders: Physical Properties, Processing, and Functionality. In Food Engineering Series (Issue 1). https://doi.org/10.1007/s13398-014-0173-7.2 Bastías-Montes, J. M., Choque-Chávez, M. C., Alarcón-Enos, J., Quevedo-León, R., Muñoz-Fariña, O., & Vidal-San-martín, C. (2019). Effect of spray drying at 150, 160, and 170 °c on the physical and chemical properties of maqui extract (Aristotelia chilensis (Molina) Stuntz). Chilean Journal of Agricultural Research, 79(1), 144–152. https://doi.org/10.4067/S0718-58392019000100144 Bednarska, M. A., & Janiszewska-Turak, E. (2020). The influence of spray drying parameters and carrier material on the physico-chemical properties and quality of chokeberry juice powder. Journal of Food Science and Technology, 57(2), 564–577. https://doi.org/10.1007/s13197-019-04088-8 Berk, Z. (2018). Food Process Engineering and Technology (A. P. is an imprint of Elsevier (ed.); Third edit) Bernal, L. J., Melo, L. A., & Díaz Moreno, C. (2014). Evaluation of the Antioxidant Properties and Aromatic Profile During Maturation of The Blackberry (Rubus glaucus Benth) and The Bilberry (Vaccinium meridionale Swartz). Revista Facultad Nacional de Agronomía Medellín, 67(1), 7209–7218. https://doi.org/10.15446/rfnam.v67n1.42649 Bolson Moro, K. I., Beutinger Bender, A. B., Picolli da Silva, L., & Garcia Penna, N. (2021). Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. Food and Bioprocess Technology, 14(8), 1407–1431. https://doi.org/10.1007/s11947-021-02665-4 Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm. Wiss. u. Technol, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 Caliskan, G., & Dirim, S. N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308–314. https://doi.org/10.1016/j.powtec.2015.10.019 Casati, C. B., Baeza, R., & Sánchez, V. (2019). Physicochemical properties and bioactive compounds content in encapsulated freeze-dried powders obtained from blueberry, elderberry, blackcurrant and maqui berry. Journal of Berry Research, 9(3), 431–447. https://doi.org/10.3233/JBR-190409 Celis, M., Franco Tobon, Y., Agudelo, C., Arango, S., & Rojano, B. (2017). Andean Berry (Vaccinium meridionale Swartz). En E. Yahia (Ed.), Fruit and VegetablePhytochemicals: Chemistry and Human Health, 2nd ed (Vol. 2, págs. 869-882). Hoboken, NJ, USA: John Wiley & Sons Ltd. Celis, M., Tobón, Y., Agudelo, C., Arango, S., & Rojano, B. (2017). Andean Berry (Vaccinium meridionale Swartz). En Fruit and Vegetable Phytochemicals: Chemistry and Human Health Celli, G. B., Dibazar, R., Ghanem, A., & Brooks, M. S. L. (2016). Degradation kinetics of anthocyanins in freeze-dried microencapsulates from lowbush blueberries (Vaccinium angustifolium Aiton) and prediction of shelf-life. Drying Technology, 34(10), 1175–1184. https://doi.org/10.1080/07373937.2015.1099546 Cortés-Morales, E. A., Mendez-Montealvo, G., & Velazquez, G. (2021). Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Advances in Colloid and Interface Science, xxxx, 102398. https://doi.org/10.1016/j.cis.2021.102398 Espinosa Moncada, J., Marín Echeverri, C., Galvis Pérez, Y., Ciro Gómez, G., Aristizábal, J. C., Blesso, C. N., Fernandez, M. L., & Barona Acevedo, J. (2018). Evaluation of agraz consumption on adipocytokines, inflammation, and oxidative stress markers in women with metabolic syndrome. Nutrients, 10(11). https://doi.org/10.3390/nu10111639 Fejzié, A., & Cávar, S. (2014). Phenolic Compounds and Antioxidant Activity of Some Citruses. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 42(1–4), 2014 Fellows, P. J. (2017). Food Processing Technology Principles and Practice. In Food Processing Technology. https://doi.org/10.1016/b978-0-08-100522-4.00019-5 Fernandes, R. V. D. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101(1), 524–532. https://doi.org/10.1016/j.carbpol.2013.09.083 Ferrari, C. C., Marconi Germer, S. P., Alvim, I. D., & de Aguirre, J. M. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Drying Technology, 31(4), 470–478 https://doi.org/10.1080/07373937.2012.742103 Franceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2014). Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 32(2), 197–207. https://doi.org/10.1080/07373937.2013.814664 Franco Tobon, Y. N., Rojano, B. A., Arbeláez Alzate, A. F., Saavedra Morales, D. M., & Celis Maldonado, M. E. (2016). Efecto del tiempo de almacenamiento sobre las características fisicoquímicas, antioxidantes y antiproliferativa de néctar de agraz (Vaccinium meridionale Swartz). Archivos Latinoamericanos de Nutricion, 66(4), 261–271 Fredes, C., Becerra, C., Parada, J., & Robert, P. (2018). The microencapsulation of maqui (Aristotelia chilensis (Mol.) Stuntz) juice by spray-drying and freeze-drying produces powders with similar anthocyanin stability and bioaccessibility. Molecules, 23(5). https://doi.org/10.3390/molecules23051227 Gallego-Pelaez, E., Torres, D., Gomez, A., Posada, G., & Maldonado-Celis, M.-E. (2021). Consumption of osmo-dehydrated Andean Berry (Vaccinium meridionale Swartz) decreases levels of pro-inflammatory biomarkers of overweight and obese adults. Vitae, 28(2), 614–618. https://doi.org/10.17533/udea.vitae.v28n2a343810 Gallegos-Infante, J. A., Rocha-Guzmán, N. E., González-Laredo, R. F., Medina-Torres, L., Gomez-Aldapa, C. A., Ochoa-Martinéz, L. A., Martínez-Sánchez, C. E., Hernández-Santos, B., & Rodríguez-Ramírez, J. (2013). Physicochemical properties and antioxidant capacity of oak (Quercus resinosa) leaf infusions encapsulated by spray-drying. Food Bioscience, 2, 31–38. https://doi.org/10.1016/j.fbio.2013.03.009 Garrido Makinistian, F., Sette, P., Gallo, L., Bucalá, V., & Salvatori, D. (2019). Optimized aqueous extracts of maqui (Aristotelia chilensis) suitable for powder production. Journal of Food Science and Technology, 56(7), 3553–3560. https://doi.org/10.1007/s13197-019-03840-4 Garzón, G. A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017 Garzón, G. Astrid, Soto, C. Y., López-R, M., Riedl, K. M., Browmiller, C. R., & Howard, L. (2020). Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03845 Garzón, Gloria Astrid. (2012). Colombian bilberry (Vaccinium Meridionale Swartz): Chemical composition, antioxidant activity, anthocyanin and non-anthocyanin phenolic composition as compared to other Vaccinium species. In Berries: Properties, Consumption and Nutrition (pp. 157–167). Nova Science Publishers, Inc. Garzón, Gloria Astrid, Medina, J. L., Montana, T. L., Sánchez, M., Novoa, C. F., & Gutiérrez, L. F. (2021). Utilization of Vaccinium meridionale S. pomace as an eco-friendly and functional colorant in Greek-style yogurt. Journal of Food Science, 86(9), 3896–3908. https://doi.org/10.1111/1750-3841.15872 Gaviria, C. A., Ochoa, C. I., Sanchez, N. Y., Medina, C. I., Lobo, M., Galeano, P. L., Mosquera, A. J., Tamayo, A., Lopera, Y. E., & Rojano, B. A. (2009). Propiedades antioxidantes de los frutos de agraz o mortiño (Vaccinium meridionale Swartz). In G. A. Ligarreto Moreno (Ed.), Perspectivas del cultivo de agraz o mortiño (Vaccinium meridionale Swartz) en la zona altoandina de Colombia (pp. 93–112). Universidad Nacional de Colombia. https://doi.org/10.13140/RG.2.1.3509.8084 Gironés-Vilaplana, A., Mena, P., Garcia-Vlguera, C., & Moreno-Fernandez, D. A. (2011). A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. Quality and Composition of a Novel Beverage Made of Maqui Berry and Lemon Juice Gironés-Vilaplana, A., Mena, P., Moreno, D. A., & García-Viguera, C. (2014). Evaluation of sensorial, phytochemical and biological properties of new isotonic beverages enriched with lemon and berries during shelf life. Journal of the Science of Food and Agriculture, 94(6), 1090–1100. https://doi.org/10.1002/jsfa.6370 Gironés-Vilaplana, A., Villaño, D., Moreno, D. A., & García-Viguera, C. (2013). New isotonic drinks with antioxidant and biological capacities from berries (maqui, açaí and blackthorn) and lemon juice. International Journal of Food Sciences and Nutrition, 64(7), 897–906. https://doi.org/10.3109/09637486.2013.809406 Giusti, M., & Wrolstad, R. (2005). Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. Handbook of Food Analytical Chemistry, 2–2, 19–31. https://doi.org/10.1002/0471709085.ch18 Global Biodiversity Information Facility. (n.d.). Vaccinium meridionale Sw. Retrieved May 14, 2020, from https://www.gbif.org/es/species/4170835 González-Ortega, R., Faieta, M., Di Mattia, C. D., Valbonetti, L., & Pittia, P. (2020). Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. Journal of Food Engineering, 285. https://doi.org/10.1016/j.jfoodeng.2020.110089 González, M., Samudio, I., Sequeda Castañeda, L. G., Celis, C., Iglesias, J., & Morales, L. (2017). Cytotoxic and antioxidant capacity of extracts from Vaccinium meridionale Swartz (Ericaceae) in transformed leukemic cell lines. Journal of Applied Pharmaceutical Science, 7(3), 24–30. https://doi.org/10.7324/JAPS.2017.70305 Huang, K., Yuan, Y., & Baojun, X. (2021). A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. Food Reviews International Ibarz, A., & Barbosa Canovas, G. (2005). OPERACIONES UNITARIAS EN LA INGENIERIA DE ALIMENTOS. Ibrahim Silva, P., Stringheta, P. C., Teof́ilo, R. F., & De Oliveira, I. R. N. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039 ICONTEC. (2009). NTC 3837 BEBIDAS NO ALCOHÓLICAS. BEBIDAS HIDRATANTES PARA LA ACTIVIDAD FÍSICA Y EL DEPORTE (Issue 3837, pp. 1–8). Instituto Colommbiano de Normas Técnicas y Certificación Jafari, S. M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 140, 20–25. https://doi.org/10.1016/j.carbpol.2015.11.079 Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107(November 2017), 227–247. https://doi.org/10.1016/j.foodres.2018.02.026 Lachowicz, S., Michalska-Ciechanowska, A., & Oszmiański, J. (2020). The impact of maltodextrin and inulin on the protection of natural antioxidants in powders made of Saskatoon berry fruit, juice, and pomace as functional food ingredients. Molecules, 25(8), 1–20. https://doi.org/10.3390/molecules25081805 Limanto, A., Simamora, A., Santoso, A. W., & Timotius, K. H. (2019). Antioxidant, α-Glucosidase Inhibitory Activity and Molecular Docking Study of Gallic Acid, Quercetin and Rutin: A Comparative Study. Molecular and Cellular Biomedical Sciences, 3(2), 67. https://doi.org/10.21705/mcbs.v3i2.60 López-Córdoba, A., Deladino, L., Agudelo-Mesa, L., & Martino, M. (2014). Yerba mate antioxidant powders obtained by co-crystallization: Stability during storage. Journal of Food Engineering, 124, 158–165. https://doi.org/10.1016/j.jfoodeng.2013.10.010 Lopez Córdoba, A. F., & Goyanes, S. N. (2017). Food Powder Properties. En S. Geoffrey (Ed.), Reference Module in Food Science (págs. 1-7). Elsevier. doi:http://dx.doi.org/10.1016/B978-0-08-100596-5-21198-0 Luzardo-Ocampo, I., Ramírez-Jiménez, A. K., Yañez, J., Mojica, L., & Luna-Vital, D. A. (2021). Technological applications of natural colorants in food systems: A review. Foods, 10(3), 1–34. https://doi.org/10.3390/foods10030634 Mahdavee Khazaei, K., Jafari, S. M., Ghorbani, M., & Hemmati Kakhki, A. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105(1), 57–62. https://doi.org/10.1016/j.carbpol.2014.01.042 Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85(April 2016), 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011 Maldonado-Celis, M. E., Arango-Varela, S. S., & Rojano, B. A. (2014). Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. agains colon cancer cell lines. Revista Cubana de Plantas Medicinales, 19(2), 172–184 Maldonado Celis, M. E., Franco Tobón, Y. N., Agudelo, C., Arango-Varela, S. S., & Rojano, B. A. (2017). Andean Berry (Vaccinium meridionale Swartz). In Y. Elhadi M (Ed.), Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition (2nd ed., Vol. 2, pp. 869–882). Wiley Blackwell. https://doi.org/10.1002/9781119158042 Mansour, M., Salah, M., & Xu, X. (2020). Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrasonics Sonochemistry, 63. https://doi.org/10.1016/j.ultsonch.2019.104927 MERCK. (2021). Sigmaaldrich. Obtenido de https://www.sigmaaldrich.com/CO/es Nicoletti Telis, V. R., & Martinez Navarrete, N. (2012). Biopolymers Used as Drying Aids in Spray-Drying and Freeze-Drying of Fruit Juices and Pulps. En V. R. Nicoletti Telis, Biopolymer Engineering in Food Processing. NW, USA: CRC Press:Sound Parkway Nogueira, G. F., Fakhouri, F. M., Velasco, J. I., & de Oliveira, R. A. (2019). Active Edible Films Based on Arrowroot Starch with Microparticles of Blackberry Pulp Obtained by Freeze-Drying for Food Packaging. Polymers, 11(9), 1382. https://doi.org/10.3390/polym11091382 Oyinloye, T. M., & Yoon, W. B. (2020). Effect of Freeze Drying on Quality and Grinding Process of Food Produce A Review. Processes, 8(354), 1–23 Pieczykolan, E., & Kurek, M. A. (2019). Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. International Journal of Biological Macromolecules, 129, 665–671. https://doi.org/10.1016/j.ijbiomac.2019.02.073 Porfírio, M. C. P., Gonçalves, M. S., Borges, M. V., Leite, C. X. D. S., Santos, M. R. C., da SILVA, A. G., Fontan, G. C. R., Leão, D. J., de JESUS, R. M., Gualberto, S. A., Lannes, S. C. da S., & da SILVA, M. V. (2020). Development of isotonic beverage with functional attributes based on extract of myrciaria jabuticaba (Vell) berg. Food Science and Technology, 40(3), 614–620. https://doi.org/10.1590/fst.14319 Pudziuvelyte, L., Marksa, M., Sosnowska, K., Winnicka, K., Morkuniene, R., & Bernatoniene, J. (2020). Freeze-Drying Technique for Microencapsulation of Elsholtzia ciliata Ethanolic Extract Using Different Coating Materials. Molecules, 1–16. https://www.mdpi.com/1420-3049/25/9/2237 Quevedo-Rubiano, S., Aranda-Camacho, Y., Ligarreto-Moreno, G. A., & Magnitskiy, S. (2021). Characterization of the Localized Agri-Food System (SYAL) for the Andean blueberry (Vaccinium meridionale Swartz) in the Boyaca Department, Colombia. Revista Colombiana de Ciencias Hortícolas, 15(1), 0–2. https://doi.org/10.17584/rcch.2021v15i1.11593 Quevedo Rubiano, S. (2020). Caracterización bajo el enfoque SIAL y análisis de la competitividad sistémica: el caso del agraz de las provincias de Occidente y Ricaurte (Boyacá – Colombia). Universidad Nacional de Colombia Quintero Quiroz, J., Galvis Pérez, Y., Galeano Vásquez, S., Marín Echeverri, C., Franco Escobar, C., Ciro Gómez, G., Núñez Rangel, V., Aristizábal Rivera, J. C., & Barona Acevedo, J. (2019). Physico-chemical characterization and antioxidant capacity of the colombian berry (Vaccinium meridionale swartz) with a high-polyphenol content: Potential effects in people with metabolic syndrome. Food Science and Technology, 39(3), 573–582. https://doi.org/10.1590/fst.32817 Rattes, A. L. R., & Oliveira, W. P. (2007). Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technology, 171(1), 7–14. https://doi.org/10.1016/j.powtec.2006.09.007 Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, 45(7), 1386–1394. https://doi.org/10.1111/j.1365-2621.2010.02270.x Romero-González, J., Shun Ah-Hen, K., Lemus-Mondaca, R., & Muñoz-Fariña, O. (2020). Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chemistry, 313(August 2019), 126115. https://doi.org/10.1016/j.foodchem.2019.126115 Różyło, R. (2020). Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends in Food Science and Technology, 102(March 2019), 39–50. https://doi.org/10.1016/j.tifs.2020.06.005 Santiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J. A., Calderas, F., González-Laredo, R. F., Rocha-Guzmán, N. E., Ochoa-Martínez, L. A., & Bernad-Bernad, M. J. (2015). Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT - Food Science and Technology, 64(2), 571–577. https://doi.org/10.1016/j.lwt.2015.06.020 Sarabandi, K., Jafari, S. M., Mahoonak, A. S., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133 Sarabandi, K., Peighambardoust, S. H., Sadeghi Mahoonak, A. R., & Samaei, S. P. (2018). Effect of different carriers on microstructure and physical characteristics of spray dried apple juice concentrate. Journal of Food Science and Technology, 55(8), 3098–3109. https://doi.org/10.1007/s13197-018-3235-6 ScienceDirect. (2021). ScienceDirect ®. Obtenido de Elsevier's premier plataform of peer-reviewed literature: https://www.sciencedirect.com/topics/materials-science/gum-arabic Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 132. https://doi.org/10.1016/j.foodres.2020.109077 Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006 Silva, P. I., Stringheta, P. C., Teof́ilo, R. F., & Nolasco de Oliveira, I. R. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039 Singleton, V. L., Rossi, J. A., & Jr, J. (1999). Colorimetry of Total Phenolics With Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158 Song, G.-Q., & Hancock, J. (2011). Vaccinium. En C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources (págs. 197-221). Berlin, Heidelberg, Germany: Springer. doi:ISBN 978-3-642-16057-8 Stasiuk, E., & Przybyłowski, P. (2017). Osmolality of isotonic drinks in the aspect of their authenticity. Polish Journal of Natural Sciences, 32(1), 161–168 Stoll, L., Silva, A. M. da, Iahnke, A. O. e. S., Costa, T. M. H., Flôres, S. H., & Rios, A. de O. (2017). Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extra-virgin olive oil during storage. Journal of Food Processing and Preservation, 41(6), 1–9. https://doi.org/10.1111/jfpp.13218 Styburski, D., Dec, K., Baranowska-Bosiacka, I., Goschorska, M., Hołowko, J., Żwierełło, W., Skórka-Majewicz, M., Janda, K., Rosengardt, A., & Gutowska, I. (2020). Can Functional Beverages Serve as a Substantial Source of Macroelements and Microelements in Human Nutrition?—Analysis of Selected Minerals in Energy and Isotonic Drinks. Biological Trace Element Research, 197(1), 341–348. https://doi.org/10.1007/s12011-019-01973-3 Tao, Y., Wang, P., Wang, J., Wu, Y., Han, Y., & Zhou, J. (2017). Combining various wall materials for encapsulation of blueberry anthocyanin extracts: Optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technology, 311, 77–87. https://doi.org/10.1016/j.powtec.2017.01.078 Tapia, M. S., Alzamora, S. M., & Chirife, J. (2020). Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. In G. Barbosa-Canovas, A. J. Fontana Jr, S. J. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods (pp. 323–355). https://doi.org/10.1002/9781118765982.ch14 Tkacz, K., Wojdyło, A., Michalska-Ciechanowska, A., Turkiewicz, I. P., Lech, K., & Nowicka, P. (2020). Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules, 25(17). https://doi.org/10.3390/molecules25173801 Tomczyk, M., Zaguła, G., & Dżugan, M. (2020). A simple method of enrichment of honey powder with phytochemicals and its potential application in isotonic drink industry. Lwt, 125(September 2019). https://doi.org/10.1016/j.lwt.2020.109204 Turasan, H., Sahin, S., & Sumnu, G. (2015). Encapsulation of rosemary essential oil. LWT - Food Science and Technology, 64(1), 112–119. https://doi.org/10.1016/j.lwt.2015.05.036 United States Pharmacopeia - National Formulary. (2007). USP 30-NF 25. Rockville, MD, USA. Vieira da Silva, B., Barreira, J. C. M., & Oliveira, M. B. P. P. (2016). Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science and Technology, 50, 144–158. https://doi.org/10.1016/j.tifs.2015.12.007 Wallace, T. C., & Giusti, M. M. (2011). Selective Removal of the Violet Color Produced by Anthocyanins in Procyanidin-Rich Unfermented Cocoa Extracts. Journal of Food Science, 76(7). https://doi.org/10.1111/j.1750-3841.2011.02322.x Wandrey, C., Bartkowiak, A., & Harding, S. E. (2010). Materials for encapsulation. In Encapsulation Technologies for Active Food Ingredients and Food Processing (pp. 31–100). https://doi.org/10.1007/978-1-4419-1008-0_3 Wilkowska, A., Ambroziak, W., Czyzowska, A., & Adamiec, J. (2016). Effect of Microencapsulation by Spray-Drying and Freeze-Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds. Polish Journal of Food and Nutrition Sciences, 66(1), 11–16. https://doi.org/10.1515/pjfns-2015-0015 Wu, G., Hui, X., Stipkovits, L., Rachman, A., Tu, J., Brennan, M. A., & Brennan, C. S. (2021). Whey protein-blackcurrant concentrate particles obtained by spray-drying and freeze-drying for delivering structural and health benefits of cookies. Innovative Food Science and Emerging Technologies, 68(January), 102606. https://doi.org/10.1016/j.ifset.2021.102606 Xue, J., Su, F., Meng, Y., & Guo, Y. (2019). Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation. Journal of the Science of Food and Agriculture, 99(7), 3381–3390. https://doi.org/10.1002/jsfa.9555 Yu, Y., & Lv, Y. (2019). Degradation kinetic of anthocyanins from rose (Rosa rugosa) as prepared by microencapsulation in freeze-drying and spray-drying. International Journal of Food Properties, 22(1), 2009–2021. https://doi.org/10.1080/10942912.2019.1701011 Zapata, I. C., Sepúlveda Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con Mortiño (Vaccinium meridionale Sw). Informacion Tecnologica, 26(2), 17–28. https://doi.org/10.4067/S0718-07642015000200004 |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional Derechos reservados al autor, 2022 http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos |
dc.publisher.department.spa.fl_str_mv |
Instituto de Ciencia y Tecnología de Alimentos (ICTA) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82200/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82200/2/46453296.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82200/3/46453296.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 9f512140b3d0b35739f5fb874cc0ee23 b337b7ddaf8e7cd5e137d70f42488ef6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090007869128704 |
spelling |
Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2022http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Córdoba, Alex Fernando054b96b71d4bcf6f93208231ff8cc98dFuenmayor Bobadilla, Carlos Alberto744ac643a2abaf4839cf342a0bc879a2Estupiñan Amaya, Mauren Rociod527f138f8658eb7805d854a8a64c5742022-08-30T17:13:41Z2022-08-30T17:13:41Z2022-08-29https://repositorio.unal.edu.co/handle/unal/82200Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEl agraz (Vaccinium meridionale Swartz) es un arbusto que crece de forma silvestre en los Andes Sudamericanos entre los 2300 y 3300 m.s.n.m. En Colombia, esta planta se encuentra principalmente en los departamentos de Antioquia, Cundinamarca y Boyacá. El fruto de agraz es considerado una fuente de compuestos bioactivos (ej. Antocianinas, flavonoides y ácidos fenólicos) capaces de reducir el riesgo de aparición de enfermedades crónicas. Sin embargo, estos compuestos presentan una baja estabilidad química, por lo que sus aplicaciones a nivel industrial son limitadas. En el presente trabajo se desarrollaron jugos de agraz en polvo mediante liofilización y secado por atomización, empleando maltodextrina (MD) y/o goma arábiga (GA) como agentes encapsulantes. Los polvos obtenidos se caracterizaron en términos de su actividad de agua, contenido de humedad, solubilidad en agua, color, fluidez, morfología, conformación química, contenido de polifenoles totales y de antocianinas monoméricas totales, actividad antioxidante (DPPH•) y eficiencia de encapsulación de compuestos bioactivos. En general, los polvos obtenidos mediante las dos tecnologías mostraron eficiencias de encapsulación de polifenoles superiores a 64% y de retención de antocianinas monoméricas totales mayores a 66%, baja actividad acuosa (<0.5), alta solubilidad en agua (>91%) y buena fluidez (ángulo de reposo <37º). En el caso de los polvos obtenidos a partir de mezclas de jugo de agraz con diferentes concentraciones de maltodextrina (20, 30, 40 y 50%), se observó que a medida que aumentaba la concentración de maltodextrina, el contenido de polifenoles totales, de antocianinas monoméricas totales y la actividad antioxidante disminuyeron significativamente, en cambio la eficiencia de encapsulación de polifenoles totales se incrementaba. En todos los casos se obtuvieron porcentajes de retención de compuestos fenólicos superiores al 70% y eficiencias de encapsulación de antocianinas superiores al 66%, siendo los polvos con 50% y 30% de maltodextrina, respectivamente, los que presentaron los porcentajes de retención más altos. Los polvos de jugo de agraz con goma arábiga y mezclas de maltodextrina y goma arábiga obtenidos mediante liofilización presentaron contenidos más bajos de polifenoles totales y de antocianinas monoméricas totales que los polvos de jugo de agraz con solo maltodextrina. La eficiencia de encapsulación de compuestos fenólicos fue superior para las muestras en las cuales se utilizaron los dos materiales encapsulantes por separado (~81%). Mientras que la eficiencia de encapsulación de antocianinas fue la más baja (71%) para la muestra en la cual se utilizó como material encapsulante la mezcla de maltodextrina y goma arábiga en iguales proporciones. Con respecto a los polvos de jugo de agraz obtenidos mediante secado por atomización, la muestra con maltodextrina y goma arábiga en iguales proporciones presentó los valores más altos de: contenido de polifenoles totales (5.7±0.09 mgEAG/g), actividad antioxidante (2.5±0.02 mgEAG/g) y eficiencia de encapsulación de polifenoles (87%). Mientras que la muestra que utilizó únicamente maltodextrina presentó el mayor contenido de antocianinas monoméricas totales (0.9±0.02 mgC3G/g) y la más alta eficiencia de encapsulación de antocianinas (96%). La utilización de polvos de jugo de agraz con maltodextrina y/o goma arábiga obtenidos mediante liofilización y secado por atomización como ingredientes de bebidas hidratantes, permitieron obtener productos en tonalidades rojizas e incrementaron el contenido de polifenoles y de antocianinas monoméricas totales de las mismas. Las bebidas con polvo de jugo de agraz liofilizado presentaron los mayores contenidos de polifenoles totales (~119 mgEAG/100 mL) y de actividad antioxidante (~57 mgEAG/100 mL). Finalmente, las bebidas con polvo de jugo agraz obtenido mediante secado por atomización mostraron los contenidos más altos de antocianinas monoméricas totales (~3 mgC3G/100 mL). (Texto tomado de la fuente)Andean blueberry (Vaccinium meridionale Swartz) is a wild shrub that grows in the Andean region of South America at 2300-3300 m above sea level (m.a.s.l). In Colombia, the shrub is mainly located in the regions of Antioquia, Cundinamarca, and Boyacá. The Andean blueberry fruit is considered a source of bioactive compounds (eg anthocyanins, flavonoids and phenolic acids) which have been capable for reducing chronic diseases risk. However, bioactive compounds have low chemical stability, so Andean blueberry industrial applications are limited. In the present work, Andean blueberry juice powders were developed, using freeze drying and spray drying techniques, with maltodextrin (MD) and / or gum Arabic (GA) as encapsulating agents. The powders obtained were characterized in terms of their water activity, moisture content, water solubility, color, flow properties, morphology, chemical conformation, polyphenols content, anthocyanins content, scavenging capacity (DPPH•) and bioactive compounds recovery. In general terms, the powders obtained by the two technologies showed polyphenols recovery higher than 64% and monomeric anthocyanins recovery higher than 66%, low water activity (<0.5), high solubility (> 91%) and good flow properties (angle of repose <37º). In the case of powders obtained from mixtures of Andean blueberry juice with different maltodextrin concentrations (20, 30, 40 and 50%) by freeze drying, increased maltodextrin content resulted in significantly decreased of total polyphenols, total anthocyanins content and scavenging capacity, however, the polyphenols recovery increased. In all cases, phenolic compounds showed recovery higher than 70% and anthocyanins showed recovery higher than 66%, with the highest recovery obtained in powders with 50% and 30% maltodextrin, respectively. The Andean blueberry juice powders with gum Arabic and maltodextrin/gum Arabic mixtures obtained by freeze drying had lower contents of total polyphenols and total anthocyanins than powders of Andean blueberry with only maltodextrin. The polyphenols recovery was highest for the samples in which the two encapsulating materials were used separately (~ 81%). While the anthocyanin recovery was lowest (71%) for the sample with maltodextrin/gum Arabic mixture in equal proportions. With respect to Andean blueberry juice powders obtained by spray drying, the sample with maltodextrin/gum Arabic mixture in equal proportions presented the highest values of total polyphenols content (5.7 ± 0.09 mgEAG/g), scavenging capacity (2.5 ± 0.02 mgEAG/g) and phenolics recovery (87%). While the sample that used only maltodextrin was the highest monomeric anthocyanins content (0.9 ± 0.02 mgC3G/g) and the highest anthocyanins recovery (96%). The use of Andean blueberry juice powders with maltodextrin and / or gum Arabic obtained by freeze drying and spray drying as drinks ingredients, allowed the obtention of beverages in reddish tones with increased polyphenols and monomeric anthocyanins contents. Drinks with freeze drying Andean blueberry juice powder had the highest polyphenol content (~ 119 mgEAG/100 mL) and scavenging capacity (~ 57 mgEAG/100 mL). Finally, the beverages with spray drying Andean blueberry juice powder showed the highest anthocyanins content (~ 3 mgC3G/100 mL).MaestríaMagíster en Ciencia y Tecnología de AlimentosProcesamiento de alimentosapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosInstituto de Ciencia y Tecnología de Alimentos (ICTA)Facultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá080 - Colecciones generales::086 - Colecciones generales en español y portuguésLiofilizaciónBioencapsulaciónFreeze dryingBioencapsulationAgrazAntocianinasCompuestos bioactivosColorantesJugos de frutaPolifenolesWild blueberryAnthocyaninsBioactive compoundsColorantsFruit juicesPolyphenolsEncapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomizaciónAndean Blueberry Juice Encapsulation in Microparticles of Maltodextrin and Gum Arabic by Freeze Drying and Spray DryingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbad-García, B., Garmón-Lobato, S., Sánchez-Ilárduya, M. B., Berrueta, L. A., Gallo, B., Vicente, F., & Alonso-Salces, R. M. (2014). Polyphenolic contents in Citrus fruit juices: Authenticity assessment. European Food Research and Technology, 238(5), 803–818. https://doi.org/10.1007/s00217-014-2160-9AGRONET. (2020). Reporte: área, producción y rendimiento nacional por cultivo. Obtenido de https:// www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1Agudelo, C. D., Ceballos, N., Gómez-García, A., & Maldonado-Celis, M. E. (2018). Andean Berry (Vaccinium meridionale Swartz) Juice improves plasma antioxidant capacity and IL-6 levels in healthy people with dietary risk factors for colorectal cancer. Journal of Berry Research, 8(4), 251–261. https://doi.org/10.3233/JBR-180312Ahmed, M., Akter, M. S., Lee, J. C., & Eun, J. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT - Food Science and Technology, 43(9), 1307–1312. https://doi.org/10.1016/j.lwt.2010.05.014Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002Alzate-Arbeláez, A. F., Dorta, E., López-Alarcón, C., Cortés, F. B., & Rojano, B. A. (2019). Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 294(September 2018), 503–517. https://doi.org/10.1016/j.foodchem.2019.05.085Arango-Varela, S. S., Luzardo-Ocampo, I., Maldonado-Celis, M. E., & Campos-Vega, R. (2020). Andean berry (Vaccinium meridionale Swartz) juice in combination with Aspirin modulated anti-inflammatory markers on LPS-stimulated RAW 264.7 macrophages. Food Research International, 137(July), 109541. https://doi.org/10.1016/j.foodres.2020.109541Arango-Varela, S. S., Luzardo-Ocampo, I., Reyes-Dieck, C., Yahia, E. M., & Maldonado-Celis, M. E. (2021). Antiproliferative potential of Andean Berry (Vaccinium meridionale Swartz) juice in combination with Aspirin in human SW480 colon adenocarcinoma cells. Journal of Food Biochemistry, 45(6), 1–16. https://doi.org/10.1111/jfbc.13760Archaina, D., Vasile, F., Jiménez-Guzmán, J., Alamilla-Beltrán, L., & Schebor, C. (2019). Physical and functional properties of roselle (Hibiscus sabdariffa L.) extract spray dried with maltodextrin-gum arabic mixtures. Journal of Food Processing and Preservation, 43(9), e14065. https://doi.org/10.1111/jfpp.14065Arocas, A., Varela, P., González-Miret, M. L., Salvador, A., Heredia, F. J., & Fiszman, S. M. (2013). Differences in Colour Gamut Obtained with Three Synthetic Red Food Colourants Compared with Three Natural Ones: pH and Heat Stability. International Journal of Food Properties, 16, 766–777Arrazola, G., Herazo, I., & Alvis, A. (2014). Obtención y evaluación de la estabilidad de antocianinas de berenjena (Solanum melongena L.) en bebidas. Informacion Tecnologica, 25(3), 43–52. https://doi.org/10.4067/S0718-07642014000300007Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/j.foodchem.2017.05.142Barbosa Canovas, G. V., Ortega Rivas, E., Juliano, P., & Yan, H. (2005). Food Powders: Physical Properties, Processing, and Functionality. In Food Engineering Series (Issue 1). https://doi.org/10.1007/s13398-014-0173-7.2Bastías-Montes, J. M., Choque-Chávez, M. C., Alarcón-Enos, J., Quevedo-León, R., Muñoz-Fariña, O., & Vidal-San-martín, C. (2019). Effect of spray drying at 150, 160, and 170 °c on the physical and chemical properties of maqui extract (Aristotelia chilensis (Molina) Stuntz). Chilean Journal of Agricultural Research, 79(1), 144–152. https://doi.org/10.4067/S0718-58392019000100144Bednarska, M. A., & Janiszewska-Turak, E. (2020). The influence of spray drying parameters and carrier material on the physico-chemical properties and quality of chokeberry juice powder. Journal of Food Science and Technology, 57(2), 564–577. https://doi.org/10.1007/s13197-019-04088-8Berk, Z. (2018). Food Process Engineering and Technology (A. P. is an imprint of Elsevier (ed.); Third edit)Bernal, L. J., Melo, L. A., & Díaz Moreno, C. (2014). Evaluation of the Antioxidant Properties and Aromatic Profile During Maturation of The Blackberry (Rubus glaucus Benth) and The Bilberry (Vaccinium meridionale Swartz). Revista Facultad Nacional de Agronomía Medellín, 67(1), 7209–7218. https://doi.org/10.15446/rfnam.v67n1.42649Bolson Moro, K. I., Beutinger Bender, A. B., Picolli da Silva, L., & Garcia Penna, N. (2021). Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. Food and Bioprocess Technology, 14(8), 1407–1431. https://doi.org/10.1007/s11947-021-02665-4Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm. Wiss. u. Technol, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5Caliskan, G., & Dirim, S. N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308–314. https://doi.org/10.1016/j.powtec.2015.10.019Casati, C. B., Baeza, R., & Sánchez, V. (2019). Physicochemical properties and bioactive compounds content in encapsulated freeze-dried powders obtained from blueberry, elderberry, blackcurrant and maqui berry. Journal of Berry Research, 9(3), 431–447. https://doi.org/10.3233/JBR-190409Celis, M., Franco Tobon, Y., Agudelo, C., Arango, S., & Rojano, B. (2017). Andean Berry (Vaccinium meridionale Swartz). En E. Yahia (Ed.), Fruit and VegetablePhytochemicals: Chemistry and Human Health, 2nd ed (Vol. 2, págs. 869-882). Hoboken, NJ, USA: John Wiley & Sons Ltd.Celis, M., Tobón, Y., Agudelo, C., Arango, S., & Rojano, B. (2017). Andean Berry (Vaccinium meridionale Swartz). En Fruit and Vegetable Phytochemicals: Chemistry and Human HealthCelli, G. B., Dibazar, R., Ghanem, A., & Brooks, M. S. L. (2016). Degradation kinetics of anthocyanins in freeze-dried microencapsulates from lowbush blueberries (Vaccinium angustifolium Aiton) and prediction of shelf-life. Drying Technology, 34(10), 1175–1184. https://doi.org/10.1080/07373937.2015.1099546Cortés-Morales, E. A., Mendez-Montealvo, G., & Velazquez, G. (2021). Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Advances in Colloid and Interface Science, xxxx, 102398. https://doi.org/10.1016/j.cis.2021.102398Espinosa Moncada, J., Marín Echeverri, C., Galvis Pérez, Y., Ciro Gómez, G., Aristizábal, J. C., Blesso, C. N., Fernandez, M. L., & Barona Acevedo, J. (2018). Evaluation of agraz consumption on adipocytokines, inflammation, and oxidative stress markers in women with metabolic syndrome. Nutrients, 10(11). https://doi.org/10.3390/nu10111639Fejzié, A., & Cávar, S. (2014). Phenolic Compounds and Antioxidant Activity of Some Citruses. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 42(1–4), 2014Fellows, P. J. (2017). Food Processing Technology Principles and Practice. In Food Processing Technology. https://doi.org/10.1016/b978-0-08-100522-4.00019-5Fernandes, R. V. D. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101(1), 524–532. https://doi.org/10.1016/j.carbpol.2013.09.083Ferrari, C. C., Marconi Germer, S. P., Alvim, I. D., & de Aguirre, J. M. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Drying Technology, 31(4), 470–478 https://doi.org/10.1080/07373937.2012.742103Franceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2014). Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 32(2), 197–207. https://doi.org/10.1080/07373937.2013.814664Franco Tobon, Y. N., Rojano, B. A., Arbeláez Alzate, A. F., Saavedra Morales, D. M., & Celis Maldonado, M. E. (2016). Efecto del tiempo de almacenamiento sobre las características fisicoquímicas, antioxidantes y antiproliferativa de néctar de agraz (Vaccinium meridionale Swartz). Archivos Latinoamericanos de Nutricion, 66(4), 261–271Fredes, C., Becerra, C., Parada, J., & Robert, P. (2018). The microencapsulation of maqui (Aristotelia chilensis (Mol.) Stuntz) juice by spray-drying and freeze-drying produces powders with similar anthocyanin stability and bioaccessibility. Molecules, 23(5). https://doi.org/10.3390/molecules23051227Gallego-Pelaez, E., Torres, D., Gomez, A., Posada, G., & Maldonado-Celis, M.-E. (2021). Consumption of osmo-dehydrated Andean Berry (Vaccinium meridionale Swartz) decreases levels of pro-inflammatory biomarkers of overweight and obese adults. Vitae, 28(2), 614–618. https://doi.org/10.17533/udea.vitae.v28n2a343810Gallegos-Infante, J. A., Rocha-Guzmán, N. E., González-Laredo, R. F., Medina-Torres, L., Gomez-Aldapa, C. A., Ochoa-Martinéz, L. A., Martínez-Sánchez, C. E., Hernández-Santos, B., & Rodríguez-Ramírez, J. (2013). Physicochemical properties and antioxidant capacity of oak (Quercus resinosa) leaf infusions encapsulated by spray-drying. Food Bioscience, 2, 31–38. https://doi.org/10.1016/j.fbio.2013.03.009Garrido Makinistian, F., Sette, P., Gallo, L., Bucalá, V., & Salvatori, D. (2019). Optimized aqueous extracts of maqui (Aristotelia chilensis) suitable for powder production. Journal of Food Science and Technology, 56(7), 3553–3560. https://doi.org/10.1007/s13197-019-03840-4Garzón, G. A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017Garzón, G. Astrid, Soto, C. Y., López-R, M., Riedl, K. M., Browmiller, C. R., & Howard, L. (2020). Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03845Garzón, Gloria Astrid. (2012). Colombian bilberry (Vaccinium Meridionale Swartz): Chemical composition, antioxidant activity, anthocyanin and non-anthocyanin phenolic composition as compared to other Vaccinium species. In Berries: Properties, Consumption and Nutrition (pp. 157–167). Nova Science Publishers, Inc.Garzón, Gloria Astrid, Medina, J. L., Montana, T. L., Sánchez, M., Novoa, C. F., & Gutiérrez, L. F. (2021). Utilization of Vaccinium meridionale S. pomace as an eco-friendly and functional colorant in Greek-style yogurt. Journal of Food Science, 86(9), 3896–3908. https://doi.org/10.1111/1750-3841.15872Gaviria, C. A., Ochoa, C. I., Sanchez, N. Y., Medina, C. I., Lobo, M., Galeano, P. L., Mosquera, A. J., Tamayo, A., Lopera, Y. E., & Rojano, B. A. (2009). Propiedades antioxidantes de los frutos de agraz o mortiño (Vaccinium meridionale Swartz). In G. A. Ligarreto Moreno (Ed.), Perspectivas del cultivo de agraz o mortiño (Vaccinium meridionale Swartz) en la zona altoandina de Colombia (pp. 93–112). Universidad Nacional de Colombia. https://doi.org/10.13140/RG.2.1.3509.8084Gironés-Vilaplana, A., Mena, P., Garcia-Vlguera, C., & Moreno-Fernandez, D. A. (2011). A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. Quality and Composition of a Novel Beverage Made of Maqui Berry and Lemon JuiceGironés-Vilaplana, A., Mena, P., Moreno, D. A., & García-Viguera, C. (2014). Evaluation of sensorial, phytochemical and biological properties of new isotonic beverages enriched with lemon and berries during shelf life. Journal of the Science of Food and Agriculture, 94(6), 1090–1100. https://doi.org/10.1002/jsfa.6370Gironés-Vilaplana, A., Villaño, D., Moreno, D. A., & García-Viguera, C. (2013). New isotonic drinks with antioxidant and biological capacities from berries (maqui, açaí and blackthorn) and lemon juice. International Journal of Food Sciences and Nutrition, 64(7), 897–906. https://doi.org/10.3109/09637486.2013.809406Giusti, M., & Wrolstad, R. (2005). Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. Handbook of Food Analytical Chemistry, 2–2, 19–31. https://doi.org/10.1002/0471709085.ch18Global Biodiversity Information Facility. (n.d.). Vaccinium meridionale Sw. Retrieved May 14, 2020, from https://www.gbif.org/es/species/4170835González-Ortega, R., Faieta, M., Di Mattia, C. D., Valbonetti, L., & Pittia, P. (2020). Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. Journal of Food Engineering, 285. https://doi.org/10.1016/j.jfoodeng.2020.110089González, M., Samudio, I., Sequeda Castañeda, L. G., Celis, C., Iglesias, J., & Morales, L. (2017). Cytotoxic and antioxidant capacity of extracts from Vaccinium meridionale Swartz (Ericaceae) in transformed leukemic cell lines. Journal of Applied Pharmaceutical Science, 7(3), 24–30. https://doi.org/10.7324/JAPS.2017.70305Huang, K., Yuan, Y., & Baojun, X. (2021). A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. Food Reviews InternationalIbarz, A., & Barbosa Canovas, G. (2005). OPERACIONES UNITARIAS EN LA INGENIERIA DE ALIMENTOS.Ibrahim Silva, P., Stringheta, P. C., Teof́ilo, R. F., & De Oliveira, I. R. N. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039ICONTEC. (2009). NTC 3837 BEBIDAS NO ALCOHÓLICAS. BEBIDAS HIDRATANTES PARA LA ACTIVIDAD FÍSICA Y EL DEPORTE (Issue 3837, pp. 1–8). Instituto Colommbiano de Normas Técnicas y CertificaciónJafari, S. M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 140, 20–25. https://doi.org/10.1016/j.carbpol.2015.11.079Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107(November 2017), 227–247. https://doi.org/10.1016/j.foodres.2018.02.026Lachowicz, S., Michalska-Ciechanowska, A., & Oszmiański, J. (2020). The impact of maltodextrin and inulin on the protection of natural antioxidants in powders made of Saskatoon berry fruit, juice, and pomace as functional food ingredients. Molecules, 25(8), 1–20. https://doi.org/10.3390/molecules25081805Limanto, A., Simamora, A., Santoso, A. W., & Timotius, K. H. (2019). Antioxidant, α-Glucosidase Inhibitory Activity and Molecular Docking Study of Gallic Acid, Quercetin and Rutin: A Comparative Study. Molecular and Cellular Biomedical Sciences, 3(2), 67. https://doi.org/10.21705/mcbs.v3i2.60López-Córdoba, A., Deladino, L., Agudelo-Mesa, L., & Martino, M. (2014). Yerba mate antioxidant powders obtained by co-crystallization: Stability during storage. Journal of Food Engineering, 124, 158–165. https://doi.org/10.1016/j.jfoodeng.2013.10.010Lopez Córdoba, A. F., & Goyanes, S. N. (2017). Food Powder Properties. En S. Geoffrey (Ed.), Reference Module in Food Science (págs. 1-7). Elsevier. doi:http://dx.doi.org/10.1016/B978-0-08-100596-5-21198-0Luzardo-Ocampo, I., Ramírez-Jiménez, A. K., Yañez, J., Mojica, L., & Luna-Vital, D. A. (2021). Technological applications of natural colorants in food systems: A review. Foods, 10(3), 1–34. https://doi.org/10.3390/foods10030634Mahdavee Khazaei, K., Jafari, S. M., Ghorbani, M., & Hemmati Kakhki, A. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105(1), 57–62. https://doi.org/10.1016/j.carbpol.2014.01.042Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85(April 2016), 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011Maldonado-Celis, M. E., Arango-Varela, S. S., & Rojano, B. A. (2014). Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. agains colon cancer cell lines. Revista Cubana de Plantas Medicinales, 19(2), 172–184Maldonado Celis, M. E., Franco Tobón, Y. N., Agudelo, C., Arango-Varela, S. S., & Rojano, B. A. (2017). Andean Berry (Vaccinium meridionale Swartz). In Y. Elhadi M (Ed.), Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition (2nd ed., Vol. 2, pp. 869–882). Wiley Blackwell. https://doi.org/10.1002/9781119158042Mansour, M., Salah, M., & Xu, X. (2020). Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrasonics Sonochemistry, 63. https://doi.org/10.1016/j.ultsonch.2019.104927MERCK. (2021). Sigmaaldrich. Obtenido de https://www.sigmaaldrich.com/CO/esNicoletti Telis, V. R., & Martinez Navarrete, N. (2012). Biopolymers Used as Drying Aids in Spray-Drying and Freeze-Drying of Fruit Juices and Pulps. En V. R. Nicoletti Telis, Biopolymer Engineering in Food Processing. NW, USA: CRC Press:Sound ParkwayNogueira, G. F., Fakhouri, F. M., Velasco, J. I., & de Oliveira, R. A. (2019). Active Edible Films Based on Arrowroot Starch with Microparticles of Blackberry Pulp Obtained by Freeze-Drying for Food Packaging. Polymers, 11(9), 1382. https://doi.org/10.3390/polym11091382Oyinloye, T. M., & Yoon, W. B. (2020). Effect of Freeze Drying on Quality and Grinding Process of Food Produce A Review. Processes, 8(354), 1–23Pieczykolan, E., & Kurek, M. A. (2019). Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. International Journal of Biological Macromolecules, 129, 665–671. https://doi.org/10.1016/j.ijbiomac.2019.02.073Porfírio, M. C. P., Gonçalves, M. S., Borges, M. V., Leite, C. X. D. S., Santos, M. R. C., da SILVA, A. G., Fontan, G. C. R., Leão, D. J., de JESUS, R. M., Gualberto, S. A., Lannes, S. C. da S., & da SILVA, M. V. (2020). Development of isotonic beverage with functional attributes based on extract of myrciaria jabuticaba (Vell) berg. Food Science and Technology, 40(3), 614–620. https://doi.org/10.1590/fst.14319Pudziuvelyte, L., Marksa, M., Sosnowska, K., Winnicka, K., Morkuniene, R., & Bernatoniene, J. (2020). Freeze-Drying Technique for Microencapsulation of Elsholtzia ciliata Ethanolic Extract Using Different Coating Materials. Molecules, 1–16. https://www.mdpi.com/1420-3049/25/9/2237Quevedo-Rubiano, S., Aranda-Camacho, Y., Ligarreto-Moreno, G. A., & Magnitskiy, S. (2021). Characterization of the Localized Agri-Food System (SYAL) for the Andean blueberry (Vaccinium meridionale Swartz) in the Boyaca Department, Colombia. Revista Colombiana de Ciencias Hortícolas, 15(1), 0–2. https://doi.org/10.17584/rcch.2021v15i1.11593Quevedo Rubiano, S. (2020). Caracterización bajo el enfoque SIAL y análisis de la competitividad sistémica: el caso del agraz de las provincias de Occidente y Ricaurte (Boyacá – Colombia). Universidad Nacional de ColombiaQuintero Quiroz, J., Galvis Pérez, Y., Galeano Vásquez, S., Marín Echeverri, C., Franco Escobar, C., Ciro Gómez, G., Núñez Rangel, V., Aristizábal Rivera, J. C., & Barona Acevedo, J. (2019). Physico-chemical characterization and antioxidant capacity of the colombian berry (Vaccinium meridionale swartz) with a high-polyphenol content: Potential effects in people with metabolic syndrome. Food Science and Technology, 39(3), 573–582. https://doi.org/10.1590/fst.32817Rattes, A. L. R., & Oliveira, W. P. (2007). Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technology, 171(1), 7–14. https://doi.org/10.1016/j.powtec.2006.09.007Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, 45(7), 1386–1394. https://doi.org/10.1111/j.1365-2621.2010.02270.xRomero-González, J., Shun Ah-Hen, K., Lemus-Mondaca, R., & Muñoz-Fariña, O. (2020). Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chemistry, 313(August 2019), 126115. https://doi.org/10.1016/j.foodchem.2019.126115Różyło, R. (2020). Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends in Food Science and Technology, 102(March 2019), 39–50. https://doi.org/10.1016/j.tifs.2020.06.005Santiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J. A., Calderas, F., González-Laredo, R. F., Rocha-Guzmán, N. E., Ochoa-Martínez, L. A., & Bernad-Bernad, M. J. (2015). Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT - Food Science and Technology, 64(2), 571–577. https://doi.org/10.1016/j.lwt.2015.06.020Sarabandi, K., Jafari, S. M., Mahoonak, A. S., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133Sarabandi, K., Peighambardoust, S. H., Sadeghi Mahoonak, A. R., & Samaei, S. P. (2018). Effect of different carriers on microstructure and physical characteristics of spray dried apple juice concentrate. Journal of Food Science and Technology, 55(8), 3098–3109. https://doi.org/10.1007/s13197-018-3235-6ScienceDirect. (2021). ScienceDirect ®. Obtenido de Elsevier's premier plataform of peer-reviewed literature: https://www.sciencedirect.com/topics/materials-science/gum-arabicSharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 132. https://doi.org/10.1016/j.foodres.2020.109077Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006Silva, P. I., Stringheta, P. C., Teof́ilo, R. F., & Nolasco de Oliveira, I. R. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039Singleton, V. L., Rossi, J. A., & Jr, J. (1999). Colorimetry of Total Phenolics With Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158Song, G.-Q., & Hancock, J. (2011). Vaccinium. En C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources (págs. 197-221). Berlin, Heidelberg, Germany: Springer. doi:ISBN 978-3-642-16057-8Stasiuk, E., & Przybyłowski, P. (2017). Osmolality of isotonic drinks in the aspect of their authenticity. Polish Journal of Natural Sciences, 32(1), 161–168Stoll, L., Silva, A. M. da, Iahnke, A. O. e. S., Costa, T. M. H., Flôres, S. H., & Rios, A. de O. (2017). Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extra-virgin olive oil during storage. Journal of Food Processing and Preservation, 41(6), 1–9. https://doi.org/10.1111/jfpp.13218Styburski, D., Dec, K., Baranowska-Bosiacka, I., Goschorska, M., Hołowko, J., Żwierełło, W., Skórka-Majewicz, M., Janda, K., Rosengardt, A., & Gutowska, I. (2020). Can Functional Beverages Serve as a Substantial Source of Macroelements and Microelements in Human Nutrition?—Analysis of Selected Minerals in Energy and Isotonic Drinks. Biological Trace Element Research, 197(1), 341–348. https://doi.org/10.1007/s12011-019-01973-3Tao, Y., Wang, P., Wang, J., Wu, Y., Han, Y., & Zhou, J. (2017). Combining various wall materials for encapsulation of blueberry anthocyanin extracts: Optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technology, 311, 77–87. https://doi.org/10.1016/j.powtec.2017.01.078Tapia, M. S., Alzamora, S. M., & Chirife, J. (2020). Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. In G. Barbosa-Canovas, A. J. Fontana Jr, S. J. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods (pp. 323–355). https://doi.org/10.1002/9781118765982.ch14Tkacz, K., Wojdyło, A., Michalska-Ciechanowska, A., Turkiewicz, I. P., Lech, K., & Nowicka, P. (2020). Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules, 25(17). https://doi.org/10.3390/molecules25173801Tomczyk, M., Zaguła, G., & Dżugan, M. (2020). A simple method of enrichment of honey powder with phytochemicals and its potential application in isotonic drink industry. Lwt, 125(September 2019). https://doi.org/10.1016/j.lwt.2020.109204Turasan, H., Sahin, S., & Sumnu, G. (2015). Encapsulation of rosemary essential oil. LWT - Food Science and Technology, 64(1), 112–119. https://doi.org/10.1016/j.lwt.2015.05.036United States Pharmacopeia - National Formulary. (2007). USP 30-NF 25. Rockville, MD, USA.Vieira da Silva, B., Barreira, J. C. M., & Oliveira, M. B. P. P. (2016). Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science and Technology, 50, 144–158. https://doi.org/10.1016/j.tifs.2015.12.007Wallace, T. C., & Giusti, M. M. (2011). Selective Removal of the Violet Color Produced by Anthocyanins in Procyanidin-Rich Unfermented Cocoa Extracts. Journal of Food Science, 76(7). https://doi.org/10.1111/j.1750-3841.2011.02322.xWandrey, C., Bartkowiak, A., & Harding, S. E. (2010). Materials for encapsulation. In Encapsulation Technologies for Active Food Ingredients and Food Processing (pp. 31–100). https://doi.org/10.1007/978-1-4419-1008-0_3Wilkowska, A., Ambroziak, W., Czyzowska, A., & Adamiec, J. (2016). Effect of Microencapsulation by Spray-Drying and Freeze-Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds. Polish Journal of Food and Nutrition Sciences, 66(1), 11–16. https://doi.org/10.1515/pjfns-2015-0015Wu, G., Hui, X., Stipkovits, L., Rachman, A., Tu, J., Brennan, M. A., & Brennan, C. S. (2021). Whey protein-blackcurrant concentrate particles obtained by spray-drying and freeze-drying for delivering structural and health benefits of cookies. Innovative Food Science and Emerging Technologies, 68(January), 102606. https://doi.org/10.1016/j.ifset.2021.102606Xue, J., Su, F., Meng, Y., & Guo, Y. (2019). Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation. Journal of the Science of Food and Agriculture, 99(7), 3381–3390. https://doi.org/10.1002/jsfa.9555Yu, Y., & Lv, Y. (2019). Degradation kinetic of anthocyanins from rose (Rosa rugosa) as prepared by microencapsulation in freeze-drying and spray-drying. International Journal of Food Properties, 22(1), 2009–2021. https://doi.org/10.1080/10942912.2019.1701011Zapata, I. C., Sepúlveda Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con Mortiño (Vaccinium meridionale Sw). Informacion Tecnologica, 26(2), 17–28. https://doi.org/10.4067/S0718-07642015000200004Desarrollo de ingredientes naturales nativos a base de agraz (Vaccinium meridionale Swartz) para aplicación en la industria alimentariaMincienciasGobernación de BoyacáPrograma Colombia BioEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82200/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL46453296.2022.pdf46453296.2022.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf8919960https://repositorio.unal.edu.co/bitstream/unal/82200/2/46453296.2022.pdf9f512140b3d0b35739f5fb874cc0ee23MD52THUMBNAIL46453296.2022.pdf.jpg46453296.2022.pdf.jpgGenerated Thumbnailimage/jpeg5476https://repositorio.unal.edu.co/bitstream/unal/82200/3/46453296.2022.pdf.jpgb337b7ddaf8e7cd5e137d70f42488ef6MD53unal/82200oai:repositorio.unal.edu.co:unal/822002024-08-11 01:02:21.965Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |