Evaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)

ilustraciones, diagramas

Autores:
España Amórtegui, Julio César
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86151
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86151
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::543 - Química analítica
Desechos agrícolas
Inocuidad alimentaria
Limites máximos de residuos
agricultural wastes
food safety
maximum residue limits
Ochratoxin A
Acrylamide
Pesticides
Polycyclic aromatic hydrocarbons
Stable isotope labeling
Validation
Eco-friendly
Ocratoxin A
Plaguicidas
Hidrocarburos aromáticos policíclicos
Marcado con isótopos estables
Validación
Ambientalmente amigable
Acrilamida
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f2f7ea4f78547e9e29c2fc6de80f41c9
oai_identifier_str oai:repositorio.unal.edu.co:unal/86151
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)
dc.title.translated.eng.fl_str_mv Evaluation of pesticide residues, mycotoxins and processing contaminants as key descriptors of chemical safety in the post-harvest of the coffee production chain in the Tolima region using analytical strategies based on Stable Isotope Labeling (SIL).
title Evaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)
spellingShingle Evaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)
540 - Química y ciencias afines::543 - Química analítica
Desechos agrícolas
Inocuidad alimentaria
Limites máximos de residuos
agricultural wastes
food safety
maximum residue limits
Ochratoxin A
Acrylamide
Pesticides
Polycyclic aromatic hydrocarbons
Stable isotope labeling
Validation
Eco-friendly
Ocratoxin A
Plaguicidas
Hidrocarburos aromáticos policíclicos
Marcado con isótopos estables
Validación
Ambientalmente amigable
Acrilamida
title_short Evaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)
title_full Evaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)
title_fullStr Evaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)
title_full_unstemmed Evaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)
title_sort Evaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)
dc.creator.fl_str_mv España Amórtegui, Julio César
dc.contributor.advisor.spa.fl_str_mv Guerrero Dallos, Jairo Arturo
dc.contributor.author.spa.fl_str_mv España Amórtegui, Julio César
dc.contributor.researchgroup.spa.fl_str_mv Residualidad y destino ambiental de plaguicidas en sistemas agrícolas
dc.contributor.orcid.spa.fl_str_mv 0000-0003-3566-5689
dc.contributor.cvlac.spa.fl_str_mv 0001104837
dc.contributor.scopus.spa.fl_str_mv 56089546400
dc.contributor.googlescholar.spa.fl_str_mv nOAM6KsAAAAJ&hl=es&oi=ao
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::543 - Química analítica
topic 540 - Química y ciencias afines::543 - Química analítica
Desechos agrícolas
Inocuidad alimentaria
Limites máximos de residuos
agricultural wastes
food safety
maximum residue limits
Ochratoxin A
Acrylamide
Pesticides
Polycyclic aromatic hydrocarbons
Stable isotope labeling
Validation
Eco-friendly
Ocratoxin A
Plaguicidas
Hidrocarburos aromáticos policíclicos
Marcado con isótopos estables
Validación
Ambientalmente amigable
Acrilamida
dc.subject.agrovoc.spa.fl_str_mv Desechos agrícolas
Inocuidad alimentaria
Limites máximos de residuos
dc.subject.agrovoc.eng.fl_str_mv agricultural wastes
food safety
maximum residue limits
dc.subject.proposal.eng.fl_str_mv Ochratoxin A
Acrylamide
Pesticides
Polycyclic aromatic hydrocarbons
Stable isotope labeling
Validation
Eco-friendly
dc.subject.proposal.spa.fl_str_mv Ocratoxin A
Plaguicidas
Hidrocarburos aromáticos policíclicos
Marcado con isótopos estables
Validación
Ambientalmente amigable
Acrilamida
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-23T21:13:44Z
dc.date.available.none.fl_str_mv 2024-05-23T21:13:44Z
dc.date.issued.none.fl_str_mv 2024-05-23
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86151
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86151
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Daviron, B., & Ponte, S. (2005). The coffee paradox: Global markets, commodity trade and the elusive promise of development. Zed books.
Ukers W (1935) All about coffee: the tea and coffee trade journal. New York: Burr Printing House
FNC (2017) Comportamiento de la industria cafetera colombiana
FNC (2018) Región Centro-Sur - Comité de Cafeteros del Tolima
FNC (2014) Informe de los Comités Departamentales
Bessaire T, Perrin I, Tarres A, Bebius A, Reding F, Theurillat V (2019) Mycotoxins in green coffee: Occurrence and risk assessment. Food Control 96:59–67. https://doi.org/10.1016/j.foodcont.2018.08.033
Tozlovanu M, Pfohl-Leszkowicz A (2010) Ochratoxin A in Roasted Coffee from French Supermarkets and Transfer in Coffee Beverages: Comparison of Analysis Methods. Toxins 2:1928–1942. https://doi.org/10.3390/toxins2081928
FAO, CFC, ICO, ECC (2005) Guidelines for the Prevention of Mould Formation in Coffee
ICO (2021) Coffee Development Report 2020, The Value of Coffee: Sustainability, Inclusiveness, and Resilience of the Coffee Global Value Chain
Gorbalenya AE, Baker SC, Baric RS, Groot RJ de, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LL, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J (2020) The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536–544. https://doi.org/10.1038/s41564-020-0695-z
Heussner AH, Bingle LE (2015) Comparative Ochratoxin Toxicity: A Review of the Available Data. Toxins 7:4253–4282. https://doi.org/10.3390/toxins7104253
ISO (2003) ISO 6673:2003 Green coffee -- Determination of loss in mass at 105 degrees C
ITC (2011) The Coffee Exporter’s Guide. International Trade Centre (ITC)
Oliveros CE, Pabón JP, Trujillo AF, Ramírez CA (2016) Evaluación de prácticas utilizadas en la conservación del café húmedo
Commission E (1998) Council Regulation (EEC) No 315/93 of 8 February 1993 laying down Community procedures for contaminants in food. Off J Eur Union
Commission E (2014) Commission Regulation (EU) No 696/2014 of 24 June 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of erucic acid in vegetable oils and fats and foods containing vegetable oils and fats . Off J Eur Union 70:12–34
Commission E (2010) Commission Regulation (EC) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off J Eur Union 70:12–34
Commission E (2010) Comission Regulation (EC) No 1881/2006 of 19 December 2006 . Official Journal of the European Union
Commission E (2010) Commission Regulation (EC) No 105/2010 of 5 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards ochratoxin A. Off J Eur Union 70:12–34
Commission E (2012) Comission Regulation (EC)No 594/2012 of 5 July 2012amending Regulation (EC) 1881/2006 as regards the maximum levels of the contaminants ochratoxin A, non dioxin-like PCBs and melamine in foodstuffs. Off J Eur Union. https://doi.org/10.2903/j.efsa.2010.1573
Commission E (2023) Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). Off J Eur Union 119:103–157
CEN (2009) EN 14132 - Determination of ochratoxin A in barley and roasted coffee - HPLC method with immunoaffinity column clean-up
Pittet A, Tornare D, Huggett A, Viani R (1996) Liquid Chromatographic Determination of Ochratoxin A in Pure and Adulterated Soluble Coffee Using an Immunoaffinity Column Cleanup Procedure. Journal of Agricultural and Food Chemistry 44:3564–3569. https://doi.org/10.1021/jf9602939
EFSA (2014) Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA Journal 12:3916. https://doi.org/10.2903/j.efsa.2014.3916
Freire L, Sant’Ana AS (2018) Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology. https://doi.org/10.1016/j.fct.2017.11.021
Rosén J, Hellenäs K-E (2002) Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst 127:880–882. https://doi.org/10.1039/b204938d
Andrzejewski D, Roach JAG, Gay ML, Musser SM (2004) Analysis of Coffee for the Presence of Acrylamide by LC-MS/MS. J Agr Food Chem 52:1996–2002. https://doi.org/10.1021/jf0349634
Commission E (2017) Commission Regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food (Text with EEA relevance. ). Off J Eur Union 304:24–44
(EFSA) EFSA (2008) Polycyclic Aromatic Hydrocarbons in Food‐Scientific Opinion of the Panel on Contaminants in the Food Chain. 6:724
Phillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303:468–472. https://doi.org/10.1038/303468a0
DNP (2006) CONPES 3418. Financiación parcial del programa “Fortalecimiento de la calidad del Café de Colombia”
Ramírez L, Silva G, Valenzuela L, Villegas A, Villegas L (2006) El café, capital social estratégico. Comisión de Ajuste de la Institucionalidad Cafetera
Benavides L (2019) Federación Nacional de Cafeteros anunció que la producción de café se redujo 8,7% en último mes
Dupont PN (2018) A Series About the Coffee Paradox | How Do We Turn It Around? https://coffeecollective.dk/2018/09/coffee-paradox/. Accessed 23 Apr 2019
Wambui C (2018) Kenya’s ground-down coffee farmers switch to avocado amid global boom
Díaz C (2019) Retirar el café colombiano de la bolsa
Quintero L Diseño de buenas prácticas ambientales para los procesos de producción de café especial sostenible, de la vereda la mejora, municipio de Casabianca, Tolima
RedList (2014) Andinobates tolimensis. The IUCN Red List of Threatened Species
DNP (2019) CONPES 3957. Política Nacional de Laboratorios: Prioridades para mejorar el cumplimiento de estándares de calidad
Pahlen CM der, Mukherjee K (2019) Climate change and implications for food safety. The First FAO/WHO/AU International Food Safety Conference
Gareis M, Bauer J, Thiem J, Plank G, Grabley S, Gedek B (1990) Cleavage of Zearalenone-Glycoside, a “Masked” Mycotoxin, during Digestion in Swine. J Vet Medicine Ser B 37:236–240. https://doi.org/10.1111/j.1439-0450.1990.tb01052.x
Dall’Erta A, Cirlini M, Dall’Asta M, Rio D, Galaverna G, Dall’Asta C (2013) Masked Mycotoxins Are Efficiently Hydrolyzed by Human Colonic Microbiota Releasing Their Aglycones. Chemical Research in Toxicology 26:305–312. https://doi.org/10.1021/tx300438c
Creswell JW, Creswell DJ (2017) Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications
Hyland K, Moore I (2020) Highly-sensitive pesticide analysis in baby food. Sciex Application Note RUO-MKT-02-11958-A
Castaldo L, Graziani G, Gaspari A, Izzo L, Tolosa J, Rodríguez-Carrasco Y, Ritieni A (2019) Target Analysis and Retrospective Screening of Multiple Mycotoxins in Pet Food Using UHPLC-Q-Orbitrap HRMS. Toxins 11:434. https://doi.org/10.3390/toxins11080434
Narváez A, Rodríguez-Carrasco Y, Castaldo L, Izzo L, Ritieni A (2020) Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Orbitrap High-Resolution Mass Spectrometry for Multi-Residue Analysis of Mycotoxins and Pesticides in Botanical Nutraceuticals. Toxins 12:114. https://doi.org/10.3390/toxins12020114
Houessou JK, Maloug S, Leveque A-S, Delteil C, Heyd B, Camel V (2007) Effect of Roasting Conditions on the Polycyclic Aromatic Hydrocarbon Content in Ground Arabica Coffee and Coffee Brew. J Agr Food Chem 55:9719–9726. https://doi.org/10.1021/jf071745s
Houessou JK, Goujot D, Heyd B, Camel V (2008) Modeling the Formation of Some Polycyclic Aromatic Hydrocarbons During the Roasting of Arabica Coffee Samples. J Agr Food Chem 56:3648–3656. https://doi.org/10.1021/jf073233j
Orecchio S, Ciotti VP, Culotta L (2009) Polycyclic aromatic hydrocarbons (PAHs) in coffee brew samples: Analytical method by GC–MS, profile, levels and sources. Food Chem Toxicol 47:819–826. https://doi.org/10.1016/j.fct.2009.01.011
Tfouni SAV, Serrate CS, Leme FM, Camargo MCR, Teles CRA, Cipolli KMVAB, Furlani RPZ (2013) Polycyclic aromatic hydrocarbons in coffee brew: Influence of roasting and brewing procedures in two Coffea cultivars. Lwt - Food Sci Technology 50:526–530. https://doi.org/10.1016/j.lwt.2012.08.015
Duedahl-Olesen L, Navaratnam MA, Jewula J, Jensen AH (2014) PAH in Some Brands of Tea and Coffee. Polycycl Aromat Comp 35:74–90. https://doi.org/10.1080/10406638.2014.918554
Benson NU, Fred-Ahmadu OH, Olugbuyiro JAO, Anake WU, Adedapo AE, Olajire AA (2018) Concentrations, sources and risk characterisation of polycyclic aromatic hydrocarbons (PAHs) in green, herbal and black tea products in Nigeria. J Food Compos Anal 66:13–22. https://doi.org/10.1016/j.jfca.2017.11.003
Ciecierska M, Derewiaka D, Kowalska J, Majewska E, Drużyńska B, Wołosiak R (2019) Effect of mild roasting on Arabica and Robusta coffee beans contamination with polycyclic aromatic hydrocarbons. J Food Sci Technology 56:737–745. https://doi.org/10.1007/s13197-018-3532-0
Dall’Asta C, Berthiller F (2016) Masked Mycotoxins in Food: Formation, Occurrence and Toxicological Relevance. 189–193. https://doi.org/10.1039/9781782622574-00189
Berthiller F, Crews C, Dall’Asta C, Saeger S, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J (2013) Masked mycotoxins: A review. Molecular Nutrition & Food Research 57:165–186. https://doi.org/10.1002/mnfr.201100764
Bittner A, Cramer B, Humpf H-U (2013) Matrix binding of ochratoxin A during roasting. Journal of agricultural and food chemistry 61:12737–43. https://doi.org/10.1021/jf403984x
Rychlik M, Humpf H-U, Marko D, Dänicke S, Mally A, Berthiller F, Klaffke H, Lorenz N (2014) Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotoxin Research 30:197–205. https://doi.org/10.1007/s12550-014-0203-5
Kovač M, Šubarić D, Bulaić M, Kovač T, Šarkanj B (2018) Yesterday masked, today modified; what do mycotoxins bring next? Archives Industrial Hyg Toxicol 69:196–214. https://doi.org/10.2478/aiht-2018-69-3108
Abdullah S (2015) Efficient searching strategies in PubMed. Pakistan Oral & Dental Journal 35:346–350
Anders ME, Evans DP (2010) Comparison of PubMed and Google Scholar literature searches. Respiratory care 55:578–583
Shultz M (2007) Comparing test searches in PubMed and Google Scholar. J Medical Libr Assoc Jmla 95:442–445. https://doi.org/10.3163/1536-5050.95.4.442
Dzuman Z, Zachariasova M, Veprikova Z, Godula M, Hajslova J (2015) Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Analytica Chimica Acta 29–40. https://doi.org/10.1016/j.aca.2015.01.021
Freire L, Guerreiro TM, Caramês ETS, Lopes LS, Orlando EA, Pereira GE, Pallone JAL, Catharino RR, Sant’Ana AS (2018) Influence of Maturation Stages in Different Varieties of Wine Grapes ( Vitis vinifera ) on the Production of Ochratoxin A and Its Modified Forms by Aspergillus carbonarius and Aspergillus niger. J Agr Food Chem 66:8824–8831. https://doi.org/10.1021/acs.jafc.8b02251
Sueck F, Hemp V, Specht J, Torres O, Cramer B, Humpf H-U (2019) Occurrence of the Ochratoxin A Degradation Product 2′R-Ochratoxin A in Coffee and Other Food: An Update. Toxins 11:329. https://doi.org/10.3390/toxins11060329
Sueck F, Poór M, Faisal Z, Gertzen CG, Cramer B, Lemli B, Kunsági-Máté S, Gohlke H, Humpf H-U (2018) Interaction of Ochratoxin A and Its Thermal Degradation Product 2′R-Ochratoxin A with Human Serum Albumin. Toxins 10:256. https://doi.org/10.3390/toxins10070256
Domínguez I, Arrebola F, Vidal J, Frenich A (2020) Assessment of wastewater pollution by gas chromatography and high resolution Orbitrap mass spectrometry. J Chromatogr A 1619:460964. https://doi.org/10.1016/j.chroma.2020.460964
Díaz R, Ibáñez M, Sancho JV, Hernández F (2011) Target and non-target screening strategies for organic contaminants, residues and illicit substances in food , environmental and human biological samples by UHPLC-QTOF-MS. Anal Methods-uk 4:196–209. https://doi.org/10.1039/c1ay05385j
Hernández F, Sancho J, Ibáñez M, Abad E, Portolés T, Mattioli L (2012) Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem 403:1251–1264. https://doi.org/10.1007/s00216-012-5844-7
Kaufmann A, Walker S (2012) Post-run target screening strategy for ultra high performance liquid chromatography coupled to Orbitrap based veterinary drug residue analysis in animal urine. J Chromatogr 1292:104–10. https://doi.org/10.1016/j.chroma.2012.09.019
Wang J, Chow W, Wong JW, Leung D, Chang J, Li M (2019) Non-target data acquisition for target analysis (nDATA) of 845 pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap. Analytical and Bioanalytical Chemistry 411:1421–1431. https://doi.org/10.1007/s00216-019-01581-z
Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–9. https://doi.org/10.1021/ac300698c
Sindelar M, Patti GJ (2020) Chemical Discovery in the Era of Metabolomics. J Am Chem Soc. https://doi.org/10.1021/jacs.9b13198
Bueschl C, Kluger B, Berthiller F, Lirk G, Winkler S, Krska R, Schuhmacher R (2012) MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research. Bioinformatics 28:736–738. https://doi.org/10.1093/bioinformatics/bts012
España JC (2013) Análisis de residuos de plaguicidas en frutas colombianas de exportación y cereales. 0–247
Lommen A, Kools HJ (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726. https://doi.org/10.1007/s11306-011-0369-1
Kruve A, Kaupmees K (2017) Adduct Formation in ESI/MS by Mobile Phase Additives. J Am Soc Mass Spectr 28:887–894. https://doi.org/10.1007/s13361-017-1626-y
Kruve A, Kaupmees K, Liigand J, Oss M, Leito I (2013) Sodium adduct formation efficiency in ESI source. J Mass Spectrom 48:695–702. https://doi.org/10.1002/jms.3218
DeFelice BC, Mehta S, Samra S, Čajka T, Wancewicz B, Fahrmann JF, Fiehn O (2017) Mass Spectral Feature List Optimizer (MS-FLO): A Tool To Minimize False Positive Peak Reports in Untargeted Liquid Chromatography-Mass Spectroscopy (LC-MS) Data Processing. Analytical chemistry. https://doi.org/10.1021/acs.analchem.6b04372
Fraisier-Vannier O, Chervin J, Cabanac G, Puech-Pages V, Fournier S, Durand V, Amiel A, Andre O, Benamar O, Tsugawa H, Dumas B, Marti G (2020) MS-CleanR: A feature-filtering workflow for untargeted LC-MS based metabolomics. Anal Chem. https://doi.org/10.1021/acs.analchem.0c01594
Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ Sci Technol 48:2097–2098. https://doi.org/10.1021/es5002105
Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. Bmc Bioinformatics 7:234. https://doi.org/10.1186/1471-2105-7-234
Kind T, Fiehn O (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. Bmc Bioinformatics 8:105. https://doi.org/10.1186/1471-2105-8-105
McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. Blackwell Science Oxford
Gevaert K, Impens F, Ghesquière B, Damme P, Lambrechts A, Vandekerckhove J (2008) Stable isotopic labeling in proteomics. Proteomics 8:4873–85. https://doi.org/10.1002/pmic.200800421
Gardiner W, Herrmann J, Mallard W, Owen J (1976) Mechanism of isotope exchange reaction between methane and deuterium. Int J Chem Kinet 8:111–122. https://doi.org/10.1002/kin.550080112
Bueschl C, Krska R, Kluger B, Schuhmacher R (2013) Isotopic labeling-assisted metabolomics using LC–MS. Analytical and Bioanalytical Chemistry 405:27–33. https://doi.org/10.1007/s00216-012-6375-y
Li Z, Zhao C, Cao C (2023) Production and Inhibition of Acrylamide during Coffee Processing: A Literature Review. Molecules 28:3476. https://doi.org/10.3390/molecules28083476
Binello A, Cravotto G, Menzio J, Tagliapietra S (2020) Polycyclic aromatic hydrocarbons in coffee samples: enquiry into processes and analytical methods. Food Chem 344:128631. https://doi.org/10.1016/j.foodchem.2020.128631
Raters M, Matissek R (2014) Quantitation of Polycyclic Aromatic Hydrocarbons (PAH4) in Cocoa and Chocolate Samples by an HPLC-FD Method. J Agric Food Chem 62:10666–10671. https://doi.org/10.1021/jf5028729
FSANZ (2008) Survey of chemical contaminants and residues in espresso, instant and ground coffee
Sajid M, Płotka-Wasylka J (2021) Green analytical chemistry metrics: A review. Talanta 238:123046. https://doi.org/10.1016/j.talanta.2021.123046
Mohamed HM, Lamie NT (2016) Analytical Eco-Scale for Assessing the Greenness of a Developed RP-HPLC Method Used for Simultaneous Analysis of Combined Antihypertensive Medications. J Aoac Int 99:1260–1265. https://doi.org/10.5740/jaoacint.16-0124
Maeztu L, Sanz C, Andueza S, Peña MPD, Bello J, Cid C (2001) Characterization of Espresso Coffee Aroma by Static Headspace GC−MS and Sensory Flavor Profile. J Agr Food Chem 49:5437–5444. https://doi.org/10.1021/jf0107959
López-Galilea I, Fournier N, Cid C, Guichard E (2006) Changes in Headspace Volatile Concentrations of Coffee Brews Caused by the Roasting Process and the Brewing Procedure. J Agr Food Chem 54:8560–8566. https://doi.org/10.1021/jf061178t
Andueza S, Peña MP de, Cid C (2003) Chemical and Sensorial Characteristics of Espresso Coffee As Affected by Grinding and Torrefacto Roast. J Agr Food Chem 51:7034–7039. https://doi.org/10.1021/jf034628f
Maeztu L, Andueza S, Ibañez C, Peña MP de, Bello J, Cid C (2001) Multivariate Methods for Characterization and Classification of Espresso Coffees from Different Botanical Varieties and Types of Roast by Foam, Taste, and Mouthfeel. J Agr Food Chem 49:4743–4747. https://doi.org/10.1021/jf010314l
Barco I, España J, Dallos J (2022) Development and validation of qualitative screening, quantitative determination and post-targeted pesticide analysis in tropical fruits and vegetables by LC-HRMS. Food Chem 367:130714. https://doi.org/10.1016/j.foodchem.2021.130714
SANTE (2016) Guidance document on identification of mycotoxins in food and feed. SANTE/12089/2016
SANTE (2021) Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. SANTE/11312/2021
Omari I, Randhawa P, Randhawa J, Yu J, McIndoe SJ (2019) Structure, Anion, and Solvent Effects on Cation Response in ESI-MS. J Am Soc Mass Spectr 30:1750–1757. https://doi.org/10.1007/s13361-019-02252-0
Wang R, Zhang L, Zhang Z, Tian Y (2016) Comparison of ESI– and APCI–LC–MS/MS methods: A case study of levonorgestrel in human plasma. J Pharm Analysis 6:356–362. https://doi.org/10.1016/j.jpha.2016.03.006
Stadler D, Lambertini F, Bueschl C, Wiesenberger G, Hametner C, Schwartz-Zimmermann H, Hellinger R, Sulyok M, Lemmens M, Schuhmacher R, Suman M, Berthiller F, Krska R (2018) Untargeted LC-MS based 13C labelling provides a full mass balance of deoxynivalenol and its degradation products formed during baking of crackers, biscuits and bread. Food Chemistry 279:303–311. https://doi.org/10.1016/j.foodchem.2018.11.150
Takahashi M, Izumi Y, Iwahashi F, Nakayama Y, Iwakoshi M, Nakao M, Yamato S, Fukusaki E, Bamba T (2018) Highly Accurate Detection and Identification Methodology of Xenobiotic Metabolites Using Stable Isotope Labeling, Data Mining Techniques, and Time-Dependent Profiling Based on LC/HRMS/MS. Analytical Chemistry 9068–9076. https://doi.org/10.1021/acs.analchem.8b01388
Xie B, Wang Y, Jones DR, Dey KK, Wang X, Li Y, Cho J-H, Shaw TI, Tan H, Peng J (2018) Isotope Labeling-Assisted Evaluation of Hydrophilic and Hydrophobic Liquid Chromatograph-Mass Spectrometry for Metabolomics Profiling. Analytical chemistry 8538–8545. https://doi.org/10.1021/acs.analchem.8b01591
Yuan M, Kremer DM, Huang H, Breitkopf SB, Ben-Sahra I, Manning BD, Lyssiotis CA, Asara JM (2019) Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS. Nature protocols 313–330. https://doi.org/10.1038/s41596-018-0102-x
Jacyna J, Kordalewska M, Markuszewski MJ (2018) Design of Experiments in metabolomics-related studies: An overview. J Pharmaceut Biomed 164:598–606. https://doi.org/10.1016/j.jpba.2018.11.027
Doppler M, Kluger B, Bueschl C, Schneider C, Krska R, Delcambre S, Hiller K, Lemmens M, Schuhmacher R (2016) Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants. Int J Mol Sci 17:1017. https://doi.org/10.3390/ijms17071017
Febrianto NA, Zhu F (2023) Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem 412:135489. https://doi.org/10.1016/j.foodchem.2023.135489
Bueschl C, Kluger B, Neumann N, Doppler M, Maschietto V, Thallinger GG, Meng-Reiterer J, Krska R, Schuhmacher R (2017) MetExtract II: A software suite for stable isotope assisted untargeted metabolomics. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.7b02518
Du P, Kibbe W, Lin S (2006) Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 22:2059–2065. https://doi.org/10.1093/bioinformatics/btl355
Mahieu N, Huang X, Chen Y-J, Patti GJ (2014) Credentialing Features: A Platform to Benchmark and Optimize Untargeted Metabolomic Methods. Anal Chem 86:9583–9589. https://doi.org/10.1021/ac503092d
Meng-Reiterer J, Bueschl C, Rechthaler J, Berthiller F, Lemmens M, Schuhmacher R (2016) Metabolism of HT-2 Toxin and T-2 Toxin in Oats. Toxins 8:364. https://doi.org/10.3390/toxins8120364
Papalambros PY, Wilde DJ (2000) Principles of optimal design: modeling and computation. Cambridge university press
Lawson J, Willden C (2016) Mixture Experiments in R Using mixexp. Journal of Statistical Software, Code Snippets 72:1–20. https://doi.org/10.18637/jss.v072.c02
Lehotay SJ, Maštovská K, Lightfield AR (2005) Use of Buffering and Other Means to Improve Results of Problematic Pesticides in a Fast and Easy Method for Residue Analysis of Fruits and Vegetables. J Aoac Int 88:615–629. https://doi.org/10.1093/jaoac/88.2.615
Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N (2010) Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of chromatography A 1217:2548–60. https://doi.org/10.1016/j.chroma.2010.01.044
Rejczak T, Tuzimski T (2015) A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem 13:. https://doi.org/10.1515/chem-2015-0109
Masiá A, Suarez-Varela M, Llopis-Gonzalez A, Picó Y (2016) Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal Chim Acta 936:40–61. https://doi.org/10.1016/j.aca.2016.07.023
Santen JA van, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, Neto FC, Castaño-Espriu L, Chang C, Clark TN, Little JLC, Delgadillo DA, Dorrestein PC, Duncan KR, Egan JM, Galey MM, Haeckl FPJ, Hua A, Hughes AH, Iskakova D, Khadilkar A, Lee J-H, Lee S, LeGrow N, Liu DY, Macho JM, McCaughey CS, Medema MH, Neupane RP, O’Donnell TJ, Paula JS, Sanchez LM, Shaikh AF, Soldatou S, Terlouw BR, Tran TA, Valentine M, Hooft JJJ van der, Vo DA, Wang M, Wilson D, Zink KE, Linington RG (2019) The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Cent Sci 5:1824–1833. https://doi.org/10.1021/acscentsci.9b00806
Açıkalın B, Sanlier N (2021) Coffee and its effects on the immune system. Trends Food Sci Technol 114:625–632. https://doi.org/10.1016/j.tifs.2021.06.023
Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA (2016) Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J Am Soc Mass Spectr 27:1897–1905. https://doi.org/10.1007/s13361-016-1469-y
Fujimoto H, Narita Y, Iwai K, Hanzawa T, Kobayashi T, Kakiuchi M, Ariki S, Wu X, Miyake K, Tahara Y, Ikezaki H, Fukunaga T, Toko K (2021) Bitterness compounds in coffee brew measured by analytical instruments and taste sensing system. Food Chem 342:128228. https://doi.org/10.1016/j.foodchem.2020.128228
Gökmen V, Morales F (2014) Encyclopedia of Food Safety. Process Contam 404–408. https://doi.org/10.1016/b978-0-12-378612-8.00209-2
Ouakhssase A, Fatini N, Addi EA (2021) A facile extraction method followed by UPLC-MS/MS for the analysis of aflatoxins and ochratoxin A in raw coffee beans. Food Addit Contam: Part A 38:1551–1560. https://doi.org/10.1080/19440049.2021.1925165
Angioni A, Russo M, Rocca CL, Pinto O, Mantovani A (2022) Modified Mycotoxins, a Still Unresolved Issue. Chemistry 4:1498–1514. https://doi.org/10.3390/chemistry4040099
Ludwig IA, Bravo J, Peña MPD, Cid C (2013) Effect of sugar addition (torrefacto) during roasting process on antioxidant capacity and phenolics of coffee. Lwt - Food Sci Technology 51:553–559. https://doi.org/10.1016/j.lwt.2012.12.010
Gomez-Tejedor J (1902) ES28829A1. Un procedimiento mecánico para tostar café. European Patent Office https://worldwide.espacenet.com/patent/search?q=pn%3DES28829A1
Gomez-Tejedor J (1907) ES39494A1. Mejoras en el procedimiento de torrefacción del café con los medios para llevarlo a cabo. European Patent Office https://worldwide.espacenet.com/patent/search?q=pn%3DES39494A1
BOE (2012) Royal Decree 1676/2012, of December 14, which approves the quality standard for coffee
CEN (2015) Food analysis. Determination of acrylamide in food by liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS). EN 16618:2015. https://doi.org/10.3403/30272429
Breidbach A, Bouten K, Kroeger-Negiota K, Stroka J, Ulberth F (2013) LC-MS based method of analysis for the simultaneous determination of four mycotoxins in cereals and feed
Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84. https://doi.org/10.1016/j.trac.2013.04.010
Maestroni B, Cannavan A (2011) Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed. Part Determining Mycotoxins Food Feed 3–36. https://doi.org/10.1533/9780857090973.1.3
Troise AD, Fiore A, Fogliano V (2014) Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry. J Agr Food Chem 62:74–79. https://doi.org/10.1021/jf404205b
Sulyok M, Stadler D, Steiner D, Krska R (2020) Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: challenges and solutions. Anal Bioanal Chem 412:2607–2620. https://doi.org/10.1007/s00216-020-02489-9
Wang J, Cai Z, Zhang N, Hu Z, Zhang J, Ying Y, Zhao Y, Feng L, Zhang J, Wu P (2022) A novel single step solid-phase extraction combined with bromine derivatization method for rapid determination of acrylamide in coffee and its products by stable isotope dilution ultra-performance liquid chromatography tandem triple quadrupole electrospray ionization mass spectrometry. Food Chem 388:132977. https://doi.org/10.1016/j.foodchem.2022.132977
Soto L, Fabian N, Garzón DA, Ahumada DA (2020) Development of Reference Material of Mercury in Fish: A comparison of different alternatives to homogeneity assessment
Debegnach F, Brera C, Mazzilli G, Sonego E, Buiarelli F, Ferri F, Rossi P, Collini G, Santis B (2020) Optimization and validation of a LC-HRMS method for aflatoxins determination in urine samples. Mycotoxin Res 36:257–266. https://doi.org/10.1007/s12550-020-00389-6
Wenzl T, Haedrich J, Schaechtele A, Piotr R, Stroka J, Eppe G, Scholl G (2016) Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Food and Feed
Sun Q, Dong Y, Wen X, Zhang X, Hou S, Zhao W, Yin D (2023) A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front Nutr 10:1244459. https://doi.org/10.3389/fnut.2023.1244459
Desmarchelier A, Hamel J, Delatour T (2019) Sources of overestimation in the analysis of acrylamide-in coffee by liquid chromatography mass spectrometry. J Chromatogr 1610:460566. https://doi.org/10.1016/j.chroma.2019.460566
Desmarchelier A, Bebius A, Reding F, Griffin A, Fernandez MA, Beasley J, Clauzier E, Delatour T (2022) Towards a consensus LC-MS/MS method for the determination of acrylamide in food that prevents overestimation due to interferences. Food Addit Contam Part 1–13. https://doi.org/10.1080/19440049.2021.2022773
Delatour T, Desmarchelier A, Stadler RH (2022) Challenges in the measurement of acrylamide in food by confirmatory methods. Curr Opin Food Sci 48:100951. https://doi.org/10.1016/j.cofs.2022.100951
Merhi A, Kordahi R, Hassan HF (2022) A review on the pesticides in coffee: Usage, health effects, detection, and mitigation. Frontiers Public Heal 10:1004570. https://doi.org/10.3389/fpubh.2022.1004570
Khaneghah AM, Fakhri Y, Abdi L, Coppa CFSC, Franco LT, Oliveira CAF de (2019) The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and meta-regression. Fungal Biol 123:611–617. https://doi.org/10.1016/j.funbio.2019.05.012
Leviet T, Truchement B (1988) ES2003891. Process and apparatus for controlling the roasting degree of torrefacto, especially, coffee. Oficina Española de Patentes y Marcas OEPM https://consultas2.oepm.es/pdf/ES/0000/000/02/00/38/ES-2003891_A6.pdf
Galmiche M, Rodrigues A, Motsch E, Delhomme O, François Y, Millet M (2022) The use of pseudo‐MRM for a sensitive and selective detection and quantification of polycyclic aromatic compounds by tandem mass spectrometry. Rapid Commun Mass Spectrom 36:e9307. https://doi.org/10.1002/rcm.9307
Szolar OHJ, Rost H, Braun R, Loibner AP (2002) Analysis of Polycyclic Aromatic Hydrocarbons in Soil: Minimizing Sample Pretreatment Using Automated Soxhlet with Ethyl Acetate as Extraction Solvent. Anal Chem 74:2379–2385. https://doi.org/10.1021/ac015739l
Surma M, Sadowska-Rociek A, Cieślik E (2014) The application of d-SPE in the QuEChERS method for the determination of PAHs in food of animal origin with GC–MS detection. Eur Food Res Technol 238:1029–1036. https://doi.org/10.1007/s00217-014-2181-4
Parveen K, Rafique U (2017) Adsorptive capacity of alumina and cobalt doped alumina hybrid for the removal of polyaromatic hydrocarbons: kinetics and isotherm study. Digest Journal of Nanomaterials and Biostructures 12:621–630
Mateos R, Oliveira CM, Díez-Pascual AM, Vera-López S, Andrés MPS, Silva RJNB da (2020) Impact of recovery correction or subjecting calibrators to sample preparation on measurement uncertainty: PAH determinations in waters. Talanta 207:120274. https://doi.org/10.1016/j.talanta.2019.120274
Shamsipur M, Hassan J (2010) A novel miniaturized homogenous liquid-liquid solvent extraction-high performance liquid chromatographic-fluorescence method for determination of ultra traces of polycyclic aromatic hydrocarbons in sediment samples. Journal of chromatography A 1217:4877–82. https://doi.org/10.1016/j.chroma.2010.05.038
Jánská M, Tomaniová M, Hajšlová J, Kocourek V (2006) Optimization of the procedure for the determination of polycyclic aromatic hydrocarbons and their derivatives in fish tissue: Estimation of measurements uncertainty. Food Addit Contam 23:309–325. https://doi.org/10.1080/02652030500401207
Wan Y-C, Kong Z-L, Chao Y-H, Teng C-F, Yang D-J (2022) Optimization of QuEChERS and high performance liquid chromatography-fluorescence detection conditions to assess the impact of preparation procedures on EU priority PAHs in coffee samples and their PAHs consumption risk. J Food Drug Anal 30:630–643. https://doi.org/10.38212/2224-6614.3436
Jimenez A, Adisa A, Woodham C, Saleh M (2014) Determination of polycyclic aromatic hydrocarbons in roasted coffee. J Environ Sci Heal Part B 49:828–835. https://doi.org/10.1080/03601234.2014.938552
Garcia DM, Huang SK, Stansbury WF (1996) Optimization of the atmospheric pressure chemical ionization liquid chromatography mass spectrometry interface. J Am Soc Mass Spectrom 7:59–65. https://doi.org/10.1016/1044-0305(95)00620-6
Paíga P, Silva LMS, Delerue-Matos C (2016) Optimization of the Ion Source-Mass Spectrometry Parameters in Non-Steroidal Anti-Inflammatory and Analgesic Pharmaceuticals Analysis by a Design of Experiments Approach. J Am Soc Mass Spectrom 27:1703–1714. https://doi.org/10.1007/s13361-016-1459-0
Ghislain T, Faure P, Michels R (2012) Detection and Monitoring of PAH and Oxy-PAHs by High Resolution Mass Spectrometry: Comparison of ESI, APCI and APPI Source Detection. J Am Soc Mass Spectrom 23:530–536. https://doi.org/10.1007/s13361-011-0304-8
Houessou JK, Delteil C, Camel V (2006) Investigation of Sample Treatment Steps for the Analysis of Polycyclic Aromatic Hydrocarbons in Ground Coffee. J Agric Food Chem 54:7413–7421. https://doi.org/10.1021/jf060802z
Akdoğan A, Buttinger G, Wenzl T (2016) Single-laboratory validation of a saponification method for the determination of four polycyclic aromatic hydrocarbons in edible oils by HPLC-fluorescence detection. Food Addit Contam: Part A 33:215–224. https://doi.org/10.1080/19440049.2015.1127430
Nguyen LKP, Nguyen NP, Le MT, Bui QM, Cam TS (2023) Concentrations of polycyclic aromatic hydrocarbons in Vietnamese takeaway coffee: effects of coffee variety, roasting temperature and time. Food Addit Contam Part ahead-of-print:1–10. https://doi.org/10.1080/19440049.2023.2168067
Thiäner JB, Achten C (2017) Liquid chromatography–atmospheric pressure laser ionization–mass spectrometry (LC-APLI-MS) analysis of polycyclic aromatic hydrocarbons with 6–8 rings in the environment. Anal Bioanal Chem 409:1737–1747. https://doi.org/10.1007/s00216-016-0121-9
Swain M (2012) chemicalize.org. J Chem Inf Model 52:613–615. https://doi.org/10.1021/ci300046g
Fiehn O, Robertson D, Griffin J, Werf M van der, Nikolau B, Morrison N, Sumner LW, Goodacre R, Hardy NW, Taylor C, Fostel J, Kristal B, Kaddurah-Daouk R, Mendes P, Ommen B van, Lindon JC, Sansone S-A (2007) The metabolomics standards initiative (MSI). Metabolomics 3:175–178. https://doi.org/10.1007/s11306-007-0070-6
Pena-Pereira F, Wojnowski W, Tobiszewski M (2020) AGREEAnalytical GREEnness Metric Approach and Software. Anal Chem 92:10076–10082. https://doi.org/10.1021/acs.analchem.0c01887
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 173 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.spa.fl_str_mv Colombia
dc.coverage.region.spa.fl_str_mv Tolima
dc.coverage.tgn.none.fl_str_mv http://vocab.getty.edu/page/tgn/1000784
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86151/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86151/2/1019016538.2024.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
8a73bc191c9c52de16a384b8c016db5c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886466345762816
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guerrero Dallos, Jairo Arturoa946cb1c8ed0e3f18e4295de585db564600España Amórtegui, Julio Césarb7ffa10459f0992bb7f28fbc2e5a2939Residualidad y destino ambiental de plaguicidas en sistemas agrícolas0000-0003-3566-5689000110483756089546400nOAM6KsAAAAJ&hl=es&oi=ao2024-05-23T21:13:44Z2024-05-23T21:13:44Z2024-05-23https://repositorio.unal.edu.co/handle/unal/86151Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasSe presenta el desarrollo y validación de un procedimiento simple, integral y amigable con el medio ambiente para determinar residuos de plaguicidas, contaminantes naturales y de procesamiento en el café tostado por LC-HRMS, e hidrocarburos aromáticos policíclicos (HAPs) vía GC-MS/MS. Para la primera técnica se extraen plaguicidas y micotoxinas con acetato de etilo, con una partición simultánea de acrilamida (AA) en fase acuosa en la misma porción analítica. Una microextracción en fase sólida dispersiva 'en tubo' (dSPME) retiene la AA para inyectarla de forma independiente de los compuestos de la fase orgánica. A través de novedoso método de cromatografía líquida de espectrometría de masas de alta resolución (LC-HRMS) se cuantificaron 186 compuestos a 10 µg/kg, 226 a 5 µg/kg y la AA a 200 µg/kg, para un total de 414 moléculas con recuperación (70%-120%) y precisiones aceptables (RSD<20%). Se confirmó la presencia de clorpirifos, AA y ocratoxina A (OTA) en muestras de diferente origen por debajo del límite de cuantificación. No hubo evidencia de enmascaramiento de OTA durante el almacenamiento del café; sin embargo, se evidenció condensación con glucosa durante experimentos de procesamiento térmico con sacarosa mediante el uso de marcado con isótopos estables (SIL). No se encontraron conjugados en muestras de café tostado ni torrefacto. Entre las alternativas revisadas para determinar los HAPs, una transesterificación precedió la cuantificación que fue validada para un grupo de HAPs que incluyó los 4 indicadores en la regulación vigente. Algunos hallazgos en muestras comerciales fueron cuantificados por GC-MS/MS y confirmados por LC-HRMS. (Texto tomado de la fuente).The development and validation of a simple, comprehensive, and environmentally friendly procedure is presented to determine pesticide residues, natural and processing contaminants in roasted coffee by LC-HRMS, and polycyclic aromatic hydrocarbons (PAHs) via GC-MS/ MS. For the first technique, pesticides and mycotoxins are extracted with ethyl acetate, along a simultaneous partition of acrylamide (AA) in the aqueous phase in the same analytical portion. An 'in-tube' dispersive solid phase microextraction (dSPME) retains the AA for injection independently of the organic phase compounds. A novel liquid chromatography high resolution mass spectrometry (LC-HRMS) method allows the quantification of 186 compounds at 10 µg/kg, 226 at 5 µg/kg and AA at 200 µg/kg for a total of 414 molecules with recovery (70%-120%) and acceptable precisions (RSD<20%). The presence of chlorpyrifos, AA and OTA was confirmed in samples of different origins below the limit of quantification. There was no evidence of OTA masking during coffee storage; however, condensation with glucose molecules was evident during thermal processing experiments with sucrose using stable isotope labeling (SIL). No conjugates were found in roasted or torrefacto coffee samples. Among the tested alternatives to determine PAHs, a transesterification process allowed a determination validated for a group that included selected indicative 4 PAHs in the current regulation. Some findings in commercial samples were quantified by GC-MS/MS and confirmed by LC-HRMS.DoctoradoDoctor en Ciencias - QuímicaQuímica agroalimentaria y ambientalxvi, 173 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::543 - Química analíticaDesechos agrícolasInocuidad alimentariaLimites máximos de residuosagricultural wastesfood safetymaximum residue limitsOchratoxin AAcrylamidePesticidesPolycyclic aromatic hydrocarbonsStable isotope labelingValidationEco-friendlyOcratoxin APlaguicidasHidrocarburos aromáticos policíclicosMarcado con isótopos establesValidaciónAmbientalmente amigableAcrilamidaEvaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)Evaluation of pesticide residues, mycotoxins and processing contaminants as key descriptors of chemical safety in the post-harvest of the coffee production chain in the Tolima region using analytical strategies based on Stable Isotope Labeling (SIL).Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaTolimahttp://vocab.getty.edu/page/tgn/1000784Daviron, B., & Ponte, S. (2005). The coffee paradox: Global markets, commodity trade and the elusive promise of development. Zed books.Ukers W (1935) All about coffee: the tea and coffee trade journal. New York: Burr Printing HouseFNC (2017) Comportamiento de la industria cafetera colombianaFNC (2018) Región Centro-Sur - Comité de Cafeteros del TolimaFNC (2014) Informe de los Comités DepartamentalesBessaire T, Perrin I, Tarres A, Bebius A, Reding F, Theurillat V (2019) Mycotoxins in green coffee: Occurrence and risk assessment. Food Control 96:59–67. https://doi.org/10.1016/j.foodcont.2018.08.033Tozlovanu M, Pfohl-Leszkowicz A (2010) Ochratoxin A in Roasted Coffee from French Supermarkets and Transfer in Coffee Beverages: Comparison of Analysis Methods. Toxins 2:1928–1942. https://doi.org/10.3390/toxins2081928FAO, CFC, ICO, ECC (2005) Guidelines for the Prevention of Mould Formation in CoffeeICO (2021) Coffee Development Report 2020, The Value of Coffee: Sustainability, Inclusiveness, and Resilience of the Coffee Global Value ChainGorbalenya AE, Baker SC, Baric RS, Groot RJ de, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LL, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J (2020) The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536–544. https://doi.org/10.1038/s41564-020-0695-zHeussner AH, Bingle LE (2015) Comparative Ochratoxin Toxicity: A Review of the Available Data. Toxins 7:4253–4282. https://doi.org/10.3390/toxins7104253ISO (2003) ISO 6673:2003 Green coffee -- Determination of loss in mass at 105 degrees CITC (2011) The Coffee Exporter’s Guide. International Trade Centre (ITC)Oliveros CE, Pabón JP, Trujillo AF, Ramírez CA (2016) Evaluación de prácticas utilizadas en la conservación del café húmedoCommission E (1998) Council Regulation (EEC) No 315/93 of 8 February 1993 laying down Community procedures for contaminants in food. Off J Eur UnionCommission E (2014) Commission Regulation (EU) No 696/2014 of 24 June 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of erucic acid in vegetable oils and fats and foods containing vegetable oils and fats . Off J Eur Union 70:12–34Commission E (2010) Commission Regulation (EC) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off J Eur Union 70:12–34Commission E (2010) Comission Regulation (EC) No 1881/2006 of 19 December 2006 . Official Journal of the European UnionCommission E (2010) Commission Regulation (EC) No 105/2010 of 5 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards ochratoxin A. Off J Eur Union 70:12–34Commission E (2012) Comission Regulation (EC)No 594/2012 of 5 July 2012amending Regulation (EC) 1881/2006 as regards the maximum levels of the contaminants ochratoxin A, non dioxin-like PCBs and melamine in foodstuffs. Off J Eur Union. https://doi.org/10.2903/j.efsa.2010.1573Commission E (2023) Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). Off J Eur Union 119:103–157CEN (2009) EN 14132 - Determination of ochratoxin A in barley and roasted coffee - HPLC method with immunoaffinity column clean-upPittet A, Tornare D, Huggett A, Viani R (1996) Liquid Chromatographic Determination of Ochratoxin A in Pure and Adulterated Soluble Coffee Using an Immunoaffinity Column Cleanup Procedure. Journal of Agricultural and Food Chemistry 44:3564–3569. https://doi.org/10.1021/jf9602939EFSA (2014) Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA Journal 12:3916. https://doi.org/10.2903/j.efsa.2014.3916Freire L, Sant’Ana AS (2018) Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology. https://doi.org/10.1016/j.fct.2017.11.021Rosén J, Hellenäs K-E (2002) Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst 127:880–882. https://doi.org/10.1039/b204938dAndrzejewski D, Roach JAG, Gay ML, Musser SM (2004) Analysis of Coffee for the Presence of Acrylamide by LC-MS/MS. J Agr Food Chem 52:1996–2002. https://doi.org/10.1021/jf0349634Commission E (2017) Commission Regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food (Text with EEA relevance. ). Off J Eur Union 304:24–44(EFSA) EFSA (2008) Polycyclic Aromatic Hydrocarbons in Food‐Scientific Opinion of the Panel on Contaminants in the Food Chain. 6:724Phillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303:468–472. https://doi.org/10.1038/303468a0DNP (2006) CONPES 3418. Financiación parcial del programa “Fortalecimiento de la calidad del Café de Colombia”Ramírez L, Silva G, Valenzuela L, Villegas A, Villegas L (2006) El café, capital social estratégico. Comisión de Ajuste de la Institucionalidad CafeteraBenavides L (2019) Federación Nacional de Cafeteros anunció que la producción de café se redujo 8,7% en último mesDupont PN (2018) A Series About the Coffee Paradox | How Do We Turn It Around? https://coffeecollective.dk/2018/09/coffee-paradox/. Accessed 23 Apr 2019Wambui C (2018) Kenya’s ground-down coffee farmers switch to avocado amid global boomDíaz C (2019) Retirar el café colombiano de la bolsaQuintero L Diseño de buenas prácticas ambientales para los procesos de producción de café especial sostenible, de la vereda la mejora, municipio de Casabianca, TolimaRedList (2014) Andinobates tolimensis. The IUCN Red List of Threatened SpeciesDNP (2019) CONPES 3957. Política Nacional de Laboratorios: Prioridades para mejorar el cumplimiento de estándares de calidadPahlen CM der, Mukherjee K (2019) Climate change and implications for food safety. The First FAO/WHO/AU International Food Safety ConferenceGareis M, Bauer J, Thiem J, Plank G, Grabley S, Gedek B (1990) Cleavage of Zearalenone-Glycoside, a “Masked” Mycotoxin, during Digestion in Swine. J Vet Medicine Ser B 37:236–240. https://doi.org/10.1111/j.1439-0450.1990.tb01052.xDall’Erta A, Cirlini M, Dall’Asta M, Rio D, Galaverna G, Dall’Asta C (2013) Masked Mycotoxins Are Efficiently Hydrolyzed by Human Colonic Microbiota Releasing Their Aglycones. Chemical Research in Toxicology 26:305–312. https://doi.org/10.1021/tx300438cCreswell JW, Creswell DJ (2017) Research design: Qualitative, quantitative, and mixed methods approaches. Sage publicationsHyland K, Moore I (2020) Highly-sensitive pesticide analysis in baby food. Sciex Application Note RUO-MKT-02-11958-ACastaldo L, Graziani G, Gaspari A, Izzo L, Tolosa J, Rodríguez-Carrasco Y, Ritieni A (2019) Target Analysis and Retrospective Screening of Multiple Mycotoxins in Pet Food Using UHPLC-Q-Orbitrap HRMS. Toxins 11:434. https://doi.org/10.3390/toxins11080434Narváez A, Rodríguez-Carrasco Y, Castaldo L, Izzo L, Ritieni A (2020) Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Orbitrap High-Resolution Mass Spectrometry for Multi-Residue Analysis of Mycotoxins and Pesticides in Botanical Nutraceuticals. Toxins 12:114. https://doi.org/10.3390/toxins12020114Houessou JK, Maloug S, Leveque A-S, Delteil C, Heyd B, Camel V (2007) Effect of Roasting Conditions on the Polycyclic Aromatic Hydrocarbon Content in Ground Arabica Coffee and Coffee Brew. J Agr Food Chem 55:9719–9726. https://doi.org/10.1021/jf071745sHouessou JK, Goujot D, Heyd B, Camel V (2008) Modeling the Formation of Some Polycyclic Aromatic Hydrocarbons During the Roasting of Arabica Coffee Samples. J Agr Food Chem 56:3648–3656. https://doi.org/10.1021/jf073233jOrecchio S, Ciotti VP, Culotta L (2009) Polycyclic aromatic hydrocarbons (PAHs) in coffee brew samples: Analytical method by GC–MS, profile, levels and sources. Food Chem Toxicol 47:819–826. https://doi.org/10.1016/j.fct.2009.01.011Tfouni SAV, Serrate CS, Leme FM, Camargo MCR, Teles CRA, Cipolli KMVAB, Furlani RPZ (2013) Polycyclic aromatic hydrocarbons in coffee brew: Influence of roasting and brewing procedures in two Coffea cultivars. Lwt - Food Sci Technology 50:526–530. https://doi.org/10.1016/j.lwt.2012.08.015Duedahl-Olesen L, Navaratnam MA, Jewula J, Jensen AH (2014) PAH in Some Brands of Tea and Coffee. Polycycl Aromat Comp 35:74–90. https://doi.org/10.1080/10406638.2014.918554Benson NU, Fred-Ahmadu OH, Olugbuyiro JAO, Anake WU, Adedapo AE, Olajire AA (2018) Concentrations, sources and risk characterisation of polycyclic aromatic hydrocarbons (PAHs) in green, herbal and black tea products in Nigeria. J Food Compos Anal 66:13–22. https://doi.org/10.1016/j.jfca.2017.11.003Ciecierska M, Derewiaka D, Kowalska J, Majewska E, Drużyńska B, Wołosiak R (2019) Effect of mild roasting on Arabica and Robusta coffee beans contamination with polycyclic aromatic hydrocarbons. J Food Sci Technology 56:737–745. https://doi.org/10.1007/s13197-018-3532-0Dall’Asta C, Berthiller F (2016) Masked Mycotoxins in Food: Formation, Occurrence and Toxicological Relevance. 189–193. https://doi.org/10.1039/9781782622574-00189Berthiller F, Crews C, Dall’Asta C, Saeger S, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J (2013) Masked mycotoxins: A review. Molecular Nutrition & Food Research 57:165–186. https://doi.org/10.1002/mnfr.201100764Bittner A, Cramer B, Humpf H-U (2013) Matrix binding of ochratoxin A during roasting. Journal of agricultural and food chemistry 61:12737–43. https://doi.org/10.1021/jf403984xRychlik M, Humpf H-U, Marko D, Dänicke S, Mally A, Berthiller F, Klaffke H, Lorenz N (2014) Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotoxin Research 30:197–205. https://doi.org/10.1007/s12550-014-0203-5Kovač M, Šubarić D, Bulaić M, Kovač T, Šarkanj B (2018) Yesterday masked, today modified; what do mycotoxins bring next? Archives Industrial Hyg Toxicol 69:196–214. https://doi.org/10.2478/aiht-2018-69-3108Abdullah S (2015) Efficient searching strategies in PubMed. Pakistan Oral & Dental Journal 35:346–350Anders ME, Evans DP (2010) Comparison of PubMed and Google Scholar literature searches. Respiratory care 55:578–583Shultz M (2007) Comparing test searches in PubMed and Google Scholar. J Medical Libr Assoc Jmla 95:442–445. https://doi.org/10.3163/1536-5050.95.4.442Dzuman Z, Zachariasova M, Veprikova Z, Godula M, Hajslova J (2015) Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Analytica Chimica Acta 29–40. https://doi.org/10.1016/j.aca.2015.01.021Freire L, Guerreiro TM, Caramês ETS, Lopes LS, Orlando EA, Pereira GE, Pallone JAL, Catharino RR, Sant’Ana AS (2018) Influence of Maturation Stages in Different Varieties of Wine Grapes ( Vitis vinifera ) on the Production of Ochratoxin A and Its Modified Forms by Aspergillus carbonarius and Aspergillus niger. J Agr Food Chem 66:8824–8831. https://doi.org/10.1021/acs.jafc.8b02251Sueck F, Hemp V, Specht J, Torres O, Cramer B, Humpf H-U (2019) Occurrence of the Ochratoxin A Degradation Product 2′R-Ochratoxin A in Coffee and Other Food: An Update. Toxins 11:329. https://doi.org/10.3390/toxins11060329Sueck F, Poór M, Faisal Z, Gertzen CG, Cramer B, Lemli B, Kunsági-Máté S, Gohlke H, Humpf H-U (2018) Interaction of Ochratoxin A and Its Thermal Degradation Product 2′R-Ochratoxin A with Human Serum Albumin. Toxins 10:256. https://doi.org/10.3390/toxins10070256Domínguez I, Arrebola F, Vidal J, Frenich A (2020) Assessment of wastewater pollution by gas chromatography and high resolution Orbitrap mass spectrometry. J Chromatogr A 1619:460964. https://doi.org/10.1016/j.chroma.2020.460964Díaz R, Ibáñez M, Sancho JV, Hernández F (2011) Target and non-target screening strategies for organic contaminants, residues and illicit substances in food , environmental and human biological samples by UHPLC-QTOF-MS. Anal Methods-uk 4:196–209. https://doi.org/10.1039/c1ay05385jHernández F, Sancho J, Ibáñez M, Abad E, Portolés T, Mattioli L (2012) Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem 403:1251–1264. https://doi.org/10.1007/s00216-012-5844-7Kaufmann A, Walker S (2012) Post-run target screening strategy for ultra high performance liquid chromatography coupled to Orbitrap based veterinary drug residue analysis in animal urine. J Chromatogr 1292:104–10. https://doi.org/10.1016/j.chroma.2012.09.019Wang J, Chow W, Wong JW, Leung D, Chang J, Li M (2019) Non-target data acquisition for target analysis (nDATA) of 845 pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap. Analytical and Bioanalytical Chemistry 411:1421–1431. https://doi.org/10.1007/s00216-019-01581-zTautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–9. https://doi.org/10.1021/ac300698cSindelar M, Patti GJ (2020) Chemical Discovery in the Era of Metabolomics. J Am Chem Soc. https://doi.org/10.1021/jacs.9b13198Bueschl C, Kluger B, Berthiller F, Lirk G, Winkler S, Krska R, Schuhmacher R (2012) MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research. Bioinformatics 28:736–738. https://doi.org/10.1093/bioinformatics/bts012España JC (2013) Análisis de residuos de plaguicidas en frutas colombianas de exportación y cereales. 0–247Lommen A, Kools HJ (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726. https://doi.org/10.1007/s11306-011-0369-1Kruve A, Kaupmees K (2017) Adduct Formation in ESI/MS by Mobile Phase Additives. J Am Soc Mass Spectr 28:887–894. https://doi.org/10.1007/s13361-017-1626-yKruve A, Kaupmees K, Liigand J, Oss M, Leito I (2013) Sodium adduct formation efficiency in ESI source. J Mass Spectrom 48:695–702. https://doi.org/10.1002/jms.3218DeFelice BC, Mehta S, Samra S, Čajka T, Wancewicz B, Fahrmann JF, Fiehn O (2017) Mass Spectral Feature List Optimizer (MS-FLO): A Tool To Minimize False Positive Peak Reports in Untargeted Liquid Chromatography-Mass Spectroscopy (LC-MS) Data Processing. Analytical chemistry. https://doi.org/10.1021/acs.analchem.6b04372Fraisier-Vannier O, Chervin J, Cabanac G, Puech-Pages V, Fournier S, Durand V, Amiel A, Andre O, Benamar O, Tsugawa H, Dumas B, Marti G (2020) MS-CleanR: A feature-filtering workflow for untargeted LC-MS based metabolomics. Anal Chem. https://doi.org/10.1021/acs.analchem.0c01594Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ Sci Technol 48:2097–2098. https://doi.org/10.1021/es5002105Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. Bmc Bioinformatics 7:234. https://doi.org/10.1186/1471-2105-7-234Kind T, Fiehn O (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. Bmc Bioinformatics 8:105. https://doi.org/10.1186/1471-2105-8-105McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. Blackwell Science OxfordGevaert K, Impens F, Ghesquière B, Damme P, Lambrechts A, Vandekerckhove J (2008) Stable isotopic labeling in proteomics. Proteomics 8:4873–85. https://doi.org/10.1002/pmic.200800421Gardiner W, Herrmann J, Mallard W, Owen J (1976) Mechanism of isotope exchange reaction between methane and deuterium. Int J Chem Kinet 8:111–122. https://doi.org/10.1002/kin.550080112Bueschl C, Krska R, Kluger B, Schuhmacher R (2013) Isotopic labeling-assisted metabolomics using LC–MS. Analytical and Bioanalytical Chemistry 405:27–33. https://doi.org/10.1007/s00216-012-6375-yLi Z, Zhao C, Cao C (2023) Production and Inhibition of Acrylamide during Coffee Processing: A Literature Review. Molecules 28:3476. https://doi.org/10.3390/molecules28083476Binello A, Cravotto G, Menzio J, Tagliapietra S (2020) Polycyclic aromatic hydrocarbons in coffee samples: enquiry into processes and analytical methods. Food Chem 344:128631. https://doi.org/10.1016/j.foodchem.2020.128631Raters M, Matissek R (2014) Quantitation of Polycyclic Aromatic Hydrocarbons (PAH4) in Cocoa and Chocolate Samples by an HPLC-FD Method. J Agric Food Chem 62:10666–10671. https://doi.org/10.1021/jf5028729FSANZ (2008) Survey of chemical contaminants and residues in espresso, instant and ground coffeeSajid M, Płotka-Wasylka J (2021) Green analytical chemistry metrics: A review. Talanta 238:123046. https://doi.org/10.1016/j.talanta.2021.123046Mohamed HM, Lamie NT (2016) Analytical Eco-Scale for Assessing the Greenness of a Developed RP-HPLC Method Used for Simultaneous Analysis of Combined Antihypertensive Medications. J Aoac Int 99:1260–1265. https://doi.org/10.5740/jaoacint.16-0124Maeztu L, Sanz C, Andueza S, Peña MPD, Bello J, Cid C (2001) Characterization of Espresso Coffee Aroma by Static Headspace GC−MS and Sensory Flavor Profile. J Agr Food Chem 49:5437–5444. https://doi.org/10.1021/jf0107959López-Galilea I, Fournier N, Cid C, Guichard E (2006) Changes in Headspace Volatile Concentrations of Coffee Brews Caused by the Roasting Process and the Brewing Procedure. J Agr Food Chem 54:8560–8566. https://doi.org/10.1021/jf061178tAndueza S, Peña MP de, Cid C (2003) Chemical and Sensorial Characteristics of Espresso Coffee As Affected by Grinding and Torrefacto Roast. J Agr Food Chem 51:7034–7039. https://doi.org/10.1021/jf034628fMaeztu L, Andueza S, Ibañez C, Peña MP de, Bello J, Cid C (2001) Multivariate Methods for Characterization and Classification of Espresso Coffees from Different Botanical Varieties and Types of Roast by Foam, Taste, and Mouthfeel. J Agr Food Chem 49:4743–4747. https://doi.org/10.1021/jf010314lBarco I, España J, Dallos J (2022) Development and validation of qualitative screening, quantitative determination and post-targeted pesticide analysis in tropical fruits and vegetables by LC-HRMS. Food Chem 367:130714. https://doi.org/10.1016/j.foodchem.2021.130714SANTE (2016) Guidance document on identification of mycotoxins in food and feed. SANTE/12089/2016SANTE (2021) Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. SANTE/11312/2021Omari I, Randhawa P, Randhawa J, Yu J, McIndoe SJ (2019) Structure, Anion, and Solvent Effects on Cation Response in ESI-MS. J Am Soc Mass Spectr 30:1750–1757. https://doi.org/10.1007/s13361-019-02252-0Wang R, Zhang L, Zhang Z, Tian Y (2016) Comparison of ESI– and APCI–LC–MS/MS methods: A case study of levonorgestrel in human plasma. J Pharm Analysis 6:356–362. https://doi.org/10.1016/j.jpha.2016.03.006Stadler D, Lambertini F, Bueschl C, Wiesenberger G, Hametner C, Schwartz-Zimmermann H, Hellinger R, Sulyok M, Lemmens M, Schuhmacher R, Suman M, Berthiller F, Krska R (2018) Untargeted LC-MS based 13C labelling provides a full mass balance of deoxynivalenol and its degradation products formed during baking of crackers, biscuits and bread. Food Chemistry 279:303–311. https://doi.org/10.1016/j.foodchem.2018.11.150Takahashi M, Izumi Y, Iwahashi F, Nakayama Y, Iwakoshi M, Nakao M, Yamato S, Fukusaki E, Bamba T (2018) Highly Accurate Detection and Identification Methodology of Xenobiotic Metabolites Using Stable Isotope Labeling, Data Mining Techniques, and Time-Dependent Profiling Based on LC/HRMS/MS. Analytical Chemistry 9068–9076. https://doi.org/10.1021/acs.analchem.8b01388Xie B, Wang Y, Jones DR, Dey KK, Wang X, Li Y, Cho J-H, Shaw TI, Tan H, Peng J (2018) Isotope Labeling-Assisted Evaluation of Hydrophilic and Hydrophobic Liquid Chromatograph-Mass Spectrometry for Metabolomics Profiling. Analytical chemistry 8538–8545. https://doi.org/10.1021/acs.analchem.8b01591Yuan M, Kremer DM, Huang H, Breitkopf SB, Ben-Sahra I, Manning BD, Lyssiotis CA, Asara JM (2019) Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS. Nature protocols 313–330. https://doi.org/10.1038/s41596-018-0102-xJacyna J, Kordalewska M, Markuszewski MJ (2018) Design of Experiments in metabolomics-related studies: An overview. J Pharmaceut Biomed 164:598–606. https://doi.org/10.1016/j.jpba.2018.11.027Doppler M, Kluger B, Bueschl C, Schneider C, Krska R, Delcambre S, Hiller K, Lemmens M, Schuhmacher R (2016) Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants. Int J Mol Sci 17:1017. https://doi.org/10.3390/ijms17071017Febrianto NA, Zhu F (2023) Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem 412:135489. https://doi.org/10.1016/j.foodchem.2023.135489Bueschl C, Kluger B, Neumann N, Doppler M, Maschietto V, Thallinger GG, Meng-Reiterer J, Krska R, Schuhmacher R (2017) MetExtract II: A software suite for stable isotope assisted untargeted metabolomics. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.7b02518Du P, Kibbe W, Lin S (2006) Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 22:2059–2065. https://doi.org/10.1093/bioinformatics/btl355Mahieu N, Huang X, Chen Y-J, Patti GJ (2014) Credentialing Features: A Platform to Benchmark and Optimize Untargeted Metabolomic Methods. Anal Chem 86:9583–9589. https://doi.org/10.1021/ac503092dMeng-Reiterer J, Bueschl C, Rechthaler J, Berthiller F, Lemmens M, Schuhmacher R (2016) Metabolism of HT-2 Toxin and T-2 Toxin in Oats. Toxins 8:364. https://doi.org/10.3390/toxins8120364Papalambros PY, Wilde DJ (2000) Principles of optimal design: modeling and computation. Cambridge university pressLawson J, Willden C (2016) Mixture Experiments in R Using mixexp. Journal of Statistical Software, Code Snippets 72:1–20. https://doi.org/10.18637/jss.v072.c02Lehotay SJ, Maštovská K, Lightfield AR (2005) Use of Buffering and Other Means to Improve Results of Problematic Pesticides in a Fast and Easy Method for Residue Analysis of Fruits and Vegetables. J Aoac Int 88:615–629. https://doi.org/10.1093/jaoac/88.2.615Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N (2010) Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of chromatography A 1217:2548–60. https://doi.org/10.1016/j.chroma.2010.01.044Rejczak T, Tuzimski T (2015) A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem 13:. https://doi.org/10.1515/chem-2015-0109Masiá A, Suarez-Varela M, Llopis-Gonzalez A, Picó Y (2016) Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal Chim Acta 936:40–61. https://doi.org/10.1016/j.aca.2016.07.023Santen JA van, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, Neto FC, Castaño-Espriu L, Chang C, Clark TN, Little JLC, Delgadillo DA, Dorrestein PC, Duncan KR, Egan JM, Galey MM, Haeckl FPJ, Hua A, Hughes AH, Iskakova D, Khadilkar A, Lee J-H, Lee S, LeGrow N, Liu DY, Macho JM, McCaughey CS, Medema MH, Neupane RP, O’Donnell TJ, Paula JS, Sanchez LM, Shaikh AF, Soldatou S, Terlouw BR, Tran TA, Valentine M, Hooft JJJ van der, Vo DA, Wang M, Wilson D, Zink KE, Linington RG (2019) The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Cent Sci 5:1824–1833. https://doi.org/10.1021/acscentsci.9b00806Açıkalın B, Sanlier N (2021) Coffee and its effects on the immune system. Trends Food Sci Technol 114:625–632. https://doi.org/10.1016/j.tifs.2021.06.023Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA (2016) Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J Am Soc Mass Spectr 27:1897–1905. https://doi.org/10.1007/s13361-016-1469-yFujimoto H, Narita Y, Iwai K, Hanzawa T, Kobayashi T, Kakiuchi M, Ariki S, Wu X, Miyake K, Tahara Y, Ikezaki H, Fukunaga T, Toko K (2021) Bitterness compounds in coffee brew measured by analytical instruments and taste sensing system. Food Chem 342:128228. https://doi.org/10.1016/j.foodchem.2020.128228Gökmen V, Morales F (2014) Encyclopedia of Food Safety. Process Contam 404–408. https://doi.org/10.1016/b978-0-12-378612-8.00209-2Ouakhssase A, Fatini N, Addi EA (2021) A facile extraction method followed by UPLC-MS/MS for the analysis of aflatoxins and ochratoxin A in raw coffee beans. Food Addit Contam: Part A 38:1551–1560. https://doi.org/10.1080/19440049.2021.1925165Angioni A, Russo M, Rocca CL, Pinto O, Mantovani A (2022) Modified Mycotoxins, a Still Unresolved Issue. Chemistry 4:1498–1514. https://doi.org/10.3390/chemistry4040099Ludwig IA, Bravo J, Peña MPD, Cid C (2013) Effect of sugar addition (torrefacto) during roasting process on antioxidant capacity and phenolics of coffee. Lwt - Food Sci Technology 51:553–559. https://doi.org/10.1016/j.lwt.2012.12.010Gomez-Tejedor J (1902) ES28829A1. Un procedimiento mecánico para tostar café. European Patent Office https://worldwide.espacenet.com/patent/search?q=pn%3DES28829A1Gomez-Tejedor J (1907) ES39494A1. Mejoras en el procedimiento de torrefacción del café con los medios para llevarlo a cabo. European Patent Office https://worldwide.espacenet.com/patent/search?q=pn%3DES39494A1BOE (2012) Royal Decree 1676/2012, of December 14, which approves the quality standard for coffeeCEN (2015) Food analysis. Determination of acrylamide in food by liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS). EN 16618:2015. https://doi.org/10.3403/30272429Breidbach A, Bouten K, Kroeger-Negiota K, Stroka J, Ulberth F (2013) LC-MS based method of analysis for the simultaneous determination of four mycotoxins in cereals and feedGałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84. https://doi.org/10.1016/j.trac.2013.04.010Maestroni B, Cannavan A (2011) Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed. Part Determining Mycotoxins Food Feed 3–36. https://doi.org/10.1533/9780857090973.1.3Troise AD, Fiore A, Fogliano V (2014) Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry. J Agr Food Chem 62:74–79. https://doi.org/10.1021/jf404205bSulyok M, Stadler D, Steiner D, Krska R (2020) Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: challenges and solutions. Anal Bioanal Chem 412:2607–2620. https://doi.org/10.1007/s00216-020-02489-9Wang J, Cai Z, Zhang N, Hu Z, Zhang J, Ying Y, Zhao Y, Feng L, Zhang J, Wu P (2022) A novel single step solid-phase extraction combined with bromine derivatization method for rapid determination of acrylamide in coffee and its products by stable isotope dilution ultra-performance liquid chromatography tandem triple quadrupole electrospray ionization mass spectrometry. Food Chem 388:132977. https://doi.org/10.1016/j.foodchem.2022.132977Soto L, Fabian N, Garzón DA, Ahumada DA (2020) Development of Reference Material of Mercury in Fish: A comparison of different alternatives to homogeneity assessmentDebegnach F, Brera C, Mazzilli G, Sonego E, Buiarelli F, Ferri F, Rossi P, Collini G, Santis B (2020) Optimization and validation of a LC-HRMS method for aflatoxins determination in urine samples. Mycotoxin Res 36:257–266. https://doi.org/10.1007/s12550-020-00389-6Wenzl T, Haedrich J, Schaechtele A, Piotr R, Stroka J, Eppe G, Scholl G (2016) Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Food and FeedSun Q, Dong Y, Wen X, Zhang X, Hou S, Zhao W, Yin D (2023) A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front Nutr 10:1244459. https://doi.org/10.3389/fnut.2023.1244459Desmarchelier A, Hamel J, Delatour T (2019) Sources of overestimation in the analysis of acrylamide-in coffee by liquid chromatography mass spectrometry. J Chromatogr 1610:460566. https://doi.org/10.1016/j.chroma.2019.460566Desmarchelier A, Bebius A, Reding F, Griffin A, Fernandez MA, Beasley J, Clauzier E, Delatour T (2022) Towards a consensus LC-MS/MS method for the determination of acrylamide in food that prevents overestimation due to interferences. Food Addit Contam Part 1–13. https://doi.org/10.1080/19440049.2021.2022773Delatour T, Desmarchelier A, Stadler RH (2022) Challenges in the measurement of acrylamide in food by confirmatory methods. Curr Opin Food Sci 48:100951. https://doi.org/10.1016/j.cofs.2022.100951Merhi A, Kordahi R, Hassan HF (2022) A review on the pesticides in coffee: Usage, health effects, detection, and mitigation. Frontiers Public Heal 10:1004570. https://doi.org/10.3389/fpubh.2022.1004570Khaneghah AM, Fakhri Y, Abdi L, Coppa CFSC, Franco LT, Oliveira CAF de (2019) The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and meta-regression. Fungal Biol 123:611–617. https://doi.org/10.1016/j.funbio.2019.05.012Leviet T, Truchement B (1988) ES2003891. Process and apparatus for controlling the roasting degree of torrefacto, especially, coffee. Oficina Española de Patentes y Marcas OEPM https://consultas2.oepm.es/pdf/ES/0000/000/02/00/38/ES-2003891_A6.pdfGalmiche M, Rodrigues A, Motsch E, Delhomme O, François Y, Millet M (2022) The use of pseudo‐MRM for a sensitive and selective detection and quantification of polycyclic aromatic compounds by tandem mass spectrometry. Rapid Commun Mass Spectrom 36:e9307. https://doi.org/10.1002/rcm.9307Szolar OHJ, Rost H, Braun R, Loibner AP (2002) Analysis of Polycyclic Aromatic Hydrocarbons in Soil: Minimizing Sample Pretreatment Using Automated Soxhlet with Ethyl Acetate as Extraction Solvent. Anal Chem 74:2379–2385. https://doi.org/10.1021/ac015739lSurma M, Sadowska-Rociek A, Cieślik E (2014) The application of d-SPE in the QuEChERS method for the determination of PAHs in food of animal origin with GC–MS detection. Eur Food Res Technol 238:1029–1036. https://doi.org/10.1007/s00217-014-2181-4Parveen K, Rafique U (2017) Adsorptive capacity of alumina and cobalt doped alumina hybrid for the removal of polyaromatic hydrocarbons: kinetics and isotherm study. Digest Journal of Nanomaterials and Biostructures 12:621–630Mateos R, Oliveira CM, Díez-Pascual AM, Vera-López S, Andrés MPS, Silva RJNB da (2020) Impact of recovery correction or subjecting calibrators to sample preparation on measurement uncertainty: PAH determinations in waters. Talanta 207:120274. https://doi.org/10.1016/j.talanta.2019.120274Shamsipur M, Hassan J (2010) A novel miniaturized homogenous liquid-liquid solvent extraction-high performance liquid chromatographic-fluorescence method for determination of ultra traces of polycyclic aromatic hydrocarbons in sediment samples. Journal of chromatography A 1217:4877–82. https://doi.org/10.1016/j.chroma.2010.05.038Jánská M, Tomaniová M, Hajšlová J, Kocourek V (2006) Optimization of the procedure for the determination of polycyclic aromatic hydrocarbons and their derivatives in fish tissue: Estimation of measurements uncertainty. Food Addit Contam 23:309–325. https://doi.org/10.1080/02652030500401207Wan Y-C, Kong Z-L, Chao Y-H, Teng C-F, Yang D-J (2022) Optimization of QuEChERS and high performance liquid chromatography-fluorescence detection conditions to assess the impact of preparation procedures on EU priority PAHs in coffee samples and their PAHs consumption risk. J Food Drug Anal 30:630–643. https://doi.org/10.38212/2224-6614.3436Jimenez A, Adisa A, Woodham C, Saleh M (2014) Determination of polycyclic aromatic hydrocarbons in roasted coffee. J Environ Sci Heal Part B 49:828–835. https://doi.org/10.1080/03601234.2014.938552Garcia DM, Huang SK, Stansbury WF (1996) Optimization of the atmospheric pressure chemical ionization liquid chromatography mass spectrometry interface. J Am Soc Mass Spectrom 7:59–65. https://doi.org/10.1016/1044-0305(95)00620-6Paíga P, Silva LMS, Delerue-Matos C (2016) Optimization of the Ion Source-Mass Spectrometry Parameters in Non-Steroidal Anti-Inflammatory and Analgesic Pharmaceuticals Analysis by a Design of Experiments Approach. J Am Soc Mass Spectrom 27:1703–1714. https://doi.org/10.1007/s13361-016-1459-0Ghislain T, Faure P, Michels R (2012) Detection and Monitoring of PAH and Oxy-PAHs by High Resolution Mass Spectrometry: Comparison of ESI, APCI and APPI Source Detection. J Am Soc Mass Spectrom 23:530–536. https://doi.org/10.1007/s13361-011-0304-8Houessou JK, Delteil C, Camel V (2006) Investigation of Sample Treatment Steps for the Analysis of Polycyclic Aromatic Hydrocarbons in Ground Coffee. J Agric Food Chem 54:7413–7421. https://doi.org/10.1021/jf060802zAkdoğan A, Buttinger G, Wenzl T (2016) Single-laboratory validation of a saponification method for the determination of four polycyclic aromatic hydrocarbons in edible oils by HPLC-fluorescence detection. Food Addit Contam: Part A 33:215–224. https://doi.org/10.1080/19440049.2015.1127430Nguyen LKP, Nguyen NP, Le MT, Bui QM, Cam TS (2023) Concentrations of polycyclic aromatic hydrocarbons in Vietnamese takeaway coffee: effects of coffee variety, roasting temperature and time. Food Addit Contam Part ahead-of-print:1–10. https://doi.org/10.1080/19440049.2023.2168067Thiäner JB, Achten C (2017) Liquid chromatography–atmospheric pressure laser ionization–mass spectrometry (LC-APLI-MS) analysis of polycyclic aromatic hydrocarbons with 6–8 rings in the environment. Anal Bioanal Chem 409:1737–1747. https://doi.org/10.1007/s00216-016-0121-9Swain M (2012) chemicalize.org. J Chem Inf Model 52:613–615. https://doi.org/10.1021/ci300046gFiehn O, Robertson D, Griffin J, Werf M van der, Nikolau B, Morrison N, Sumner LW, Goodacre R, Hardy NW, Taylor C, Fostel J, Kristal B, Kaddurah-Daouk R, Mendes P, Ommen B van, Lindon JC, Sansone S-A (2007) The metabolomics standards initiative (MSI). Metabolomics 3:175–178. https://doi.org/10.1007/s11306-007-0070-6Pena-Pereira F, Wojnowski W, Tobiszewski M (2020) AGREEAnalytical GREEnness Metric Approach and Software. Anal Chem 92:10076–10082. https://doi.org/10.1021/acs.analchem.0c01887Becas de Excelencia Doctoral del BicentenarioCOL 5025 IAEA project Coordinated Research Project D52039/Research contract 22177Ministerio de ciencia, innovación y tecnología (MinCiencias)International Atomic Energy Agency (IAEA)EstudiantesGrupos comunitariosInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86151/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1019016538.2024.pdf1019016538.2024.pdfTesis de Doctorado en Ciencias - Químicaapplication/pdf11969859https://repositorio.unal.edu.co/bitstream/unal/86151/2/1019016538.2024.pdf8a73bc191c9c52de16a384b8c016db5cMD52unal/86151oai:repositorio.unal.edu.co:unal/861512024-05-23 16:15:19.249Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=