Identification of Common Factors in Multivariate Time Series Modeling
For multivariate time series modelling, it is essential to know the number of common factors that define the behaviour. The traditional approach to this problem is investigating the number of cointegration relations among the data by determining the trace and the maximum eigenvalue and obtaining the...
- Autores:
-
González, Mariano
Nave, Juan M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66550
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66550
http://bdigital.unal.edu.co/67578/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Cointegration
Factor Analysis
Stationarity
Cointegración
Estacionariedad
Factores comunes
Modelo factorial dinámico.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_ee434d631c0a3152e6948d666ead724a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/66550 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Identification of Common Factors in Multivariate Time Series Modeling |
title |
Identification of Common Factors in Multivariate Time Series Modeling |
spellingShingle |
Identification of Common Factors in Multivariate Time Series Modeling 51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Cointegration Factor Analysis Stationarity Cointegración Estacionariedad Factores comunes Modelo factorial dinámico. |
title_short |
Identification of Common Factors in Multivariate Time Series Modeling |
title_full |
Identification of Common Factors in Multivariate Time Series Modeling |
title_fullStr |
Identification of Common Factors in Multivariate Time Series Modeling |
title_full_unstemmed |
Identification of Common Factors in Multivariate Time Series Modeling |
title_sort |
Identification of Common Factors in Multivariate Time Series Modeling |
dc.creator.fl_str_mv |
González, Mariano Nave, Juan M. |
dc.contributor.author.spa.fl_str_mv |
González, Mariano Nave, Juan M. |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics |
topic |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Cointegration Factor Analysis Stationarity Cointegración Estacionariedad Factores comunes Modelo factorial dinámico. |
dc.subject.proposal.spa.fl_str_mv |
Cointegration Factor Analysis Stationarity Cointegración Estacionariedad Factores comunes Modelo factorial dinámico. |
description |
For multivariate time series modelling, it is essential to know the number of common factors that define the behaviour. The traditional approach to this problem is investigating the number of cointegration relations among the data by determining the trace and the maximum eigenvalue and obtaining the number of stationary long-run relations. Alternatively, this problem can be analyzed using dynamic factor models, which involves estimating the number of common factors, both stationary and not, that describe the behaviour of the data. In this context, we empirically analyze the power of such alternative approaches by applying them to time series that are simulated using known factorial models and to financial market data. The results show that when there are stationary common factors, when the number of observations is reduced and/or when the variables are part of more than one cointegration relation, the common factors test is more powerful than the usually applied cointegration tests. These results, together with the greater flexibility to identify the loading matrix of the data generating process, render dynamic factor models more suitable for use in multivariate time series analysis. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T02:21:13Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T02:21:13Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2389-8976 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/66550 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/67578/ |
identifier_str_mv |
ISSN: 2389-8976 |
url |
https://repositorio.unal.edu.co/handle/unal/66550 http://bdigital.unal.edu.co/67578/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/estad/article/view/48812 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística Revista Colombiana de Estadística |
dc.relation.references.spa.fl_str_mv |
González, Mariano and Nave, Juan M. (2015) Identification of Common Factors in Multivariate Time Series Modeling. Revista Colombiana de Estadística, 38 (1). pp. 219-237. ISSN 2389-8976 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/66550/1/48812-239290-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/66550/2/48812-239290-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
c955e389e3d9412189d15d7a8cd1558c a8e857646f4fbe9919650d6eae2902a5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089735117733888 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González, Mariano02ff10fa-6d26-41a5-8971-25c6dd14e1f0300Nave, Juan M.3273b413-dc23-4d8b-86f9-106129f431c23002019-07-03T02:21:13Z2019-07-03T02:21:13Z2015-01-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66550http://bdigital.unal.edu.co/67578/For multivariate time series modelling, it is essential to know the number of common factors that define the behaviour. The traditional approach to this problem is investigating the number of cointegration relations among the data by determining the trace and the maximum eigenvalue and obtaining the number of stationary long-run relations. Alternatively, this problem can be analyzed using dynamic factor models, which involves estimating the number of common factors, both stationary and not, that describe the behaviour of the data. In this context, we empirically analyze the power of such alternative approaches by applying them to time series that are simulated using known factorial models and to financial market data. The results show that when there are stationary common factors, when the number of observations is reduced and/or when the variables are part of more than one cointegration relation, the common factors test is more powerful than the usually applied cointegration tests. These results, together with the greater flexibility to identify the loading matrix of the data generating process, render dynamic factor models more suitable for use in multivariate time series analysis.Para la modelización multivariante de series temporales no estacionarias es imprescindible conocer el número de factores comunes que definen el comportamiento de las series. La forma tradicional de abordar este problema es el estudio de las relaciones de cointegración entre los datos a través de las pruebas de la traza y el máximo valor propio, obteniendo el número de relaciones de largo plazo estacionarias. Como alternativa, se pueden emplear modelos factoriales dinámicos que estiman el número de factores comunes, estacionarios o no, que describen el comportamiento de los datos. En este contexto, analizamos empíricamente el resultado de aplicar tales métodos a series simuladas mediante modelos factoriales conocidos, y a datos reales de los mercados financieros. Los resultados muestran que cuando hay factores comunes estacionarios, cuando el número de observaciones se reduce y/o cuando las variables participan en más de una relación de cointegración, la prueba de factores comunes es más potente que las pruebas habituales de cointegración. Estos resultados, junto con la mayor flexibilidad para identificar la matriz de cargas del proceso generador de datos, hacen que los modelos de factores dinámicos sean más adecuados para su utilización en el análisis multivariante.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/48812Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaGonzález, Mariano and Nave, Juan M. (2015) Identification of Common Factors in Multivariate Time Series Modeling. Revista Colombiana de Estadística, 38 (1). pp. 219-237. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsCointegrationFactor AnalysisStationarityCointegraciónEstacionariedadFactores comunesModelo factorial dinámico.Identification of Common Factors in Multivariate Time Series ModelingArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL48812-239290-1-PB.pdfapplication/pdf1108103https://repositorio.unal.edu.co/bitstream/unal/66550/1/48812-239290-1-PB.pdfc955e389e3d9412189d15d7a8cd1558cMD51THUMBNAIL48812-239290-1-PB.pdf.jpg48812-239290-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5187https://repositorio.unal.edu.co/bitstream/unal/66550/2/48812-239290-1-PB.pdf.jpga8e857646f4fbe9919650d6eae2902a5MD52unal/66550oai:repositorio.unal.edu.co:unal/665502024-05-16 23:09:44.912Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |