Identification of Common Factors in Multivariate Time Series Modeling

For multivariate time series modelling, it is essential to know the number of common factors that define the behaviour. The traditional approach to this problem is investigating the number of cointegration relations among the data by determining the trace and the maximum eigenvalue and obtaining the...

Full description

Autores:
González, Mariano
Nave, Juan M.
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66550
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66550
http://bdigital.unal.edu.co/67578/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Cointegration
Factor Analysis
Stationarity
Cointegración
Estacionariedad
Factores comunes
Modelo factorial dinámico.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_ee434d631c0a3152e6948d666ead724a
oai_identifier_str oai:repositorio.unal.edu.co:unal/66550
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Identification of Common Factors in Multivariate Time Series Modeling
title Identification of Common Factors in Multivariate Time Series Modeling
spellingShingle Identification of Common Factors in Multivariate Time Series Modeling
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Cointegration
Factor Analysis
Stationarity
Cointegración
Estacionariedad
Factores comunes
Modelo factorial dinámico.
title_short Identification of Common Factors in Multivariate Time Series Modeling
title_full Identification of Common Factors in Multivariate Time Series Modeling
title_fullStr Identification of Common Factors in Multivariate Time Series Modeling
title_full_unstemmed Identification of Common Factors in Multivariate Time Series Modeling
title_sort Identification of Common Factors in Multivariate Time Series Modeling
dc.creator.fl_str_mv González, Mariano
Nave, Juan M.
dc.contributor.author.spa.fl_str_mv González, Mariano
Nave, Juan M.
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
topic 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Cointegration
Factor Analysis
Stationarity
Cointegración
Estacionariedad
Factores comunes
Modelo factorial dinámico.
dc.subject.proposal.spa.fl_str_mv Cointegration
Factor Analysis
Stationarity
Cointegración
Estacionariedad
Factores comunes
Modelo factorial dinámico.
description For multivariate time series modelling, it is essential to know the number of common factors that define the behaviour. The traditional approach to this problem is investigating the number of cointegration relations among the data by determining the trace and the maximum eigenvalue and obtaining the number of stationary long-run relations. Alternatively, this problem can be analyzed using dynamic factor models, which involves estimating the number of common factors, both stationary and not, that describe the behaviour of the data. In this context, we empirically analyze the power of such alternative approaches by applying them to time series that are simulated using known factorial models and to financial market data. The results show that when there are stationary common factors, when the number of observations is reduced and/or when the variables are part of more than one cointegration relation, the common factors test is more powerful than the usually applied cointegration tests. These results, together with the greater flexibility to identify the loading matrix of the data generating process, render dynamic factor models more suitable for use in multivariate time series analysis.
publishDate 2015
dc.date.issued.spa.fl_str_mv 2015-01-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T02:21:13Z
dc.date.available.spa.fl_str_mv 2019-07-03T02:21:13Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2389-8976
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/66550
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/67578/
identifier_str_mv ISSN: 2389-8976
url https://repositorio.unal.edu.co/handle/unal/66550
http://bdigital.unal.edu.co/67578/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/estad/article/view/48812
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística
Revista Colombiana de Estadística
dc.relation.references.spa.fl_str_mv González, Mariano and Nave, Juan M. (2015) Identification of Common Factors in Multivariate Time Series Modeling. Revista Colombiana de Estadística, 38 (1). pp. 219-237. ISSN 2389-8976
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/66550/1/48812-239290-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/66550/2/48812-239290-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv c955e389e3d9412189d15d7a8cd1558c
a8e857646f4fbe9919650d6eae2902a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089735117733888
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González, Mariano02ff10fa-6d26-41a5-8971-25c6dd14e1f0300Nave, Juan M.3273b413-dc23-4d8b-86f9-106129f431c23002019-07-03T02:21:13Z2019-07-03T02:21:13Z2015-01-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66550http://bdigital.unal.edu.co/67578/For multivariate time series modelling, it is essential to know the number of common factors that define the behaviour. The traditional approach to this problem is investigating the number of cointegration relations among the data by determining the trace and the maximum eigenvalue and obtaining the number of stationary long-run relations. Alternatively, this problem can be analyzed using dynamic factor models, which involves estimating the number of common factors, both stationary and not, that describe the behaviour of the data. In this context, we empirically analyze the power of such alternative approaches by applying them to time series that are simulated using known factorial models and to financial market data. The results show that when there are stationary common factors, when the number of observations is reduced and/or when the variables are part of more than one cointegration relation, the common factors test is more powerful than the usually applied cointegration tests. These results, together with the greater flexibility to identify the loading matrix of the data generating process, render dynamic factor models more suitable for use in multivariate time series analysis.Para la modelización multivariante de series temporales no estacionarias es imprescindible conocer el número de factores comunes que definen el comportamiento de las series. La forma tradicional de abordar este problema es el estudio de las relaciones de cointegración entre los datos a través de las pruebas de la traza y el máximo valor propio, obteniendo el número de relaciones de largo plazo estacionarias. Como alternativa, se pueden emplear modelos factoriales dinámicos que estiman el número de factores comunes, estacionarios o no, que describen el comportamiento de los datos. En este contexto, analizamos empíricamente el resultado de aplicar tales métodos a series simuladas mediante modelos factoriales conocidos, y a datos reales de los mercados financieros. Los resultados muestran que cuando hay factores comunes estacionarios, cuando el número de observaciones se reduce y/o cuando las variables participan en más de una relación de cointegración, la prueba de factores comunes es más potente que las pruebas habituales de cointegración. Estos resultados, junto con la mayor flexibilidad para identificar la matriz de cargas del proceso generador de datos, hacen que los modelos de factores dinámicos sean más adecuados para su utilización en el análisis multivariante.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/48812Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaGonzález, Mariano and Nave, Juan M. (2015) Identification of Common Factors in Multivariate Time Series Modeling. Revista Colombiana de Estadística, 38 (1). pp. 219-237. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsCointegrationFactor AnalysisStationarityCointegraciónEstacionariedadFactores comunesModelo factorial dinámico.Identification of Common Factors in Multivariate Time Series ModelingArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL48812-239290-1-PB.pdfapplication/pdf1108103https://repositorio.unal.edu.co/bitstream/unal/66550/1/48812-239290-1-PB.pdfc955e389e3d9412189d15d7a8cd1558cMD51THUMBNAIL48812-239290-1-PB.pdf.jpg48812-239290-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5187https://repositorio.unal.edu.co/bitstream/unal/66550/2/48812-239290-1-PB.pdf.jpga8e857646f4fbe9919650d6eae2902a5MD52unal/66550oai:repositorio.unal.edu.co:unal/665502024-05-16 23:09:44.912Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co