Evaluación de un proceso biológico para la obtención de una cerveza con bajo contenido en alcohol con inclusión de quinua
ilustraciones, fotografías, graficas
- Autores:
-
Nítola Mery, José Daniel
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81636
- Palabra clave:
- 660 - Ingeniería química::663 - Tecnología de bebidas
Cervezas
Ales (cervezas)
Quinua
beers
ales
quinoa
Saccharomycodes ludwigii
Fermentación
Cerveza artesanal
Bajo contenido de alcohol
Fermentation
Craft beer
Low alcohol content
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_ea559ae909645e86e273e1831b289036 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81636 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de un proceso biológico para la obtención de una cerveza con bajo contenido en alcohol con inclusión de quinua |
dc.title.translated.eng.fl_str_mv |
Evaluation of a biological process for obtaining a low-alcohol beer including quinoa |
title |
Evaluación de un proceso biológico para la obtención de una cerveza con bajo contenido en alcohol con inclusión de quinua |
spellingShingle |
Evaluación de un proceso biológico para la obtención de una cerveza con bajo contenido en alcohol con inclusión de quinua 660 - Ingeniería química::663 - Tecnología de bebidas Cervezas Ales (cervezas) Quinua beers ales quinoa Saccharomycodes ludwigii Fermentación Cerveza artesanal Bajo contenido de alcohol Fermentation Craft beer Low alcohol content |
title_short |
Evaluación de un proceso biológico para la obtención de una cerveza con bajo contenido en alcohol con inclusión de quinua |
title_full |
Evaluación de un proceso biológico para la obtención de una cerveza con bajo contenido en alcohol con inclusión de quinua |
title_fullStr |
Evaluación de un proceso biológico para la obtención de una cerveza con bajo contenido en alcohol con inclusión de quinua |
title_full_unstemmed |
Evaluación de un proceso biológico para la obtención de una cerveza con bajo contenido en alcohol con inclusión de quinua |
title_sort |
Evaluación de un proceso biológico para la obtención de una cerveza con bajo contenido en alcohol con inclusión de quinua |
dc.creator.fl_str_mv |
Nítola Mery, José Daniel |
dc.contributor.advisor.none.fl_str_mv |
Ortiz Rosas, Juan Pablo Fuenmayor Bobadilla, Carlos Alberto |
dc.contributor.author.none.fl_str_mv |
Nítola Mery, José Daniel |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::663 - Tecnología de bebidas |
topic |
660 - Ingeniería química::663 - Tecnología de bebidas Cervezas Ales (cervezas) Quinua beers ales quinoa Saccharomycodes ludwigii Fermentación Cerveza artesanal Bajo contenido de alcohol Fermentation Craft beer Low alcohol content |
dc.subject.agrovocuri.spa.fl_str_mv |
Cervezas Ales (cervezas) Quinua |
dc.subject.agrovocuri.eng.fl_str_mv |
beers ales quinoa |
dc.subject.proposal.other.fl_str_mv |
Saccharomycodes ludwigii |
dc.subject.proposal.spa.fl_str_mv |
Fermentación Cerveza artesanal Bajo contenido de alcohol |
dc.subject.proposal.eng.fl_str_mv |
Fermentation Craft beer Low alcohol content |
description |
ilustraciones, fotografías, graficas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-28T17:17:40Z |
dc.date.available.none.fl_str_mv |
2022-06-28T17:17:40Z |
dc.date.issued.none.fl_str_mv |
2022-06-23 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81636 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81636 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alonso-Esteban, J. I., Pinela, J., Barros, L., Ćirić, A., Soković, M., Calhelha, R. C., Torija-Isasa, E., de Cortes Sánchez-Mata, M., & Ferreira, I. C. F. R. (2019). Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus lupulus L.) Seeds. Industrial Crops and Products, 134, 154–159. https://doi.org/10.1016/j.indcrop.2019.04.001 Alperstein, L., Gardner, J. M., Sundstrom, J. F., Sumby, K. M., & Jiranek, V. (2020). Yeast bioprospecting versus synthetic biology—which is better for innovative beverage fermentation? In Applied Microbiology and Biotechnology (Vol. 104, Issue 5, pp. 1939–1953). Springer. https://doi.org/10.1007/s00253-020-10364-x Amaya, N., & Pascagaza, L. (2019). Evaluación de perfiles fermentativos para la elaboracion de cerveza artesanal por levaduras nativas. April, 251. Aragón, C., Miquel, M., Correa, M., & Sanchis-Segura, C. (2002). Alcohol y metabolismo humano. In Adicciones (Vol. 14, Issue SUPPL. 1, pp. 23–42). https://doi.org/10.20882/adicciones.541 Badui Dergal, S. (2006). Química de los alimentos. In Química de los alimentos. Bamforth, C. W. (2016). Brewing Materials and Processes. In Brewing Materials and Processes. https://doi.org/10.1016/c2013-0-13349-1 Bellut, K., & Arendt, E. K. (2019). Chance and Challenge: Non-Saccharomyces Yeasts in Nonalcoholic and Low Alcohol Beer Brewing–A Review. In Journal of the American Society of Brewing Chemists (Vol. 77, Issue 2, pp. 77–91). https://doi.org/10.1080/03610470.2019.1569452 Bellut, K., Michel, M., Zarnkow, M., Hutzler, M., Jacob, F., De Schutter, D. P., Daenen, L., Lynch, K. M., Zannini, E., & Arendt, E. K. (2018). Application of non-Saccharomyces yeasts isolated from kombucha in the production of alcohol-free beer. Fermentation, 4(3). https://doi.org/10.3390/fermentation4030066 Bellut, K., Michel, M., Zarnkow, M., Hutzler, M., Jacob, F., Lynch, K. M., & Arendt, E. K. (2019). On the suitability of alternative cereals, pseudocereals and pulses in the production of alcohol-reduced beers by non-conventional yeasts. European Food Research and Technology, 245(11), 2549–2564. https://doi.org/10.1007/s00217-019-03372-3 Boundy-Mills, K., Stratford, M., & Miller, M. W. (2011). Saccharomycodes E.C: Hansen (1904). In The Yeasts (Vol. 2, Issue 1904). Elsevier B.V. https://doi.org/10.1016/B978-0-444-52149-1.00062-8 Brányik, T., Silva, D. P., Baszczyňski, M., Lehnert, R., & Almeida E Silva, J. B. (2012). A review of methods of low alcohol and alcohol-free beer production. In Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2011.09.020 Cabras, I., & Higgins, D. M. (2016). Beer, brewing, and business history. Business History, 58(5), 609–624. https://doi.org/10.1080/00076791.2015.1122713 Callejo, M. J., García Navas, J. J., Alba, R., Escott, C., Loira, I., González, M. C., & Morata, A. (2019). Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. European Food Research and Technology, 245(6), 1229–1238. https://doi.org/10.1007/s00217-019-03244-w Castañeda, R., Andrade-Cuvi, M. J., Argüello, Y., & Vernaza, M. G. (2018). Efecto de la adición de quinua (Chenopodium quinoa wild) malteada y sin maltear en la elaboración de cerveza tipo Ale a base de cebada (Hordeum vulgare) malteada. Enfoque UTE. https://doi.org/10.29019/enfoqueute.v9n2.302 Castañeda Terán, R. A. (2015). Elaboracion de cerveza tipo Ale en base a un sustrato de quinua (Chenopodium quinoa wild) y cebada (Hordeum vulgare). Universidad Tecnológica Equinoccial. Castillo, F. (2013). Evaluacion de la preferencia sensorial en tres marcas de gelatinas de venta en el mercado de trujillo. Charcosset, C. (2021). Classical and Recent Applications of Membrane Processes in the Food Industry. Food Engineering Reviews, 13(2), 322–343. https://doi.org/10.1007/s12393-020-09262-9 Ciani, M., & Maccarelli, F. (1997). Oenological properties of non-Saccharomyces yeasts associated with wine-making. World Journal of Microbiology and Biotechnology, 14(2), 199–203. https://doi.org/10.1023/A:1008825928354 De Francesco, G., Sannino, C., Sileoni, V., Marconi, O., Filippucci, S., Tasselli, G., & Turchetti, B. (2018). Mrakia gelida in brewing process: An innovative production of low alcohol beer using a psychrophilic yeast strain. Food Microbiology, 76, 354–362.https://doi.org/10.1016/j.fm.2018.06.018 De Francesco, G., Turchetti, B., Sileoni, V., Marconi, O., & Perretti, G. (2015). Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. Journal of the Institute of Brewing. https://doi.org/10.1002/jib.185 De Keukeleirc, D. (2000). Fundamentals of beer and hop chemistry. Quimica Nova, 23(1), 108–112. https://doi.org/10.1590/s0100-40422000000100019 Denby, C. M., Li, R. A., Vu, V. T., Costello, Z., Lin, W., Chan, L. J. G., Williams, J., Donaldson, B., Bamforth, C. W., Petzold, C. J., Scheller, H. V., Martin, H. G., & Keasling, J. D. (2018). Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03293-x Dennenlöhr, J., Thörner, S., Manowski, A., & Rettberg, N. (2020). Analysis of Selected Hop Aroma Compounds in Commercial Lager and Craft Beers Using HS-SPME-GC-MS/MS. Journal of the American Society of Brewing Chemists, 78(1), 16–31. https://doi.org/10.1080/03610470.2019.1668223 Deželak, M., Zarnkow, M., Becker, T., & Košir, I. J. (2014). Processing of bottom-fermented gluten-free beer-like beverages based on buckwheat and quinoa malt with chemical and sensory characterization. Journal of the Institute of Brewing, 120(4), 360–370. https://doi.org/10.1002/jib.166 Domínguez, M. R. (2007). Guía para la Evaluación Sensorial de Alimentos. Instituto de Investigación Nutricional–IIN Consultora-AgroSalud, 2–45. www.iin.sld.pe Durango Londoño, L. P. (2007). Evaluación y escalamiento de la producción de levaduras nativas tipo Saccharomyces spp. a nivel de laboratorio [Universidad EAFIT]. https://doi.org/10.1017/CBO9781107415324.004 Espinosa, J. (2000). La Evaluación Sensorial de los Alimentos. Forero, C., Rosero, A., Ceron Ramirez, E., & Perez, D. (2007). Potencial nutricional de harinas de quinua (chenopodium quinoa w) variedad piartal en los andes Colombianos segunda parte. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA. Galwey, N. W., Leakey, C. L. A., Price, K. R., & Fenwick, G. R. (1989). Chemical Composition and Nutritional Characteristics of Quinoa (Chenopodium Quinoa Willd.). Food Sciences and Nutrition, 42(4), 245–261. https://doi.org/10.1080/09543465.1989.11904148 Garavaglia, C., & Swinnen, J. (2017). Economic perspectives on craft beer: A revolution in the global beer industry. In Economic Perspectives on Craft Beer: A Revolution in the Global Beer Industry. Palgrave Macmillan. https://doi.org/10.1007/978-3-319-58235-1 Gibson, B., Geertman, J. M. A., Hittinger, C. T., Krogerus, K., Libkind, D., Louis, E. J., Magalhães, F., & Sampaio, J. P. (2017). New yeasts-new brews: Modern approaches to brewing yeast design and development. In FEMS Yeast Research (Vol. 17, Issue 4). Oxford University Press. https://doi.org/10.1093/femsyr/fox038 González, M. (2017). Principios de Elaboración de las Cervezas Artesanales. www.lulu.com Graham G, Inge Russell, A. A. (2018). Handbook of Brewing. In Nature (Vol. 213, Issue 5078). https://doi.org/10.1038/213765a0 Granato, D., de Araújo Calado, V. Ô. M., & Jarvis, B. (2014). Observations on the use of statistical methods in Food Science and Technology. Food Research International, 55, 137–149. https://doi.org/10.1016/j.foodres.2013.10.024 Grijalva-Vallejos, N., Aranda, A., & Matallana, E. (2020). Evaluation of yeasts from Ecuadorian chicha by their performance as starters for alcoholic fermentations in the food industry. International Journal of Food Microbiology, 317. https://doi.org/10.1016/j.ijfoodmicro.2019.108462 Hammes, W. P., Brandt, M. J., Francis, K. L., Rosenheim, J., Seitter, M. F. H., & Vogelmann, S. A. (2005). Microbial ecology of cereal fermentations. Trends in Food Science and Technology, 16(1–3), 4–11. https://doi.org/10.1016/j.tifs.2004.02.010 Holt, S., Miks, M. H., De Carvalho, B. T., Foulquié-Moreno, M. R., & Thevelein, J. M. (2019). The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. In FEMS Microbiology Reviews (Vol. 43, Issue 3, pp. 193–222). Oxford University Press. https://doi.org/10.1093/femsre/fuy041 ICONTEC. (1994). Norma tecnica colombiana GTC 4 ; manual de metodos analiticos para el control de calidad de bebidas alcoholicas. ICONTEC. (1996a). Bebidas alcoholicas. Cerveza NTC 3854. ICONTEC. (1996b). BEBIDAS ALCOHOLICAS. DEFINICIONES GENERALES-NTC 222. ICONTEC. (2020). Análisis sensorial de bebidas quue contienen alcohol etílico NTC 4794. Kordialik-Bogacka, E., Bogdan, P., Pielech-Przybylska, K., & Michałowska, D. (2018). Suitability of unmalted quinoa for beer production. Journal of the Science of Food and Agriculture, 98(13), 5027–5036. https://doi.org/10.1002/jsfa.9037 Kozłowski, R., Dziedziński, M., Stachowiak, B., & Kobus-cisowska, J. (2021). Non and low alcoholic beer-popularity and manufacturing techniques. Kunze, W. (2006). Wolfcanc Kunze. www.ame-kulessa.de Lentz, M. (2018). The impact of simple phenolic compounds on beer aroma and flavor. In Fermentation (Vol. 4, Issue 1). MDPI AG. https://doi.org/10.3390/fermentation4010020 Linko, M., Haikara, A., Ritala, A., & Penttilä, M. (1998). Recent advances in the malting and brewing industry. In Journal of Biotechnology (Vol. 65, Issues 2–3, pp. 85–98). Elsevier Sci B.V. https://doi.org/10.1016/S0168-1656(98)00135-7 Lombana, J., Amashta, Y., Correa, C., & Rodríguez, M. C. (2018). Benchmarking y análisis de competitividad de las cadenas productivas de quinua en Colombia, Perú y Bolivia. FACE: Revista de La Facultad de Ciencias Económicas y Empresariales, 17(2), 157–173. https://doi.org/10.24054/01204211.v2.n2.2017.2891 Loviso, C. L., & Libkind, D. (2018). Synthesis and regulation of flavor compounds derived from brewing yeast: Esters. Revista Argentina de Microbiologia, 50(4), 436–446. https://doi.org/10.1016/j.ram.2017.11.006 Loviso, C. L., & Libkind, D. (2019). Synthesis and regulation of flavor compounds derived from brewing yeast: fusel alcohols. Revista Argentina de Microbiologia, 51(4), 386–397. https://doi.org/10.1016/j.ram.2018.08.006 Mareček, J., Ychra, L. S., & Ajmanová, H. N. (2002). Effect of brewer ’ s raw material on the course of main fermentation. 2002(2), 47–53. Marquez Farias, A. J. (2015). Elaboracion De Una Cerveza Organica a Partir De La Quinoa. 1–97. Matthew F, R. B. (2019). Mastering Brewing Science. Maudoux, M., Yan, S. H., & Collin, S. (1998). Quantitative analysis of alcohol, real extract, original gravity, nitrogen and polyphenols in beers using NIR spectroscopy. Journal of Near Infrared Spectroscopy, 6(1–4), 363–366. https://doi.org/10.1255/jnirs.225 Michel, M., Kopecká, J., Meier-Dörnberg, T., Zarnkow, M., Jacob, F., & Hutzler, M. (2016). Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast, 33(4), 129–144. https://doi.org/10.1002/yea.3146 Michel, M., Meier-Dörnberg, T., Jacob, F., Methner, F. J., Wagner, R. S., & Hutzler, M. (2016). Review: Pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. Journal of the Institute of Brewing, 122(4), 569–587. https://doi.org/10.1002/jib.381 Ministerio de Salud y Protección Social. (2012). Decreto Número- 1686 De 2012. Diario Oficial, 40. https://www.invima.gov.co/images/pdf/normatividad/alimentos/decretos/bebidas alcoholicas.pdf Montanari, L., Marconi, O., Mayer, H., & Fantozzi, P. (2008). Production of alcohol-free beer. In Beer in Health and Disease Prevention. https://doi.org/10.1016/b978-0-12-373891-2.00006-7 Montoya, L., Martínez, L., & Peralta, B. (2005). Analisis de variables estrategicas para la conformacion de una cadena productiva de qunia en Colombia. Innovar: Revista de Ciencias Administrativas y Sociales, 15(25). Mosher, M., & Trantham, K. (2017). Brewing Science: A Multidisciplinary Approach. In Brewing Science: A Multidisciplinary Approach. https://doi.org/10.1007/978-3-319-46394-0 Muller, C., Neves, L. E., Gomes, L., Guimarães, M., & Ghesti, G. (2020). Processes for alcohol-free beer production: A review. In Food Science and Technology. https://doi.org/10.1590/fst.32318 Muñoz, R., Moreno-Arribas, M. V., & Rivas, B. de las. (2011). Lactic Acid Bacteria. In Molecular Wine Microbiology. https://doi.org/10.1016/B978-0-12-375021-1.10008-6 Perez Guines et al. (2012). Evaluación del análisis sensorial de vinos de malvasía. May 2014. Pretorius, I. S., Du Toit, M., & Van Rensburg, P. (2003). Designer yeasts for the fermentation industry of the 21st century. In Food Technology and Biotechnology (Vol. 41, Issue 1, pp. 3–10). Puligundla, P., Smogrovicova, D., Mok, C., & Obulam, V. S. R. (2020). Recent developments in high gravity beer-brewing. Innovative Food Science and Emerging Technologies, 64, 102399. https://doi.org/10.1016/j.ifset.2020.102399 Raimbault, M. (1998). General and microbiological aspects of solid substrate fermentation. In Electronic Journal of Biotechnology (Vol. 1, Issue 3, pp. 114–140). https://doi.org/10.2225/vol1-issue3-fulltext-9 Rocha, P. M. (2019). Aplicacion de tecnicas estadısticas al analisis sensorial inteligente. 86. http://eio.usc.es/pub/mte/descargas/ProyectosFinMaster/Proyecto_1673.pdf Rodriguez Cruz, W. E. (2015). Efecto de la sustitución de cebada (Hordeum vulgare) por quinua (Chenopodium quinoa) u del pH inicial de maceración en las características fisicoquímicas y aceptabilidad general de una cerveza tipo Ale. Universidad Privada Antenor Orrego. Romano, P., Marchese, R., Laurita, C., Saleano, G., & Turbanti, L. (1999). Biotechnological suitability of Saccharomycodes ludwigii for fermented beverages. World Journal of Microbiology and Biotechnology, 15(4), 451–454. https://doi.org/10.1023/A:1008948623024 Saerens, S. M. G., Delvaux, F., Verstrepen, K. J., Van Dijck, P., Thevelein, J. M., & Delvaux, F. R. (2008). Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Applied and Environmental Microbiology, 74(2), 454–461. https://doi.org/10.1128/AEM.01616-07 Sannino, C., Mezzasoma, A., Buzzini, P., & Turchetti, B. (2019). Non-conventional Yeasts for Producing Alternative Beers. In Non-conventional Yeasts: from Basic Research to Application (pp. 361–388). Springer International Publishing. https://doi.org/10.1007/978-3-030-21110-3_11 Senkarcinova, B., Graça Dias, I. A., Nespor, J., & Branyik, T. (2019). Probiotic alcohol-free beer made with Saccharomyces cerevisiae var. boulardii. LWT, 100, 362–367. https://doi.org/10.1016/j.lwt.2018.10.082 Serna-Saldivar, S. O. (2016). Cereal Grains. In Cereal Grains. https://doi.org/10.1201/9781439882092 Serra Colomer, M., Funch, B., & Forster, J. (2019). The raise of Brettanomyces yeast species for beer production. In Current Opinion in Biotechnology (Vol. 56, pp. 30–35). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2018.07.009 Suárez, M. (2013). Cerveza: componentes y propiedades. MBtA, 99. http://digibuo.uniovi.es/dspace/bitstream/10651/19093/8/TFM_ Maria Suarez Diaz.pdf Szollosi, A., Nguyen, Q. D., Kovacs, A. G., Fogarasi, A. L., Kun, S., & Hegyesne-Vecseri, B. (2016). Production of low or non-alcoholic beer in microbial fuel cell. Food and Bioproducts Processing, 98, 196–200. https://doi.org/10.1016/j.fbp.2016.01.012 Téllez Mosquera, J., & Cote Menéndez, M. (2006). Alcohol etílico: un tóxico de alto riesgo para la salud humana socialmente aceptado. Rev. Fac. Med. (Bogotá), 54(1), 32–47. Thoufeek Ahamed, N., Singhai, R. S., Kulkarni, P. R., & Pal, M. (1998). A lesser-known grain, Chenopodium quinoa: Review of the chemical composition of its edible parts. Food and Nutrition Bulletin, 19(1), 61–70. https://doi.org/10.1177/156482659801900110 Toro-Gonzalez, D. (2017). The craft brewing industry in latin America: The case of Colombia. In Economic Perspectives on Craft Beer: A Revolution in the Global Beer Industry (pp. 115–136). Palgrave Macmillan. https://doi.org/10.1007/978-3-319-58235-1_4 Van der Hoeven, M., Osei, J., Greeff, M., Kruger, A., Faber, M., & Smuts, C. M. (2013). Indigenous and traditional plants: South African parents’ knowledge, perceptions and uses and their children’s sensory acceptance. Journal of Ethnobiology and Ethnomedicine, 9(1), 1–12. https://doi.org/10.1186/1746-4269-9-78 Vargas, C. (2012). Determinacion y evaluación de parámetros fisicoquímicos y microbiológicos en Cerveza Negra tipo Ale “ American Stout .” 4–6. Vargas, M. P. E. (2017). Análisis comparativo de tres tipos de levaduras en la producción artesanal de cerveza. 50. Vejarano, R. (2018). Saccharomycodes ludwigii, control and potential uses in winemaking processes. Fermentation, 4(3), 1–19. https://doi.org/10.3390/fermentation4030071 Vidgren, V., Ruohonen, L., & Londesborough, J. (2005). Characterization and functional analysis of the MAL and MPH loci for maltose utilization in some ale and lager yeast strains. Applied and Environmental Microbiology, 71(12), 7846–7857. https://doi.org/10.1128/AEM.71.12.7846-7857.2005 Waldir Estela-Escalante, Mojmír Rychtera, K. M., Beatriz Hatta-Sakoda, Z. L.-C., & Víctor Sarmiento-Casavilca, G. C.-Q. (2011). Actividad fermentativa de Saccharomycodes ludwigii y evaluacion de la síntesis de compuestos de importancia sensorial durante la fermentacion de jugo de manzana. TIP Revista Especializada En Ciencias Químico-Biológicas. https://doi.org/10.22201/fesz.23958723e.2011.1.42 Yu, W. W., Zhai, H. L., Xia, G. Bin, Tao, K. Y., Li, C., Yang, X. Q., & Li, L. H. (2020). Starch fine molecular structures as a significant controller of the malting, mashing, and fermentation performance during beer production. Trends in Food Science and Technology, 105(February), 296–307. https://doi.org/10.1016/j.tifs.2020.09.010 Zannini, E. K. A. and E. (2013). Cereal grains for the food and beverage industries (Vol. 1). |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 100 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos |
dc.publisher.department.spa.fl_str_mv |
Instituto de Ciencia y Tecnología de Alimentos (ICTA) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81636/1/1016092260.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81636/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81636/3/1016092260.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a2308c836443078a57bb50ba47bddef 8153f7789df02f0a4c9e079953658ab2 96d1d11a2d7291cc84fe259e5da9b782 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090014384979968 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ortiz Rosas, Juan Pablocff66c2585684c719c39df719ce0a77fFuenmayor Bobadilla, Carlos Alberto7266e9bd646e9de27996f24d1fcca625Nítola Mery, José Daniel89dda4692dea921da3a84ebf957050532022-06-28T17:17:40Z2022-06-28T17:17:40Z2022-06-23https://repositorio.unal.edu.co/handle/unal/81636Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasCon la realización de este trabajo se buscó desarrollar una cerveza artesanal tipo Ale con bajo contenido alcohólico empleando un proceso a una escala de 25 L, para lo cual se evaluó el uso de una cepa de levadura no convencional de la especie Saccharomycodes ludwigii, así como la inclusión de quinua sin maltear en un sustrato basado en malta. Se analizaron varios parámetros del proceso como lo son el pH, la gravedad específica, °Brix, contenido de etanol, entre otros. Además, se aplicaron pruebas afectivas para determinar cuál de las combinaciones levadura-sustrato generan el producto con un menor contenido en etanol y con una adecuada aceptación sensorial. La combinación S. ludwigii-sustitución parcial de 30% de malta de cebada por quinua, permitió obtener el producto con menor contenido de etanol con un valor de 3.09±0.15% v/v. Sin embargo, el producto con mejor aceptación sensorial y bajo contenido en etanol fue el obtenido con la combinación Saccharomyces cerevisiae- sustitución parcial de 30% de malta de cebada por quinua con una puntuación de que 5.3 sobre 7, cerveza con un contenido de 3.55±0.50% v/v. Aunque no se alcanzó un contenido menor al 3% sugerido por los estándares internacionales, los resultados son promisorios y permiten sugerir que el proceso que conduce a un producto de estas características, aceptable sensorialmente, se puede lograr mediante el empleo de mayores sustituciones de quinua en el sustrato, manteniendo el uso de la levadura tradicional de la especie S. cerevisae. (Texto tomado de la fuente)The purpose of this work was to develop a low-alcohol Ale beer by using an artisanal process on a 25 L scale, it was evaluated the use of a non-conventional yeast strain of the Saccharomycodes ludwigii species, as well as the inclusion of unmalted quinoa in a malt-based substrate. Several process parameters were analyzed such as pH, specific gravity, °Brix, ethanol content, among others, in addition, affective tests were performed to determine which of the yeast-substrate combinations generated the product with the lowest ethanol content and adequate sensory acceptance. The combination S. ludwigii-partial substitution of 30% barley malt for quinoa, allowed to obtain the product with the lowest ethanol content with a value of 3.09±0.15% v/v. However, the product with the best sensory acceptance and low ethanol content was the one obtained with the combination Saccharomyces cerevisiae- partial substitution of 30% barley malt for quinoa with a score of 5.3 out of 7, beer with a content of 3.55±0.50% v/v. These results show that, although a content lower than the 3% suggested by international standards was not reached, they are promising since they allow suggesting that the process leading to a product of these characteristics and acceptable can be achieved through the use of greater substitutions of quinoa in the substrate, maintaining the use of the traditional yeast of the species S. cerevisae.MaestríaMagíster en Ciencia y Tecnología de AlimentosDiseño y desarrollo de productosxiv, 100 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosInstituto de Ciencia y Tecnología de Alimentos (ICTA)Facultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::663 - Tecnología de bebidasCervezasAles (cervezas)QuinuabeersalesquinoaSaccharomycodes ludwigiiFermentaciónCerveza artesanalBajo contenido de alcoholFermentationCraft beerLow alcohol contentEvaluación de un proceso biológico para la obtención de una cerveza con bajo contenido en alcohol con inclusión de quinuaEvaluation of a biological process for obtaining a low-alcohol beer including quinoaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlonso-Esteban, J. I., Pinela, J., Barros, L., Ćirić, A., Soković, M., Calhelha, R. C., Torija-Isasa, E., de Cortes Sánchez-Mata, M., & Ferreira, I. C. F. R. (2019). Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus lupulus L.) Seeds. Industrial Crops and Products, 134, 154–159. https://doi.org/10.1016/j.indcrop.2019.04.001Alperstein, L., Gardner, J. M., Sundstrom, J. F., Sumby, K. M., & Jiranek, V. (2020). Yeast bioprospecting versus synthetic biology—which is better for innovative beverage fermentation? In Applied Microbiology and Biotechnology (Vol. 104, Issue 5, pp. 1939–1953). Springer. https://doi.org/10.1007/s00253-020-10364-xAmaya, N., & Pascagaza, L. (2019). Evaluación de perfiles fermentativos para la elaboracion de cerveza artesanal por levaduras nativas. April, 251.Aragón, C., Miquel, M., Correa, M., & Sanchis-Segura, C. (2002). Alcohol y metabolismo humano. In Adicciones (Vol. 14, Issue SUPPL. 1, pp. 23–42). https://doi.org/10.20882/adicciones.541Badui Dergal, S. (2006). Química de los alimentos. In Química de los alimentos.Bamforth, C. W. (2016). Brewing Materials and Processes. In Brewing Materials and Processes. https://doi.org/10.1016/c2013-0-13349-1Bellut, K., & Arendt, E. K. (2019). Chance and Challenge: Non-Saccharomyces Yeasts in Nonalcoholic and Low Alcohol Beer Brewing–A Review. In Journal of the American Society of Brewing Chemists (Vol. 77, Issue 2, pp. 77–91). https://doi.org/10.1080/03610470.2019.1569452Bellut, K., Michel, M., Zarnkow, M., Hutzler, M., Jacob, F., De Schutter, D. P., Daenen, L., Lynch, K. M., Zannini, E., & Arendt, E. K. (2018). Application of non-Saccharomyces yeasts isolated from kombucha in the production of alcohol-free beer. Fermentation, 4(3). https://doi.org/10.3390/fermentation4030066Bellut, K., Michel, M., Zarnkow, M., Hutzler, M., Jacob, F., Lynch, K. M., & Arendt, E. K. (2019). On the suitability of alternative cereals, pseudocereals and pulses in the production of alcohol-reduced beers by non-conventional yeasts. European Food Research and Technology, 245(11), 2549–2564. https://doi.org/10.1007/s00217-019-03372-3Boundy-Mills, K., Stratford, M., & Miller, M. W. (2011). Saccharomycodes E.C: Hansen (1904). In The Yeasts (Vol. 2, Issue 1904). Elsevier B.V. https://doi.org/10.1016/B978-0-444-52149-1.00062-8Brányik, T., Silva, D. P., Baszczyňski, M., Lehnert, R., & Almeida E Silva, J. B. (2012). A review of methods of low alcohol and alcohol-free beer production. In Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2011.09.020Cabras, I., & Higgins, D. M. (2016). Beer, brewing, and business history. Business History, 58(5), 609–624. https://doi.org/10.1080/00076791.2015.1122713Callejo, M. J., García Navas, J. J., Alba, R., Escott, C., Loira, I., González, M. C., & Morata, A. (2019). Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. European Food Research and Technology, 245(6), 1229–1238. https://doi.org/10.1007/s00217-019-03244-wCastañeda, R., Andrade-Cuvi, M. J., Argüello, Y., & Vernaza, M. G. (2018). Efecto de la adición de quinua (Chenopodium quinoa wild) malteada y sin maltear en la elaboración de cerveza tipo Ale a base de cebada (Hordeum vulgare) malteada. Enfoque UTE. https://doi.org/10.29019/enfoqueute.v9n2.302Castañeda Terán, R. A. (2015). Elaboracion de cerveza tipo Ale en base a un sustrato de quinua (Chenopodium quinoa wild) y cebada (Hordeum vulgare). Universidad Tecnológica Equinoccial.Castillo, F. (2013). Evaluacion de la preferencia sensorial en tres marcas de gelatinas de venta en el mercado de trujillo.Charcosset, C. (2021). Classical and Recent Applications of Membrane Processes in the Food Industry. Food Engineering Reviews, 13(2), 322–343. https://doi.org/10.1007/s12393-020-09262-9Ciani, M., & Maccarelli, F. (1997). Oenological properties of non-Saccharomyces yeasts associated with wine-making. World Journal of Microbiology and Biotechnology, 14(2), 199–203. https://doi.org/10.1023/A:1008825928354De Francesco, G., Sannino, C., Sileoni, V., Marconi, O., Filippucci, S., Tasselli, G., & Turchetti, B. (2018). Mrakia gelida in brewing process: An innovative production of low alcohol beer using a psychrophilic yeast strain. Food Microbiology, 76, 354–362.https://doi.org/10.1016/j.fm.2018.06.018De Francesco, G., Turchetti, B., Sileoni, V., Marconi, O., & Perretti, G. (2015). Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. Journal of the Institute of Brewing. https://doi.org/10.1002/jib.185De Keukeleirc, D. (2000). Fundamentals of beer and hop chemistry. Quimica Nova, 23(1), 108–112. https://doi.org/10.1590/s0100-40422000000100019Denby, C. M., Li, R. A., Vu, V. T., Costello, Z., Lin, W., Chan, L. J. G., Williams, J., Donaldson, B., Bamforth, C. W., Petzold, C. J., Scheller, H. V., Martin, H. G., & Keasling, J. D. (2018). Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03293-xDennenlöhr, J., Thörner, S., Manowski, A., & Rettberg, N. (2020). Analysis of Selected Hop Aroma Compounds in Commercial Lager and Craft Beers Using HS-SPME-GC-MS/MS. Journal of the American Society of Brewing Chemists, 78(1), 16–31. https://doi.org/10.1080/03610470.2019.1668223Deželak, M., Zarnkow, M., Becker, T., & Košir, I. J. (2014). Processing of bottom-fermented gluten-free beer-like beverages based on buckwheat and quinoa malt with chemical and sensory characterization. Journal of the Institute of Brewing, 120(4), 360–370. https://doi.org/10.1002/jib.166Domínguez, M. R. (2007). Guía para la Evaluación Sensorial de Alimentos. Instituto de Investigación Nutricional–IIN Consultora-AgroSalud, 2–45. www.iin.sld.peDurango Londoño, L. P. (2007). Evaluación y escalamiento de la producción de levaduras nativas tipo Saccharomyces spp. a nivel de laboratorio [Universidad EAFIT]. https://doi.org/10.1017/CBO9781107415324.004Espinosa, J. (2000). La Evaluación Sensorial de los Alimentos.Forero, C., Rosero, A., Ceron Ramirez, E., & Perez, D. (2007). Potencial nutricional de harinas de quinua (chenopodium quinoa w) variedad piartal en los andes Colombianos segunda parte. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA.Galwey, N. W., Leakey, C. L. A., Price, K. R., & Fenwick, G. R. (1989). Chemical Composition and Nutritional Characteristics of Quinoa (Chenopodium Quinoa Willd.). Food Sciences and Nutrition, 42(4), 245–261. https://doi.org/10.1080/09543465.1989.11904148Garavaglia, C., & Swinnen, J. (2017). Economic perspectives on craft beer: A revolution in the global beer industry. In Economic Perspectives on Craft Beer: A Revolution in the Global Beer Industry. Palgrave Macmillan. https://doi.org/10.1007/978-3-319-58235-1Gibson, B., Geertman, J. M. A., Hittinger, C. T., Krogerus, K., Libkind, D., Louis, E. J., Magalhães, F., & Sampaio, J. P. (2017). New yeasts-new brews: Modern approaches to brewing yeast design and development. In FEMS Yeast Research (Vol. 17, Issue 4). Oxford University Press. https://doi.org/10.1093/femsyr/fox038González, M. (2017). Principios de Elaboración de las Cervezas Artesanales. www.lulu.comGraham G, Inge Russell, A. A. (2018). Handbook of Brewing. In Nature (Vol. 213, Issue 5078). https://doi.org/10.1038/213765a0Granato, D., de Araújo Calado, V. Ô. M., & Jarvis, B. (2014). Observations on the use of statistical methods in Food Science and Technology. Food Research International, 55, 137–149. https://doi.org/10.1016/j.foodres.2013.10.024Grijalva-Vallejos, N., Aranda, A., & Matallana, E. (2020). Evaluation of yeasts from Ecuadorian chicha by their performance as starters for alcoholic fermentations in the food industry. International Journal of Food Microbiology, 317. https://doi.org/10.1016/j.ijfoodmicro.2019.108462Hammes, W. P., Brandt, M. J., Francis, K. L., Rosenheim, J., Seitter, M. F. H., & Vogelmann, S. A. (2005). Microbial ecology of cereal fermentations. Trends in Food Science and Technology, 16(1–3), 4–11. https://doi.org/10.1016/j.tifs.2004.02.010Holt, S., Miks, M. H., De Carvalho, B. T., Foulquié-Moreno, M. R., & Thevelein, J. M. (2019). The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. In FEMS Microbiology Reviews (Vol. 43, Issue 3, pp. 193–222). Oxford University Press. https://doi.org/10.1093/femsre/fuy041ICONTEC. (1994). Norma tecnica colombiana GTC 4 ; manual de metodos analiticos para el control de calidad de bebidas alcoholicas.ICONTEC. (1996a). Bebidas alcoholicas. Cerveza NTC 3854.ICONTEC. (1996b). BEBIDAS ALCOHOLICAS. DEFINICIONES GENERALES-NTC 222.ICONTEC. (2020). Análisis sensorial de bebidas quue contienen alcohol etílico NTC 4794.Kordialik-Bogacka, E., Bogdan, P., Pielech-Przybylska, K., & Michałowska, D. (2018). Suitability of unmalted quinoa for beer production. Journal of the Science of Food and Agriculture, 98(13), 5027–5036. https://doi.org/10.1002/jsfa.9037Kozłowski, R., Dziedziński, M., Stachowiak, B., & Kobus-cisowska, J. (2021). Non and low alcoholic beer-popularity and manufacturing techniques.Kunze, W. (2006). Wolfcanc Kunze. www.ame-kulessa.deLentz, M. (2018). The impact of simple phenolic compounds on beer aroma and flavor. In Fermentation (Vol. 4, Issue 1). MDPI AG. https://doi.org/10.3390/fermentation4010020Linko, M., Haikara, A., Ritala, A., & Penttilä, M. (1998). Recent advances in the malting and brewing industry. In Journal of Biotechnology (Vol. 65, Issues 2–3, pp. 85–98). Elsevier Sci B.V. https://doi.org/10.1016/S0168-1656(98)00135-7Lombana, J., Amashta, Y., Correa, C., & Rodríguez, M. C. (2018). Benchmarking y análisis de competitividad de las cadenas productivas de quinua en Colombia, Perú y Bolivia. FACE: Revista de La Facultad de Ciencias Económicas y Empresariales, 17(2), 157–173. https://doi.org/10.24054/01204211.v2.n2.2017.2891Loviso, C. L., & Libkind, D. (2018). Synthesis and regulation of flavor compounds derived from brewing yeast: Esters. Revista Argentina de Microbiologia, 50(4), 436–446. https://doi.org/10.1016/j.ram.2017.11.006Loviso, C. L., & Libkind, D. (2019). Synthesis and regulation of flavor compounds derived from brewing yeast: fusel alcohols. Revista Argentina de Microbiologia, 51(4), 386–397. https://doi.org/10.1016/j.ram.2018.08.006Mareček, J., Ychra, L. S., & Ajmanová, H. N. (2002). Effect of brewer ’ s raw material on the course of main fermentation. 2002(2), 47–53.Marquez Farias, A. J. (2015). Elaboracion De Una Cerveza Organica a Partir De La Quinoa. 1–97.Matthew F, R. B. (2019). Mastering Brewing Science.Maudoux, M., Yan, S. H., & Collin, S. (1998). Quantitative analysis of alcohol, real extract, original gravity, nitrogen and polyphenols in beers using NIR spectroscopy. Journal of Near Infrared Spectroscopy, 6(1–4), 363–366. https://doi.org/10.1255/jnirs.225Michel, M., Kopecká, J., Meier-Dörnberg, T., Zarnkow, M., Jacob, F., & Hutzler, M. (2016). Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast, 33(4), 129–144. https://doi.org/10.1002/yea.3146Michel, M., Meier-Dörnberg, T., Jacob, F., Methner, F. J., Wagner, R. S., & Hutzler, M. (2016). Review: Pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. Journal of the Institute of Brewing, 122(4), 569–587. https://doi.org/10.1002/jib.381Ministerio de Salud y Protección Social. (2012). Decreto Número- 1686 De 2012. Diario Oficial, 40. https://www.invima.gov.co/images/pdf/normatividad/alimentos/decretos/bebidas alcoholicas.pdfMontanari, L., Marconi, O., Mayer, H., & Fantozzi, P. (2008). Production of alcohol-free beer. In Beer in Health and Disease Prevention. https://doi.org/10.1016/b978-0-12-373891-2.00006-7Montoya, L., Martínez, L., & Peralta, B. (2005). Analisis de variables estrategicas para la conformacion de una cadena productiva de qunia en Colombia. Innovar: Revista de Ciencias Administrativas y Sociales, 15(25).Mosher, M., & Trantham, K. (2017). Brewing Science: A Multidisciplinary Approach. In Brewing Science: A Multidisciplinary Approach. https://doi.org/10.1007/978-3-319-46394-0Muller, C., Neves, L. E., Gomes, L., Guimarães, M., & Ghesti, G. (2020). Processes for alcohol-free beer production: A review. In Food Science and Technology. https://doi.org/10.1590/fst.32318Muñoz, R., Moreno-Arribas, M. V., & Rivas, B. de las. (2011). Lactic Acid Bacteria. In Molecular Wine Microbiology. https://doi.org/10.1016/B978-0-12-375021-1.10008-6Perez Guines et al. (2012). Evaluación del análisis sensorial de vinos de malvasía. May 2014.Pretorius, I. S., Du Toit, M., & Van Rensburg, P. (2003). Designer yeasts for the fermentation industry of the 21st century. In Food Technology and Biotechnology (Vol. 41, Issue 1, pp. 3–10).Puligundla, P., Smogrovicova, D., Mok, C., & Obulam, V. S. R. (2020). Recent developments in high gravity beer-brewing. Innovative Food Science and Emerging Technologies, 64, 102399. https://doi.org/10.1016/j.ifset.2020.102399Raimbault, M. (1998). General and microbiological aspects of solid substrate fermentation. In Electronic Journal of Biotechnology (Vol. 1, Issue 3, pp. 114–140). https://doi.org/10.2225/vol1-issue3-fulltext-9Rocha, P. M. (2019). Aplicacion de tecnicas estadısticas al analisis sensorial inteligente. 86. http://eio.usc.es/pub/mte/descargas/ProyectosFinMaster/Proyecto_1673.pdfRodriguez Cruz, W. E. (2015). Efecto de la sustitución de cebada (Hordeum vulgare) por quinua (Chenopodium quinoa) u del pH inicial de maceración en las características fisicoquímicas y aceptabilidad general de una cerveza tipo Ale. Universidad Privada Antenor Orrego.Romano, P., Marchese, R., Laurita, C., Saleano, G., & Turbanti, L. (1999). Biotechnological suitability of Saccharomycodes ludwigii for fermented beverages. World Journal of Microbiology and Biotechnology, 15(4), 451–454. https://doi.org/10.1023/A:1008948623024Saerens, S. M. G., Delvaux, F., Verstrepen, K. J., Van Dijck, P., Thevelein, J. M., & Delvaux, F. R. (2008). Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Applied and Environmental Microbiology, 74(2), 454–461. https://doi.org/10.1128/AEM.01616-07Sannino, C., Mezzasoma, A., Buzzini, P., & Turchetti, B. (2019). Non-conventional Yeasts for Producing Alternative Beers. In Non-conventional Yeasts: from Basic Research to Application (pp. 361–388). Springer International Publishing. https://doi.org/10.1007/978-3-030-21110-3_11Senkarcinova, B., Graça Dias, I. A., Nespor, J., & Branyik, T. (2019). Probiotic alcohol-free beer made with Saccharomyces cerevisiae var. boulardii. LWT, 100, 362–367. https://doi.org/10.1016/j.lwt.2018.10.082Serna-Saldivar, S. O. (2016). Cereal Grains. In Cereal Grains. https://doi.org/10.1201/9781439882092Serra Colomer, M., Funch, B., & Forster, J. (2019). The raise of Brettanomyces yeast species for beer production. In Current Opinion in Biotechnology (Vol. 56, pp. 30–35). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2018.07.009Suárez, M. (2013). Cerveza: componentes y propiedades. MBtA, 99. http://digibuo.uniovi.es/dspace/bitstream/10651/19093/8/TFM_ Maria Suarez Diaz.pdfSzollosi, A., Nguyen, Q. D., Kovacs, A. G., Fogarasi, A. L., Kun, S., & Hegyesne-Vecseri, B. (2016). Production of low or non-alcoholic beer in microbial fuel cell. Food and Bioproducts Processing, 98, 196–200. https://doi.org/10.1016/j.fbp.2016.01.012Téllez Mosquera, J., & Cote Menéndez, M. (2006). Alcohol etílico: un tóxico de alto riesgo para la salud humana socialmente aceptado. Rev. Fac. Med. (Bogotá), 54(1), 32–47.Thoufeek Ahamed, N., Singhai, R. S., Kulkarni, P. R., & Pal, M. (1998). A lesser-known grain, Chenopodium quinoa: Review of the chemical composition of its edible parts. Food and Nutrition Bulletin, 19(1), 61–70. https://doi.org/10.1177/156482659801900110Toro-Gonzalez, D. (2017). The craft brewing industry in latin America: The case of Colombia. In Economic Perspectives on Craft Beer: A Revolution in the Global Beer Industry (pp. 115–136). Palgrave Macmillan. https://doi.org/10.1007/978-3-319-58235-1_4Van der Hoeven, M., Osei, J., Greeff, M., Kruger, A., Faber, M., & Smuts, C. M. (2013). Indigenous and traditional plants: South African parents’ knowledge, perceptions and uses and their children’s sensory acceptance. Journal of Ethnobiology and Ethnomedicine, 9(1), 1–12. https://doi.org/10.1186/1746-4269-9-78Vargas, C. (2012). Determinacion y evaluación de parámetros fisicoquímicos y microbiológicos en Cerveza Negra tipo Ale “ American Stout .” 4–6.Vargas, M. P. E. (2017). Análisis comparativo de tres tipos de levaduras en la producción artesanal de cerveza. 50.Vejarano, R. (2018). Saccharomycodes ludwigii, control and potential uses in winemaking processes. Fermentation, 4(3), 1–19. https://doi.org/10.3390/fermentation4030071Vidgren, V., Ruohonen, L., & Londesborough, J. (2005). Characterization and functional analysis of the MAL and MPH loci for maltose utilization in some ale and lager yeast strains. Applied and Environmental Microbiology, 71(12), 7846–7857. https://doi.org/10.1128/AEM.71.12.7846-7857.2005Waldir Estela-Escalante, Mojmír Rychtera, K. M., Beatriz Hatta-Sakoda, Z. L.-C., & Víctor Sarmiento-Casavilca, G. C.-Q. (2011). Actividad fermentativa de Saccharomycodes ludwigii y evaluacion de la síntesis de compuestos de importancia sensorial durante la fermentacion de jugo de manzana. TIP Revista Especializada En Ciencias Químico-Biológicas. https://doi.org/10.22201/fesz.23958723e.2011.1.42Yu, W. W., Zhai, H. L., Xia, G. Bin, Tao, K. Y., Li, C., Yang, X. Q., & Li, L. H. (2020). Starch fine molecular structures as a significant controller of the malting, mashing, and fermentation performance during beer production. Trends in Food Science and Technology, 105(February), 296–307. https://doi.org/10.1016/j.tifs.2020.09.010Zannini, E. K. A. and E. (2013). Cereal grains for the food and beverage industries (Vol. 1).EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1016092260.2022.pdf1016092260.2022.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf1669025https://repositorio.unal.edu.co/bitstream/unal/81636/1/1016092260.2022.pdf8a2308c836443078a57bb50ba47bddefMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81636/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1016092260.2022.pdf.jpg1016092260.2022.pdf.jpgGenerated Thumbnailimage/jpeg5053https://repositorio.unal.edu.co/bitstream/unal/81636/3/1016092260.2022.pdf.jpg96d1d11a2d7291cc84fe259e5da9b782MD53unal/81636oai:repositorio.unal.edu.co:unal/816362024-08-06 23:10:47.494Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |