Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process

Given the difficulty of accurate online detection for massive data collecting real-timely in a strong noise environment during the complex geological mineral grade analysis process, an order self-learning ARHMM (Autoregressive Hidden Markov Model) algorithm is proposed to carry out online outlier de...

Full description

Autores:
Zhao, Jianjun
Zhoub, Junwu
Su, Weixing
Liu, Fang
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/63576
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/63576
http://bdigital.unal.edu.co/64022/
Palabra clave:
55 Ciencias de la tierra / Earth sciences and geology
ARHMM
BDT
KICvc
outlier detection
online detection.
Modelo autoregresivo oculto de Markov
detección en tiempo real
Brockwell-Dahlhaus-Trindade
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e9e295fb12a67be9065f0019bfb21222
oai_identifier_str oai:repositorio.unal.edu.co:unal/63576
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process
title Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process
spellingShingle Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process
55 Ciencias de la tierra / Earth sciences and geology
ARHMM
BDT
KICvc
outlier detection
online detection.
Modelo autoregresivo oculto de Markov
detección en tiempo real
Brockwell-Dahlhaus-Trindade
title_short Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process
title_full Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process
title_fullStr Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process
title_full_unstemmed Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process
title_sort Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process
dc.creator.fl_str_mv Zhao, Jianjun
Zhoub, Junwu
Su, Weixing
Liu, Fang
dc.contributor.author.spa.fl_str_mv Zhao, Jianjun
Zhoub, Junwu
Su, Weixing
Liu, Fang
dc.subject.ddc.spa.fl_str_mv 55 Ciencias de la tierra / Earth sciences and geology
topic 55 Ciencias de la tierra / Earth sciences and geology
ARHMM
BDT
KICvc
outlier detection
online detection.
Modelo autoregresivo oculto de Markov
detección en tiempo real
Brockwell-Dahlhaus-Trindade
dc.subject.proposal.spa.fl_str_mv ARHMM
BDT
KICvc
outlier detection
online detection.
Modelo autoregresivo oculto de Markov
detección en tiempo real
Brockwell-Dahlhaus-Trindade
description Given the difficulty of accurate online detection for massive data collecting real-timely in a strong noise environment during the complex geological mineral grade analysis process, an order self-learning ARHMM (Autoregressive Hidden Markov Model) algorithm is proposed to carry out online outlier detection in the geological mineral grade analysis process. The algorithm utilizes AR model to fit the time series obtained from “Online x - ray Fluorescent Mineral Analyzer” and makes use of HMM as a basic detection tool, which can avoid the deficiency of presetting the threshold in traditional detection methods. The structure of traditional BDT (Brockwell-Dahlhaus-Trindade) algorithm is improved to be a double iterative structure in which iterative calculation from both time and order is applied respectively to update parameters of ARHMM online. With the purpose of reducing the influence of outlier on parameter update of ARHMM, the strategies of detection-before-update and detection-based-update are adopted, which also improve the robustness of the algorithm. Subsequent simulation by model data and practical application verify the accuracy, robustness, and property of online detection of the algorithm. According to the result, it is obvious that new algorithm proposed in this paper is more suitable for outlier detection of mineral grade analysis data in geology and mineral processing.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T21:55:01Z
dc.date.available.spa.fl_str_mv 2019-07-02T21:55:01Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2339-3459
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/63576
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/64022/
identifier_str_mv ISSN: 2339-3459
url https://repositorio.unal.edu.co/handle/unal/63576
http://bdigital.unal.edu.co/64022/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/esrj/article/view/65215
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal
Earth Sciences Research Journal
dc.relation.references.spa.fl_str_mv Zhao, Jianjun and Zhoub, Junwu and Su, Weixing and Liu, Fang (2017) Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process. Earth Sciences Research Journal, 21 (3). pp. 135-139. ISSN 2339-3459
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/63576/1/65215-352568-2-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/63576/2/65215-352568-2-PB.pdf.jpg
bitstream.checksum.fl_str_mv 45e74bb088c7ab5a9eae5a084cb24266
05d8f4edf0836a0fcee569879d699c56
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089717869707264
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zhao, Jianjun966b911f-96e0-4313-a2e4-37b25fc6ca7a300Zhoub, Junwu3d1b2ee0-29cc-4022-b809-7af59a9bc34f300Su, Weixing9deb09aa-cf04-46fd-b53a-ff0a1865ba78300Liu, Fang9ce22b7f-ff3a-4a25-b754-767b9786acc73002019-07-02T21:55:01Z2019-07-02T21:55:01Z2017-07-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/63576http://bdigital.unal.edu.co/64022/Given the difficulty of accurate online detection for massive data collecting real-timely in a strong noise environment during the complex geological mineral grade analysis process, an order self-learning ARHMM (Autoregressive Hidden Markov Model) algorithm is proposed to carry out online outlier detection in the geological mineral grade analysis process. The algorithm utilizes AR model to fit the time series obtained from “Online x - ray Fluorescent Mineral Analyzer” and makes use of HMM as a basic detection tool, which can avoid the deficiency of presetting the threshold in traditional detection methods. The structure of traditional BDT (Brockwell-Dahlhaus-Trindade) algorithm is improved to be a double iterative structure in which iterative calculation from both time and order is applied respectively to update parameters of ARHMM online. With the purpose of reducing the influence of outlier on parameter update of ARHMM, the strategies of detection-before-update and detection-based-update are adopted, which also improve the robustness of the algorithm. Subsequent simulation by model data and practical application verify the accuracy, robustness, and property of online detection of the algorithm. According to the result, it is obvious that new algorithm proposed in this paper is more suitable for outlier detection of mineral grade analysis data in geology and mineral processing.Existe gran dificultad para la detección en tiempo real para series de datos masivos con altos niveles de ruido de valores atípicos. Se propone un algoritmo de autoaprendizaje ARHMM (Modelo autoregresivo oculto de Markov) para llevar a cabo la detección de dichos valores atípicos en el proceso de análisis del grado mineral geológico. El algoritmo usa un modelo AR para ajustar la serie de tiempo obtenida del “analizador de fluorescencia de rayos X” y hace uso del HMM como una herramienta básica de detección, la cual puede evitar la deficiencia de predeterminar el umbral en métodos tradicionales de detección. Para actualizar los parámetros del ARHMM en tiempo real, la estructura del algoritmo BDT (Brockwell-Dahlhaus-Trindade) tradicional se mejora para ser una doble estructura iterativa en la que se aplica el cálculo iterativo en tiempo y en orden respectivamente. Con el propósito de reducir la influencia de valores atípicos (o extremos) en la actualización del parámetro de ARHMM, se adoptan las estrategias de detección-antes-que-actualización y la detección-basada-en-actualización, lo que también aumenta la robustez del algoritmo. La subsiguiente simulación por modelos de datos y aplicación práctica comprueba la precisión, fortaleza y capacidad de la detección en línea del algoritmo. De acuerdo con el resultado, es evidente que el nuevo algoritmo propuesto en este artículo es más apropiado para la detección de datos de valores atipicos para el análisis del grado mineral en geología y el procesamiento mineral.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/65215Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalZhao, Jianjun and Zhoub, Junwu and Su, Weixing and Liu, Fang (2017) Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process. Earth Sciences Research Journal, 21 (3). pp. 135-139. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologyARHMMBDTKICvcoutlier detectiononline detection.Modelo autoregresivo oculto de Markovdetección en tiempo realBrockwell-Dahlhaus-TrindadeOnline Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis ProcessArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL65215-352568-2-PB.pdfapplication/pdf797589https://repositorio.unal.edu.co/bitstream/unal/63576/1/65215-352568-2-PB.pdf45e74bb088c7ab5a9eae5a084cb24266MD51THUMBNAIL65215-352568-2-PB.pdf.jpg65215-352568-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg7622https://repositorio.unal.edu.co/bitstream/unal/63576/2/65215-352568-2-PB.pdf.jpg05d8f4edf0836a0fcee569879d699c56MD52unal/63576oai:repositorio.unal.edu.co:unal/635762024-04-29 23:11:15.859Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co