Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process

Given the difficulty of accurate online detection for massive data collecting real-timely in a strong noise environment during the complex geological mineral grade analysis process, an order self-learning ARHMM (Autoregressive Hidden Markov Model) algorithm is proposed to carry out online outlier de...

Full description

Autores:
Zhao, Jianjun
Zhoub, Junwu
Su, Weixing
Liu, Fang
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/63576
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/63576
http://bdigital.unal.edu.co/64022/
Palabra clave:
55 Ciencias de la tierra / Earth sciences and geology
ARHMM
BDT
KICvc
outlier detection
online detection.
Modelo autoregresivo oculto de Markov
detección en tiempo real
Brockwell-Dahlhaus-Trindade
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional