Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process
Given the difficulty of accurate online detection for massive data collecting real-timely in a strong noise environment during the complex geological mineral grade analysis process, an order self-learning ARHMM (Autoregressive Hidden Markov Model) algorithm is proposed to carry out online outlier de...
- Autores:
-
Zhao, Jianjun
Zhoub, Junwu
Su, Weixing
Liu, Fang
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/63576
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/63576
http://bdigital.unal.edu.co/64022/
- Palabra clave:
- 55 Ciencias de la tierra / Earth sciences and geology
ARHMM
BDT
KICvc
outlier detection
online detection.
Modelo autoregresivo oculto de Markov
detección en tiempo real
Brockwell-Dahlhaus-Trindade
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional