Probabilidades de máquina y aplicaciones al caso de default en portafolios de crédito

ilustraciones, diagramas, tablas

Autores:
Miranda Bolaños, Bryan Alexander
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81325
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81325
https://repositorio.unal.edu.co/
Palabra clave:
330 - Economía::332 - Economía financiera
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Accounts receivable
Cuentas por cobrar
Cartera de crédito
Amortización
Modelo de Mezclas Bernoulli
Valor en Riesgo
Simulación de variables
Cadenas de Markov
Regresión Beta
Probabilidades de incumplimiento
Modelo de probabilidades de máquina
Puntaje de corte
Loan portfolio
Variable simulation
Markov chains
Amortization
Beta regression
Default probabilities
Machine probability model
Bernoulli Mixtures Model
Cut-off score and Value at Risk
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_e9d75d5ee7629b770e5dc98e4ec0c73a
oai_identifier_str oai:repositorio.unal.edu.co:unal/81325
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Probabilidades de máquina y aplicaciones al caso de default en portafolios de crédito
dc.title.translated.eng.fl_str_mv Machine probabilities and applications to the case of default in credit portfolios
title Probabilidades de máquina y aplicaciones al caso de default en portafolios de crédito
spellingShingle Probabilidades de máquina y aplicaciones al caso de default en portafolios de crédito
330 - Economía::332 - Economía financiera
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Accounts receivable
Cuentas por cobrar
Cartera de crédito
Amortización
Modelo de Mezclas Bernoulli
Valor en Riesgo
Simulación de variables
Cadenas de Markov
Regresión Beta
Probabilidades de incumplimiento
Modelo de probabilidades de máquina
Puntaje de corte
Loan portfolio
Variable simulation
Markov chains
Amortization
Beta regression
Default probabilities
Machine probability model
Bernoulli Mixtures Model
Cut-off score and Value at Risk
title_short Probabilidades de máquina y aplicaciones al caso de default en portafolios de crédito
title_full Probabilidades de máquina y aplicaciones al caso de default en portafolios de crédito
title_fullStr Probabilidades de máquina y aplicaciones al caso de default en portafolios de crédito
title_full_unstemmed Probabilidades de máquina y aplicaciones al caso de default en portafolios de crédito
title_sort Probabilidades de máquina y aplicaciones al caso de default en portafolios de crédito
dc.creator.fl_str_mv Miranda Bolaños, Bryan Alexander
dc.contributor.advisor.none.fl_str_mv Giraldo Gomez, Norman Diego
dc.contributor.author.none.fl_str_mv Miranda Bolaños, Bryan Alexander
dc.subject.ddc.spa.fl_str_mv 330 - Economía::332 - Economía financiera
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 330 - Economía::332 - Economía financiera
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Accounts receivable
Cuentas por cobrar
Cartera de crédito
Amortización
Modelo de Mezclas Bernoulli
Valor en Riesgo
Simulación de variables
Cadenas de Markov
Regresión Beta
Probabilidades de incumplimiento
Modelo de probabilidades de máquina
Puntaje de corte
Loan portfolio
Variable simulation
Markov chains
Amortization
Beta regression
Default probabilities
Machine probability model
Bernoulli Mixtures Model
Cut-off score and Value at Risk
dc.subject.lemb.none.fl_str_mv Accounts receivable
Cuentas por cobrar
dc.subject.proposal.spa.fl_str_mv Cartera de crédito
Amortización
Modelo de Mezclas Bernoulli
Valor en Riesgo
Simulación de variables
Cadenas de Markov
Regresión Beta
Probabilidades de incumplimiento
Modelo de probabilidades de máquina
Puntaje de corte
dc.subject.proposal.eng.fl_str_mv Loan portfolio
Variable simulation
Markov chains
Amortization
Beta regression
Default probabilities
Machine probability model
Bernoulli Mixtures Model
Cut-off score and Value at Risk
description ilustraciones, diagramas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12
dc.date.accessioned.none.fl_str_mv 2022-03-23T15:18:59Z
dc.date.available.none.fl_str_mv 2022-03-23T15:18:59Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81325
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81325
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Bauer, E. & Kohavi, R. (1999), ‘An empirical comparison of voting classification algorithms: Bagging, boosting, and variants’, Machine learning 36(1-2), 105–139
Beling, P., Covaliu, Z. & Oliver, R. (2005), ‘Optimal scoring cutoff policies and efficient frontiers’, Journal of the Operational Research Society 56(9), 1016–1029.
Blank, L. T., Tarquin, A. J. & B., C. F. M. (2012), Ingenier´ıa econ´omica, number 658.15/B64eE, McGraw-Hill.
Block, S. B., Hirt, G. A. & Gómez Mont Araiza, J. T. (2013), Fundamentos de administración financiera., McGraw-Hill
Brasil, P. (2010), ‘Diagnosismed: Diagnostic test accuracy evaluation for medical professionals’, R package version 0.2 3, 837–845.
Breiman, L. (1996), ‘Bagging predictors’, Machine learning 24(2), 123–140.
Breiman, L. (2001), ‘Random forests’, Machine learning 45(1), 5–32.
Brémaud, P. (2013), Markov chains: Gibbs fields, Monte Carlo simulation, and queues, Vol. 31, Springer Science & Business Media.
Carstensen, B., Plummer, M., Laara, E., Hills, M. & Carstensen, M. B. (2019), ‘Package epi’.
Daykin, C. D., Pentikainen, T. & Pesonen, M. (1993), Practical risk theory for actuaries, CRC Press.
Dutang, C., Goulet, V., Pigeon, M. et al. (2008), ‘actuar: An r package for actuarial science’, Journal of Statistical software 25(7), 1–37.
Efron, B. & Tibshirani, R. J. (1994), An introduction to the bootstrap, CRC press
Everitt, B. (2013), Finite mixture distributions, Springer Science & Business Media.
Ferrari, S. & Cribari-Neto, F. (2004), ‘Beta regression for modelling rates and proportions’, Journal of applied statistics 31(7), 799–815.
Fix, E. & Hodges Jr, J. L. (1951), Discriminatory analysis-nonparametric discrimination: consistency properties, Technical report, California Univ Berkeley.
Fluss, R., Faraggi, D. & Reiser, B. (2005), ‘Estimation of the youden index and its associated cutoff point’, Biometrical Journal: Journal of Mathematical Methods in Biosciences 47(4), 458–472.
Freeman, E. (2007), ‘Presenceabsence: an r package for presence-absence model evaluation’, USDA Forest Service, Rocky Mountain Research Station 507.
Hastie, T., Tibshirani, R. & Friedman, J. (2009), The elements of statistical learning: data mining, inference, and prediction, Springer Science & Business Media
Hogg, R. V. & Klugman, S. A. (2009), Loss distributions, Vol. 249, John Wiley & Sons.
Kaas, R., Goovaerts, M., Dhaene, J. & Denuit, M. (2008), Modern actuarial risk theory: using R, Vol. 128, Springer Science & Business Media.
Karatzoglou, A., Smola, A., Hornik, K. & Zeileis, A. (2004), ‘kernlab-an s4 package for kernel methods in r’, Journal of statistical software 11(9), 1–20.
Khan, M. R. A. A. (2019), ‘Rocit-an r package for performance assessment of binary classifier with visualization’.
Kruppa, J., Liu, Y., Biau, G., Kohler, M., K¨onig, I. R., Malley, J. D. & Ziegler, A. (2014a), ‘Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory’, Biometrical Journal 56(4), 534–563.
Kruppa, J., Liu, Y., Diener, H.-C., Holste, T., Weimar, C., K¨onig, I. R. & Ziegler, A. (2014b), ‘Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications’, Biometrical Journal 56(4), 564–583.
Kruppa, J., Schwarz, A., Arminger, G. & Ziegler, A. (2013), ‘Consumer credit risk: Individual probability estimates using machine learning’, Expert Systems with Applications 40(13), 5125–5131.
Kuhn, M. (2009), ‘The caret package’, Journal of Statistical Software 28(5).
Liaw, A., Wiener, M. et al. (2002), ‘Classification and regression by randomforest’, R news 2(3), 18–22.
Lien, D., Stroud, C. & Ye, K. (2016), ‘Comparing var approximation methods that use the first four moments as inputs’, communications in Statistics-Simulation and Computation 45(2), 491–503.
López-Ratón, M., Rodríguez-Alvarez, M. X., Cadarso-Suárez, C., Gude-Sampedro, F. et al. (2014), ‘Optimalcutpoints: an r package for selecting optimal cutpoints in diagnostic tests’, J Stat Softw 61(8), 1–36.
Louzada, F., Ara, A. & Fernandes, G. B. (2016), ‘Classification methods applied to credit scoring: Systematic review and overall comparison’, Surveys in Operations Research and Management Science 21(2), 117–134
Novomestky, F., Nadarajah, S. & Novomestky, M. F. (2016), ‘Package ‘truncdist”.
Palomares, J. & Peset, M. (2015), Estados financieros Interpretación y an´alisis, España: Pirámide (Grupo Anaya, SA).
Ramsay, C. M. (1991), ‘A note of the normal power approximation’, ASTIN Bulletin: The Journal of the IAA 21(1), 147–150.
Ripley, B., Venables, W. & Ripley, M. B. (2019), ‘Package class’.
Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., M¨uller, M., Siegert, S., Doering, M. & Robin, M. X. (2021), Package ‘proc’, Technical report, 2012-09-10 09: 34.
Rolski, T., Schmidli, H., Schmidt, V. & Teugels, J. L. (2009), Stochastic processes for insurance and finance, Vol. 505, John Wiley & Sons
Ross, S. A., Westerfield, R., Jordan, B. D. & Biktimirov, E. N. (2016), Essentials of corporate finance, McGraw-Hill/Irwin.
Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. (2005), ‘Rocr: visualizing classifier performance in r’, Bioinformatics 21(20), 3940–3941.
Spedicato, G. A. (2017), ‘Discrete time markov chains with r’, The R Journal . R package version 0.6.9.7. URL: https://journal.r-project.org/archive/2017/RJ-2017-036/index.html
Thiele, C. (2018), ‘Cutpointr: Determine and evaluate optimal cutpoints in binary classification tasks’.
Thomopoulos, N. T. (2012), Essentials of Monte Carlo simulation: Statistical methods for building simulation models, Springer Science & Business Media
Tse, Y.-K. (2009), Nonlife actuarial models: theory, methods and evaluation, Cambridge University Press.
Wright, M. N. & Ziegler, A. (2015), ‘ranger: A fast implementation of random forests for high dimensional data in c++ and r’, arXiv preprint arXiv:1508.04409 .
Zeileis, A., Cribari-Neto, F., Gr¨un, B. & Kos-midis, I. (2010), ‘Beta regression in r’, Journal of statistical software 34(2), 1–24.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 62 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.department.spa.fl_str_mv Escuela de estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81325/3/1085326267.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81325/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81325/5/1085326267.2022.pdf.jpg
bitstream.checksum.fl_str_mv 61cd91f317a89d3efac22b691d290193
8153f7789df02f0a4c9e079953658ab2
4b4410c2b7c4dfadfc6d09df80f4c699
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089779174703104
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Gomez, Norman Diego6fc7af8366501b4f70963c907682a0b2Miranda Bolaños, Bryan Alexandera8e5732cd66aadeb8a1c8673d1b3c24e2022-03-23T15:18:59Z2022-03-23T15:18:59Z2021-12https://repositorio.unal.edu.co/handle/unal/81325Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEste trabajo final de maestría, modalidad de profundización, consiste en la elaboración de un problema de simulación de carteras de crédito utilizando distribuciones de probabilidad aplicadas a conceptos de matemática financiera, con ello se busca estimar probabilidades de incumplimiento por medio de modelos de probabilidades de maquina como son k-NN, bosques aleatorios y máquinas de soporte vectorial. El trabajo pretende comparar los resultados de cada modelo a través de la optimización de los puntajes de corte pb(0)j, el cálculo de medidas de precisión que evalúen el rendimiento y el valor de las provisiones calculadas usando la cuantificación del riesgo de crédito por medio del Valor en Riesgo (VaR). Así mismo se quiere ilustrar: (1) Los efectos econ+omicos y monetarios derivados de la estimación de probabilidades de incumplimiento incorrecta, (2) las implicaciones de la optimalidad de pb(0)j y (3) el comportamiento de los costos totales o agregados (S) de la cartera de crédito simulada. (Texto tomado de la fuente)This final master’s work, deepening modality, consists of the elaboration of a simulation problem of loan portfolios using probability distributions applied to financial mathematics concepts with this aim to estimate default probabilities using machine probability models such as k-NN, random forests, and vector support machines. The work intends to compare the results of each model through the optimization of the cutoff scores pb(0)j, the calculation of precision measures that evaluate the performance and the value of the provisions calculated using the quantification of credit risk through Value at Risk (V aR). Likewise, we want to illustrate: (1) The economic and monetary effects derived from estimating the probability of incorrect default, (2) the implications of the optimization of pb(0)j and (3) the behavior of the total or aggregate costs (S) of the simulated loan portfolioMaestríaMagíster en Ciencias - EstadísticaÁrea Curricular Estadística62 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - EstadísticaEscuela de estadísticaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín330 - Economía::332 - Economía financiera510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasAccounts receivableCuentas por cobrarCartera de créditoAmortizaciónModelo de Mezclas BernoulliValor en RiesgoSimulación de variablesCadenas de MarkovRegresión BetaProbabilidades de incumplimientoModelo de probabilidades de máquinaPuntaje de corteLoan portfolioVariable simulationMarkov chainsAmortizationBeta regressionDefault probabilitiesMachine probability modelBernoulli Mixtures ModelCut-off score and Value at RiskProbabilidades de máquina y aplicaciones al caso de default en portafolios de créditoMachine probabilities and applications to the case of default in credit portfoliosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBauer, E. & Kohavi, R. (1999), ‘An empirical comparison of voting classification algorithms: Bagging, boosting, and variants’, Machine learning 36(1-2), 105–139Beling, P., Covaliu, Z. & Oliver, R. (2005), ‘Optimal scoring cutoff policies and efficient frontiers’, Journal of the Operational Research Society 56(9), 1016–1029.Blank, L. T., Tarquin, A. J. & B., C. F. M. (2012), Ingenier´ıa econ´omica, number 658.15/B64eE, McGraw-Hill.Block, S. B., Hirt, G. A. & Gómez Mont Araiza, J. T. (2013), Fundamentos de administración financiera., McGraw-HillBrasil, P. (2010), ‘Diagnosismed: Diagnostic test accuracy evaluation for medical professionals’, R package version 0.2 3, 837–845.Breiman, L. (1996), ‘Bagging predictors’, Machine learning 24(2), 123–140.Breiman, L. (2001), ‘Random forests’, Machine learning 45(1), 5–32.Brémaud, P. (2013), Markov chains: Gibbs fields, Monte Carlo simulation, and queues, Vol. 31, Springer Science & Business Media.Carstensen, B., Plummer, M., Laara, E., Hills, M. & Carstensen, M. B. (2019), ‘Package epi’.Daykin, C. D., Pentikainen, T. & Pesonen, M. (1993), Practical risk theory for actuaries, CRC Press.Dutang, C., Goulet, V., Pigeon, M. et al. (2008), ‘actuar: An r package for actuarial science’, Journal of Statistical software 25(7), 1–37.Efron, B. & Tibshirani, R. J. (1994), An introduction to the bootstrap, CRC pressEveritt, B. (2013), Finite mixture distributions, Springer Science & Business Media.Ferrari, S. & Cribari-Neto, F. (2004), ‘Beta regression for modelling rates and proportions’, Journal of applied statistics 31(7), 799–815.Fix, E. & Hodges Jr, J. L. (1951), Discriminatory analysis-nonparametric discrimination: consistency properties, Technical report, California Univ Berkeley.Fluss, R., Faraggi, D. & Reiser, B. (2005), ‘Estimation of the youden index and its associated cutoff point’, Biometrical Journal: Journal of Mathematical Methods in Biosciences 47(4), 458–472.Freeman, E. (2007), ‘Presenceabsence: an r package for presence-absence model evaluation’, USDA Forest Service, Rocky Mountain Research Station 507.Hastie, T., Tibshirani, R. & Friedman, J. (2009), The elements of statistical learning: data mining, inference, and prediction, Springer Science & Business MediaHogg, R. V. & Klugman, S. A. (2009), Loss distributions, Vol. 249, John Wiley & Sons.Kaas, R., Goovaerts, M., Dhaene, J. & Denuit, M. (2008), Modern actuarial risk theory: using R, Vol. 128, Springer Science & Business Media.Karatzoglou, A., Smola, A., Hornik, K. & Zeileis, A. (2004), ‘kernlab-an s4 package for kernel methods in r’, Journal of statistical software 11(9), 1–20.Khan, M. R. A. A. (2019), ‘Rocit-an r package for performance assessment of binary classifier with visualization’.Kruppa, J., Liu, Y., Biau, G., Kohler, M., K¨onig, I. R., Malley, J. D. & Ziegler, A. (2014a), ‘Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory’, Biometrical Journal 56(4), 534–563.Kruppa, J., Liu, Y., Diener, H.-C., Holste, T., Weimar, C., K¨onig, I. R. & Ziegler, A. (2014b), ‘Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications’, Biometrical Journal 56(4), 564–583.Kruppa, J., Schwarz, A., Arminger, G. & Ziegler, A. (2013), ‘Consumer credit risk: Individual probability estimates using machine learning’, Expert Systems with Applications 40(13), 5125–5131.Kuhn, M. (2009), ‘The caret package’, Journal of Statistical Software 28(5).Liaw, A., Wiener, M. et al. (2002), ‘Classification and regression by randomforest’, R news 2(3), 18–22.Lien, D., Stroud, C. & Ye, K. (2016), ‘Comparing var approximation methods that use the first four moments as inputs’, communications in Statistics-Simulation and Computation 45(2), 491–503.López-Ratón, M., Rodríguez-Alvarez, M. X., Cadarso-Suárez, C., Gude-Sampedro, F. et al. (2014), ‘Optimalcutpoints: an r package for selecting optimal cutpoints in diagnostic tests’, J Stat Softw 61(8), 1–36.Louzada, F., Ara, A. & Fernandes, G. B. (2016), ‘Classification methods applied to credit scoring: Systematic review and overall comparison’, Surveys in Operations Research and Management Science 21(2), 117–134Novomestky, F., Nadarajah, S. & Novomestky, M. F. (2016), ‘Package ‘truncdist”.Palomares, J. & Peset, M. (2015), Estados financieros Interpretación y an´alisis, España: Pirámide (Grupo Anaya, SA).Ramsay, C. M. (1991), ‘A note of the normal power approximation’, ASTIN Bulletin: The Journal of the IAA 21(1), 147–150.Ripley, B., Venables, W. & Ripley, M. B. (2019), ‘Package class’.Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., M¨uller, M., Siegert, S., Doering, M. & Robin, M. X. (2021), Package ‘proc’, Technical report, 2012-09-10 09: 34.Rolski, T., Schmidli, H., Schmidt, V. & Teugels, J. L. (2009), Stochastic processes for insurance and finance, Vol. 505, John Wiley & SonsRoss, S. A., Westerfield, R., Jordan, B. D. & Biktimirov, E. N. (2016), Essentials of corporate finance, McGraw-Hill/Irwin.Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. (2005), ‘Rocr: visualizing classifier performance in r’, Bioinformatics 21(20), 3940–3941.Spedicato, G. A. (2017), ‘Discrete time markov chains with r’, The R Journal . R package version 0.6.9.7. URL: https://journal.r-project.org/archive/2017/RJ-2017-036/index.htmlThiele, C. (2018), ‘Cutpointr: Determine and evaluate optimal cutpoints in binary classification tasks’.Thomopoulos, N. T. (2012), Essentials of Monte Carlo simulation: Statistical methods for building simulation models, Springer Science & Business MediaTse, Y.-K. (2009), Nonlife actuarial models: theory, methods and evaluation, Cambridge University Press.Wright, M. N. & Ziegler, A. (2015), ‘ranger: A fast implementation of random forests for high dimensional data in c++ and r’, arXiv preprint arXiv:1508.04409 .Zeileis, A., Cribari-Neto, F., Gr¨un, B. & Kos-midis, I. (2010), ‘Beta regression in r’, Journal of statistical software 34(2), 1–24.ORIGINAL1085326267.2022.pdf1085326267.2022.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf776687https://repositorio.unal.edu.co/bitstream/unal/81325/3/1085326267.2022.pdf61cd91f317a89d3efac22b691d290193MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81325/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1085326267.2022.pdf.jpg1085326267.2022.pdf.jpgGenerated Thumbnailimage/jpeg3966https://repositorio.unal.edu.co/bitstream/unal/81325/5/1085326267.2022.pdf.jpg4b4410c2b7c4dfadfc6d09df80f4c699MD55unal/81325oai:repositorio.unal.edu.co:unal/813252023-08-02 23:04:06.784Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK