Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)
This paper presents the training of an artificial neural network using consumption data measured in the metropolitan network of Valencia, Spain, to estimate the energy consumption of a metro system. After calibration and validation of the neural network, the results obtained show that it can be used...
- Autores:
-
Pineda-Jaramillo, Juan Diego
Salvador-Zuriaga, Pablo
Insa-Franco, Ricardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60865
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60865
http://bdigital.unal.edu.co/59247/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Symmetric Vertical Sinusoid Alignments (SVSA)
gradient
energy consumption
artificial neural networks
metro system
Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés)
pendiente
consumo energético
redes neuronales artificiales
sistema metro
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_e8b9499d08c55bfc8d105ed163e2a017 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/60865 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pineda-Jaramillo, Juan Diegod1da8b0d-cf1e-44cd-bdbb-d0539fd75ed1300Salvador-Zuriaga, Pablo5b74963b-44b1-41dd-b52a-52a1f62bd09b300Insa-Franco, Ricardoa2714a0f-f3dc-429b-8114-3825f47e16003002019-07-02T19:18:40Z2019-07-02T19:18:40Z2017-10-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60865http://bdigital.unal.edu.co/59247/This paper presents the training of an artificial neural network using consumption data measured in the metropolitan network of Valencia, Spain, to estimate the energy consumption of a metro system. After calibration and validation of the neural network, the results obtained show that it can be used to predict energy consumption with high accuracy. Once fully trained, the neural network is used for testing hypothetical operational scenarios aimed to reduce the energy consumption of a metro system. These operational scenarios include different vertical alignments that prove that Symmetric Vertical Sinusoid Alignments (SVSA) can reduce energy consumption by 18.41% in contrast to a flat (0% gradient) alignment.Este artículo presenta el entrenamiento de una red neuronal artificial usando el consumo energético medido en la red metropolitana de Valencia, España, para estimar el consumo energético de un sistema metro. Después de la calibración y validación de la red neuronal, los resultados obtenidos muestran que esta puede ser utilizada para predecir el consumo energético con una gran precisión. Una vez entrenada, la red neuronal es utilizada para probar diferentes escenarios de operación hipotéticos con el objetivo de reducir el consumo energético de un sistema metro. Estos escenarios de operación incluyen diferentes trazados verticales que prueban que los Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés) pueden reducir el consumo energético en un 18.41 % en contraste con un alineamiento plano (pendiente del 0%).application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/65267Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaPineda-Jaramillo, Juan Diego and Salvador-Zuriaga, Pablo and Insa-Franco, Ricardo (2017) Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain). DYNA, 84 (203). pp. 17-23. ISSN 2346-218362 Ingeniería y operaciones afines / EngineeringSymmetric Vertical Sinusoid Alignments (SVSA)gradientenergy consumptionartificial neural networksmetro systemAlineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés)pendienteconsumo energéticoredes neuronales artificialessistema metroComparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)Artículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL65267-356389-1-PB.pdfapplication/pdf550184https://repositorio.unal.edu.co/bitstream/unal/60865/1/65267-356389-1-PB.pdfb857b88390c39b1fa1bf7fe879dfe2cbMD51THUMBNAIL65267-356389-1-PB.pdf.jpg65267-356389-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg10139https://repositorio.unal.edu.co/bitstream/unal/60865/2/65267-356389-1-PB.pdf.jpge31dd2694fcba9776491aa3b2576ac63MD52unal/60865oai:repositorio.unal.edu.co:unal/608652023-04-09 23:05:07.439Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain) |
title |
Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain) |
spellingShingle |
Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain) 62 Ingeniería y operaciones afines / Engineering Symmetric Vertical Sinusoid Alignments (SVSA) gradient energy consumption artificial neural networks metro system Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés) pendiente consumo energético redes neuronales artificiales sistema metro |
title_short |
Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain) |
title_full |
Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain) |
title_fullStr |
Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain) |
title_full_unstemmed |
Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain) |
title_sort |
Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain) |
dc.creator.fl_str_mv |
Pineda-Jaramillo, Juan Diego Salvador-Zuriaga, Pablo Insa-Franco, Ricardo |
dc.contributor.author.spa.fl_str_mv |
Pineda-Jaramillo, Juan Diego Salvador-Zuriaga, Pablo Insa-Franco, Ricardo |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering Symmetric Vertical Sinusoid Alignments (SVSA) gradient energy consumption artificial neural networks metro system Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés) pendiente consumo energético redes neuronales artificiales sistema metro |
dc.subject.proposal.spa.fl_str_mv |
Symmetric Vertical Sinusoid Alignments (SVSA) gradient energy consumption artificial neural networks metro system Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés) pendiente consumo energético redes neuronales artificiales sistema metro |
description |
This paper presents the training of an artificial neural network using consumption data measured in the metropolitan network of Valencia, Spain, to estimate the energy consumption of a metro system. After calibration and validation of the neural network, the results obtained show that it can be used to predict energy consumption with high accuracy. Once fully trained, the neural network is used for testing hypothetical operational scenarios aimed to reduce the energy consumption of a metro system. These operational scenarios include different vertical alignments that prove that Symmetric Vertical Sinusoid Alignments (SVSA) can reduce energy consumption by 18.41% in contrast to a flat (0% gradient) alignment. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-10-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T19:18:40Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T19:18:40Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2346-2183 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/60865 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/59247/ |
identifier_str_mv |
ISSN: 2346-2183 |
url |
https://repositorio.unal.edu.co/handle/unal/60865 http://bdigital.unal.edu.co/59247/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/65267 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.references.spa.fl_str_mv |
Pineda-Jaramillo, Juan Diego and Salvador-Zuriaga, Pablo and Insa-Franco, Ricardo (2017) Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain). DYNA, 84 (203). pp. 17-23. ISSN 2346-2183 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas. |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/60865/1/65267-356389-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/60865/2/65267-356389-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
b857b88390c39b1fa1bf7fe879dfe2cb e31dd2694fcba9776491aa3b2576ac63 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089306312015872 |