Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)

This paper presents the training of an artificial neural network using consumption data measured in the metropolitan network of Valencia, Spain, to estimate the energy consumption of a metro system. After calibration and validation of the neural network, the results obtained show that it can be used...

Full description

Autores:
Pineda-Jaramillo, Juan Diego
Salvador-Zuriaga, Pablo
Insa-Franco, Ricardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/60865
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/60865
http://bdigital.unal.edu.co/59247/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Symmetric Vertical Sinusoid Alignments (SVSA)
gradient
energy consumption
artificial neural networks
metro system
Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés)
pendiente
consumo energético
redes neuronales artificiales
sistema metro
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e8b9499d08c55bfc8d105ed163e2a017
oai_identifier_str oai:repositorio.unal.edu.co:unal/60865
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pineda-Jaramillo, Juan Diegod1da8b0d-cf1e-44cd-bdbb-d0539fd75ed1300Salvador-Zuriaga, Pablo5b74963b-44b1-41dd-b52a-52a1f62bd09b300Insa-Franco, Ricardoa2714a0f-f3dc-429b-8114-3825f47e16003002019-07-02T19:18:40Z2019-07-02T19:18:40Z2017-10-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60865http://bdigital.unal.edu.co/59247/This paper presents the training of an artificial neural network using consumption data measured in the metropolitan network of Valencia, Spain, to estimate the energy consumption of a metro system. After calibration and validation of the neural network, the results obtained show that it can be used to predict energy consumption with high accuracy. Once fully trained, the neural network is used for testing hypothetical operational scenarios aimed to reduce the energy consumption of a metro system. These operational scenarios include different vertical alignments that prove that Symmetric Vertical Sinusoid Alignments (SVSA) can reduce energy consumption by 18.41% in contrast to a flat (0% gradient) alignment.Este artículo presenta el entrenamiento de una red neuronal artificial usando el consumo energético medido en la red metropolitana de Valencia, España, para estimar el consumo energético de un sistema metro. Después de la calibración y validación de la red neuronal, los resultados obtenidos muestran que esta puede ser utilizada para predecir el consumo energético con una gran precisión. Una vez entrenada, la red neuronal es utilizada para probar diferentes escenarios de operación hipotéticos con el objetivo de reducir el consumo energético de un sistema metro. Estos escenarios de operación incluyen diferentes trazados verticales que prueban que los Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés) pueden reducir el consumo energético en un 18.41 % en contraste con un alineamiento plano (pendiente del 0%).application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/65267Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaPineda-Jaramillo, Juan Diego and Salvador-Zuriaga, Pablo and Insa-Franco, Ricardo (2017) Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain). DYNA, 84 (203). pp. 17-23. ISSN 2346-218362 Ingeniería y operaciones afines / EngineeringSymmetric Vertical Sinusoid Alignments (SVSA)gradientenergy consumptionartificial neural networksmetro systemAlineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés)pendienteconsumo energéticoredes neuronales artificialessistema metroComparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)Artículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL65267-356389-1-PB.pdfapplication/pdf550184https://repositorio.unal.edu.co/bitstream/unal/60865/1/65267-356389-1-PB.pdfb857b88390c39b1fa1bf7fe879dfe2cbMD51THUMBNAIL65267-356389-1-PB.pdf.jpg65267-356389-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg10139https://repositorio.unal.edu.co/bitstream/unal/60865/2/65267-356389-1-PB.pdf.jpge31dd2694fcba9776491aa3b2576ac63MD52unal/60865oai:repositorio.unal.edu.co:unal/608652023-04-09 23:05:07.439Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)
title Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)
spellingShingle Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)
62 Ingeniería y operaciones afines / Engineering
Symmetric Vertical Sinusoid Alignments (SVSA)
gradient
energy consumption
artificial neural networks
metro system
Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés)
pendiente
consumo energético
redes neuronales artificiales
sistema metro
title_short Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)
title_full Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)
title_fullStr Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)
title_full_unstemmed Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)
title_sort Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)
dc.creator.fl_str_mv Pineda-Jaramillo, Juan Diego
Salvador-Zuriaga, Pablo
Insa-Franco, Ricardo
dc.contributor.author.spa.fl_str_mv Pineda-Jaramillo, Juan Diego
Salvador-Zuriaga, Pablo
Insa-Franco, Ricardo
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
Symmetric Vertical Sinusoid Alignments (SVSA)
gradient
energy consumption
artificial neural networks
metro system
Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés)
pendiente
consumo energético
redes neuronales artificiales
sistema metro
dc.subject.proposal.spa.fl_str_mv Symmetric Vertical Sinusoid Alignments (SVSA)
gradient
energy consumption
artificial neural networks
metro system
Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés)
pendiente
consumo energético
redes neuronales artificiales
sistema metro
description This paper presents the training of an artificial neural network using consumption data measured in the metropolitan network of Valencia, Spain, to estimate the energy consumption of a metro system. After calibration and validation of the neural network, the results obtained show that it can be used to predict energy consumption with high accuracy. Once fully trained, the neural network is used for testing hypothetical operational scenarios aimed to reduce the energy consumption of a metro system. These operational scenarios include different vertical alignments that prove that Symmetric Vertical Sinusoid Alignments (SVSA) can reduce energy consumption by 18.41% in contrast to a flat (0% gradient) alignment.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-10-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T19:18:40Z
dc.date.available.spa.fl_str_mv 2019-07-02T19:18:40Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2346-2183
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/60865
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/59247/
identifier_str_mv ISSN: 2346-2183
url https://repositorio.unal.edu.co/handle/unal/60865
http://bdigital.unal.edu.co/59247/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/65267
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.references.spa.fl_str_mv Pineda-Jaramillo, Juan Diego and Salvador-Zuriaga, Pablo and Insa-Franco, Ricardo (2017) Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain). DYNA, 84 (203). pp. 17-23. ISSN 2346-2183
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas.
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/60865/1/65267-356389-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/60865/2/65267-356389-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv b857b88390c39b1fa1bf7fe879dfe2cb
e31dd2694fcba9776491aa3b2576ac63
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089306312015872