Comparing energy consumption for rail transit routes through Symmetric Vertical Sinusoid Alignments (SVSA), and applying artificial neural networks. A case study of Metro Valencia (Spain)
This paper presents the training of an artificial neural network using consumption data measured in the metropolitan network of Valencia, Spain, to estimate the energy consumption of a metro system. After calibration and validation of the neural network, the results obtained show that it can be used...
- Autores:
-
Pineda-Jaramillo, Juan Diego
Salvador-Zuriaga, Pablo
Insa-Franco, Ricardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60865
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60865
http://bdigital.unal.edu.co/59247/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Symmetric Vertical Sinusoid Alignments (SVSA)
gradient
energy consumption
artificial neural networks
metro system
Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés)
pendiente
consumo energético
redes neuronales artificiales
sistema metro
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | This paper presents the training of an artificial neural network using consumption data measured in the metropolitan network of Valencia, Spain, to estimate the energy consumption of a metro system. After calibration and validation of the neural network, the results obtained show that it can be used to predict energy consumption with high accuracy. Once fully trained, the neural network is used for testing hypothetical operational scenarios aimed to reduce the energy consumption of a metro system. These operational scenarios include different vertical alignments that prove that Symmetric Vertical Sinusoid Alignments (SVSA) can reduce energy consumption by 18.41% in contrast to a flat (0% gradient) alignment. |
---|