A rheological investigation of starch gels and solutions and its relationship with structural properties

diagramas, ilustraciones, tablas

Autores:
Serrano Chávez, Claudio Alejandro
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79481
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79481
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Almidón de maíz
Corn starch
Almidón
Reología
Geles
Soluciones
Espectro de relajación
Espectro de retardo
Starch
Rheology
Gels
Solutions
Relaxation spectra
Retardation spectra
Reología
Rheology
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_e114dc3ad32e677aa4252a6277e2f562
oai_identifier_str oai:repositorio.unal.edu.co:unal/79481
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv A rheological investigation of starch gels and solutions and its relationship with structural properties
dc.title.translated.spa.fl_str_mv Estudio reológico de geles y soluciones de almidón y su relación con propiedades estructurales
title A rheological investigation of starch gels and solutions and its relationship with structural properties
spellingShingle A rheological investigation of starch gels and solutions and its relationship with structural properties
540 - Química y ciencias afines
Almidón de maíz
Corn starch
Almidón
Reología
Geles
Soluciones
Espectro de relajación
Espectro de retardo
Starch
Rheology
Gels
Solutions
Relaxation spectra
Retardation spectra
Reología
Rheology
title_short A rheological investigation of starch gels and solutions and its relationship with structural properties
title_full A rheological investigation of starch gels and solutions and its relationship with structural properties
title_fullStr A rheological investigation of starch gels and solutions and its relationship with structural properties
title_full_unstemmed A rheological investigation of starch gels and solutions and its relationship with structural properties
title_sort A rheological investigation of starch gels and solutions and its relationship with structural properties
dc.creator.fl_str_mv Serrano Chávez, Claudio Alejandro
dc.contributor.advisor.none.fl_str_mv Perilla Perilla, Jairo Ernesto
dc.contributor.author.none.fl_str_mv Serrano Chávez, Claudio Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Almidón de maíz
Corn starch
Almidón
Reología
Geles
Soluciones
Espectro de relajación
Espectro de retardo
Starch
Rheology
Gels
Solutions
Relaxation spectra
Retardation spectra
Reología
Rheology
dc.subject.agrovoc.none.fl_str_mv Almidón de maíz
Corn starch
dc.subject.proposal.spa.fl_str_mv Almidón
Reología
Geles
Soluciones
Espectro de relajación
Espectro de retardo
dc.subject.proposal.eng.fl_str_mv Starch
Rheology
Gels
Solutions
Relaxation spectra
Retardation spectra
dc.subject.unesco.none.fl_str_mv Reología
Rheology
description diagramas, ilustraciones, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-05T22:05:55Z
dc.date.available.none.fl_str_mv 2021-05-05T22:05:55Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79481
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79481
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] H. Münstedt, J. Rheol. (N. Y. N. Y). 2014, 58, 565.
[2] H. G. Merkus, Particle Size Measurements, Particle Technology Series, First Edit., Vol. 17, Springer Netherlands, Dordrecht, 2009.
[3] J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & sons, Inc., New York, 1980.
[4] N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.
[5] R. H. Ewoldt, G. H. Mckinley, Rheol. Bull. 2007, 76, 4.
[6] B. R. Bird, R. C. Armstrong, O. Hassager, Dynamics of polymeric liquids, Second., John Wiley & sons, Inc., York, 1987.
[7] M. Doi, S. F. Edwards, The theory of polymer dynamics, Oxford University Press, Oxford, UK, 1988.
[8] H. Chi, K. Xu, X. Wu, Q. Chen, D. Xue, C. Song, W. Zhang, P. Wang, Food Chem. 2008, 106, 923.
[9] J. W. Lawton (Retired), “Starch: Uses of Native Starch,” Encyclopedia of Food Grains, C. Wrigley, H. Corke, K. Seetharaman, J. Faubion, Eds., Elsevier, Waltham, MA 2016, Vol. 3, p. 274.
[10] J. Waterschoot, S. V. Gomand, E. Fierens, J. A. Delcour, Starch/Staerke 2015, 67, 14.
[11] I. Przetaczek-Rożnowska, T. Fortuna, Int. J. Biol. Macromol. 2017, 104, 339.
[12] M. H. Chen, C. J. Bergman, Carbohydr. Polym. 2007, 69, 562.
[13] I. M. Morrison, M. P. Cochrane, A. M. Cooper, M. F. B. Dale, C. M. Duffus, R. P. Ellis, A. Lynn, G. R. Mackay, L. J. Paterson, R. D. M. Prentice, J. S. Swanston, S. A. Tiller, J. Sci. Food Agric. 2001, 81, 319.
[14] O. Pardo, J. Castañeda, C. Ortiz, Acta Agron. 2013, 62, 289.
[15] W. Wang, H. Wang, X. Jin, H. Wang, T. Lin, Z. Zhu, Polymer (Guildf). 2018, 153, 643.
[16] J. N. BeMiller, K. C. Huber, “Starch,” Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2011, Vol. 34, p. 1.
[17] J. L. Willett, “Starch in polymer compostions,” Starch: chemistry and technology, J. BeMiller, R. Whistler, Eds., Third Edit., Academi Press 2008, p. 715.
[18] R. P. Ellis, M. P. Cochrane, M. F. B. Dale, C. M. Duffus, A. Lynn, I. M. Morrison, R. D. M. Prentice, J. S. Swanston, S. A. Tiller, J. Sci. Food Agric. 1998, 77, 289.
[19] J. J. M. Swinkels, Starch/Starke 1985, 37, 1.
[20] L. Kong, G. R. Ziegler, Biomacromolecules 2012, 13, 2247.
[21] L. A. Muñoz, F. Pedreschi, A. Leiva, J. M. Aguilera, J. Food Eng. 2015, 152, 65.
[22] S. Pérez, E. Bertoft, Starch/Staerke 2010, 62, 389.
[23] L. H. Sperling, Introduction to Physical Polymer Science, Fourth., Hoboken, NJ, USA, 2006.
[24] M. J. Gidley, Carbohydr. Res. 1985, 139, 85.
[25] G. Nilsson, K.-E. Bergquist, U. Nilsson, L. Gorton, Starch 1996, 10, 352.
[26] T. A. Osswald, G. Menges, Materials Science of Polymers for Engineers, Third., Munich, Cincinnati, 2012.
[27] J. Jane, Y. Chen, L. Lee, A. McPherson, K. Wong, M. Radosavljevic, T. Kasemsuwan, Cereal Chem. 1999, 76, 629.
[28] J. Huang, Z. Shang, J. Man, Q. Liu, C. Zhu, C. Wei, Food Hydrocoll. 2015, 46, 172.
[29] S. Hizukuri, Carbohydr. Res. 1986, 147, 342.
[30] Y. Takeda, K. Shirasaka, S. Hizukuri, Carbohydr. Res. 1984, 132, 83.
[31] T. Wang, T. Bogracheva, C. Hedley, J. Exp. Bot. 1998, 49, 481.
[32] M. J. Miles, V. J. Morris, P. D. Orford, S. G. Ring, Carbohydr. Res. 1985, 135, 271.
[33] S. Srichuwong, T. C. Sunarti, T. Mishima, N. Isono, M. Hisamatsu, Carbohydr. Polym. 2005, 62, 25.
[34] A. Colombo, A. E. León, P. D. Ribotta, Starch/Staerke 2011, 63, 83.
[35] L. B. Karam, C. Ferrero, M. N. Martino, N. E. Zaritzky, M. V. E. Grossmann, Int. J. Food Sci. Technol. 2006, 41, 805.
[36] R. Wongsagonsup, T. Pujchakarn, S. Jitrakbumrung, W. Chaiwat, A. Fuongfuchat, S. Varavinit, S. Dangtip, M. Suphantharika, Carbohydr. Polym. 2014, 101, 656.
[37] N. Koganti, J. R. Mitchell, R. N. Ibbett, T. J. Foster, Biomacromolecules 2011, 12, 2888.
[38] S. Schmitz, A. C. Dona, P. Castignolles, R. G. Gilbert, M. Gaborieau, Macromol. Biosci. 2009, 9, 506.
[39] A. Dona, C. W. W. Yuen, J. Peate, R. G. Gilbert, P. Castignolles, M. Gaborieau, Carbohydr. Res. 2007, 342, 2604.
[40] Y. Li, C. Li, Z. Gu, Y. Hong, L. Cheng, Z. Li, Int. J. Biol. Macromol. 2017, 103, 630.
[41] F. Xie, L. Yu, B. Su, P. Liu, J. Wang, H. Liu, L. Chen, J. Cereal Sci. 2009, 49, 371.
[42] L. A. Bello-Perez, O. Paredes-López, Starch ‐ Stärke 1994, 46, 411.
[43] G. Li, F. Zhu, Int. J. Biol. Macromol. 2018, 114, 767.
[44] P. Noosuk, S. E. Hill, I. A. Farhat, J. R. Mitchell, P. Pradipasena, Starch/Staerke 2005, 57, 587.
[45] N. Singh, N. Inouchi, K. Nishinari, Food Hydrocoll. 2006, 20, 923.
[46] M. E. Villarreal, L. B. Iturriaga, Starch - Stärke 2016, 68, 1073.
[47] M. Nayouf, C. Loisel, J. L. Doublier, J. Food Eng. 2003, 59, 209.
[48] A. Eliasson, L. Bohlin, Starch ‐ Stärke 1982, 34, 267.
[49] P. Ptaszek, M. Lukasiewicz, A. Ptaszek, M. Grzesik, J. Skrzypek, M. Kulawska, Starch/Staerke 2011, 63, 181.
[50] B. Kapoor, M. Bhattacharya, Carbohydr. Polym. 2000, 42, 323.
[51] B. Kapoor, M. Bhattacharya, Carbohydr. Polym. 2001, 44, 217.
[52] G. Liu, N. Ji, Z. Gu, Y. Hong, L. Cheng, C. Li, Food Hydrocoll. 2018, 84, 166.
[53] K. Ninomiya, J. D. Ferry, J. Colloid Sci. 1959, 14, 36.
[54] J. Orozco-Parra, C. M. Mejía, C. C. Villa, Food Hydrocoll. 2020, 104, 105754.
[55] Association of Official Analytical Chemists (AOAC), “Official Methods of Analysis-Method 960.39,” Official Methods of Analysis, 2002.
[56] ISO, Rice-Determination of amylose content-Part 1: Reference method. ISO 6647-1, 2007.
[57] J. Wang, Y. Li, Y. Tian, X. Xu, X. Ji, X. Cao, Z. Jin, Starch/Staerke 2010, 62, 508.
[58] T. Komiya, S. Nara, Starch - Stärke 1986, 38, 9.
[59] A. Lopez, B. M. Flanagan, E. P. Gilbert, M. J. Gidley, Biopolymers 2008, 89, 761.
[60] J. Cai, C. Cai, J. Man, W. Zhou, C. Wei, Carbohydr. Polym. 2014, 101, 289.
[61] N. W. H. Cheetham, L. Tao, Carbohydr. Polym. 1998, 36, 277.
[62] O. E. Dudu, L. Li, A. B. Oyedeji, S. A. Oyeyinka, Y. Ma, Int. J. Biol. Macromol. 2019, 133, 1219.
[63] C. Gernat, S. Radosta, H. Anger, G. Damaschun, Starch ‐ Stärke 1993, 45, 309.
[64] G. Liu, Y. Hong, Z. Gu, Z. Li, L. Cheng, Food Hydrocoll. 2015, 45, 351.
[65] J. Wang, K. Guo, X. Fan, G. Feng, C. Wei, Molecules 2018, 23, 5.
[66] P. Cairns, T. Y. Bogracheva, S. G. Ring, C. L. Hedley, V. J. Morris, Carbohydr. Polym. 1997, 32, 275.
[67] M. J. Tizzotti, M. C. Sweedman, D. Tang, C. Schaefer, R. G. Gilbert, J. Agric. Food Chem. 2011, 59, 6913.
[68] R. E. Hoffman, Magn. Reson. Chem. 2006, 44, 606.
[69] Q. J. Peng, A. S. Perlin, Carbohydr. Res. 1987, 160, 57.
[70] H. Falk, M. Stanek, Monatshefte fur Chemie 1997, 128, 777.
[71] T. Usui, M. Yokoyama, N. Yamaoka, K. Matsuda, K. Tuzimira, Carbohydr. Res. 1974, 33, 105.
[72] X. Kong, S. Kasapis, E. Bertoft, H. Corke, Starch - Stärke 2010, 62, 302.
[73] N. Singh, N. Isono, S. Srichuwong, T. Noda, K. Nishinari, Food Hydrocoll. 2008, 22, 979.
[74] C. W. Macosko, Rheology: Principles, Measurements, and Applications, First Edit., Vol. 40, John Wiley & sons, Inc., United States of America, 1994.
[75] M. T. Shaw, W. J. MacKnight, Introduction to Polymer Viscoelasticity, Third Edit., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2005.
[76] S. Q. Wang, Nonlinear Polymer Rheology: Macroscopic Phenomenology and Molecular Foundation, Wiley, Hoboken, NJ, 2017.
[77] U. Zolzer, H. F. Eicke, Rheol. Acta 1993, 32, 104.
[78] C. Gabriel, J. Kaschta, Rheol. Acta 1998, 37, 358.
[79] A. Takeh, S. Shanbhag, Appl. Rheol. 2013, 23, 1.
[80] J. Kaschta, R. R. Schwarzl, Rheol. Acta 1994, 33, 517.
[81] L. N. Trefethen, D. Bau, Numerical Linear Algebra, Society of Industrial and Applied Mathematics, Philadelphia, 1997.
[82] J. Kaschta, F. R. Schwarzl, Rheol. Acta 1994, 33, 530.
[83] A. Gunaratne, H. Corke, Starch: Anaylisis of Quality. Encycl. Food Grains 2nd Ed. Vol. 2 2016, 198–207.
[84] A. Buléon, C. Gérard, C. Riekel, R. Vuong, H. Chanzy, Macromolecules 1998, 31, 6605.
[85] C. Cai, C. Wei, Carbohydr. Polym. 2013, 92, 469.
[86] A. Buléon, P. Colonna, V. Planchot, S. Ball, Int. J. Biol. Macromol. 1998, 23, 85.
[87] V. Singh, S. Z. Ali, R. Somashekar, P. S. Mukherjee, Int. J. Food Prop. 2006, 9, 845.
[88] C. D. Han, Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology, Vol. 1, Oxford University Press, New York, New York, 2007.
[89] C. Liu, J. He, E. van Ruymbeke, R. Keunings, C. Bailly, Polymer (Guildf). 2006, 47, 4461.
[90] C. D. Han, Rheology and Processing of Polymeric Materials, Vol. 1, Oxford University Press, Oxford, 2007.
[91] R. G. Larson, T. Sridhar, L. G. Leal, G. H. McKinley, A. E. Likhtman, T. C. B. McLeish, J. Rheol. (N. Y. N. Y). 2003, 47, 809.
[92] M. Zamponi, M. Monkenbusch, L. Willner, A. Wischnewski, B. Farago, D. Richter, Europhys. Lett. 2005, 72, 1039.
[93] F. L. Stoddard, “Starch: Chemistry,” Encyclopedia of Food Grains, Vol. 2, C. Wrigley, H. Corke, K. Seetharaman, J. Faoubion, Eds., Elsevier, Waltham, MA 2016, p. 174.
[94] O. García, M. Pinzón, L. Sánchez, @LIMENTECH Cienc. Y Tecnol. Aliment. 2013, 11, 13.
[95] A. Kaur, N. Singh, R. Ezekiel, H. S. Guraya, Food Chem. 2007, 101, 643.
[96] J. Shannon, D. Garwood, C. Boyer, “Genetics and Physiology of Starch Development,” Starch: chemistry and technology, J. N. BeMiller, R. Whistler, Eds., Third Edit., Academic Press 2009, p. 900.
[97] K. Thitipraphunkul, D. Uttapap, K. Piyachomkwan, Y. Takeda, Carbohydr. Polym. 2003, 54, 489.
[98] P. Noosuk, S. E. Hill, P. Pradipasena, J. R. Mitchell, Starch/Staerke 2003, 55, 337.
[99] W. Breuninger, K. Piyachomkwan, K. Sriroth, “Tapioca/Cassava Starch: Production and Use,” Starch: chemistry and technology, J. N. Bemiller, R. Whistler, Eds., Third Edit., Academic Press 2009, p. 900.
[100] S. Pérez, P. Baldwin, D. Gallant, “Structural Features of Starch Granules I,” Starch: chemistry and technology, J. N. BeMiller, R. Whistler, Eds., Third Edit., Academic Press 2009, p. 900.
[101] N. I. Davydova, S. P. Leont’ev, Y. V. Genin, A. Y. Sasov, T. Y. Bogracheva, Carbohydr. Polym. 1995, 27, 109.
[102] J. E. Fannon, R. J. Hauber, J. N. Bemiller, Cereal Chem. 1992, 69, 284.
[103] J. E. Fannon, J. M. Shull, J. N. BeMiller, Cereal Chem. 1993, 70, 611.
[104] K. Guo, L. Zhang, X. Bian, Q. Cao, C. Wei, Food Hydrocoll. 2020, 98, 105279.
[105] W. He, C. Wei, Food Hydrocoll. 2017, 73, 162.
[106] Y. I. Matveev, J. J. G. Van Soest, C. Nieman, L. A. Wasserman, V. A. Protserov, M. Ezernitskaja, V. P. Yuryev, Carbohydr. Polym. 2001, 44, 151.
[107] A. Sarko, H. ‐C H. Wu, Starch ‐ Stärke 1978, 30, 73.
[108] R. Hoover, Carbohydr. Polym. 2001, 45, 253.
[109] A. Imberty, A. Buléon, V. Tran, S. Pérez, Starch ‐ Stärke 1991, 43, 375.
[110] Y. I. Matveev, N. Y. Elankin, E. N. Kalistrova, A. N. Danilenko, C. Niemann, V. P. Yuryev, Starch - Stärke 1998, 50, 141.
[111] J. Robin, C. Mercier, R. Charbonniere, A. Guilbot, Lintnerized Starches. Gel Filtration and Enzymatic Studies of Insoluble Residues from Prolonged Acid Treatment of Potato Starch. Cereal Chem. 1974, 51, 389–405.
[112] V. Vamadevan, E. Bertoft, Starch/Staerke 2015, 67, 55.
[113] M. A. Whittam, T. R. Noel, S. G. Ring, Int. J. Biol. Macromol. 1990, 12, 359.
[114] R. F. Tester, W. R. Morrison, Cereal Chem. 1990, 67, 558.
[115] J. Jane, “Structural Features of Starch Granules II,” Starch: chemistry and technology, J. BeMiller, R. Whistler, Eds., Academic Press, Burlington, MA 2009, p. 196.
[116] S. A. S. Craig, C. C. Maningat, P. A. Seib, R. C. Hoseney, Starch paste clarity. Cereal Chem 1989, 66, 173–182.
[117] S. V. Gomand, L. Lamberts, R. G. F. Visser, J. A. Delcour, Food Hydrocoll. 2010, 24, 424.
[118] V. Vamadevan, E. Bertoft, K. Seetharaman, Carbohydr. Polym. 2013, 92, 1653.
[119] P. Colonna, A. Buléon, “Thermal transitions of starches,” Starches: Characterization, Properties and Applications, A. Bertolini, Ed., First Edti., CRC Press, Boca Raton 2010, p. 71.
[120] R. F. Tester, W. R. Morrison, Cereal Chem. 1990, 67, 551.
[121] S. G. Ring, K. J. l’Anson, V. J. Morris, Macromolecules 1985, 18, 182.
[122] V. M. Leloup, P. Colonna, A. Buleon, J. Cereal Sci. 1991, 13, 1.
[123] A.-C. Eliasson, “Starch: Physicochemical and Functional Aspects,” Carbohydrates in food, A.-C. Eliasson, Ed., Third Edit., CRC Press 2017, p. 479.
[124] R. Mukerjea, R. Mukerjea, J. F. Robyt, Carbohydr. Res. 2006, 341, 757.
[125] D. M. Hall, J. G. Sayre, Text. Res. J. 1971, 41, 404.
[126] N. Y. Yao, R. J. Larsen, D. A. Weitz, J. Rheol. (N. Y. N. Y). 2008, 52, 1013.
[127] J. R. Mitchell, J. Texture Stud. 1980, 11, 315.
[128] M. Q. Guo, X. Hu, C. Wang, L. Ai, “Polysaccharides: Structure and Solubility,” Solubility of Polysaccharides, InTech 2017.
[129] R. Whistler, “Solubility of Polysaccharides and Their Behavior in Solution,” Carbohydrates in solution, H. Isbell, Ed., First., American chemical society 1973, p. 242.
[130] S. B. Ross-Murphy, K. P. Shatwell, Biorheology 1983, 30, 217.
[131] D. R. Picout, S. B. Ross-Murphy, ScientificWorldJournal. 2003, 3, 105.
[132] G. M. Kavanagh, S. B. Ross-Murphy, Prog. Polym. Sci. 1998, 23, 533.
[133] A. H. Clark, S. B. Ross-Murphy, “Structural and mechanical properties of biopolymer gels,” Biopolymers, Springer-Verlag, Berlin/Heidelberg 2005, p. 57.
[134] S. J. McGrane, D. E. Mainwaring, H. J. Cornell, C. J. Rix, Starch/Staerke 2004, 56, 122.
[135] P. T. Marques, C. Pérégo, J. F. Le Meins, R. Borsali, V. Soldi, Carbohydr. Polym. 2006, 66, 396.
[136] R. A. Freitas, R. C. Paula, J. P. A. Feitosa, S. Rocha, M. R. Sierakowski, Carbohydr. Polym. 2004, 55, 3.
[137] A. Sayuri, S. Sawayama, A. Kawabata, J. Texture Stud. 1995, 26, 489.
[138] E. Cengiz, S. Karaman, M. Dogan, Int. J. Food Prop. 2016, 19, 1391.
[139] C. Gabriel, D. Lilge, Rheol. Acta 2006, 45, 995.
[140] Y. H. Lin, Macromolecules 1986, 19, 159.
[141] H. Münstedt, Soft Matter 2011, 7, 2273.
[142] P. E. Rouse, J. Chem. Phys. 1953, 21, 1272.
[143] B. H. Zimm, J. Chem. Phys. 1956, 24, 269.
[144] T. C. B. Mcleish, R. G. Larson, J. Rheol. (N. Y. N. Y). 1998, 81.
[145] H. H. Winter, “The Critical Gel,” Structure and Dynamics of Polymer and Colloidal Systems, Springer Netherlands, Dordrecht 2002, p. 439.
[146] J. D. Ferry, J. Res. Natl. Bur. Stand. (1934). 1948, 41, 53.
[147] R. G. Larson, The structure and rheology of complex fluids, First Edit., Oxford University Press, New York-Oxford, 1999.
[148] M. Li, P. Liu, W. Zou, L. Yu, F. Xie, H. Pu, H. Liu, L. Chen, J. Food Eng. 2011, 106, 95.
[149] S. G. Ring, M. J. Miles, V. J. Morris, R. Turner, P. Colonna, Int. J. Biol. Macromol. 1987, 9, 158.
[150] J. M. Hernández, M. Gaborieau, P. Castignolles, M. J. Gidley, A. M. Myers, R. G. Gilbert, Biomacromolecules 2008, 9, 954.
[151] S. Precha-Atsawanan, S. Puncha-arnon, Y. Wandee, D. Uttapap, C. Puttanlek, V. Rungsardthong, Food Hydrocoll. 2018, 79, 71.
[152] J. Shi, M. C. Sweedman, Y. C. Shi, Carbohydr. Polym. 2018, 194, 350.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (128 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79481/4/860181819.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79481/5/Supplementary%20files.rar
https://repositorio.unal.edu.co/bitstream/unal/79481/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79481/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79481/6/860181819.2021.pdf.jpg
bitstream.checksum.fl_str_mv e41d5085ef8ccbfbafcb020ab211d1dd
0a62248f4074da907105eef7d568d297
cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
bd77ac1508944cf8d712714786371aac
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089559827283968
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Perilla Perilla, Jairo Ernesto6da974f5d7b47336a5ddf3bb9482b009Serrano Chávez, Claudio Alejandroc7de361f87f8fc430adff2f70d3ccd8cGrupo de Investigación en Procesos Químicos y Bioquímicos2021-05-05T22:05:55Z2021-05-05T22:05:55Z2021https://repositorio.unal.edu.co/handle/unal/79481Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramas, ilustraciones, tablasSe estudió el comportamiento reológico de geles y soluciones de almidón. A escala microscópica, los geles de almidón de maíz son mezclas heterogéneas, altamente empaquetadas por restos de gránulos hinchados no birrefringentes; aquellos producidos a partir de yuca son homogéneos. Los primeros son sistemas rígidos, en los que el componente elástico predomina; los segundos muestran mayor disipación viscosa y dispersión en los mecanismos de relajación. La falta de desintegración total de los gránulos de almidón de maíz se asocia a una mayor estabilidad de su estructura cristalina y al contenido más alto de lípidos; esto a pesar de tener menor cristalinidad relativa y mayor contenido de amilopectina. Las soluciones de almidón en dimetil sulfóxido no muestran grandes diferencias en amplitud, oscilación y creep; sin embargo para la yuca, se observa mayor dispersión en los espectros de relajación; esto puede estar relacionado con una mayor polidispersidad y grado de ramificación. El comportamiento no lineal en creep, muestra que las soluciones de almidón de maíz tienden más rápidamente hacia la zona terminal sugiriendo un peso molecular menor. Los espectros de retardo obtenidos a partir de creep, tanto en viscoelasticidad lineal como no lineal, permitieron extender el régimen de frecuencias hacia valores más bajos; esto junto con algunos parámetros derivados de la teoría molecular como los tiempos de relajación de secciones de cadena entre puntos de enredamiento y los módulos de meseta, confirman los hallazgos mencionados anteriormente. Finalmente, la conversión de datos de oscilación en funciones creep, no mostró fuertes efectos inerciales (creep-ringing); esto permitió estudiar el comportamiento de creep a tiempos muy cortos sin necesidad de hacer correcciones de inercia.Rheological behavior of starch gels and solutions was investigated. At the microscopic level, corn starch gels are heterogeneous mixtures with a high packing-density of non-birefringent swollen granule remnants; those from cassava starch are instead homogenous. The former are rigid systems with a higher elastic component; the latter show greater viscous dissipation and higher dispersion in the relaxation processes. Granules from corn starch are less susceptible to disintegration during gelatinization; this has to do with a more stable crystalline structure and a higher lipid content, despite having a lower relative crystallinity and a higher amylopectin fraction. Amplitude, oscillatory and creep-recovery experiments did not show significant differences among starch/dimethyl sulfoxide solutions; however, higher dispersion is observed in the relaxation spectra for cassava starch solutions. This could be related to a higher polidispersity and degree of branching. Nonlinear creep showed that corn starch solutions tend more easily to the terminal region; this can be product of a lower molecular weight. Retardation spectra obtained from creep, whether within the linear or nonlinear viscoelastic region, allowed to extend the frequency domain of oscillatory data to lower regions; this, along with some parameters derived from the molecular theory, such as the relaxation time of strands between entanglement points and the plateau modulus, were useful to confirm the aforementioned findings. Finally, the conversion of experimental oscillatory data to creep functions did not show strong inertial effects (creep-ringing); this simplifies the study of the behavior at very short times of creep without inertia corrections.MaestríaProcesos de polimerización y materiales1 recurso en línea (128 páginas)application/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesAlmidón de maízCorn starchAlmidónReologíaGelesSolucionesEspectro de relajaciónEspectro de retardoStarchRheologyGelsSolutionsRelaxation spectraRetardation spectraReologíaRheologyA rheological investigation of starch gels and solutions and its relationship with structural propertiesEstudio reológico de geles y soluciones de almidón y su relación con propiedades estructuralesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] H. Münstedt, J. Rheol. (N. Y. N. Y). 2014, 58, 565.[2] H. G. Merkus, Particle Size Measurements, Particle Technology Series, First Edit., Vol. 17, Springer Netherlands, Dordrecht, 2009.[3] J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & sons, Inc., New York, 1980.[4] N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.[5] R. H. Ewoldt, G. H. Mckinley, Rheol. Bull. 2007, 76, 4.[6] B. R. Bird, R. C. Armstrong, O. Hassager, Dynamics of polymeric liquids, Second., John Wiley & sons, Inc., York, 1987.[7] M. Doi, S. F. Edwards, The theory of polymer dynamics, Oxford University Press, Oxford, UK, 1988.[8] H. Chi, K. Xu, X. Wu, Q. Chen, D. Xue, C. Song, W. Zhang, P. Wang, Food Chem. 2008, 106, 923.[9] J. W. Lawton (Retired), “Starch: Uses of Native Starch,” Encyclopedia of Food Grains, C. Wrigley, H. Corke, K. Seetharaman, J. Faubion, Eds., Elsevier, Waltham, MA 2016, Vol. 3, p. 274.[10] J. Waterschoot, S. V. Gomand, E. Fierens, J. A. Delcour, Starch/Staerke 2015, 67, 14.[11] I. Przetaczek-Rożnowska, T. Fortuna, Int. J. Biol. Macromol. 2017, 104, 339.[12] M. H. Chen, C. J. Bergman, Carbohydr. Polym. 2007, 69, 562.[13] I. M. Morrison, M. P. Cochrane, A. M. Cooper, M. F. B. Dale, C. M. Duffus, R. P. Ellis, A. Lynn, G. R. Mackay, L. J. Paterson, R. D. M. Prentice, J. S. Swanston, S. A. Tiller, J. Sci. Food Agric. 2001, 81, 319.[14] O. Pardo, J. Castañeda, C. Ortiz, Acta Agron. 2013, 62, 289.[15] W. Wang, H. Wang, X. Jin, H. Wang, T. Lin, Z. Zhu, Polymer (Guildf). 2018, 153, 643.[16] J. N. BeMiller, K. C. Huber, “Starch,” Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2011, Vol. 34, p. 1.[17] J. L. Willett, “Starch in polymer compostions,” Starch: chemistry and technology, J. BeMiller, R. Whistler, Eds., Third Edit., Academi Press 2008, p. 715.[18] R. P. Ellis, M. P. Cochrane, M. F. B. Dale, C. M. Duffus, A. Lynn, I. M. Morrison, R. D. M. Prentice, J. S. Swanston, S. A. Tiller, J. Sci. Food Agric. 1998, 77, 289.[19] J. J. M. Swinkels, Starch/Starke 1985, 37, 1.[20] L. Kong, G. R. Ziegler, Biomacromolecules 2012, 13, 2247.[21] L. A. Muñoz, F. Pedreschi, A. Leiva, J. M. Aguilera, J. Food Eng. 2015, 152, 65.[22] S. Pérez, E. Bertoft, Starch/Staerke 2010, 62, 389.[23] L. H. Sperling, Introduction to Physical Polymer Science, Fourth., Hoboken, NJ, USA, 2006.[24] M. J. Gidley, Carbohydr. Res. 1985, 139, 85.[25] G. Nilsson, K.-E. Bergquist, U. Nilsson, L. Gorton, Starch 1996, 10, 352.[26] T. A. Osswald, G. Menges, Materials Science of Polymers for Engineers, Third., Munich, Cincinnati, 2012.[27] J. Jane, Y. Chen, L. Lee, A. McPherson, K. Wong, M. Radosavljevic, T. Kasemsuwan, Cereal Chem. 1999, 76, 629.[28] J. Huang, Z. Shang, J. Man, Q. Liu, C. Zhu, C. Wei, Food Hydrocoll. 2015, 46, 172.[29] S. Hizukuri, Carbohydr. Res. 1986, 147, 342.[30] Y. Takeda, K. Shirasaka, S. Hizukuri, Carbohydr. Res. 1984, 132, 83.[31] T. Wang, T. Bogracheva, C. Hedley, J. Exp. Bot. 1998, 49, 481.[32] M. J. Miles, V. J. Morris, P. D. Orford, S. G. Ring, Carbohydr. Res. 1985, 135, 271.[33] S. Srichuwong, T. C. Sunarti, T. Mishima, N. Isono, M. Hisamatsu, Carbohydr. Polym. 2005, 62, 25.[34] A. Colombo, A. E. León, P. D. Ribotta, Starch/Staerke 2011, 63, 83.[35] L. B. Karam, C. Ferrero, M. N. Martino, N. E. Zaritzky, M. V. E. Grossmann, Int. J. Food Sci. Technol. 2006, 41, 805.[36] R. Wongsagonsup, T. Pujchakarn, S. Jitrakbumrung, W. Chaiwat, A. Fuongfuchat, S. Varavinit, S. Dangtip, M. Suphantharika, Carbohydr. Polym. 2014, 101, 656.[37] N. Koganti, J. R. Mitchell, R. N. Ibbett, T. J. Foster, Biomacromolecules 2011, 12, 2888.[38] S. Schmitz, A. C. Dona, P. Castignolles, R. G. Gilbert, M. Gaborieau, Macromol. Biosci. 2009, 9, 506.[39] A. Dona, C. W. W. Yuen, J. Peate, R. G. Gilbert, P. Castignolles, M. Gaborieau, Carbohydr. Res. 2007, 342, 2604.[40] Y. Li, C. Li, Z. Gu, Y. Hong, L. Cheng, Z. Li, Int. J. Biol. Macromol. 2017, 103, 630.[41] F. Xie, L. Yu, B. Su, P. Liu, J. Wang, H. Liu, L. Chen, J. Cereal Sci. 2009, 49, 371.[42] L. A. Bello-Perez, O. Paredes-López, Starch ‐ Stärke 1994, 46, 411.[43] G. Li, F. Zhu, Int. J. Biol. Macromol. 2018, 114, 767.[44] P. Noosuk, S. E. Hill, I. A. Farhat, J. R. Mitchell, P. Pradipasena, Starch/Staerke 2005, 57, 587.[45] N. Singh, N. Inouchi, K. Nishinari, Food Hydrocoll. 2006, 20, 923.[46] M. E. Villarreal, L. B. Iturriaga, Starch - Stärke 2016, 68, 1073.[47] M. Nayouf, C. Loisel, J. L. Doublier, J. Food Eng. 2003, 59, 209.[48] A. Eliasson, L. Bohlin, Starch ‐ Stärke 1982, 34, 267.[49] P. Ptaszek, M. Lukasiewicz, A. Ptaszek, M. Grzesik, J. Skrzypek, M. Kulawska, Starch/Staerke 2011, 63, 181.[50] B. Kapoor, M. Bhattacharya, Carbohydr. Polym. 2000, 42, 323.[51] B. Kapoor, M. Bhattacharya, Carbohydr. Polym. 2001, 44, 217.[52] G. Liu, N. Ji, Z. Gu, Y. Hong, L. Cheng, C. Li, Food Hydrocoll. 2018, 84, 166.[53] K. Ninomiya, J. D. Ferry, J. Colloid Sci. 1959, 14, 36.[54] J. Orozco-Parra, C. M. Mejía, C. C. Villa, Food Hydrocoll. 2020, 104, 105754.[55] Association of Official Analytical Chemists (AOAC), “Official Methods of Analysis-Method 960.39,” Official Methods of Analysis, 2002.[56] ISO, Rice-Determination of amylose content-Part 1: Reference method. ISO 6647-1, 2007.[57] J. Wang, Y. Li, Y. Tian, X. Xu, X. Ji, X. Cao, Z. Jin, Starch/Staerke 2010, 62, 508.[58] T. Komiya, S. Nara, Starch - Stärke 1986, 38, 9.[59] A. Lopez, B. M. Flanagan, E. P. Gilbert, M. J. Gidley, Biopolymers 2008, 89, 761.[60] J. Cai, C. Cai, J. Man, W. Zhou, C. Wei, Carbohydr. Polym. 2014, 101, 289.[61] N. W. H. Cheetham, L. Tao, Carbohydr. Polym. 1998, 36, 277.[62] O. E. Dudu, L. Li, A. B. Oyedeji, S. A. Oyeyinka, Y. Ma, Int. J. Biol. Macromol. 2019, 133, 1219.[63] C. Gernat, S. Radosta, H. Anger, G. Damaschun, Starch ‐ Stärke 1993, 45, 309.[64] G. Liu, Y. Hong, Z. Gu, Z. Li, L. Cheng, Food Hydrocoll. 2015, 45, 351.[65] J. Wang, K. Guo, X. Fan, G. Feng, C. Wei, Molecules 2018, 23, 5.[66] P. Cairns, T. Y. Bogracheva, S. G. Ring, C. L. Hedley, V. J. Morris, Carbohydr. Polym. 1997, 32, 275.[67] M. J. Tizzotti, M. C. Sweedman, D. Tang, C. Schaefer, R. G. Gilbert, J. Agric. Food Chem. 2011, 59, 6913.[68] R. E. Hoffman, Magn. Reson. Chem. 2006, 44, 606.[69] Q. J. Peng, A. S. Perlin, Carbohydr. Res. 1987, 160, 57.[70] H. Falk, M. Stanek, Monatshefte fur Chemie 1997, 128, 777.[71] T. Usui, M. Yokoyama, N. Yamaoka, K. Matsuda, K. Tuzimira, Carbohydr. Res. 1974, 33, 105.[72] X. Kong, S. Kasapis, E. Bertoft, H. Corke, Starch - Stärke 2010, 62, 302.[73] N. Singh, N. Isono, S. Srichuwong, T. Noda, K. Nishinari, Food Hydrocoll. 2008, 22, 979.[74] C. W. Macosko, Rheology: Principles, Measurements, and Applications, First Edit., Vol. 40, John Wiley & sons, Inc., United States of America, 1994.[75] M. T. Shaw, W. J. MacKnight, Introduction to Polymer Viscoelasticity, Third Edit., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2005.[76] S. Q. Wang, Nonlinear Polymer Rheology: Macroscopic Phenomenology and Molecular Foundation, Wiley, Hoboken, NJ, 2017.[77] U. Zolzer, H. F. Eicke, Rheol. Acta 1993, 32, 104.[78] C. Gabriel, J. Kaschta, Rheol. Acta 1998, 37, 358.[79] A. Takeh, S. Shanbhag, Appl. Rheol. 2013, 23, 1.[80] J. Kaschta, R. R. Schwarzl, Rheol. Acta 1994, 33, 517.[81] L. N. Trefethen, D. Bau, Numerical Linear Algebra, Society of Industrial and Applied Mathematics, Philadelphia, 1997.[82] J. Kaschta, F. R. Schwarzl, Rheol. Acta 1994, 33, 530.[83] A. Gunaratne, H. Corke, Starch: Anaylisis of Quality. Encycl. Food Grains 2nd Ed. Vol. 2 2016, 198–207.[84] A. Buléon, C. Gérard, C. Riekel, R. Vuong, H. Chanzy, Macromolecules 1998, 31, 6605.[85] C. Cai, C. Wei, Carbohydr. Polym. 2013, 92, 469.[86] A. Buléon, P. Colonna, V. Planchot, S. Ball, Int. J. Biol. Macromol. 1998, 23, 85.[87] V. Singh, S. Z. Ali, R. Somashekar, P. S. Mukherjee, Int. J. Food Prop. 2006, 9, 845.[88] C. D. Han, Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology, Vol. 1, Oxford University Press, New York, New York, 2007.[89] C. Liu, J. He, E. van Ruymbeke, R. Keunings, C. Bailly, Polymer (Guildf). 2006, 47, 4461.[90] C. D. Han, Rheology and Processing of Polymeric Materials, Vol. 1, Oxford University Press, Oxford, 2007.[91] R. G. Larson, T. Sridhar, L. G. Leal, G. H. McKinley, A. E. Likhtman, T. C. B. McLeish, J. Rheol. (N. Y. N. Y). 2003, 47, 809.[92] M. Zamponi, M. Monkenbusch, L. Willner, A. Wischnewski, B. Farago, D. Richter, Europhys. Lett. 2005, 72, 1039.[93] F. L. Stoddard, “Starch: Chemistry,” Encyclopedia of Food Grains, Vol. 2, C. Wrigley, H. Corke, K. Seetharaman, J. Faoubion, Eds., Elsevier, Waltham, MA 2016, p. 174.[94] O. García, M. Pinzón, L. Sánchez, @LIMENTECH Cienc. Y Tecnol. Aliment. 2013, 11, 13.[95] A. Kaur, N. Singh, R. Ezekiel, H. S. Guraya, Food Chem. 2007, 101, 643.[96] J. Shannon, D. Garwood, C. Boyer, “Genetics and Physiology of Starch Development,” Starch: chemistry and technology, J. N. BeMiller, R. Whistler, Eds., Third Edit., Academic Press 2009, p. 900.[97] K. Thitipraphunkul, D. Uttapap, K. Piyachomkwan, Y. Takeda, Carbohydr. Polym. 2003, 54, 489.[98] P. Noosuk, S. E. Hill, P. Pradipasena, J. R. Mitchell, Starch/Staerke 2003, 55, 337.[99] W. Breuninger, K. Piyachomkwan, K. Sriroth, “Tapioca/Cassava Starch: Production and Use,” Starch: chemistry and technology, J. N. Bemiller, R. Whistler, Eds., Third Edit., Academic Press 2009, p. 900.[100] S. Pérez, P. Baldwin, D. Gallant, “Structural Features of Starch Granules I,” Starch: chemistry and technology, J. N. BeMiller, R. Whistler, Eds., Third Edit., Academic Press 2009, p. 900.[101] N. I. Davydova, S. P. Leont’ev, Y. V. Genin, A. Y. Sasov, T. Y. Bogracheva, Carbohydr. Polym. 1995, 27, 109.[102] J. E. Fannon, R. J. Hauber, J. N. Bemiller, Cereal Chem. 1992, 69, 284.[103] J. E. Fannon, J. M. Shull, J. N. BeMiller, Cereal Chem. 1993, 70, 611.[104] K. Guo, L. Zhang, X. Bian, Q. Cao, C. Wei, Food Hydrocoll. 2020, 98, 105279.[105] W. He, C. Wei, Food Hydrocoll. 2017, 73, 162.[106] Y. I. Matveev, J. J. G. Van Soest, C. Nieman, L. A. Wasserman, V. A. Protserov, M. Ezernitskaja, V. P. Yuryev, Carbohydr. Polym. 2001, 44, 151.[107] A. Sarko, H. ‐C H. Wu, Starch ‐ Stärke 1978, 30, 73.[108] R. Hoover, Carbohydr. Polym. 2001, 45, 253.[109] A. Imberty, A. Buléon, V. Tran, S. Pérez, Starch ‐ Stärke 1991, 43, 375.[110] Y. I. Matveev, N. Y. Elankin, E. N. Kalistrova, A. N. Danilenko, C. Niemann, V. P. Yuryev, Starch - Stärke 1998, 50, 141.[111] J. Robin, C. Mercier, R. Charbonniere, A. Guilbot, Lintnerized Starches. Gel Filtration and Enzymatic Studies of Insoluble Residues from Prolonged Acid Treatment of Potato Starch. Cereal Chem. 1974, 51, 389–405.[112] V. Vamadevan, E. Bertoft, Starch/Staerke 2015, 67, 55.[113] M. A. Whittam, T. R. Noel, S. G. Ring, Int. J. Biol. Macromol. 1990, 12, 359.[114] R. F. Tester, W. R. Morrison, Cereal Chem. 1990, 67, 558.[115] J. Jane, “Structural Features of Starch Granules II,” Starch: chemistry and technology, J. BeMiller, R. Whistler, Eds., Academic Press, Burlington, MA 2009, p. 196.[116] S. A. S. Craig, C. C. Maningat, P. A. Seib, R. C. Hoseney, Starch paste clarity. Cereal Chem 1989, 66, 173–182.[117] S. V. Gomand, L. Lamberts, R. G. F. Visser, J. A. Delcour, Food Hydrocoll. 2010, 24, 424.[118] V. Vamadevan, E. Bertoft, K. Seetharaman, Carbohydr. Polym. 2013, 92, 1653.[119] P. Colonna, A. Buléon, “Thermal transitions of starches,” Starches: Characterization, Properties and Applications, A. Bertolini, Ed., First Edti., CRC Press, Boca Raton 2010, p. 71.[120] R. F. Tester, W. R. Morrison, Cereal Chem. 1990, 67, 551.[121] S. G. Ring, K. J. l’Anson, V. J. Morris, Macromolecules 1985, 18, 182.[122] V. M. Leloup, P. Colonna, A. Buleon, J. Cereal Sci. 1991, 13, 1.[123] A.-C. Eliasson, “Starch: Physicochemical and Functional Aspects,” Carbohydrates in food, A.-C. Eliasson, Ed., Third Edit., CRC Press 2017, p. 479.[124] R. Mukerjea, R. Mukerjea, J. F. Robyt, Carbohydr. Res. 2006, 341, 757.[125] D. M. Hall, J. G. Sayre, Text. Res. J. 1971, 41, 404.[126] N. Y. Yao, R. J. Larsen, D. A. Weitz, J. Rheol. (N. Y. N. Y). 2008, 52, 1013.[127] J. R. Mitchell, J. Texture Stud. 1980, 11, 315.[128] M. Q. Guo, X. Hu, C. Wang, L. Ai, “Polysaccharides: Structure and Solubility,” Solubility of Polysaccharides, InTech 2017.[129] R. Whistler, “Solubility of Polysaccharides and Their Behavior in Solution,” Carbohydrates in solution, H. Isbell, Ed., First., American chemical society 1973, p. 242.[130] S. B. Ross-Murphy, K. P. Shatwell, Biorheology 1983, 30, 217.[131] D. R. Picout, S. B. Ross-Murphy, ScientificWorldJournal. 2003, 3, 105.[132] G. M. Kavanagh, S. B. Ross-Murphy, Prog. Polym. Sci. 1998, 23, 533.[133] A. H. Clark, S. B. Ross-Murphy, “Structural and mechanical properties of biopolymer gels,” Biopolymers, Springer-Verlag, Berlin/Heidelberg 2005, p. 57.[134] S. J. McGrane, D. E. Mainwaring, H. J. Cornell, C. J. Rix, Starch/Staerke 2004, 56, 122.[135] P. T. Marques, C. Pérégo, J. F. Le Meins, R. Borsali, V. Soldi, Carbohydr. Polym. 2006, 66, 396.[136] R. A. Freitas, R. C. Paula, J. P. A. Feitosa, S. Rocha, M. R. Sierakowski, Carbohydr. Polym. 2004, 55, 3.[137] A. Sayuri, S. Sawayama, A. Kawabata, J. Texture Stud. 1995, 26, 489.[138] E. Cengiz, S. Karaman, M. Dogan, Int. J. Food Prop. 2016, 19, 1391.[139] C. Gabriel, D. Lilge, Rheol. Acta 2006, 45, 995.[140] Y. H. Lin, Macromolecules 1986, 19, 159.[141] H. Münstedt, Soft Matter 2011, 7, 2273.[142] P. E. Rouse, J. Chem. Phys. 1953, 21, 1272.[143] B. H. Zimm, J. Chem. Phys. 1956, 24, 269.[144] T. C. B. Mcleish, R. G. Larson, J. Rheol. (N. Y. N. Y). 1998, 81.[145] H. H. Winter, “The Critical Gel,” Structure and Dynamics of Polymer and Colloidal Systems, Springer Netherlands, Dordrecht 2002, p. 439.[146] J. D. Ferry, J. Res. Natl. Bur. Stand. (1934). 1948, 41, 53.[147] R. G. Larson, The structure and rheology of complex fluids, First Edit., Oxford University Press, New York-Oxford, 1999.[148] M. Li, P. Liu, W. Zou, L. Yu, F. Xie, H. Pu, H. Liu, L. Chen, J. Food Eng. 2011, 106, 95.[149] S. G. Ring, M. J. Miles, V. J. Morris, R. Turner, P. Colonna, Int. J. Biol. Macromol. 1987, 9, 158.[150] J. M. Hernández, M. Gaborieau, P. Castignolles, M. J. Gidley, A. M. Myers, R. G. Gilbert, Biomacromolecules 2008, 9, 954.[151] S. Precha-Atsawanan, S. Puncha-arnon, Y. Wandee, D. Uttapap, C. Puttanlek, V. Rungsardthong, Food Hydrocoll. 2018, 79, 71.[152] J. Shi, M. C. Sweedman, Y. C. Shi, Carbohydr. Polym. 2018, 194, 350.ORIGINAL860181819.2021.pdf860181819.2021.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf5153649https://repositorio.unal.edu.co/bitstream/unal/79481/4/860181819.2021.pdfe41d5085ef8ccbfbafcb020ab211d1ddMD54Supplementary files.rarSupplementary files.rarAnexosapplication/octet-stream17268008https://repositorio.unal.edu.co/bitstream/unal/79481/5/Supplementary%20files.rar0a62248f4074da907105eef7d568d297MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79481/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79481/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL860181819.2021.pdf.jpg860181819.2021.pdf.jpgGenerated Thumbnailimage/jpeg5261https://repositorio.unal.edu.co/bitstream/unal/79481/6/860181819.2021.pdf.jpgbd77ac1508944cf8d712714786371aacMD56unal/79481oai:repositorio.unal.edu.co:unal/794812023-07-25 23:03:38.26Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==