Evaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado

ilustraciones, fotografías, graficas

Autores:
Diaz Villamizar, Maria Angelica
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81913
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81913
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Coffea arabica
Café arábica
Café tostado
Época de cosecha
Análisis multivariado
Nariz electrónica
Origen
Coffee roasted
Harvest season
Multivariate analysis
Electronic nose
Origin
Instrumento de medida
Measuring instruments
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_df00ab7cbd58584a432888c7ddd0e650
oai_identifier_str oai:repositorio.unal.edu.co:unal/81913
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado
dc.title.translated.eng.fl_str_mv Evaluation of the aromatic profile of Colombian coffee from different zones and harvest seasons, using electronic nose and multivariate statistical analysis
title Evaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado
spellingShingle Evaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Coffea arabica
Café arábica
Café tostado
Época de cosecha
Análisis multivariado
Nariz electrónica
Origen
Coffee roasted
Harvest season
Multivariate analysis
Electronic nose
Origin
Instrumento de medida
Measuring instruments
title_short Evaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado
title_full Evaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado
title_fullStr Evaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado
title_full_unstemmed Evaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado
title_sort Evaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado
dc.creator.fl_str_mv Diaz Villamizar, Maria Angelica
dc.contributor.advisor.none.fl_str_mv Díaz Moreno, Amanda Consuelo
Zuluaga Domínguez, Carlos Mario
dc.contributor.author.none.fl_str_mv Diaz Villamizar, Maria Angelica
dc.contributor.researchgroup.spa.fl_str_mv Bioalimentos
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Coffea arabica
Café arábica
Café tostado
Época de cosecha
Análisis multivariado
Nariz electrónica
Origen
Coffee roasted
Harvest season
Multivariate analysis
Electronic nose
Origin
Instrumento de medida
Measuring instruments
dc.subject.agrovoc.eng.fl_str_mv Coffea arabica
dc.subject.agrovoc.spa.fl_str_mv Café arábica
dc.subject.proposal.spa.fl_str_mv Café tostado
Época de cosecha
Análisis multivariado
Nariz electrónica
Origen
dc.subject.proposal.eng.fl_str_mv Coffee roasted
Harvest season
Multivariate analysis
Electronic nose
Origin
dc.subject.unesco.spa.fl_str_mv Instrumento de medida
dc.subject.unesco.eng.fl_str_mv Measuring instruments
description ilustraciones, fotografías, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-16T15:10:47Z
dc.date.available.none.fl_str_mv 2022-08-16T15:10:47Z
dc.date.issued.none.fl_str_mv 2022-08-15
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81913
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81913
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Abdelwareth, A., Zayed, A., & Farag, M. A. (2021). Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its commercial blends in the Middle East. Food Chemistry, 349. https://doi.org/10.1016/j.foodchem.2021.129162
Aishima, T. (1991). Aroma Discrimination by Pattern Recognition Analysis of Responses from Semiconductor Gas Sensor Array. In J. Agric. Food Chem (Vol. 39).
Alkarkhi, A. F. M., & Alqaraghuli, W. A. A. (2019). Factor Analysis. Easy Statistics for Food Science with R, 143–159. https://doi.org/10.1016/B978-0-12-814262-2.00009-1
Arcila, P. J. (2007a). Crecimiento y desarrollo de la planta de café. In Sistemas de producción de café en Colombia (pp. 22–60)
Arcila, P. J. (2007b). Enovación y administración de los cafetales para estabilizar la producción de la finca. In Sistemas de producción de café (pp. 146–160).
Backhaus, K., Erichson, B., Gensler, S., Weiber, R., & Weiber, T. (2021). Multivariate Analysis
Beebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). Chemometrics: A Practical Guide. Wiley. https://books.google.com.co/books/about/Chemometrics.html?id=EzcvAQAAIAAJ&redir_ esc=y
Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry. In Food Chemistry. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69934-7
Benavides, P. M., Góngora, C. E. B., Acuña, J. R. Z., Molina, D. M. v, & Salazar, L. F. G. (2021). Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila: Vol. 2. 2015-2021. In Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila: Vol. 2. 2015-2021. Cenicafé. https://doi.org/10.38141/cenbook-0008
Bertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T. (2012). Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4), 2575–2583. https://doi.org/10.1016/j.foodchem.2012.06.060
Bodner, M., Morozova, K., Kruathongsri, P., Thakeow, P., & Scampicchio, M. (2019). Effect of harvesting altitude, fermentation time and roasting degree on the aroma released by coffee powder monitored by proton transfer reaction mass spectrometry. European Food Research and Technology, 245(7), 1499–1506. https://doi.org/10.1007/s00217-019- 03281-5
Bona, E., & da Silva, R. S. D. S. F. (2016). Coffee and the Electronic Nose. In Electronic Noses and Tongues in Food Science (pp. 31–38). Elsevier Inc. https://doi.org/10.1016/B978-0-12- 800243-8.00004-4
Boo, C. G., Hong, S. J., & Shin, E. C. (2021). Comparative evaluation of the volatile profiles and taste properties of commercial coffee products using electronic nose, electronic tongue, and GC/MSD. Journal of the Korean Society of Food Science and Nutrition, 50(8), 810– 822. https://doi.org/10.3746/jkfn.2021.50.8.810
Builes, R. V. (2014). La fenología del café, una herramienta para apoyar la toma de decisiones. www.cenicafe.org
Buitrago, O. J., Tinoco, H. A., Perdomo, H. L., Rincón, J. A., Ocampo, O., Berrio, L. v, Pineda, M. F., & López, G. J. (2022). Physical-mechanical characterization of coffee fruits Coffea arabica L. var. Castillo classified by a colorimetry approach. Materialia, 21, 101330. https://doi.org/10.1016/J.MTLA.2022.101330
Buratti, S., Benedetti, S., & Giovanelli, G. (2017). Application of electronic senses to characterize espresso coffees brewed with different thermal profiles. European Food Research and Technology, 243(3), 511–520. https://doi.org/10.1007/s00217-016-2769-y
Cárdenas, G. J. (1993). Industria del café en Colombia.
Carvalho, L. C. C., da Silva, F. M., Ferraz, G. A. E. S., Stracieri, J., Ferraz, P. F. P., & Ambrosano, L. (2017). Geostatistical analysis of arabic coffee yield in two crop seasons. Revista Brasileira de Engenharia Agricola e Ambiental, 21(6), 410–414. https://doi.org/10.1590/1807-1929/agriambi.v21n6p410-414
Castañeda, A. L. (2018). RIIIT. Revista internacional de investigación e innovación tecnológica. In RIIIT. Revista internacional de investigación e innovación tecnológica (Vol. 6, Issue 33). Centro Kappa de Conocimiento S.C (CKC). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007- 97532018000300004&lng=es&nrm=iso&tlng=es
Caudillo, O. N. A., Salas, A. A. G., Blancas, H. L. E., Lona, L. S. P., Rocha, M. M. A., Mares, M. E., & Rivera, D. C. (2020). Investigación y Desarrollo en Ciencia y Tecnología de Alimentos Análisis químico del café variedad arábica durante el proceso del tostado artesanal (Vol. 5).
Ceballos, D. A. C., Meneses, J. A. M., Luna, D. A. R., Lopez, C. A. G., Garcia, J. H., & Narvaez, J. A. G. (2020, November 4). Estudio de fragancia y aroma del café tostado con la nariz electrónica Coffee-NOSE. 2020 9th International Congress of Mechatronics Engineering and Automation, CIIMA 2020 - Conference Proceedings. https://doi.org/10.1109/CIIMA50553.2020.9290177
Cenicafé. (2012). Recolección del café.
Cenicafé. (2021). Guía más agronomía, más productividad, más calidad. Cenicafé. https://doi.org/10.38141/cenbook-0014
Cid, M. C., & de Peña, M. P. (2015). Coffee: Analysis and Composition. In Encyclopedia of Food and Health (pp. 225–231). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947- 2.00185-9
Cincotta, F., Tripodi, G., Merlino, M., Verzera, A., & Condurso, C. (2020). Variety and shelf-life of coffee packaged in capsules. LWT, 118, 108718. https://doi.org/10.1016/J.LWT.2019.108718
Clarke, R. T., & Greenacre, M. J. (1985). Theory and Applications of Correspondence Analysis. In The Journal of Animal Ecology (Vol. 54, Issue 3). https://doi.org/10.2307/4399
Córdoba, N., Moreno, F. L., Osorio, C., Velásquez, S., Fernández, A. M., & Ruiz, P. Y. (2021). Specialty and regular coffee bean quality for cold and hot brewing: Evaluation of sensory profile and physicochemical characteristics. LWT, 145, 111363. https://doi.org/10.1016/J.LWT.2021.111363
Cruz, O. R., Piraneque, G. N., & Aguirre, F. S. (2020). Physicochemical, microbiological, and sensory analysis of fermented coffee from Sierra Nevada of Santa Marta, Colombia. Coffee Science, 15(1), 1–6. https://doi.org/10.25186/.V15I.179
Daba, G., Helsen, K., Berecha, G., Lievens, B., Debela, A., & Honnay, O. (2019). Seasonal and altitudinal differences in coffee leaf rust epidemics on coffee berry disease-resistant varieties in Southwest Ethiopia. Tropical Plant Pathology, 44(3), 244–250. https://doi.org/10.1007/s40858-018-0271-8
Dan, D. C., Liu, Y., Chen, P. Y., Feng, X., Lu, Y., & Yu, B. (2020). Application of SPME-GC TOFMS, E-nose, and sensory evaluation to investigate the flavor characteristics of Chinese Yunnan coffee at three different conditions (beans, ground powder, and brewed coffee). https://doi.org/10.1002/ffj.3597
de Assis Silva, S., de Souza LIMA, J. S., & Alves, A. I. (2010). Spatial study of grain yield and percentage of bark of two varieties of Coffea arabica L. to the production of quality coffee. Bioscience Journal, 26(4), 558–565.
de Carvalho Neto, P. D., Vinícius de Melo Pereira, G., A Tanobe, V. O., Thomaz Soccol, V., José da Silva, B. G., Rodrigues, C., & Ricardo Soccol, C. (2017). Yeast Diversity and Physicochemical Characteristics Associated with Coffee Bean Fermentation from the Brazilian Cerrado Mineiro Region. https://doi.org/10.3390/fermentation3010011
de Melo Pereira, G. v., de Carvalho Neto, D. P., Magalhães Júnior, A. I., Vásquez, Z. S., Medeiros, A. B. P., Vandenberghe, L. P. S., & Soccol, C. R. (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry, 272(August 2018), 441–452. https://doi.org/10.1016/j.foodchem.2018.08.061
Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B, 229, 206–217. https://doi.org/10.1016/J.MSEB.2017.12.036
Di Donfrancesco, B., Gutierrez Guzman, N., & Chambers, E. (2019). Similarities and differences in sensory properties of high-quality Arabica coffee in a small region of Colombia. Food Research International, 116, 645–651. https://doi.org/10.1016/j.foodres.2018.08.090
Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272, 723–731. https://doi.org/10.1016/j.foodchem.2018.08.068
Dou, T. X., Shi, J. F., Li, Y., Bi, F. C., Gao, H. J., Hu, C. H., Li, C. Y., Yang, Q. S., Deng, G. M., Sheng, O., He, W. di, Yi, G. J., & Dong, T. (2020). Influence of harvest season on volatile aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled with GC-MS. Scientia Horticulturae, 265. https://doi.org/10.1016/j.scienta.2020.109214
Durán, C. (2005). Diseño y optimización de los subsistemas de un sistema de olfato electrónico para aplicaciones agroalimentarias e industriales.
Durán, C., Acevedo, M., Gualdron, E., Guerrero, O., & Hernández, M. O. (2014). Nariz electrónica para determinar el índice de madurez del tomate de árbol (Cyphomandra Betacea Sendt). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405- 77432014000300003
Echeverria, G., Correa, E., Ruiz-Altisent, M., Graell, J., Puy, J., & Lopez, L. (2004). Erratum: Characterization of Fuji apples from different harvest dates and storage conditions from measurements of volatiles by gas chromatography and electronic nose (Journal of Agricultural and Food Chemistry (2004) 52 (3069)). In Journal of Agricultural and Food Chemistry (Vol. 52, Issue 14, p. 4582). https://doi.org/10.1021/jf040262a
Federación Nacional de Cafeteros. (2022a). Cafés Suaves. https://federaciondecafeteros.org/wp/glosario/cafes-suaves/#:~:text=Las%20principales%20variedades%20de%20caf%C3%A9,Caturra%20y %20la%20Variedad%20Castillo.
Federación Nacional de Cafeteros. (2022b). Producción de café de Colombia en 2020 fue de 13,9 millones de sacos. https://federaciondecafeteros.org/wp/listado-noticias/produccion de-cafe-de-colombia-en-2020-fue-de-139-millones-de sacos/#:~:text=Producci%C3%B3n%20de%20caf%C3%A9%20de%20Colombia,sacos% 20%2D%20Federaci%C3%B3n%20Nacional%20de%20Cafeteros
Fisk, I. D., Kettle, A., Hofmeister, S., Virdie, A., & Kenny, J. S. (2012). Discrimination of roast and ground coffee aroma. http://www.flavourjournal.com/content/1/1/14
Flambeau, K. J., Lee, W. J., & Yoon, J. (2017). Discrimination and geographical origin prediction of washed specialty Bourbon coffee from different coffee growing areas in Rwanda by using electronic nose and electronic tongue. Food Science and Biotechnology, 26(5), 1245–1254. https://doi.org/10.1007/s10068-017-0168-1
Flores, V. H., & Ku, L. C. (2011). Diseño de una nariz electrónica como discriminador de olores utilizando Algoritmos Genéticos y Redes Neuronales Artificiales.
Fraden, J. (2010). Handbook of Modern Sensors. In Handbook of Modern Sensors. Springer New York. https://doi.org/10.1007/978-1-4419-6466-3
Frank, I. E., & Todeschini, R. (1994). The Data Analysis Handbook -. Elsevier B.V. https://books.google.com.co/books?id=SXEpB0H6L3YC&printsec=frontcover&hl=es&sour ce=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Gardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and Actuators: B. Chemical, 18(1–3), 210–211. https://doi.org/10.1016/0925-4005(94)87085-3
Gardner, J. W., Shurmer, H. v., & Tan, T. T. (1992). Application of an electronic nose to the discrimination of coffees. Sensors and Actuators: B. Chemical, 6(1–3), 71–75. https://doi.org/10.1016/0925-4005(92)80033-T
Giraldo, P. J. R., Sanz, J. R. U., & Oliveros, C. E. T. (2010). Identificación y clasificación de frutos de café en tiempo real, a través de la medición de color.
Gómez, L., Caballero, A., & Baldión, J. V. (1991). Ecotopos cafeteros de Colombia. Cenicafé, Agroclimatología División de Desarrollo Social, 138. http://biblioteca.cenicafe.org/bitstream/10778/818/1/lib13731.pdf
Guzmán, R. B. V. (2012). Seguimiento de la producción del aroma del yogurt durante la fermentación ácido láctica mediante nariz electrónica y evaluación sensorial.
Hong, X., Wang, J., & Qiu, S. (2014). Authenticating cherry tomato juices—Discussion of different data standardization and fusion approaches based on electronic nose and tongue. Food Research International, 60, 173–179. https://doi.org/10.1016/J.FOODRES.2013.10.03
Hu, Z., Wang, H., & Liu, Y. (2013). The applied research on discrimination of volatile substance of rice using electronic nose. Journal of the Chinese Cereals and Oils Association, 28(7), 93–98.
IDEAM, MinAgricultura, & Mesa Técnica Agroclimática Nacional. (2020). Boletín Agroclimático Nacional.
Jaramillo, R. A. (2016). Épocas recomendadas para la siembra del café en Colombia. www.cenicafe.org
Khamitova, G., Angeloni, S., Borsetta, G., Xiao, J., Maggi, F., Sagratini, G., Vittori, S., & Caprioli, G. (2020). Optimization of espresso coffee extraction through variation of particle sizes, perforated disk height and filter basket aimed at lowering the amount of ground coffee used. Food Chemistry, 314, 126220. https://doi.org/10.1016/J.FOODCHEM.2020.126220
Knysak, D. (2017). Volatile compounds profiles in unroasted Coffea arabica and Coffea canephora beans from different countries. Food Science and Technology, 37(3), 444–448. https://doi.org/10.1590/1678-457x.19216
la República. (2019). Tecnología en sector cafetero para atraer al consumidor milenial. https://www.larepublica.co/internet-economy/tecnologia-en-sector-cafetero-para-atraer-al consumidor-milenial-2909894
Liberto, E., Bressanello, D., Strocchi, G., Cordero, C., Ruosi, M. R., Pellegrino, G., Bicchi, C., & Sgorbini, B. (2019). HS-SPME-MS-enose coupled with chemometrics as an analytical decision maker to predict in-cup coffee sensory quality in routine controls: Possibilities and limits. Molecules, 24(24). https://doi.org/10.3390/molecules24244515
Maekawa, T., Cai, K., Suzuki, K., Dougami, N., Takada, T., & Egashira, M. (2001). Compensatory methods for the odor concentration in an electronic nose system using software and hardware. Sensors and Actuators, B: Chemical, 76(1–3), 430–435. https://doi.org/10.1016/S0925-4005(01)00651-7
Mahmud, M. M. C., Shellie, R. A., & Keast, R. (2020). Unravelling the relationship between aroma compounds and consumer acceptance: Coffee as an example. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2380–2420. https://doi.org/10.1111/1541-4337.12595
Makimori, G. Y. F., & Bona, E. (2019). Commercial Instant Coffee Classification Using an Electronic Nose in Tandem with the ComDim-LDA Approach. Food Analytical Methods, 12(5), 1067–1076. https://doi.org/10.1007/s12161-019-01443-5
Manganaro, A., Ballabio, D., Consonni, V., Mauri, A., Pavan, M., & Todeschini, R. (2008). Chapter 9 The DART (Decision Analysis by Ranking Techniques) Software. Data Handling in Science and Technology, 27, 193–207. https://doi.org/10.1016/S0922-3487(08)10009-0
Marín, S., Arcila, J., Montoya, E., & Oliveros, C. (2003). Cambios físicos y químicos durante la maduración del fruto de café (Coffea arabica L. var. Colombia). Cenifcafé, 54(3), 208–225.
Michishita, T., Akiyama, M., Hirano, Y., Ikeda, M., Sagara, Y., & Araki, T. (2010). Gas Chromatography/Olfactometry and Electronic Nose Analyses of Retronasal Aroma of Espresso and Correlation with Sensory Evaluation by an Artificial Neural Network. Journal of Food Science, 75(9). https://doi.org/10.1111/j.1750-3841.2010.01828.x
Moreno, I., Caballero, R., Galán, R., Matía, F., & Jiménez, A. (2009). La Nariz Electrónica: Estado del Arte. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 6(3), 76–91. https://doi.org/10.1016/s1697-7912(09)70267-5
Oestreich, J. S. (2010). Chemistry of coffee. In Comprehensive Natural Products II: Chemistry and Biology (Vol. 3, pp. 1085–1117). Elsevier Ltd. https://doi.org/10.1016/b978- 008045382-8.00708-5
Osorio, V., Pabón, J., Calderón, P. A., & Imbachi, L. C. (2021a). Calidad física, sensorial y composición química del café cultivado en el departamento del Huila. Revista Cenicafé, 72(2), e72201. https://doi.org/10.38141/10778/72201
Osorio, V., Pabón, J., Calderón, P. A., & Imbachi, L. C. (2021b). Calidad física, sensorial y composición química del café cultivado en el departamento del Huila. Revista Cenicafé, 72(2), e72201. https://doi.org/10.38141/10778/72201
Otiveros, C. E. T., & Gonzalo, R. (1985). Coeficiente de fricción, angulo de reposo, densidades aparentes de granos de café Coffea arabica variedad Caturra.
Pardo, M., Niederjaufner, G., Benussi, G., Comini, E., Faglia, G., Sberveglieri, G., Holmberg, M., & Lundstrom, I. (2000). Data preprocessing enhances the classification of different brands of Espresso coffee with an electronic nose. Sensors and Actuators, B: Chemical, 69(3), 397–403. https://doi.org/10.1016/S0925-4005(00)00499-8
Patel, H. K. (2014). The Electronic Nose: Artificial Olfaction Technology. In Biological and Medical Physics. http://www.springer.com/series/3740
Pearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (2003). Handbook of Machine Olfaction.
Puerta, G. I. Q. (2006). La humedad controlada del grano preserva la calidad del café.
Puerta, I., & Rojas, G. (2017). Aromas del café. Cenicafé.
Puerta, Q. G. I. (1998). Calidad en taza de las variedades de Coffea arábica L. cultivadas en Colombia (Vol. 49, Issue 4).
Puerta, Q. G. I. (2011). Composición química de una taza de café. www.cenicafe.org
Puerta, Q. G. I. (2016). Calidad física del café de varias regiones de Colombia según altitud, suelos y buenas prácticas de beneficio (Vol. 67, Issue 1).
Puerta, Q. G. I., Bolívar, F. C. P., & Gallego, A. C. P. (2017). Composición química de elementos minerales en café verde y tostado, con relación a suelos y altitud. Cenicafé, 68(2), 28–60.
Puerta, Q. G. I. (2000). Influencia de los granos de café cosechados verdes en la calidad física y organoléptica de la bebida. In 136 Cenicafé (Vol. 51, Issue 2).
Quicazán, M. C., Díaz, A. C., & Zuluaga, C. M. (2011). La nariz electrónica, una novedosa Herramienta para el control de procesos y calidad en la industria agroalimentaria.
Ramírez, M. A., Salgado, C. M. A., Rodríguez, J. G. C., García, A. M. A., Cherblanc, F., & Benet, J. C. (2013). Water transport in parchment and endosperm of coffee bean. Journal of Food Engineering, 114, 375–383. https://doi.org/10.1016/j.jfoodeng.2012.08.028ï
Rendón, J., Arcila, J., & Montoya, E. (2008). Estimación de la producción de café con base en los registros de floración. Cenicafé, 59(3), 238–259.
Ribeiro, D. E., Borém, F. M., Nunes, C. A. ônio, Alves, A. P. de C., Santos, C. M. dos S., Taveira, J. H. da S., & Dias, L. L. de C. (2018). Profile of Organic Acids and Bioactive Compounds in. Coffee Science, 13(2), 187–197.
Rodríguez, J., Durán, C., & Reyes, A. (2010). Electronic nose for quality control of Colombian coffee through the detection of defects in “Cup Tests.” Sensors, 10(1), 36–46. https://doi.org/10.3390/s100100036
Rodríguez, N., Sanz, J., Oliveros, C., & Ramírez, C. (2015). Beneficio de café en Colombia. In Avances Técnicos Cenicafé.
Sadeghian, K. S. (2008). Fertilidad del suelo y nutrición de café en Colombia. 44. https://doi.org/0120-047-X
Sadeghian, K. S., Mejía, M. B., & Arcila, P. (2006). Composición elemental de frutos de café y extracción de nutrientes por la cosecha en la zona cafetera de Colombia (Vol. 57, Issue 4).
Salamanca, A., & González, O. H. (2020). Respuesta del café a la aplicación foliar de nutrientes. Revista Cenicafé, 71(2), 124–142. https://doi.org/10.38141/10778/71210
Santinato, F., Ruas, R. A. A., da Silva, R. P., Paixão, C. S. S., & Ormond, A. T. S. (2019). Morphological and productive influence of harvest on coffee plants. Australian Journal of Crop Science, 13(1), 144–150. https://doi.org/10.21475/ajcs.19.13.01.p6955
Sberveglieri, V., Concina, I., Falasconi, M., Ongo, E., Pulvirenti, A., & Fava, P. (2011). Identification of geographical origin of coffee before and after roasting by electronic noses. AIP Conference Proceedings, 1362, 86–87. https://doi.org/10.1063/1.3626316
Sergi, A. :, & Bosch, R. (2001). Diseño y realización de una nariz electrónica para la discriminación de aceites.
Su, M., Ye, Z., Zhang, B., & Chen, K. (2017). Ripening season, ethylene production and respiration rate are related to fruit non-destructively-analyzed volatiles measured by an electronic nose in 57 peach (Prunus persica L.) samples. Emirates Journal of Food and Agriculture, 29(10), 807–814. https://doi.org/10.9755/ejfa.2017.v29.i10.696
Su, M., Zhang, B., Ye, Z., Chen, K., Guo, J., Gu, X., & Shen, J. (2013). Pulp volatiles measured by an electronic nose are related to harvest season, TSS concentration and TSS/TA ratio among thirty-nine peaches and nectarines. Scientia Horticulturae, 150, 146–153. https://doi.org/10.1016/j.scienta.2012.10.020
Tan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104–115. https://doi.org/10.1016/J.AIIA.2020.06.003
Thepudom, T., Sricharoenchai, N., & Kerdcharoen, T. (2013). Classification of instant coffee odors by electronic nose toward quality control of production. 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology, ECTI-CON 2013. https://doi.org/10.1109/ECTICon.2013.6559482
Tiggemann, L., Ballen, S. C., Bocalon, C. M., Graboski, A. M., Manzoli, A., Steffens, J., Valduga, E., & Steffens, C. (2017). Electronic nose system based on polyaniline films sensor array with different dopants for discrimination of artificial aromas. Innovative Food Science and Emerging Technologies, 43, 112–116. https://doi.org/10.1016/j.ifset.2017.08.003
Toci, A. T., & Farah, A. (2014). Volatile fingerprint of Brazilian defective coffee seeds: Corroboration of potential marker compounds and identification of new low quality
Varmuza, K., & Filzmoser, P. (2009). Introduction to multivariate statistical analysis in chemometrics
Velásquez, S., Peña, N., Bohórquez, J. C., Gutiérrez, N., & Sacks, G. L. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity. Food Chemistry, 274(May 2018), 137–145. https://doi.org/10.1016/j.foodchem.2018.08.127
Velez, J., Montoya, E., & Oliveros, C. (1999). Estudio de tiempos y movimientos para el mejoramiento de la cosecha manual del café.
Vignoli, J. A., Viegas, M. C., Bassoli, D. G., & Benassi, M. de T. (2014). Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Research International, 61, 279–285. https://doi.org/10.1016/j.foodres.2013.06.006
Virtualpro. (2022). La nariz de café (le nez du café). https://www.virtualpro.co/files bv/20170401/20170401-003/secciones/la-nariz.html
Wang, G., Wang, J., & Xue, X. (2018). Fruit quality and volatile compounds of ‘Jinhong’ plums harvested at different times. Acta Horticulturae, 1214, 117–123. https://doi.org/10.17660/ActaHortic.2018.1214.2
Wang, X., Wang, Y., Hu, G., Hong, D., Guo, T., Li, J., Li, Z., & Qiu, M. (2022). Review on factors affecting coffee volatiles: from seed to cup. In Journal of the Science of Food and Agriculture (Vol. 102, Issue 4, pp. 1341–1352). John Wiley and Sons Ltd. https://doi.org/10.1002/jsfa.11647
Yang, N., Liu, C., Liu, X., Degn, T. K., Munchow, M., & Fisk, I. (2016). Determination of volatile marker compounds of common coffee roast defects. Food Chemistry, 211, 206–214. https://doi.org/10.1016/j.foodchem.2016.04.124
Yeretzian, C., Opitz, S., Smrke, S., & Wellinger, M. (2019). CHAPTER 33. Coffee Volatile and Aroma Compounds – From the Green Bean to the Cup. In Coffee (pp. 726–770). Royal Society of Chemistry. https://doi.org/10.1039/9781782622437-00726
Zhang, L., Tian, F., & Zhang, D. (2018). Electronic Nose: Algorithmic Challenges.
Zuluaga, C. M. D., Díaz Moreno, A. C., & Quicazán de Cuenca, M. C. (2014). Nariz Electrónica Fundamentos, Manejo de Datos y Aplicación en Productos Apícolas
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 98 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisher.department.spa.fl_str_mv Instituto de Ciencia y Tecnología de Alimentos (ICTA)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81913/1/1014239537.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81913/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81913/3/1014239537.2022.pdf.jpg
bitstream.checksum.fl_str_mv b11562de6111c14ecb30d68b8c840952
8153f7789df02f0a4c9e079953658ab2
7924b92c754131694f0c7627612c91ea
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089780205453312
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Díaz Moreno, Amanda Consuelo3c57c41d8c04e27f27c677681040f60bZuluaga Domínguez, Carlos Marioe62c6eaefb21c224237f001387877fd5Diaz Villamizar, Maria Angelica716253865f52d217b339eff4757ca16bBioalimentos2022-08-16T15:10:47Z2022-08-16T15:10:47Z2022-08-15https://repositorio.unal.edu.co/handle/unal/81913Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasPara evaluar cómo el origen y época de cosecha del café afectan los perfiles de compuestos volátiles, en este estudio se empleó de nariz electrónica y análisis estadístico multivariado para la caracterización de cinco muestras de café colombiano, tostado en grano y tostado molido, recolectadas en distintas épocas de cosecha (junio y diciembre) de tres fincas cafeteras en zonas del país (Caldas, Huila y Sierra Nevada de Santa Marta). Para ello, se estandarizaron los parámetros de operación en una nariz electrónica comercial (10 sensores semiconductores de óxido de metal) para café tostado, variando el tiempo de equilibrio del headspace y flujo de gas. Con estos parámetros estandarizados y junto a análisis fisicoquímicos y sensoriales se describieron las muestras. El análisis de datos se efectuó con análisis univariados y bivariados para los resultados fisicoquímicos, análisis no paramétrico y análisis de correspondencia (AC) para los resultados del panel sensorial, análisis multivariado (análisis de componentes principales (PCA), análisis de clústeres jerárquico (HCA), y análisis factorial multivariante (MFA)) para los resultados obtenidos por la nariz electrónica. Las características aromáticas del café tostado por origen sí permitieron una separación por origen, y la influencia de la época de cosecha se encontró significativa para los parámetros fisicoquímicos, pero no permitió una separación por clases con el perfil aromático. Se observó a través de esta exploración, que la nariz electrónica es una alternativa práctica y confiable de valoración y descripción del perfil aromático para café tostado que puede ser empleada para análisis rutinarios a nivel industrial. (Texto tomado de la fuente)To evaluate how the origin and harvest time of coffee affect the profiles of volatile compounds, this study used electronic nose and multivariate statistical analysis to characterize five samples of Colombian coffee, roasted beans and ground roasted, collected in different harvest times (June and December) of three coffee farms in areas of the country (Caldas, Huila, and Sierra Nevada de Santa Marta). For this, the operating parameters were standardized in a commercial electronic nose (10 metal oxide semiconductor sensors) for roasted coffee, varying the headspace equilibrium time and gas flow. With these standardized parameters and together with physicochemical and sensory analyses, the samples were described. Data analysis was performed with univariate and bivariate analyzes for the physicochemical results, nonparametric analysis, and correspondence analysis (CA) for the sensory panel results, multivariate analysis (principal component analysis (PCA), hierarchical cluster analysis (HCA), and multivariate factor analysis (MFA)) for the results obtained by the electronic nose. The aromatic characteristics of roasted coffee by origin did allow a separation by classes, and the influence of the harvest season was found to be significant for the physicochemical parameters, but it did not allow a separation by classes with the aromatic profile. Through this exploration, it was observed that the electronic nose is a practical and reliable alternative for the evaluation and description of the aromatic profile for roasted coffee that can be used for routine analyzes at an industrial level.MaestríaMagíster en Ciencia y Tecnología de AlimentosUso de análisis instrumental en evaluación de propiedades sensorialesxvii, 98 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosInstituto de Ciencia y Tecnología de Alimentos (ICTA)Facultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesCoffea arabicaCafé arábicaCafé tostadoÉpoca de cosechaAnálisis multivariadoNariz electrónicaOrigenCoffee roastedHarvest seasonMultivariate analysisElectronic noseOriginInstrumento de medidaMeasuring instrumentsEvaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariadoEvaluation of the aromatic profile of Colombian coffee from different zones and harvest seasons, using electronic nose and multivariate statistical analysisTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAbdelwareth, A., Zayed, A., & Farag, M. A. (2021). Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its commercial blends in the Middle East. Food Chemistry, 349. https://doi.org/10.1016/j.foodchem.2021.129162Aishima, T. (1991). Aroma Discrimination by Pattern Recognition Analysis of Responses from Semiconductor Gas Sensor Array. In J. Agric. Food Chem (Vol. 39).Alkarkhi, A. F. M., & Alqaraghuli, W. A. A. (2019). Factor Analysis. Easy Statistics for Food Science with R, 143–159. https://doi.org/10.1016/B978-0-12-814262-2.00009-1Arcila, P. J. (2007a). Crecimiento y desarrollo de la planta de café. In Sistemas de producción de café en Colombia (pp. 22–60)Arcila, P. J. (2007b). Enovación y administración de los cafetales para estabilizar la producción de la finca. In Sistemas de producción de café (pp. 146–160).Backhaus, K., Erichson, B., Gensler, S., Weiber, R., & Weiber, T. (2021). Multivariate AnalysisBeebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). Chemometrics: A Practical Guide. Wiley. https://books.google.com.co/books/about/Chemometrics.html?id=EzcvAQAAIAAJ&redir_ esc=yBelitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry. In Food Chemistry. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69934-7Benavides, P. M., Góngora, C. E. B., Acuña, J. R. Z., Molina, D. M. v, & Salazar, L. F. G. (2021). Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila: Vol. 2. 2015-2021. In Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila: Vol. 2. 2015-2021. Cenicafé. https://doi.org/10.38141/cenbook-0008Bertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T. (2012). Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4), 2575–2583. https://doi.org/10.1016/j.foodchem.2012.06.060Bodner, M., Morozova, K., Kruathongsri, P., Thakeow, P., & Scampicchio, M. (2019). Effect of harvesting altitude, fermentation time and roasting degree on the aroma released by coffee powder monitored by proton transfer reaction mass spectrometry. European Food Research and Technology, 245(7), 1499–1506. https://doi.org/10.1007/s00217-019- 03281-5Bona, E., & da Silva, R. S. D. S. F. (2016). Coffee and the Electronic Nose. In Electronic Noses and Tongues in Food Science (pp. 31–38). Elsevier Inc. https://doi.org/10.1016/B978-0-12- 800243-8.00004-4Boo, C. G., Hong, S. J., & Shin, E. C. (2021). Comparative evaluation of the volatile profiles and taste properties of commercial coffee products using electronic nose, electronic tongue, and GC/MSD. Journal of the Korean Society of Food Science and Nutrition, 50(8), 810– 822. https://doi.org/10.3746/jkfn.2021.50.8.810Builes, R. V. (2014). La fenología del café, una herramienta para apoyar la toma de decisiones. www.cenicafe.orgBuitrago, O. J., Tinoco, H. A., Perdomo, H. L., Rincón, J. A., Ocampo, O., Berrio, L. v, Pineda, M. F., & López, G. J. (2022). Physical-mechanical characterization of coffee fruits Coffea arabica L. var. Castillo classified by a colorimetry approach. Materialia, 21, 101330. https://doi.org/10.1016/J.MTLA.2022.101330Buratti, S., Benedetti, S., & Giovanelli, G. (2017). Application of electronic senses to characterize espresso coffees brewed with different thermal profiles. European Food Research and Technology, 243(3), 511–520. https://doi.org/10.1007/s00217-016-2769-yCárdenas, G. J. (1993). Industria del café en Colombia.Carvalho, L. C. C., da Silva, F. M., Ferraz, G. A. E. S., Stracieri, J., Ferraz, P. F. P., & Ambrosano, L. (2017). Geostatistical analysis of arabic coffee yield in two crop seasons. Revista Brasileira de Engenharia Agricola e Ambiental, 21(6), 410–414. https://doi.org/10.1590/1807-1929/agriambi.v21n6p410-414Castañeda, A. L. (2018). RIIIT. Revista internacional de investigación e innovación tecnológica. In RIIIT. Revista internacional de investigación e innovación tecnológica (Vol. 6, Issue 33). Centro Kappa de Conocimiento S.C (CKC). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007- 97532018000300004&lng=es&nrm=iso&tlng=esCaudillo, O. N. A., Salas, A. A. G., Blancas, H. L. E., Lona, L. S. P., Rocha, M. M. A., Mares, M. E., & Rivera, D. C. (2020). Investigación y Desarrollo en Ciencia y Tecnología de Alimentos Análisis químico del café variedad arábica durante el proceso del tostado artesanal (Vol. 5).Ceballos, D. A. C., Meneses, J. A. M., Luna, D. A. R., Lopez, C. A. G., Garcia, J. H., & Narvaez, J. A. G. (2020, November 4). Estudio de fragancia y aroma del café tostado con la nariz electrónica Coffee-NOSE. 2020 9th International Congress of Mechatronics Engineering and Automation, CIIMA 2020 - Conference Proceedings. https://doi.org/10.1109/CIIMA50553.2020.9290177Cenicafé. (2012). Recolección del café.Cenicafé. (2021). Guía más agronomía, más productividad, más calidad. Cenicafé. https://doi.org/10.38141/cenbook-0014Cid, M. C., & de Peña, M. P. (2015). Coffee: Analysis and Composition. In Encyclopedia of Food and Health (pp. 225–231). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947- 2.00185-9Cincotta, F., Tripodi, G., Merlino, M., Verzera, A., & Condurso, C. (2020). Variety and shelf-life of coffee packaged in capsules. LWT, 118, 108718. https://doi.org/10.1016/J.LWT.2019.108718Clarke, R. T., & Greenacre, M. J. (1985). Theory and Applications of Correspondence Analysis. In The Journal of Animal Ecology (Vol. 54, Issue 3). https://doi.org/10.2307/4399Córdoba, N., Moreno, F. L., Osorio, C., Velásquez, S., Fernández, A. M., & Ruiz, P. Y. (2021). Specialty and regular coffee bean quality for cold and hot brewing: Evaluation of sensory profile and physicochemical characteristics. LWT, 145, 111363. https://doi.org/10.1016/J.LWT.2021.111363Cruz, O. R., Piraneque, G. N., & Aguirre, F. S. (2020). Physicochemical, microbiological, and sensory analysis of fermented coffee from Sierra Nevada of Santa Marta, Colombia. Coffee Science, 15(1), 1–6. https://doi.org/10.25186/.V15I.179Daba, G., Helsen, K., Berecha, G., Lievens, B., Debela, A., & Honnay, O. (2019). Seasonal and altitudinal differences in coffee leaf rust epidemics on coffee berry disease-resistant varieties in Southwest Ethiopia. Tropical Plant Pathology, 44(3), 244–250. https://doi.org/10.1007/s40858-018-0271-8Dan, D. C., Liu, Y., Chen, P. Y., Feng, X., Lu, Y., & Yu, B. (2020). Application of SPME-GC TOFMS, E-nose, and sensory evaluation to investigate the flavor characteristics of Chinese Yunnan coffee at three different conditions (beans, ground powder, and brewed coffee). https://doi.org/10.1002/ffj.3597de Assis Silva, S., de Souza LIMA, J. S., & Alves, A. I. (2010). Spatial study of grain yield and percentage of bark of two varieties of Coffea arabica L. to the production of quality coffee. Bioscience Journal, 26(4), 558–565.de Carvalho Neto, P. D., Vinícius de Melo Pereira, G., A Tanobe, V. O., Thomaz Soccol, V., José da Silva, B. G., Rodrigues, C., & Ricardo Soccol, C. (2017). Yeast Diversity and Physicochemical Characteristics Associated with Coffee Bean Fermentation from the Brazilian Cerrado Mineiro Region. https://doi.org/10.3390/fermentation3010011de Melo Pereira, G. v., de Carvalho Neto, D. P., Magalhães Júnior, A. I., Vásquez, Z. S., Medeiros, A. B. P., Vandenberghe, L. P. S., & Soccol, C. R. (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry, 272(August 2018), 441–452. https://doi.org/10.1016/j.foodchem.2018.08.061Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B, 229, 206–217. https://doi.org/10.1016/J.MSEB.2017.12.036Di Donfrancesco, B., Gutierrez Guzman, N., & Chambers, E. (2019). Similarities and differences in sensory properties of high-quality Arabica coffee in a small region of Colombia. Food Research International, 116, 645–651. https://doi.org/10.1016/j.foodres.2018.08.090Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272, 723–731. https://doi.org/10.1016/j.foodchem.2018.08.068Dou, T. X., Shi, J. F., Li, Y., Bi, F. C., Gao, H. J., Hu, C. H., Li, C. Y., Yang, Q. S., Deng, G. M., Sheng, O., He, W. di, Yi, G. J., & Dong, T. (2020). Influence of harvest season on volatile aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled with GC-MS. Scientia Horticulturae, 265. https://doi.org/10.1016/j.scienta.2020.109214Durán, C. (2005). Diseño y optimización de los subsistemas de un sistema de olfato electrónico para aplicaciones agroalimentarias e industriales.Durán, C., Acevedo, M., Gualdron, E., Guerrero, O., & Hernández, M. O. (2014). Nariz electrónica para determinar el índice de madurez del tomate de árbol (Cyphomandra Betacea Sendt). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405- 77432014000300003Echeverria, G., Correa, E., Ruiz-Altisent, M., Graell, J., Puy, J., & Lopez, L. (2004). Erratum: Characterization of Fuji apples from different harvest dates and storage conditions from measurements of volatiles by gas chromatography and electronic nose (Journal of Agricultural and Food Chemistry (2004) 52 (3069)). In Journal of Agricultural and Food Chemistry (Vol. 52, Issue 14, p. 4582). https://doi.org/10.1021/jf040262aFederación Nacional de Cafeteros. (2022a). Cafés Suaves. https://federaciondecafeteros.org/wp/glosario/cafes-suaves/#:~:text=Las%20principales%20variedades%20de%20caf%C3%A9,Caturra%20y %20la%20Variedad%20Castillo.Federación Nacional de Cafeteros. (2022b). Producción de café de Colombia en 2020 fue de 13,9 millones de sacos. https://federaciondecafeteros.org/wp/listado-noticias/produccion de-cafe-de-colombia-en-2020-fue-de-139-millones-de sacos/#:~:text=Producci%C3%B3n%20de%20caf%C3%A9%20de%20Colombia,sacos% 20%2D%20Federaci%C3%B3n%20Nacional%20de%20CafeterosFisk, I. D., Kettle, A., Hofmeister, S., Virdie, A., & Kenny, J. S. (2012). Discrimination of roast and ground coffee aroma. http://www.flavourjournal.com/content/1/1/14Flambeau, K. J., Lee, W. J., & Yoon, J. (2017). Discrimination and geographical origin prediction of washed specialty Bourbon coffee from different coffee growing areas in Rwanda by using electronic nose and electronic tongue. Food Science and Biotechnology, 26(5), 1245–1254. https://doi.org/10.1007/s10068-017-0168-1Flores, V. H., & Ku, L. C. (2011). Diseño de una nariz electrónica como discriminador de olores utilizando Algoritmos Genéticos y Redes Neuronales Artificiales.Fraden, J. (2010). Handbook of Modern Sensors. In Handbook of Modern Sensors. Springer New York. https://doi.org/10.1007/978-1-4419-6466-3Frank, I. E., & Todeschini, R. (1994). The Data Analysis Handbook -. Elsevier B.V. https://books.google.com.co/books?id=SXEpB0H6L3YC&printsec=frontcover&hl=es&sour ce=gbs_ge_summary_r&cad=0#v=onepage&q&f=falseGardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and Actuators: B. Chemical, 18(1–3), 210–211. https://doi.org/10.1016/0925-4005(94)87085-3Gardner, J. W., Shurmer, H. v., & Tan, T. T. (1992). Application of an electronic nose to the discrimination of coffees. Sensors and Actuators: B. Chemical, 6(1–3), 71–75. https://doi.org/10.1016/0925-4005(92)80033-TGiraldo, P. J. R., Sanz, J. R. U., & Oliveros, C. E. T. (2010). Identificación y clasificación de frutos de café en tiempo real, a través de la medición de color.Gómez, L., Caballero, A., & Baldión, J. V. (1991). Ecotopos cafeteros de Colombia. Cenicafé, Agroclimatología División de Desarrollo Social, 138. http://biblioteca.cenicafe.org/bitstream/10778/818/1/lib13731.pdfGuzmán, R. B. V. (2012). Seguimiento de la producción del aroma del yogurt durante la fermentación ácido láctica mediante nariz electrónica y evaluación sensorial.Hong, X., Wang, J., & Qiu, S. (2014). Authenticating cherry tomato juices—Discussion of different data standardization and fusion approaches based on electronic nose and tongue. Food Research International, 60, 173–179. https://doi.org/10.1016/J.FOODRES.2013.10.03Hu, Z., Wang, H., & Liu, Y. (2013). The applied research on discrimination of volatile substance of rice using electronic nose. Journal of the Chinese Cereals and Oils Association, 28(7), 93–98.IDEAM, MinAgricultura, & Mesa Técnica Agroclimática Nacional. (2020). Boletín Agroclimático Nacional.Jaramillo, R. A. (2016). Épocas recomendadas para la siembra del café en Colombia. www.cenicafe.orgKhamitova, G., Angeloni, S., Borsetta, G., Xiao, J., Maggi, F., Sagratini, G., Vittori, S., & Caprioli, G. (2020). Optimization of espresso coffee extraction through variation of particle sizes, perforated disk height and filter basket aimed at lowering the amount of ground coffee used. Food Chemistry, 314, 126220. https://doi.org/10.1016/J.FOODCHEM.2020.126220Knysak, D. (2017). Volatile compounds profiles in unroasted Coffea arabica and Coffea canephora beans from different countries. Food Science and Technology, 37(3), 444–448. https://doi.org/10.1590/1678-457x.19216la República. (2019). Tecnología en sector cafetero para atraer al consumidor milenial. https://www.larepublica.co/internet-economy/tecnologia-en-sector-cafetero-para-atraer-al consumidor-milenial-2909894Liberto, E., Bressanello, D., Strocchi, G., Cordero, C., Ruosi, M. R., Pellegrino, G., Bicchi, C., & Sgorbini, B. (2019). HS-SPME-MS-enose coupled with chemometrics as an analytical decision maker to predict in-cup coffee sensory quality in routine controls: Possibilities and limits. Molecules, 24(24). https://doi.org/10.3390/molecules24244515Maekawa, T., Cai, K., Suzuki, K., Dougami, N., Takada, T., & Egashira, M. (2001). Compensatory methods for the odor concentration in an electronic nose system using software and hardware. Sensors and Actuators, B: Chemical, 76(1–3), 430–435. https://doi.org/10.1016/S0925-4005(01)00651-7Mahmud, M. M. C., Shellie, R. A., & Keast, R. (2020). Unravelling the relationship between aroma compounds and consumer acceptance: Coffee as an example. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2380–2420. https://doi.org/10.1111/1541-4337.12595Makimori, G. Y. F., & Bona, E. (2019). Commercial Instant Coffee Classification Using an Electronic Nose in Tandem with the ComDim-LDA Approach. Food Analytical Methods, 12(5), 1067–1076. https://doi.org/10.1007/s12161-019-01443-5Manganaro, A., Ballabio, D., Consonni, V., Mauri, A., Pavan, M., & Todeschini, R. (2008). Chapter 9 The DART (Decision Analysis by Ranking Techniques) Software. Data Handling in Science and Technology, 27, 193–207. https://doi.org/10.1016/S0922-3487(08)10009-0Marín, S., Arcila, J., Montoya, E., & Oliveros, C. (2003). Cambios físicos y químicos durante la maduración del fruto de café (Coffea arabica L. var. Colombia). Cenifcafé, 54(3), 208–225.Michishita, T., Akiyama, M., Hirano, Y., Ikeda, M., Sagara, Y., & Araki, T. (2010). Gas Chromatography/Olfactometry and Electronic Nose Analyses of Retronasal Aroma of Espresso and Correlation with Sensory Evaluation by an Artificial Neural Network. Journal of Food Science, 75(9). https://doi.org/10.1111/j.1750-3841.2010.01828.xMoreno, I., Caballero, R., Galán, R., Matía, F., & Jiménez, A. (2009). La Nariz Electrónica: Estado del Arte. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 6(3), 76–91. https://doi.org/10.1016/s1697-7912(09)70267-5Oestreich, J. S. (2010). Chemistry of coffee. In Comprehensive Natural Products II: Chemistry and Biology (Vol. 3, pp. 1085–1117). Elsevier Ltd. https://doi.org/10.1016/b978- 008045382-8.00708-5Osorio, V., Pabón, J., Calderón, P. A., & Imbachi, L. C. (2021a). Calidad física, sensorial y composición química del café cultivado en el departamento del Huila. Revista Cenicafé, 72(2), e72201. https://doi.org/10.38141/10778/72201Osorio, V., Pabón, J., Calderón, P. A., & Imbachi, L. C. (2021b). Calidad física, sensorial y composición química del café cultivado en el departamento del Huila. Revista Cenicafé, 72(2), e72201. https://doi.org/10.38141/10778/72201Otiveros, C. E. T., & Gonzalo, R. (1985). Coeficiente de fricción, angulo de reposo, densidades aparentes de granos de café Coffea arabica variedad Caturra.Pardo, M., Niederjaufner, G., Benussi, G., Comini, E., Faglia, G., Sberveglieri, G., Holmberg, M., & Lundstrom, I. (2000). Data preprocessing enhances the classification of different brands of Espresso coffee with an electronic nose. Sensors and Actuators, B: Chemical, 69(3), 397–403. https://doi.org/10.1016/S0925-4005(00)00499-8Patel, H. K. (2014). The Electronic Nose: Artificial Olfaction Technology. In Biological and Medical Physics. http://www.springer.com/series/3740Pearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (2003). Handbook of Machine Olfaction.Puerta, G. I. Q. (2006). La humedad controlada del grano preserva la calidad del café.Puerta, I., & Rojas, G. (2017). Aromas del café. Cenicafé.Puerta, Q. G. I. (1998). Calidad en taza de las variedades de Coffea arábica L. cultivadas en Colombia (Vol. 49, Issue 4).Puerta, Q. G. I. (2011). Composición química de una taza de café. www.cenicafe.orgPuerta, Q. G. I. (2016). Calidad física del café de varias regiones de Colombia según altitud, suelos y buenas prácticas de beneficio (Vol. 67, Issue 1).Puerta, Q. G. I., Bolívar, F. C. P., & Gallego, A. C. P. (2017). Composición química de elementos minerales en café verde y tostado, con relación a suelos y altitud. Cenicafé, 68(2), 28–60.Puerta, Q. G. I. (2000). Influencia de los granos de café cosechados verdes en la calidad física y organoléptica de la bebida. In 136 Cenicafé (Vol. 51, Issue 2).Quicazán, M. C., Díaz, A. C., & Zuluaga, C. M. (2011). La nariz electrónica, una novedosa Herramienta para el control de procesos y calidad en la industria agroalimentaria.Ramírez, M. A., Salgado, C. M. A., Rodríguez, J. G. C., García, A. M. A., Cherblanc, F., & Benet, J. C. (2013). Water transport in parchment and endosperm of coffee bean. Journal of Food Engineering, 114, 375–383. https://doi.org/10.1016/j.jfoodeng.2012.08.028ïRendón, J., Arcila, J., & Montoya, E. (2008). Estimación de la producción de café con base en los registros de floración. Cenicafé, 59(3), 238–259.Ribeiro, D. E., Borém, F. M., Nunes, C. A. ônio, Alves, A. P. de C., Santos, C. M. dos S., Taveira, J. H. da S., & Dias, L. L. de C. (2018). Profile of Organic Acids and Bioactive Compounds in. Coffee Science, 13(2), 187–197.Rodríguez, J., Durán, C., & Reyes, A. (2010). Electronic nose for quality control of Colombian coffee through the detection of defects in “Cup Tests.” Sensors, 10(1), 36–46. https://doi.org/10.3390/s100100036Rodríguez, N., Sanz, J., Oliveros, C., & Ramírez, C. (2015). Beneficio de café en Colombia. In Avances Técnicos Cenicafé.Sadeghian, K. S. (2008). Fertilidad del suelo y nutrición de café en Colombia. 44. https://doi.org/0120-047-XSadeghian, K. S., Mejía, M. B., & Arcila, P. (2006). Composición elemental de frutos de café y extracción de nutrientes por la cosecha en la zona cafetera de Colombia (Vol. 57, Issue 4).Salamanca, A., & González, O. H. (2020). Respuesta del café a la aplicación foliar de nutrientes. Revista Cenicafé, 71(2), 124–142. https://doi.org/10.38141/10778/71210Santinato, F., Ruas, R. A. A., da Silva, R. P., Paixão, C. S. S., & Ormond, A. T. S. (2019). Morphological and productive influence of harvest on coffee plants. Australian Journal of Crop Science, 13(1), 144–150. https://doi.org/10.21475/ajcs.19.13.01.p6955Sberveglieri, V., Concina, I., Falasconi, M., Ongo, E., Pulvirenti, A., & Fava, P. (2011). Identification of geographical origin of coffee before and after roasting by electronic noses. AIP Conference Proceedings, 1362, 86–87. https://doi.org/10.1063/1.3626316Sergi, A. :, & Bosch, R. (2001). Diseño y realización de una nariz electrónica para la discriminación de aceites.Su, M., Ye, Z., Zhang, B., & Chen, K. (2017). Ripening season, ethylene production and respiration rate are related to fruit non-destructively-analyzed volatiles measured by an electronic nose in 57 peach (Prunus persica L.) samples. Emirates Journal of Food and Agriculture, 29(10), 807–814. https://doi.org/10.9755/ejfa.2017.v29.i10.696Su, M., Zhang, B., Ye, Z., Chen, K., Guo, J., Gu, X., & Shen, J. (2013). Pulp volatiles measured by an electronic nose are related to harvest season, TSS concentration and TSS/TA ratio among thirty-nine peaches and nectarines. Scientia Horticulturae, 150, 146–153. https://doi.org/10.1016/j.scienta.2012.10.020Tan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104–115. https://doi.org/10.1016/J.AIIA.2020.06.003Thepudom, T., Sricharoenchai, N., & Kerdcharoen, T. (2013). Classification of instant coffee odors by electronic nose toward quality control of production. 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology, ECTI-CON 2013. https://doi.org/10.1109/ECTICon.2013.6559482Tiggemann, L., Ballen, S. C., Bocalon, C. M., Graboski, A. M., Manzoli, A., Steffens, J., Valduga, E., & Steffens, C. (2017). Electronic nose system based on polyaniline films sensor array with different dopants for discrimination of artificial aromas. Innovative Food Science and Emerging Technologies, 43, 112–116. https://doi.org/10.1016/j.ifset.2017.08.003Toci, A. T., & Farah, A. (2014). Volatile fingerprint of Brazilian defective coffee seeds: Corroboration of potential marker compounds and identification of new low qualityVarmuza, K., & Filzmoser, P. (2009). Introduction to multivariate statistical analysis in chemometricsVelásquez, S., Peña, N., Bohórquez, J. C., Gutiérrez, N., & Sacks, G. L. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity. Food Chemistry, 274(May 2018), 137–145. https://doi.org/10.1016/j.foodchem.2018.08.127Velez, J., Montoya, E., & Oliveros, C. (1999). Estudio de tiempos y movimientos para el mejoramiento de la cosecha manual del café.Vignoli, J. A., Viegas, M. C., Bassoli, D. G., & Benassi, M. de T. (2014). Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Research International, 61, 279–285. https://doi.org/10.1016/j.foodres.2013.06.006Virtualpro. (2022). La nariz de café (le nez du café). https://www.virtualpro.co/files bv/20170401/20170401-003/secciones/la-nariz.htmlWang, G., Wang, J., & Xue, X. (2018). Fruit quality and volatile compounds of ‘Jinhong’ plums harvested at different times. Acta Horticulturae, 1214, 117–123. https://doi.org/10.17660/ActaHortic.2018.1214.2Wang, X., Wang, Y., Hu, G., Hong, D., Guo, T., Li, J., Li, Z., & Qiu, M. (2022). Review on factors affecting coffee volatiles: from seed to cup. In Journal of the Science of Food and Agriculture (Vol. 102, Issue 4, pp. 1341–1352). John Wiley and Sons Ltd. https://doi.org/10.1002/jsfa.11647Yang, N., Liu, C., Liu, X., Degn, T. K., Munchow, M., & Fisk, I. (2016). Determination of volatile marker compounds of common coffee roast defects. Food Chemistry, 211, 206–214. https://doi.org/10.1016/j.foodchem.2016.04.124Yeretzian, C., Opitz, S., Smrke, S., & Wellinger, M. (2019). CHAPTER 33. Coffee Volatile and Aroma Compounds – From the Green Bean to the Cup. In Coffee (pp. 726–770). Royal Society of Chemistry. https://doi.org/10.1039/9781782622437-00726Zhang, L., Tian, F., & Zhang, D. (2018). Electronic Nose: Algorithmic Challenges.Zuluaga, C. M. D., Díaz Moreno, A. C., & Quicazán de Cuenca, M. C. (2014). Nariz Electrónica Fundamentos, Manejo de Datos y Aplicación en Productos ApícolasEstudiantesInvestigadoresMaestrosORIGINAL1014239537.2022.pdf1014239537.2022.pdfTesis de Maestría en Ciencia y Tecnología de alimentosapplication/pdf2608608https://repositorio.unal.edu.co/bitstream/unal/81913/1/1014239537.2022.pdfb11562de6111c14ecb30d68b8c840952MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81913/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1014239537.2022.pdf.jpg1014239537.2022.pdf.jpgGenerated Thumbnailimage/jpeg5730https://repositorio.unal.edu.co/bitstream/unal/81913/3/1014239537.2022.pdf.jpg7924b92c754131694f0c7627612c91eaMD53unal/81913oai:repositorio.unal.edu.co:unal/819132024-08-08 23:11:48.704Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK