Metodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.

ilustraciones, diagramas, tablas

Autores:
Serrano Caldera, María Fernanda
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80506
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80506
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::664 - Tecnología de alimentos
Food - Drying
Alimentos - Deshidratación, secado, etc.
Tomates - Deshidratación, secado, etc.
Modelado de procesos
Transferencia de masa
Coeficiente
Secado de sólidos
Drying of solids
Mass transfer
Coefficient
Process modelling
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_d886a2942fb0345f3dc917cb71a5b8ee
oai_identifier_str oai:repositorio.unal.edu.co:unal/80506
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Metodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.
dc.title.translated.eng.fl_str_mv Methodology for the formulation of the local mass transfer coefficient of the solid in the drying process. Dried tomato case.
title Metodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.
spellingShingle Metodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.
660 - Ingeniería química::664 - Tecnología de alimentos
Food - Drying
Alimentos - Deshidratación, secado, etc.
Tomates - Deshidratación, secado, etc.
Modelado de procesos
Transferencia de masa
Coeficiente
Secado de sólidos
Drying of solids
Mass transfer
Coefficient
Process modelling
title_short Metodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.
title_full Metodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.
title_fullStr Metodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.
title_full_unstemmed Metodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.
title_sort Metodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.
dc.creator.fl_str_mv Serrano Caldera, María Fernanda
dc.contributor.advisor.none.fl_str_mv Álvarez Zapata, Hernán
dc.contributor.author.none.fl_str_mv Serrano Caldera, María Fernanda
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Dinámicos-KALMAN
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::664 - Tecnología de alimentos
topic 660 - Ingeniería química::664 - Tecnología de alimentos
Food - Drying
Alimentos - Deshidratación, secado, etc.
Tomates - Deshidratación, secado, etc.
Modelado de procesos
Transferencia de masa
Coeficiente
Secado de sólidos
Drying of solids
Mass transfer
Coefficient
Process modelling
dc.subject.lemb.none.fl_str_mv Food - Drying
Alimentos - Deshidratación, secado, etc.
Tomates - Deshidratación, secado, etc.
dc.subject.proposal.spa.fl_str_mv Modelado de procesos
Transferencia de masa
Coeficiente
Secado de sólidos
dc.subject.proposal.eng.fl_str_mv Drying of solids
Mass transfer
Coefficient
Process modelling
description ilustraciones, diagramas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-12T13:31:48Z
dc.date.available.none.fl_str_mv 2021-10-12T13:31:48Z
dc.date.issued.none.fl_str_mv 2021-10-11
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80506
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80506
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alvarez, H. (2000). Control predictivo basado en modelo difuso para el control de pH, PhD thesis, INAUT UNSJ Argentina.
Alvarez, H. (2019). Notas de clase para el curso Operaciones de Transferencia de Masa, Colombia
Alvarez, H. D. (2011). BALANCES DE MATERIA Y ENERGÍA. Formulación, solución y usos en Procesos Industriales., 1 edn, Editorial ArtBox, Medellín.
Alvarez, H., Lamanna, R., Vega, P. & Revollar, S. (2009). Metodología para la obtención de modelos semifísicos de base fenomenológica aplicada a una sulfitadora de jugo de caña de azúcar, RIAI Revista Iberoam. de Automática e Informática Ind. 6(3): 10 – 20.
Andrade, R., Lemus, R. & Perez, C. (2011). Models of sorption isotherms for food: Uses and limitations, Vitae 18(3): 325–344.
Armfield (2016). Try Drier. Instruction Manual.
Arslan, D. & Ozcan, M. (2011). Drying of tomato slices: changes in drying kinetics, mineral contents, antioxidant activity and color parameters, CyTA Journal of Food 9: 229–236.
Ateeque, M., Udayraj, Mishra, R. K., Chandramohan, V. & Talukdar, P. (2014). Numerical modeling of convective drying of food with spatially dependent transfer coefficient in a turbulent flow field, International Journal of Thermal Sciences 78: 145 – 157
Barati, E. & Esfahani, J. (2011a). A new solution approach for simultaneous heat and mass transfer during convective drying of mango, Journal of Food Engineering 102(4): 302 – 309.
Barati, E. & Esfahani, J. (2011b). A new solution approach for simultaneous heat and mass transfer during convective drying of mango, Journal of Food Engineering 102(4): 302 – 309.
Belghith, A., Azzouz, S. & ElCafsi, A. (2016). Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato, Heat and Mass Transfer 52(3): 407–419.
Brooks, M. S., Ghaly, A. E. & Hana, N. H. A. E. (2008). Effect of osmotic pre treatment on the air-drying behavior and quality of plum tomato pieces, International Journal of Food Engineering 4(5).
Cengel, Y. & Boles, M. (2019). Termodinámica, 7 edn, Mc-GrawHill, México.
Cengel, Y. & Ghajar, A. (2011). Transferencia de calor y masa. Fundamentos y aplicaciones, 4 edn, Mc-GrawHill, México.
Colak, N., Erbay, Z. & Hepbasli, A. (2013). Performance assessment and optimization of industrial pasta drying, International Journal of Energy Research 37(8): 913–922.
da Silva, W. P., e Silva, C. M., Gama, F. J. & Gomes, J. P. (2014). Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas, Journal of the Saudi Society of Agricultural Sciences 13(1): 67–74.
Datt, P. (2011). Latent Heat of Vaporization Condensation, Springer Netherlands, Dordrecht, pp. 703–703.
Defraeye, T. (2014). Advanced computational modelling for drying processes - a review, Applied Energy 131: 323 – 344.
Demiray, E. & Tuleh, Y. (2012). Thin layer drying of tomato o (lycopersicum esculentum mill cv; rio grande) slices in a convective hot air dryer, Heat Mass Transf. 48: 8941–9847
Esfahani, J., Majdi, H. & Barati, E. (2014). Analytical two-dimensional analysis of the transport phenomena occurring during convective drying: apple slices, Journal of Food Engineering 123: 87–93.
Gaware, T. J., Sutar, N. & Thorat, B. N. (2010). Drying of tomato using different methods comparison of dehydration and rehydration kinetics, Drying Technology 28(5): 651–658.
Getahun, E., Gabbiye, N., Delele, M., Fanta, S. W., Gebrehiwot, M. G. & Vanierschot, M. (2020). Effect of maturity on the moisture sorption isotherm of chili pepper (mareko fana variety), Heliyon 6(8): e04608.
Hussain, M. & Dincer, I. (2003). Two-dimensional heat and moisture transfer analysis of a cylindrical moist object subjected to drying: A finite-difference approach, International Journal of Heat and Mass Transfer 46(21): 4033 – 4039.
Kiranoudis, C., Maroulis, Z., Tsami, E. & Kouris, D. M. (1993). Equilibrium moisture content and heat of desorption of some vegetables, Journal of Food Engineering 20(1): 55–74.
Kumar, Y., Singh, L., Sharanagat, V. S., Mani, S., Kumar, S. & Kumar, A. (2021). Quality attributes of convective hot air dried spine gourd (momordica dioicaroxb. ex willd) slices, Food Chemistry 347: 129041. URL: https://www.sciencedirect.com/science/article/pii/S0308814621000431
Lema, L., Tamayo, R. M., Tirado, J. G. & Alvarez, H. (2019). On parameter interpretability of phenomenological based semiphysical models in biology, Informatics in Medicine Unlocked 15: 100158. URL: https://www.sciencedirect.com/science/article/pii/S2352914818302181
Li, M. & Duncan, S. (2008). Dynamic model analysis of batch fluidized bed dryers, Particle and Particle Systems Characterization 25: 328 – 344.
Lopez Vidana, E., Cesar, A., Garcia Valladares, O., Pilatowsky, I. & Brito, R. (2019). Thermal performance of a passive, mixed type solar dryer for tomato slices solanum lycopersicum, Renewable Energy 147.
Martinez de la Cuesta, P. & Ruz Martinez, E. (2004). Operaciones de separación en ingeniería química, 1 edn, PEARSON EUCACION, Madrid.
Mujumdar, A. (2011). Handbook of Industrial Drying, 4 edn, CRC Press, Boca Raton.
Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M. & Abdan, K. (2016). Modeling the thin-layer drying of fruits and vegetables: A review, Comprehensive Reviews in Food Science and Food Safety 15(3): 599–618.
Oztop, H. F. & Akpinar, E. K. (2008). Numerical and experimental analysis of moisture transfer for convective drying of some products, International Communications in Heat and Mass Transfer 35(2): 169 – 177.
Palencia, C., Nava, J., Herman, E., Rodr´ıguez, G. C. & Garc´ıa-Alvarado, M. A. (2002). Spray drying dynamic modeling with a mechanistic model, Drying Technology 20(3): 569–586.
Poling, B. E., Prausnitz, J. M. & O Connell, J. (2001). The Properties of Gases and Liquids, 5 edn, McGraw Hill, New York.
Qiu, J., Khalloufi, S., Martynenko, A., Dalen, G. V., Schutyser, M. & Rivera, C. A. (2015). Porosity, bulk density, and volume reduction during drying: Review of measurement methods and coefficient determinations, Drying Technology 33(14): 1681–1699.
Seader, J., Henley, E. J. & Roper, D. K. (2010). Separation process principles : chemical and biochemical operations, 3rd edn, John Wiley & Sons, Inc., USA.
Shashari, N., Hasnan, H., Hanan, A. & Noor, N. (2019). Analysis of two-dimensional (2d) fruit drying process through heat and mass transfer model, IOP Conference Series: Materials Science and Engineering 477: 012024.
Silva, W., Silva, C., Jossyl, S. & Farias, V. (2012). Empirical and diffusion models to describe water transport into chickpea (cicer arietinum l.), International Journal of Food Science and Technology 48: 276–273.
Treybal, R. (1989). Operaciones de trasnferencia de masa, 2 edn, McGraw Hill, Mexico.
Tsilingiris, P. (2008). Thermophysical and transport properties of humid air at temperature range between 0 and 100Aˆ °c, Energy Conversion and Management 49(5): 1098–1110.
Tzempelikos, D. A., Mitrakos, D., Vouros, A. P., Bardakas, A. V., Filios, A. E. & Margaris, D. P. (2015). Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices, Journal of Food Engineering 156: 10–21.
Vega, A., Palacios, M., Lemus, R. & Carvalho, C. (2008). Moisture sorption isotherms and isosteric heat determination in chilean papaya (vasconcellea pubescens), Quimica Nova QUIM NOVA 31.
Velásquez, S., Franco, A. P., Pena, N., Boh´orquez, J. C. & Gutierrez, N. (2021). Effect of coffee cherry maturity on the performance of the drying process of the bean sorption isotherms and dielectric spectroscopy, Food Control 123: 107692.
Viswanathan, R., Jayas, D. & Hulasare, R. (2003). Sorption isotherms of tomato slices and onion shreds, Biosystems Engineering 86(4): 465–472.
Wami, E. & Onuigezhe, M. (2014). Model equation for heat transfer coefficient of air in a batch dryer, International Journal of Scientific and Engineering Research 5: 121–127.
Wang, N. & Brennan, J. (1995). A mathematical model of simultaneous heat and moisture transfer during drying of potato, Journal of Food Engineering 24(1): 47 – 60.
Welty, J., Wicks, C., Wilson, R. & Rorrer, G. (2007). Fundamentals of Momentum, Heat and Mass Transfer, 5 edn, Jhon Wiley and Sons, Oregon.
Zohuri, B. (2017). Dimensional Analysis Beyond the Pi Theorem, Springer, Boca Raton.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv vi, 153 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80506/4/1152210516.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80506/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80506/5/1152210516.2021.pdf.jpg
bitstream.checksum.fl_str_mv 150a7b1f69da94a44d716084361caf3d
cccfe52f796b7c63423298c2d3365fc6
913becd30e05c7f7027ff63d481675cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886548010958848
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Álvarez Zapata, Hernánd2f5c4aa933f34ba3b47850f90256236Serrano Caldera, María Fernanda135af304e9ea2ec68359330713f77f0eGrupo de Investigación en Procesos Dinámicos-KALMAN2021-10-12T13:31:48Z2021-10-12T13:31:48Z2021-10-11https://repositorio.unal.edu.co/handle/unal/80506Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl secado es una operación unitaria crítica en términos de consumo de energía y calidad del producto. La operación de secado consiste en retirar una fase líquida, como humedad, desde una fase sólida o líquida, por mecanismos de transferencia de energía y masa. A través del secado, en particular de alimentos, se logra prolongar la vida útil del producto al reducir su contenido de humedad, lo cual provoca cambios en propiedades físicas y sensoriales del producto. En general, la descripción del secado de sólidos encontrados en la literatura, se limita a modelos particulares del sólido que se seca. En estos modelos se calcula la cinética de secado desde una curva de cambio de peso con el tiempo para determinar puntos de operación. Sin embargo, la operación de secado puede ser descrita a través de modelos de base fenomenológica que utilizan coeficientes de transferencia de calor y masa para representar el proceso. Una de las limitantes en la construcción de modelos de base fenomenológica para el proceso de secado está dada por la falta de expresiones generales que reproduzcan el comportamiento del coeficiente local de transferencia de masa del sólido, kz, que representa la oposición de transferir el vapor de agua en el aire de los poros hacia el aire de secado por causa de la estructura porosa de solido. La falta de una expresión para el coeficiente kz, no permite analizar la fenomenología de la transferencia de masa en el proceso de secado. Como resultado del trabajo de investigación, se propone una metodología para la formulación, basada en números adimensionales, del coeficiente local de transferencia de masa en la fase s´olida para el proceso de secado. Particularmente, se aplica dicha metodolog´ıa en el secado de tomate en rodajas, calculando dicho coeficiente a partir de datos experimentales para luego obtener una expresi´on del coeficiente local de transferencia de masa en la fase s´olida kz, verificada a partir del teorema π−Buckingham, relacionando propiedades que dependen del contenido de humedad del sólido. Finalmente, se valida la formulación obtenida incluyéndola en el cálculo de transferencia de masa de un Modelo Semifísico de Base Fenomenológica desarrollado en esta tesis para el proceso de secado, obteniéndose un buen ajuste entre los datos experimentales y las predicciones del modelo. (Texto tomado de la fuente)Drying is a critical unit operation in terms of energy consumption and product quality. The drying operation consists of removing a liquid phase, such as moisture, from a solid or liquid phase, by means of energy and mass transfer mechanisms. Through drying, particularly of food, it is possible to extend the useful life of the product by reducing its moisture content, which causes changes in the physical and sensory properties of the product. In general, the description of the drying of solids found in the literature is limited to particular models of the solid being dried. In these models, the drying kinetics are calculated from a curve of weight change with time to determine the operating points. However, the drying operation can be described through phenomenologically based models that use heat and mass transfer coefficients to represent the process. One of the limitations in the construction of phenomenological-based models for the drying process is given by the lack of general expressions that reproduce the behavior of the local mass transfer coefficient of the solid, kz, which represents the opposition of transferring the vapor of water in the air from the pores to the drying air because of the solid porous structure. The lack of an expression for the coefficient kz does not allow us to analyze the phenomenology of mass transfer in the drying process. As a result of the research work, a methodology is proposed for the formulation, based on dimensionless numbers, of the local mass transfer coefficient in the solid phase for the drying process. In particular, said methodology is applied in the drying of sliced tomato, calculating said coefficient from experimental data to then obtain an expression of the local mass transfer coefficient in the solid phase kZ, verified from the π - Buckingham theorem, relating properties that depend on the moisture content of the solid. Finally, the obtained formulation is validated by including it in the mass transfer calculation of a Phenomenologically Based Semi-Physical Model developed in this thesis for the drying process, obtaining a good fit between the experimental data and the model predictions.MaestríaMagíster en Ingeniería - Ingeniería QuímicaModelado de procesosvi, 153 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Procesos y EnergíaFacultad de MinasUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química::664 - Tecnología de alimentosFood - DryingAlimentos - Deshidratación, secado, etc.Tomates - Deshidratación, secado, etc.Modelado de procesosTransferencia de masaCoeficienteSecado de sólidosDrying of solidsMass transferCoefficientProcess modellingMetodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.Methodology for the formulation of the local mass transfer coefficient of the solid in the drying process. Dried tomato case.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlvarez, H. (2000). Control predictivo basado en modelo difuso para el control de pH, PhD thesis, INAUT UNSJ Argentina.Alvarez, H. (2019). Notas de clase para el curso Operaciones de Transferencia de Masa, ColombiaAlvarez, H. D. (2011). BALANCES DE MATERIA Y ENERGÍA. Formulación, solución y usos en Procesos Industriales., 1 edn, Editorial ArtBox, Medellín.Alvarez, H., Lamanna, R., Vega, P. & Revollar, S. (2009). Metodología para la obtención de modelos semifísicos de base fenomenológica aplicada a una sulfitadora de jugo de caña de azúcar, RIAI Revista Iberoam. de Automática e Informática Ind. 6(3): 10 – 20.Andrade, R., Lemus, R. & Perez, C. (2011). Models of sorption isotherms for food: Uses and limitations, Vitae 18(3): 325–344.Armfield (2016). Try Drier. Instruction Manual.Arslan, D. & Ozcan, M. (2011). Drying of tomato slices: changes in drying kinetics, mineral contents, antioxidant activity and color parameters, CyTA Journal of Food 9: 229–236.Ateeque, M., Udayraj, Mishra, R. K., Chandramohan, V. & Talukdar, P. (2014). Numerical modeling of convective drying of food with spatially dependent transfer coefficient in a turbulent flow field, International Journal of Thermal Sciences 78: 145 – 157Barati, E. & Esfahani, J. (2011a). A new solution approach for simultaneous heat and mass transfer during convective drying of mango, Journal of Food Engineering 102(4): 302 – 309.Barati, E. & Esfahani, J. (2011b). A new solution approach for simultaneous heat and mass transfer during convective drying of mango, Journal of Food Engineering 102(4): 302 – 309.Belghith, A., Azzouz, S. & ElCafsi, A. (2016). Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato, Heat and Mass Transfer 52(3): 407–419.Brooks, M. S., Ghaly, A. E. & Hana, N. H. A. E. (2008). Effect of osmotic pre treatment on the air-drying behavior and quality of plum tomato pieces, International Journal of Food Engineering 4(5).Cengel, Y. & Boles, M. (2019). Termodinámica, 7 edn, Mc-GrawHill, México.Cengel, Y. & Ghajar, A. (2011). Transferencia de calor y masa. Fundamentos y aplicaciones, 4 edn, Mc-GrawHill, México.Colak, N., Erbay, Z. & Hepbasli, A. (2013). Performance assessment and optimization of industrial pasta drying, International Journal of Energy Research 37(8): 913–922.da Silva, W. P., e Silva, C. M., Gama, F. J. & Gomes, J. P. (2014). Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas, Journal of the Saudi Society of Agricultural Sciences 13(1): 67–74.Datt, P. (2011). Latent Heat of Vaporization Condensation, Springer Netherlands, Dordrecht, pp. 703–703.Defraeye, T. (2014). Advanced computational modelling for drying processes - a review, Applied Energy 131: 323 – 344.Demiray, E. & Tuleh, Y. (2012). Thin layer drying of tomato o (lycopersicum esculentum mill cv; rio grande) slices in a convective hot air dryer, Heat Mass Transf. 48: 8941–9847Esfahani, J., Majdi, H. & Barati, E. (2014). Analytical two-dimensional analysis of the transport phenomena occurring during convective drying: apple slices, Journal of Food Engineering 123: 87–93.Gaware, T. J., Sutar, N. & Thorat, B. N. (2010). Drying of tomato using different methods comparison of dehydration and rehydration kinetics, Drying Technology 28(5): 651–658.Getahun, E., Gabbiye, N., Delele, M., Fanta, S. W., Gebrehiwot, M. G. & Vanierschot, M. (2020). Effect of maturity on the moisture sorption isotherm of chili pepper (mareko fana variety), Heliyon 6(8): e04608.Hussain, M. & Dincer, I. (2003). Two-dimensional heat and moisture transfer analysis of a cylindrical moist object subjected to drying: A finite-difference approach, International Journal of Heat and Mass Transfer 46(21): 4033 – 4039.Kiranoudis, C., Maroulis, Z., Tsami, E. & Kouris, D. M. (1993). Equilibrium moisture content and heat of desorption of some vegetables, Journal of Food Engineering 20(1): 55–74.Kumar, Y., Singh, L., Sharanagat, V. S., Mani, S., Kumar, S. & Kumar, A. (2021). Quality attributes of convective hot air dried spine gourd (momordica dioicaroxb. ex willd) slices, Food Chemistry 347: 129041. URL: https://www.sciencedirect.com/science/article/pii/S0308814621000431Lema, L., Tamayo, R. M., Tirado, J. G. & Alvarez, H. (2019). On parameter interpretability of phenomenological based semiphysical models in biology, Informatics in Medicine Unlocked 15: 100158. URL: https://www.sciencedirect.com/science/article/pii/S2352914818302181Li, M. & Duncan, S. (2008). Dynamic model analysis of batch fluidized bed dryers, Particle and Particle Systems Characterization 25: 328 – 344.Lopez Vidana, E., Cesar, A., Garcia Valladares, O., Pilatowsky, I. & Brito, R. (2019). Thermal performance of a passive, mixed type solar dryer for tomato slices solanum lycopersicum, Renewable Energy 147.Martinez de la Cuesta, P. & Ruz Martinez, E. (2004). Operaciones de separación en ingeniería química, 1 edn, PEARSON EUCACION, Madrid.Mujumdar, A. (2011). Handbook of Industrial Drying, 4 edn, CRC Press, Boca Raton.Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M. & Abdan, K. (2016). Modeling the thin-layer drying of fruits and vegetables: A review, Comprehensive Reviews in Food Science and Food Safety 15(3): 599–618.Oztop, H. F. & Akpinar, E. K. (2008). Numerical and experimental analysis of moisture transfer for convective drying of some products, International Communications in Heat and Mass Transfer 35(2): 169 – 177.Palencia, C., Nava, J., Herman, E., Rodr´ıguez, G. C. & Garc´ıa-Alvarado, M. A. (2002). Spray drying dynamic modeling with a mechanistic model, Drying Technology 20(3): 569–586.Poling, B. E., Prausnitz, J. M. & O Connell, J. (2001). The Properties of Gases and Liquids, 5 edn, McGraw Hill, New York.Qiu, J., Khalloufi, S., Martynenko, A., Dalen, G. V., Schutyser, M. & Rivera, C. A. (2015). Porosity, bulk density, and volume reduction during drying: Review of measurement methods and coefficient determinations, Drying Technology 33(14): 1681–1699.Seader, J., Henley, E. J. & Roper, D. K. (2010). Separation process principles : chemical and biochemical operations, 3rd edn, John Wiley & Sons, Inc., USA.Shashari, N., Hasnan, H., Hanan, A. & Noor, N. (2019). Analysis of two-dimensional (2d) fruit drying process through heat and mass transfer model, IOP Conference Series: Materials Science and Engineering 477: 012024.Silva, W., Silva, C., Jossyl, S. & Farias, V. (2012). Empirical and diffusion models to describe water transport into chickpea (cicer arietinum l.), International Journal of Food Science and Technology 48: 276–273.Treybal, R. (1989). Operaciones de trasnferencia de masa, 2 edn, McGraw Hill, Mexico.Tsilingiris, P. (2008). Thermophysical and transport properties of humid air at temperature range between 0 and 100Aˆ °c, Energy Conversion and Management 49(5): 1098–1110.Tzempelikos, D. A., Mitrakos, D., Vouros, A. P., Bardakas, A. V., Filios, A. E. & Margaris, D. P. (2015). Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices, Journal of Food Engineering 156: 10–21.Vega, A., Palacios, M., Lemus, R. & Carvalho, C. (2008). Moisture sorption isotherms and isosteric heat determination in chilean papaya (vasconcellea pubescens), Quimica Nova QUIM NOVA 31.Velásquez, S., Franco, A. P., Pena, N., Boh´orquez, J. C. & Gutierrez, N. (2021). Effect of coffee cherry maturity on the performance of the drying process of the bean sorption isotherms and dielectric spectroscopy, Food Control 123: 107692.Viswanathan, R., Jayas, D. & Hulasare, R. (2003). Sorption isotherms of tomato slices and onion shreds, Biosystems Engineering 86(4): 465–472.Wami, E. & Onuigezhe, M. (2014). Model equation for heat transfer coefficient of air in a batch dryer, International Journal of Scientific and Engineering Research 5: 121–127.Wang, N. & Brennan, J. (1995). A mathematical model of simultaneous heat and moisture transfer during drying of potato, Journal of Food Engineering 24(1): 47 – 60.Welty, J., Wicks, C., Wilson, R. & Rorrer, G. (2007). Fundamentals of Momentum, Heat and Mass Transfer, 5 edn, Jhon Wiley and Sons, Oregon.Zohuri, B. (2017). Dimensional Analysis Beyond the Pi Theorem, Springer, Boca Raton.InvestigadoresORIGINAL1152210516.2021.pdf1152210516.2021.pdfTesis de Maestría en Ingeniería Químicaapplication/pdf2691660https://repositorio.unal.edu.co/bitstream/unal/80506/4/1152210516.2021.pdf150a7b1f69da94a44d716084361caf3dMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80506/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAIL1152210516.2021.pdf.jpg1152210516.2021.pdf.jpgGenerated Thumbnailimage/jpeg4535https://repositorio.unal.edu.co/bitstream/unal/80506/5/1152210516.2021.pdf.jpg913becd30e05c7f7027ff63d481675cbMD55unal/80506oai:repositorio.unal.edu.co:unal/805062024-07-31 23:13:00.137Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==