A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery
Hyperspectral remote sensors acquire data coming from hundreds of narrow bands through the electromagnetic spectrum; this allows the terrestrial and maritime surfaces to be characterized for Earth observation. Hyperspectral image processing requires algorithms that combine spatial and spectral infor...
- Autores:
-
Torres-Madronero, Maria Constanza
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60414
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60414
http://bdigital.unal.edu.co/58746/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
difusión no lineal
árbol de partición binaria
clasificación
imagen hiperespectral
representación multiescala
percepción remota
nonlinear diffusion
binary partition tree
classification
hyperspectral imagery
multiscale representation
remote sensing
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_d618c68a2a49eb2a21d32450b274f64d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/60414 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery |
title |
A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery |
spellingShingle |
A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery 62 Ingeniería y operaciones afines / Engineering difusión no lineal árbol de partición binaria clasificación imagen hiperespectral representación multiescala percepción remota nonlinear diffusion binary partition tree classification hyperspectral imagery multiscale representation remote sensing |
title_short |
A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery |
title_full |
A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery |
title_fullStr |
A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery |
title_full_unstemmed |
A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery |
title_sort |
A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery |
dc.creator.fl_str_mv |
Torres-Madronero, Maria Constanza |
dc.contributor.author.spa.fl_str_mv |
Torres-Madronero, Maria Constanza |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering difusión no lineal árbol de partición binaria clasificación imagen hiperespectral representación multiescala percepción remota nonlinear diffusion binary partition tree classification hyperspectral imagery multiscale representation remote sensing |
dc.subject.proposal.spa.fl_str_mv |
difusión no lineal árbol de partición binaria clasificación imagen hiperespectral representación multiescala percepción remota nonlinear diffusion binary partition tree classification hyperspectral imagery multiscale representation remote sensing |
description |
Hyperspectral remote sensors acquire data coming from hundreds of narrow bands through the electromagnetic spectrum; this allows the terrestrial and maritime surfaces to be characterized for Earth observation. Hyperspectral image processing requires algorithms that combine spatial and spectral information. One way to take full advantage of spatial-spectral data within hyperspectral imagery is to use multiscale representations. A multiscale representation generates a family of images were fine details are systematically removed. This paper compares two multiscale representation approaches in order to improve the classification of hyperspectral imagery. The first approach is based on nonlinear diffusion, which obtains a multiscale representation by successive filtering. The second is based on binary partition tree, an approach inspired in region growing. The comparison is performed using a real hyperspectral image and a supper vector machine classifier. Both representation approaches allowed the classification of hyperspectral imagery to be improved. However, nonlinear diffusion results surpassed those obtained using binary partition tree. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T18:15:47Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T18:15:47Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2346-2183 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/60414 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/58746/ |
identifier_str_mv |
ISSN: 2346-2183 |
url |
https://repositorio.unal.edu.co/handle/unal/60414 http://bdigital.unal.edu.co/58746/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/50678 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.references.spa.fl_str_mv |
Torres-Madronero, Maria Constanza (2017) A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery. DYNA, 84 (200). pp. 129-134. ISSN 2346-2183 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas. |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/60414/1/50678-320370-3-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/60414/2/50678-320370-3-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
276fd8063d56bc634c902bfcaf6ce98c d1a2145c111a9a75e6034f89dd8b0738 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089704505606144 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Torres-Madronero, Maria Constanza38ffd954-5232-45d3-9f43-254b88bef0f23002019-07-02T18:15:47Z2019-07-02T18:15:47Z2017-01-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60414http://bdigital.unal.edu.co/58746/Hyperspectral remote sensors acquire data coming from hundreds of narrow bands through the electromagnetic spectrum; this allows the terrestrial and maritime surfaces to be characterized for Earth observation. Hyperspectral image processing requires algorithms that combine spatial and spectral information. One way to take full advantage of spatial-spectral data within hyperspectral imagery is to use multiscale representations. A multiscale representation generates a family of images were fine details are systematically removed. This paper compares two multiscale representation approaches in order to improve the classification of hyperspectral imagery. The first approach is based on nonlinear diffusion, which obtains a multiscale representation by successive filtering. The second is based on binary partition tree, an approach inspired in region growing. The comparison is performed using a real hyperspectral image and a supper vector machine classifier. Both representation approaches allowed the classification of hyperspectral imagery to be improved. However, nonlinear diffusion results surpassed those obtained using binary partition tree.Los sensores remotos hiperespectrales adquieren datos a lo largo de cientos de bandas estrechas a través del espectro electromagnético permitiendo la caracterización de las superficies terrestres y marítimas para la observación de la Tierra. El procesamiento de imágenes hiperespectrales requiere de algoritmos que combinen la información espacial y espectral. Una forma de tomar ventaja de los datos espaciales y espectrales en las imágenes hiperespectrales es usar representaciones multiescala. Una representación multiescala genera una familia de imágenes donde los detalles finos son sistemáticamente removidos. Este artículo compara dos enfoques de representación multiescala para mejorar la clasificación de imágenes hiperespectrales. El primer enfoque se base en difusión no linear la cual obtiene la representación multiescala por medio de sucesivos filtros. El segundo se basa en un árbol de partición binaria, un enfoque inspirado en crecimiento de regiones. La comparación se realiza usando la imagen hiperespectral Indian Pines y un clasificador de máquinas de soporte vectorial. Ambos enfoques de representación permiten mejorar la clasificación de la imagen hiperespectral. Pero, los resultados de difusión no lineal superan los obtenidos usando el árbol de partición binaria.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/50678Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaTorres-Madronero, Maria Constanza (2017) A comparative study of multiscale representations for spatialspectral classification of hyperspectral imagery. DYNA, 84 (200). pp. 129-134. ISSN 2346-218362 Ingeniería y operaciones afines / Engineeringdifusión no linealárbol de partición binariaclasificaciónimagen hiperespectralrepresentación multiescalapercepción remotanonlinear diffusionbinary partition treeclassificationhyperspectral imagerymultiscale representationremote sensingA comparative study of multiscale representations for spatialspectral classification of hyperspectral imageryArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL50678-320370-3-PB.pdfapplication/pdf727671https://repositorio.unal.edu.co/bitstream/unal/60414/1/50678-320370-3-PB.pdf276fd8063d56bc634c902bfcaf6ce98cMD51THUMBNAIL50678-320370-3-PB.pdf.jpg50678-320370-3-PB.pdf.jpgGenerated Thumbnailimage/jpeg9337https://repositorio.unal.edu.co/bitstream/unal/60414/2/50678-320370-3-PB.pdf.jpgd1a2145c111a9a75e6034f89dd8b0738MD52unal/60414oai:repositorio.unal.edu.co:unal/604142024-04-13 23:10:31.246Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |