Caracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicas

Ilustraciones y tablas

Autores:
Acosta Opayome, Diana Carolina
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80155
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80155
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Miel de abejas
Honey
Química analítica
Analytic chemistry
Hive management
Apiarios
Honey
Differentiation
Chemometrics
Electronic nose
Electrochemical sensors
Miel
Diferenciación
Quimiometría
Nariz electrónica
Sensores electroquímicos
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_d59b0765f99a45e4bffe99476b7d6a0f
oai_identifier_str oai:repositorio.unal.edu.co:unal/80155
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicas
dc.title.translated.eng.fl_str_mv Characterization and differentiation of colombian honeys through the application of instrumental sensory tools and physicochemical properties
title Caracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicas
spellingShingle Caracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicas
630 - Agricultura y tecnologías relacionadas
Miel de abejas
Honey
Química analítica
Analytic chemistry
Hive management
Apiarios
Honey
Differentiation
Chemometrics
Electronic nose
Electrochemical sensors
Miel
Diferenciación
Quimiometría
Nariz electrónica
Sensores electroquímicos
title_short Caracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicas
title_full Caracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicas
title_fullStr Caracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicas
title_full_unstemmed Caracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicas
title_sort Caracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicas
dc.creator.fl_str_mv Acosta Opayome, Diana Carolina
dc.contributor.advisor.none.fl_str_mv Zuluaga Domínguez, Carlos Mario
Zuleta Zuluaga, Carlos Mario
dc.contributor.author.none.fl_str_mv Acosta Opayome, Diana Carolina
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Miel de abejas
Honey
Química analítica
Analytic chemistry
Hive management
Apiarios
Honey
Differentiation
Chemometrics
Electronic nose
Electrochemical sensors
Miel
Diferenciación
Quimiometría
Nariz electrónica
Sensores electroquímicos
dc.subject.lemb.none.fl_str_mv Miel de abejas
Honey
Química analítica
Analytic chemistry
Hive management
Apiarios
dc.subject.proposal.eng.fl_str_mv Honey
Differentiation
Chemometrics
Electronic nose
Electrochemical sensors
dc.subject.proposal.spa.fl_str_mv Miel
Diferenciación
Quimiometría
Nariz electrónica
Sensores electroquímicos
description Ilustraciones y tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-10T17:03:29Z
dc.date.available.none.fl_str_mv 2021-09-10T17:03:29Z
dc.date.issued.none.fl_str_mv 2021-09-08
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80155
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80155
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.none.fl_str_mv Al-Farsi, M., Al-Amri, A., Al-Hadhrami, A., & Al-Belushi, S. (2018). Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon, 4(10), e00874. https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00874
Al, M., Daniel, D., Moise, A., Bobis, O., Laslo, L., & Bogdanov, S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry, 112(4), 863–867. https://doi.org/10.1016/j.foodchem.2008.06.055
Alcañiz, M. (2011). Diseño de un sistema de lengua electrónica basado en técnicas electroquímicas voltamétricas y su aplicación en el ámbito agroalimentario [Universidad politécnica de Valencia]. http://tdx.cesca.cat/handle/10803/34322
Amariei, S., Norocel, L., & Scripcä, L. A. (2020). An innovative method for preventing honey crystallization. Innovative Food Science & Emerging Technologies, 66, 102481. https://doi.org/https://doi.org/10.1016/j.ifset.2020.102481
Ampuero, S., Bogdanov, S., & Bosset, J.-O. (2004). Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 218(2), 198–207. https://doi.org/10.1007/s00217-003-0834-9
Apiarios el pinar. (2016). Proyecto “Validación a nivel nacional e internacional de la comercializacion de prototipos de productos de las abejas con base en la innovación y el desarrollo tecnológico.”
Applied Biosystems. (2005). MarkerViewTM PCA Tutorial-1-PCA Tutorial (pp. 1–14). MDS Sciex.
Ascencio Tuso, D. J. (2014). Evaluación de los cambios pre y postcosecha de la miel de especies de abejas sin aguijón [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/52276
Babarinde, G. O., Babarinde, S. A., Adegbola, D. O., & Ajayeoba, S. I. (2011). Effects of harvesting methods on physicochemical and microbial qualities of honey. Journal of Food Science and Technology, 48(5), 628–634. https://doi.org/10.1007/s13197-011-0329-9
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174(April 2017), 33–44. https://doi.org/10.1016/j.chemolab.2017.12.004
Ballabio, D., Robotti, E., Grisoni, F., Quasso, F., Bobba, M., Vercelli, S., Gosetti, F., Calabrese, G., Sangiorgi, E., Orlandi, M., & Marengo, E. (2018). Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey. Food Chemistry, 266, 79–89. https://doi.org/10.1016/j.foodchem.2018.05.084
Ballabio, D., & Todeschini, R. (2009). Infrared Spectroscopy for Food Quality Analysis and Control Multivariate Classifi cation for Qualitative Analysis. Infrared Spectroscopy for Food Quality Analysis and Control, 83–104.
Baroni, M. V., Arrua, C., Nores, M. L., Fayé, P., Díaz, M. del P., Chiabrando, G. A., & Wunderlin, D. A. (2009). Composition of honey from Córdoba (Argentina): Assessment of North/South provenance by chemometrics. Food Chemistry, 114(2), 727–733. https://doi.org/10.1016/j.foodchem.2008.10.018
Barragán, M. (2014). Apicultura Campesina una Alternativa para el Desarrollo Rural en Ocamonte, Santander [Pontificia universidad Javeriana]. http://hdl.handle.net/10554/12407
Belay, A., Solomon, W. K., Bultossa, G., Adgaba, N., & Melaku, S. (2013). Physicochemical properties of the Harenna forest honey, Bale, Ethiopia. Food Chemistry, 141(4), 3386–3392. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.06.035
Benedetti, S., Mannino, S., Sabatini, A., & Marcazzan, G. (2004). Electronic nose and neural network use for the classification of honey. Http://Dx.Doi.Org/10.1051/Apido:2004025, 35. https://doi.org/10.1051/apido:2004025
Bentabol Manzanares, A., García, Z. H., Galdón, B. R., Rodríguez, E. R., & Romero, C. D. (2011). Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chemistry, 126(2), 664–672. https://doi.org/10.1016/j.foodchem.2010.11.003
Blanco, C. A., De La Fuente, R., Caballero, I., & Rodríguez-Méndez, M. L. (2015). Beer discrimination using a portable electronic tongue based on screen-printed electrodes. Journal of Food Engineering, 157, 57–62. https://doi.org/10.1016/j.jfoodeng.2015.02.018
Bobis, O., Moise, A. R., Ballesteros, I., Reyes, E. S., Durán, S. S., Sánchez-Sánchez, J., Cruz-Quintana, S., Giampieri, F., Battino, M., & Alvarez-Suarez, J. M. (2020). Eucalyptus honey: Quality parameters, chemical composition and health-promoting properties. Food Chemistry, 325, 126870. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.126870
Bogdanov, S., Lüllmann, C., Martin, P., von der Ohe, W., Russmann, H., Vorwohl, G., Oddo, L. P., Sabatini, A. G., Marcazzan, G. L., Piro, R., Flamini, C., Morlot, M., Lhéritier, J., Borneck, R., Marioleas, P., Tsigouri, A., Kerkvliet, J., Ortiz, A., Ivanov, T., … Vit, P. (1999). Honey quality and international regulatory standards: Review by the international honey commission. Bee World, 80(2), 61–69. https://doi.org/10.1080/0005772x.1999.11099428
Bogdanov, S., Ruoff, K., & Oddo, L. P. (2004). Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35, S4–S17. https://doi.org/10.1051/apido
Bommarco, R., Marini, L., & Vaissière, B. E. (2012). Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 169(4), 1025–1032. https://doi.org/10.1007/s00442-012-2271-6
Bougrini, M., Tahri, K., Haddi, Z., El Bari, N., Llobet, E., Jaffrezic-Renault, N., & Bouchikhi, B. (2014). Aging time and brand determination of pasteurized milk using a multisensor e-nose combined with a voltammetric e-tongue. Materials Science and Engineering C, 45, 348–358. https://doi.org/10.1016/j.msec.2014.09.030
Bougrini, M., Tahri, K., Saidi, T., El Alami El Hassani, N., Bouchikhi, B., & El Bari, N. (2016a). Classification of Honey According to Geographical and Botanical Origins and Detection of Its Adulteration Using Voltammetric Electronic Tongue. Food Analytical Methods, 9(8), 2161–2173. https://doi.org/10.1007/s12161-015-0393-2
Bougrini, M., Tahri, K., Saidi, T., El Alami El Hassani, N., Bouchikhi, B., & El Bari, N. (2016b). Classification of Honey According to Geographical and Botanical Origins and Detection of Its Adulteration Using Voltammetric Electronic Tongue. Food Analytical Methods, 9(8), 2161–2173. https://doi.org/10.1007/s12161-015-0393-2
Brereton, R. G. (2015). Pattern recognition in chemometrics. Chemometrics and Intelligent Laboratory Systems, 149, 90–96. https://doi.org/https://doi.org/10.1016/j.chemolab.2015.06.012
Brown, S. D. (2010). Book Reviews: Introduction to Multivariate Statistical Analysis in Chemometrics. In Applied Spectroscopy (Vol. 64, Issue 4). https://doi.org/10.1366/000370210791114185
Burbano, H., Ruelas-Monjardín, L. C., Nava-Tablada, M. E., Cervantes, J., Barradas, V. L., Fonte, S., Vanek, S., Loayza, L., Mazzocchi, G., Andrade C., H. J., Segura M, M. A., Sierra R., E., Angel Sanchez, D. I., Trujillo, H. C., Office, U. S. G. A., Gómez Sal, A., De los Ríos, J., Gallego, A., Vélez, L., … Alpizar, F. (2017). La importancia de los servicios ecosistemicos para la agricultura. Evaluación de Los Ecosistemas Del Milenio de España, 33(2), 255–266. https://doi.org/10.7818/re.2014.22-1.00
Cai, J., Wu, X., Yuan, L., Han, E., Zhou, L., & Zhou, A. (2013). Determination of Chinese Angelica honey adulterated with rice syrup by an electrochemical sensor and chemometrics. Analytical Methods, 5(9), 2324–2328. https://doi.org/10.1039/c3ay00041a
Castro, L. (2018). Evaluación de la composición, calidad y generación de valor de miel de abejas originaria de zonas forestales en la laltillanura del departamento de Vichada [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/64664/1/1066733730.2018.pdf
Cavia, M. del mar. (2002). Estudio del envejecimiento de mieles de Burgus y Galicia: Influencia de la granulación inducida. Universidad de Burgos.
Chen, H., Jin, L., Fan, C., & Wang, W. (2017). Non-targeted volatile profiles for the classification of the botanical origin of Chinese honey by solid-phase microextraction and gas chromatography–mass spectrometry combined with chemometrics. Journal of Separation Science, 40(22), 4377–4384. https://doi.org/10.1002/jssc.201700733
Codex Alimentarius Commission. (2001). Codex Alimentarius Commission Standards. Codex Stan 12-1981, 1–8.
Proyecto de Ley 103-2019 Senado, (2019).
Correa, A. R., Cuenca, M. M., Zuluaga, C. M., Scampicchio, M. M., & Quicazán, M. C. (2017). Validación de la técnica de nariz electrónica para la determinación del perfil olfativo de miel de abejas. Ingenieria e Investigacion, 37(3), 45–51. https://doi.org/10.15446/ing.investig.v37n3.59656
Cuenca, M. (2014). Desarrollo de una herramienta instrumental de gusto artificial aplicable a bebidas alcohólicas a base de miel de abejas. Universidad Nacional de Colombia. Departamento de Ingeniería Química y Ambiental.
Da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196(April), 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051
De Groot, R. S., Wilson, M. A., & Boumans, R. M. J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3), 393–408. https://doi.org/10.1016/S0921-8009(02)00089-7
Dias, L. A., Peres, A. M., Vilas-Boas, M., Rocha, M. A., Estevinho, L., & Machado, A. A. S. C. (2008). An electronic tongue for honey classification. Microchimica Acta, 163(1–2), 97–102. https://doi.org/10.1007/s00604-007-0923-8
Díaz, C. (2009). Influencia de las condiciones de almacenamiento sobre la calidad físico-química y biólogica de la miel. Tesis Doctoral, 271. https://zaguan.unizar.es/record/2052/files/TESIS-2009-036.pdf
Dymerski, T., Gebicki, J., Wardencki, W., & Namieśnik, J. (2014). Application of an electronic nose instrument to fast classification of Polish honey types. Sensors (Switzerland), 14(6), 10709–10724. https://doi.org/10.3390/s140610709
El Alami El Hassani, N., Tahri, K., Llobet, E., Bouchikhi, B., Errachid, A., Zine, N., & El Bari, N. (2018). Emerging approach for analytical characterization and geographical classification of Moroccan and French honeys by means of a voltammetric electronic tongue. Food Chemistry, 243, 36–42. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.09.067
El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60(2), 279–287. https://doi.org/https://doi.org/10.1016/j.aoas.2015.10.015
Elamine, Y., Inácio, P. M. C., Lyoussi, B., Anjos, O., Estevinho, L. M., da Graça Miguel, M., & Gomes, H. L. (2019). Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sensors and Actuators B: Chemical, 285, 24–33. https://doi.org/https://doi.org/10.1016/j.snb.2019.01.023
Elamine, Y., Lyoussi, B., Miguel, M. G., Anjos, O., Estevinho, L., Alaiz, M., Girón-Calle, J., Martín, J., & Vioque, J. (2020). Physicochemical characteristics and antiproliferative and antioxidant activities of moroccan zantaz honey rich in methyl syringate. Food Chemistry, 128098. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.128098
Elbanna, K., Attalla, K., Elbadry, M., Abdeltawab, A., Gamal-Eldin, H., & Fawzy Ramadan, M. (2014). Impact of floral sources and processing on the antimicrobial activities of different unifloral honeys. Asian Pacific Journal of Tropical Disease. https://doi.org/10.1016/S2222-1808(14)60504-1
Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2), 197–206. https://doi.org/10.1021/acs.jchemed.7b00361
Eliasson, A.-C., & Larsson, K. (1993). Cereals in breadmaking : a molecular colloidal approach (C. Press (ed.)).
Escriche, I., Kadar, M., Domenech, E., & Gil-Sánchez, L. (2012). A potentiometric electronic tongue for the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile. Journal of Food Engineering, 109(3), 449–456. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2011.10.036
Escuredo, O., Míguez, M., Fernández González, M., & Carmen Seijo, M. (2013). Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chemistry, 138(2–3), 851–856. https://doi.org/10.1016/j.foodchem.2012.11.015
Europeo, P. (2018). El comercio de la Miel en Europa. http://www.europarl.europa.eu/news/es/headlines/economy/20180222STO98435/el-mercado-de-la-miel-en-europa-infografia
Faal, S., Loghavi, M., & Kamgar, S. (2019). Physicochemical properties of Iranian ziziphus honey and emerging approach for predicting them using electronic nose. Measurement, 148, 106936. https://doi.org/https://doi.org/10.1016/j.measurement.2019.106936
Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of conditioning on HMF content in unifloral honeys. Food Chemistry, 85(2), 305–313. https://doi.org/https://doi.org/10.1016/j.foodchem.2003.07.010
FAO. (2018). Estadísticas de producción de miel.
Fattori, S. B. (2004). “La Miel” Propiedades, Composición y Análisis Físico-Químicos. 359100, 243. www.apimondia.org
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
Feng, P., Shao, F., Shi, Y., & Wan, Q. (2014). Gas sensors based on semiconducting nanowire field-effect transistors. Sensors (Basel, Switzerland), 14(9), 17406–17429. https://doi.org/10.3390/s140917406
Fontaine, A. (2018). Predictive Analytics with scikit-learn and TensorFlow.
Frank, I. E., & Todeschini, R. (1994). The Data Analysis Handbook. In Data Handling in Science and Technology (Vol. 14, Issue C). https://doi.org/10.1016/S0922-3487(08)70048-0
Gamboa Abril, V., Diaz Moreno, C., & Figueroa Ramirez, J. (2012). Tipificación de mieles de mielato de Robre (Quercus Humboldtti) de Boyacá y Santander.
Garnica, D., Arcos, A., & Gómez, J. (2006). Guía Ambiental Apícola. www.humboldt.org.co
Gay Martin, M. (2012). Nuevos avances en sensores voltamétricos nanoestructurados y miniaturizados. Aplicación en una Lengua Electrónica en el Sector Alimentario. 165.
Gomes, S., Dias, L. G., Moreira, L. L., Rodrigues, P., & Estevinho, L. (2010). Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology, 48(2), 544–548. https://doi.org/10.1016/j.fct.2009.11.029
González-Miret, M. L., Terrab, A., Hernanz, D., Fernández-Recamales, M. Á., & Heredia, F. J. (2005). Multivariate correlation between color and mineral composition of honeys and by their botanical origin. Journal of Agricultural and Food Chemistry, 53(7), 2574–2580. https://doi.org/10.1021/jf048207p
Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83–90. https://doi.org/https://doi.org/10.1016/j.tifs.2017.12.006
Hajinezhad, M., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., & Aghbashlo, M. (2017). Detecting Adulteration in Lotus Honey Using a Machine Olfactory System. Journal of Agricultural Machinery, 7(2), 439–450.
Harvey, M., McMeekin, A., & Warde, A. (2004). Qualities of food. In Qualities of food. https://doi.org/10.7765/9781526137609
Huang, L., Liu, H., Zhang, B., & Wu, D. (2015). Application of Electronic Nose with Multivariate Analysis and Sensor Selection for Botanical Origin Identification and Quality Determination of Honey. Food and Bioprocess Technology, 8(2), 359–370. https://doi.org/10.1007/s11947-014-1407-6
Huidobro, J. F., & Simal, J. (1984). Determinación del color y turbidez en las mieles. Anales de Bromatolog­a, 36(2), 225–245.
IDEAM. (2010). Valores medios multianuales de humedad relativa en % promedio 1981-2010.
Jaramillo, D. (2002). Introducción a la ciencia del suelo. Introduccion a La Ciencia Del Suelo, 619.
Karabagias, I. K., Maia, M., Karabagias, V. K., Gatzias, I., & Badeka, A. V. (2020). Quality and origin characterisation of Portuguese, Greek, Oceanian, and Asian honey, based on poly-parametric analysis hand in hand with dimension reduction and classification techniques. European Food Research and Technology, 246(5), 987–1006. https://doi.org/10.1007/s00217-020-03461-8
Kavanagh, S., Gunnoo, J., Marques Passos, T., Stout, J. C., & White, B. (2019). Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chemistry, 272, 66–75. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.08.035
Kek, S. P., Chin, N. L., Tan, S. W., Yusof, Y. A., & Chua, L. S. (2017). Classification of Honey from Its Bee Origin via Chemical Profiles and Mineral Content. Food Analytical Methods, 10(1), 19–30. https://doi.org/10.1007/s12161-016-0544-0
Kenjerić, F. Č., Mannino, S., Bennedetti, S., Primorac, L., & Čačić Kenjerić, D. (2009). Honey botanical origin determination by electronic nose. Journal of Apicultural Research, 48(2), 99–103. https://doi.org/10.3896/IBRA.1.48.2.03
Kumar, A., Gill, J. P. S., Bedi, J. S., Manav, M., Ansari, M. J., & Walia, G. S. (2018). Sensorial and physicochemical analysis of Indian honeys for assessment of quality and floral origins. Food Research International, 108, 571–583. https://doi.org/https://doi.org/10.1016/j.foodres.2018.04.005
Lammertyn, J., Veraverbeke, E. A., & Irudayaraj, J. (2004). zNoseTM technology for the classification of honey based on rapid aroma profiling. Sensors and Actuators B: Chemical, 98(1), 54–62. https://doi.org/https://doi.org/10.1016/j.snb.2003.09.012
Laverde Rodríguez, J. C., Egea Hernández, L. M., Rodríguez Zárate, D. M., & Peña Sáenz, J. E. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de las abejas y la apicultura en Colombia con énfasis en miel de Abejas. In Animal Genetics (Vol. 39, Issue 5, pp. 561–563).
Li, S., & Thomas, A. (2020). Cyclic Voltammetry Emerged carbon nanomaterials from metal-organic precursors for electro- chemical catalysis in energy conversion Fuel Cell Degradation and Failure Analysis. Cv.
Lorenzo, C. (2002). La miel de Madrid.
Major, N., Marković, K., Krpan, M., Šarić, G., Hruškar, M., & Vahčić, N. (2011). Rapid honey characterization and botanical classification by an electronic tongue. Talanta, 85(1), 569–574. https://doi.org/10.1016/j.talanta.2011.04.025
Mandić, M., Primorac, L., Čačić Kenjerić, D., Bubalo, D., Perl, A., & Flanjak, I. (2006). Characterisation of Oak Mistletoe and Common Thistle Honeys by Physicochemical, Sensory and Melissopalynology Parameters. Deutsche Lebensmittel-Rundschau: Zeitschrift Für Lebensmittelkunde Und Lebensmittelrecht, 102.
Mendes, E., Brojo Proença, E., Ferreira, I. M. P. L. V. ., & Ferreira, M. A. (1998). Quality evaluation of Portuguese honey. Carbohydrate Polymers, 37(3), 219–223. https://doi.org/https://doi.org/10.1016/S0144-8617(98)00063-0
Cadena Productiva de las Abejas y la Apicultura., Ministerio de agricultura y desarrollo rural 23 (2015).
Ministerio de Agricultura y Desarrollo Rural. (2018). Cadena Productiva de las Abejas y la Apicultura en Colombia. http://www.agronet.gov.co/www/docs_apicola/2008225164159_Plegable CPAA.pdf
Missio da Silva, P., Gonzaga, L. V., Biluca, F. C., Schulz, M., Vitali, L., Micke, G. A., Oliveira Costa, A. C., & Fett, R. (2020). Stability of Brazilian Apis mellifera L. honey during prolonged storage: Physicochemical parameters and bioactive compounds. LWT, 129, 109521. https://doi.org/10.1016/j.lwt.2020.109521
Mohaghegh, S., Arefi, R., Ameri, S., & Rose, D. (1995). Design and Development of An Artificial Neural Network for Estimation of Formation Permeability. SPE Computer Applications, 7(06), 151–154. https://doi.org/10.2118/28237-PA
Nates Parra, G., Montoya, P. M., Chamorro, F. J., Ramírez, N., Giraldo, C., & Obregón, D. (2013). Origen geográfico y botánico de mieles de Apis mellifera (APIDAE) en cuatro departamentos de Colombia. Acta Biológica Colombiana, 18(3), 427–438. https://revistas.unal.edu.co/index.php/actabiol/article/view/38290
Nyawali, B., Chungu, D., Chisha-Kasumu, E., Vinya, R., Chileshe, F., & Ng’andwe, P. (2015). Enzymatic browning reduction in white cabbage (Brassica oleracea) using honey: Does honey color matter? LWT - Food Science and Technology, 61(2), 543–549. https://doi.org/https://doi.org/10.1016/j.lwt.2014.12.006
O’Sullivan G., M. (2017). A Handbook for Sensory and Consumer-Driven New Product Development. In A Handbook for Sensory and Consumer-Driven New Product Development. https://doi.org/10.1016/c2014-0-03843-9
Oliveri, P., & Downey, G. (2012). Multivariate class modeling for the verification of food-authenticity claims. TrAC Trends in Analytical Chemistry, 35, 74–86. https://doi.org/https://doi.org/10.1016/j.trac.2012.02.005
Organización de la Cadena Productiva de las Abejas y la Apicultura en Colombia. (2011). Acuerdo de competitividad 2011-2025 (No. 2011–2025).
Oroian, M., & Ropciuc, S. (2019). Romanian honey authentication using voltammetric electronic tongue. Correlation of voltammetric data with physico-chemical parameters and phenolic compounds. Computers and Electronics in Agriculture, 157, 371–379. https://doi.org/https://doi.org/10.1016/j.compag.2019.01.008
Ortiz Valbuena, A. (1992). Contribución a la denominación de origen de la miel de alcarria.
Otles, S. (2009). Handbook of Food Analysis Instruments (1st Editio). CRC Press.
Parra, F. (2019). Capitulo 6. Métodos de clasificación. Estadística y Machine Learning Con R. https://bookdown.org/content/2274/portada.html/ 2021-01-13
Pasias, I. N., Kiriakou, I. K., & Proestos, C. (2017). HMF and diastase activity in honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. Food Chemistry, 229, 425–431. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.02.084
Patel, H. K., Austin, R. H., & Barber, J. (2014). The Electronic Nose: Artificial Olfaction Technology. In Biological and Medical Physics, Biomedical Engineering. http://link.springer.com/10.1007/978-81-322-1548-6
Pearson, K. (1901). On Lines and Planes of Closets Fit to Systems of Points in Space. Philosophical Magazine, 559–572.
Pereira, J. R., da R. Campos, A. N., de Oliveira, F. C., Silva, V. R. O., David, G. F., Da Silva, J. G., Nascimento, W. W. G., Silva, M. H. L., & Denadai, Â. M. L. (2020). Physical-chemical characterization of commercial honeys from Minas Gerais, Brazil. Food Bioscience, 36(April 2019), 100644. https://doi.org/10.1016/j.fbio.2020.100644
Peris, M., & Escuder Gilabert, L. (2016). Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science & Technology, 58(0924–2244), 40–54.
Persaud, K. (2016). Chapter 1- Electronic Noses and Tongues in the Food Industry (M. L. B. T.-E. N. and T. in F. S. Rodríguez Méndez (ed.); pp. 1–12). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-800243-8.00001-9
Persaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299(5881), 352–355. https://doi.org/10.1038/299352a0
Pita-Calvo, C., & Vázquez, M. (2017). Differences between honeydew and blossom honeys: A review. Trends in Food Science and Technology, 59, 79–87. https://doi.org/10.1016/j.tifs.2016.11.015
Pourtallier, J., & Taliercio, Y. (1972). Honey control analyses. In Apiacta (Vol. 1, pp. 2–5).
Quicazán, M. C. (2015). Guía Práctica Para el control y la Evaluacion de la calidad de miel y Polen (p. 36).
Quicazán S, M. C., Díaz M, A. C., & Zuluaga D, C. M. (2011). La nariz electrónica, una novedosa herramienta para el control de procesos y calidad en la industria agroalimentaria. Vitae, 18(2), 209–217.
Radovic, B. S., Careri, M., Mangia, A., Musci, M., Gerboles, M., & Anklam, E. (2001). Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72(4), 511–520. https://doi.org/https://doi.org/10.1016/S0308-8146(00)00263-6
Recuero de los Santos, P. (2018). Machine Learning a tu alcance: La matriz de confusión. https://empresas.blogthinkbig.com/ml-a-tu-alcance-matriz-confusion/ 2020-11-13
Rodríguez Medina, D. A. (2016). Identificación de la huella digital para miel de abejas con origen en zonas cafeteras de Colombia. Universidad Nacional de Colombia.
Sakač, N., & Sak-Bosnar, M. (2012). A rapid method for the determination of honey diastase activity. Talanta, 93, 135–138. https://doi.org/https://doi.org/10.1016/j.talanta.2012.01.063
Salamanca Grosso, G., Osorio, M., & Roberto, I. (2015). Perfil de componentes volátiles de mieles florales y monoflorales colombianas. https://doi.org/10.13140/RG.2.2.15475.78883
Sandoval Niño, Z. L., & Prieto Ortiz, F. A. (2007). Caracterización de café cereza empleando técnicas de visión artificial. 60(64), 4105–4127.
Santamaria, A. (2009). Diagnóstico productivo y comercial de la cadena apícola de los programas para la sustitución de cultivos ilícitos y desarrollo alternativo de Acción Social y UNODC (pp. 0–137).
Saxena, S., Gautam, S., & Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food Chemistry, 118(2), 391–397. https://doi.org/10.1016/j.foodchem.2009.05.001
Schramm, D. D., Karim, M., Schrader, H. R., Holt, R. R., Cardetti, M., & Keen, C. L. (2003). Honey with high levels of antioxidants can provide protection to healthy human subjects. Journal of Agricultural and Food Chemistry, 51(6), 1732–1735. https://doi.org/10.1021/jf025928k
Serra Bonvehi, J., Ventura Coll, F., & Orantes Bermejo, J. F. (2019). Characterization of avocado honey (Persea americana Mill.) produced in Southern Spain. Food Chemistry, 287, 214–221. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.02.068
Siddiqui, I. R. (1970). The sugars of honey. Advances in Carbohydrate Chemistry and Biochemistry, 25(C), 285–309. https://doi.org/10.1016/S0065-2318(08)60430-8
Silva, A. A., Lima Neto, I. A., Misságia, R. M., Ceia, M. A., Carrasquilla, A. G., & Archilha, N. L. (2015). Artificial neural networks to support petrographic classification of carbonate-siliciclastic rocks using well logs and textural information. Journal of Applied Geophysics, 117, 118–125. https://doi.org/https://doi.org/10.1016/j.jappgeo.2015.03.027
Silva, L. R., Sousa, A., & Taveira, M. (2017). Characterization of Portuguese honey from Castelo Branco region according to their pollen spectrum, physicochemical characteristics and mineral contents. Journal of Food Science and Technology, 54(8), 2551–2561. https://doi.org/10.1007/s13197-017-2700-y
Simsek, A., Bilsel, M., & Goren, A. C. (2012). 13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS. Food Chemistry, 130(4), 1115–1121. https://doi.org/https://doi.org/10.1016/j.foodchem.2011.08.017
Siti Nurhidayah, S., Shirwan, M., Sani, A., Azwan, M., Yuswan, H., Kartinee, N., Noorzianna, Y., Wasoh, H., Nadiha, N., Zaki, M., & Mohd, A. (2020). Discrimination of Malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning. Food Chemistry, November, 128654. https://doi.org/10.1016/j.foodchem.2020.128654
Skoog, D. A., West, D. M., & Holler, James, F. (1997). Fundamentos de Química Analítica.
Sobrino-Gregorio, L., Bataller, R., Soto, J., & Escriche, I. (2018). Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control, 91, 254–260. https://doi.org/10.1016/j.foodcont.2018.04.003
Solayman, M., Islam, M. A., Paul, S., Ali, Y., Khalil, M. I., Alam, N., & Gan, S. H. (2016). Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 219–233. https://doi.org/10.1111/1541-4337.12182
Stolzenbach, S., Byrne, D. V, & Bredie, W. L. P. (2011). Sensory local uniqueness of Danish honeys. Food Research International, 44(9), 2766–2774. https://doi.org/https://doi.org/10.1016/j.foodres.2011.06.006
Tan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104–115. https://doi.org/https://doi.org/10.1016/j.aiia.2020.06.003
Tiwari, K., Tudu, B., Bandhopadhya, R., & Chatterjee, A. (2012). Discrimination of monofloral honey using cyclic voltammetry. Proceedings - 2012 3rd National Conference on Emerging Trends and Applications in Computer Science, NCETACS-2012, Ic, 132–136. https://doi.org/10.1109/NCETACS.2012.6203312
Tiwari, K., Tudu, B., Bandyopadhyay, R., & Chatterjee, A. (2013). Identification of monofloral honey using voltammetric electronic tongue. Journal of Food Engineering, 117(2), 205–210. https://doi.org/10.1016/j.jfoodeng.2013.02.023
Tiwari, K., Tudu, B., Bandyopadhyay, R., Chatterjee, A., & Pramanik, P. (2018). Voltammetric sensor for electrochemical determination of the floral origin of honey based on a zinc oxide nanoparticle modified carbon paste electrode. Journal of Sensors and Sensor Systems, 7(1), 319–329. https://doi.org/10.5194/jsss-7-319-2018
Tosi, E., Martinet, R., Ortega, M., Lucero, H., & Ré, E. (2008). Honey diastase activity modified by heating. Food Chemistry, 106(3), 883–887. https://doi.org/10.1016/j.foodchem.2007.04.025
Urrego R, J. F. (2017). Carecterizacion de Mieles de Apis mellifera ,Colectadas De Diferentes Regiones de Antioquia. [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/59936
Valcárcel, M., & Cárdenas, S. (2004). Qualitative Analysis. Encyclopedia of Analytical Science: Second Edition, 405–411. https://doi.org/10.1016/B0-12-369397-7/00707-X
Vanhanen, L. P., Emmertz, A., & Savage, G. P. (2011). Mineral analysis of mono-floral New Zealand honey. Food Chemistry, 128(1), 236–240. https://doi.org/10.1016/j.foodchem.2011.02.064
Vásquez, C. L. (2010). Caracterización de mieles de San Pedro de Atacama basada en análisis físicos , químicos y melisopalinológicos .Tesis pregrado Licenciado en Biología. Universidad Astral de Chile.
Velásquez, C., Gil, J. ., Urrego, J. ., Durango, D., & Castañeda, I. . (2016). Palinológico y fisicoquímicos de miel de abejas ( Apis mellifera l . ) Procedente de algunos municipios del oriente y suroeste de Antioquia ( COLOMBIA ). Revista de La Facultad de Ciencias Universidad Nacional de Colombia, Sede Medellín, 5(2), 65–87.
Velásquez Giraldo, A. (2013). Caracterización físico-química y microbiológica de la miel de Apis mellifera sp. del Suroeste de Antioquia, Colombia. Ingeniería y Ciencia - Ing.Cienc., 9(18), 61–74. http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1843
Vit, Patricia. Silvia, R.M. Roubik, P. D. (2013). Pot-Honey (P. Vit, S. R. M. Pedro, & D. W. Roubik (eds.)). Springer. https://doi.org/10.1007/978-1-4614-4960-7
Wang, J. (2000). Analytical electrochemistry (Second Edi). Wiley-VCH.
Wei, Z., & Wang, J. (2014). Tracing floral and geographical origins of honeys by potentiometric and voltammetric electronic tongue. Computers and Electronics in Agriculture, 108, 112–122. https://doi.org/10.1016/j.compag.2014.07.014
Wei, Z., Wang, J., & Liao, W. (2009). Technique potential for classification of honey by electronic tongue. Journal of Food Engineering, 94(3–4), 260–266. https://doi.org/10.1016/j.jfoodeng.2009.03.016
White, J. W., & Maher, J. (1953). Transglucosidation by honey invertase. Archives of Biochemistry and Biophysics, 42(2), 360–367. https://doi.org/https://doi.org/10.1016/0003-9861(53)90365-8
Wu, L., Du, B., Vander Heyden, Y., Chen, L., Zhao, L., Wang, M., & Xue, X. (2017). Recent advancements in detecting sugar-based adulterants in honey – A challenge. TrAC - Trends in Analytical Chemistry, 86, 25–38. https://doi.org/10.1016/j.trac.2016.10.013
Yucel, Y. (2013). Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics. Food Chemistry, 140(1/2), 231–237. https://doi.org/10.1016/j.foodchem.2013.02.046
Yücel, Y., & Pinar Sultanoǧlu, P. (2013). Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Bioscience, 1, 16–25. https://doi.org/https://doi.org/10.1016/j.fbio.2013.02.001
Zhou, J., Suo, Z., Zhao, P., Cheng, N., Gao, H., Zhao, J., & Cao, W. (2013). Jujube honey from china: Physicochemical characteristics and mineral contents. Journal of Food Science, 78(3). https://doi.org/10.1111/1750-3841.12049
Zuluaga, C., Díaz, C., & Quicazán, M. (2014). Nariz Electrónica. Fundamentos, manejo de datos y aplicación en productos apícolas (Primera Ed). Universidad Nacional de Colombia.
Zuluaga Domínguez, C. M., Nieto Veloza, A., & Quicazán de Cuenca, M. (2018). Classification of Colombian honeys by electronic nose and physical-chemical parameters, using neural networks and genetic algorithms. Journal of Apicultural Research, 57(1). https://doi.org/10.1080/00218839.2017.1339521
Zuluaga Domínguez, C. M., VIT, P., Drummond Murillo, S., Moreno, A. C., & Quicazán, M. C. (2013). Perfil aromático y contenido de humedad como parámetros discriminantes para la clasificación quimiométrica de mieles de pote de diferentes especies de Meliponini. 1–8.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 121 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisher.department.spa.fl_str_mv Departamento de Agronomía
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80155/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80155/6/1018420810.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80155/7/1018420810.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
417314800b5cc7320fc1c606a2addb2e
0cb257a9fa5773eb95e4a8d2389d5929
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089538719449088
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zuluaga Domínguez, Carlos Marioe62c6eaefb21c224237f001387877fd5Zuleta Zuluaga, Carlos Mario136e349587a160e498040fe076ddcc9b600Acosta Opayome, Diana Carolinac8efd9d6e217d0d4fd32ffeb8ee9f0d12021-09-10T17:03:29Z2021-09-10T17:03:29Z2021-09-08https://repositorio.unal.edu.co/handle/unal/80155Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones y tablasColombia is recognized in the world for its great biodiversity which generates high potential for honey production, however, the importance that has been given to beekeeping is not remarkable until now. The study of the physicochemical properties of honey is important to recognize the quality of this product. However, the lack of legislation has led to a high rate of counterfeiting and poor quality verification. The characterization and classification according to the climatic zone of 115 Colombian honeys was carried out through the evaluation of physicochemical parameters, in order to verify compliance with quality criteria. These samples were also analyzed by means of an electronic nose, for the evaluation of the aromatic profile (volatile components), and electronic language of cyclic voltammetry, to obtain responses associated with electroactive species in solution (non- volatile components), as additional classification tools by origin. Finally, in order to evaluate electronic language as an authentication tool, the results obtained by this technique were compared for 50 authentic samples and 50 adulterated samples. Statistical techniques of principal component analysis (PCA), k nearest neighbors (KNN) and artificial neural networks (ANN) were used in order to observe the potential in classification by origin and differentiation with respect to adulterated products. The characterization of the honey complied with the main quality parameters reported in local and external standards. It was possible to differentiate the honey samples according to their climatic zone with a 77% non- error rate from the information obtained by the physicochemical parameters, nose and electronic tongue. The PCA allowed to differentiate samples of adulterated honey from authentic honeys, from the data obtained with electronic language. This study contributes to the recognition of the differentiating characteristics of honeys according to their origin, to increase their commercial value in the market, and an important precedent is established for the development of an analytical methodology for verifying the authenticity of Colombian bee honeys.Colombia es reconocida en el mundo por su gran biodiversidad lo que genera altos potenciales de producción de miel, no obstante, la importancia que se ha dado a la apicultura no es destacable hasta ahora. El estudio de las propiedades fisicoquímicas de la miel es importante para reconocer la calidad de este producto. Sin embargo, la falta de legislación ha propiciado un alto índice de falsificación y una escasa verificación de la calidad. Se llevó a cabo la caracterización y clasificación según la zona climática de 115 mieles colombianas a través de la evaluación de parámetros físicoquímicos, con el fin de verificar el cumplimiento de criterios de calidad. Estas muestras se analizaron también por medio de nariz electrónica, para la evaluación del perfil aromático (componentes volátiles), y lengua electrónica de voltametría cíclica, para obtener respuestas asociadas a especies electroactivas en disolución (componentes no volátiles), como herramientas adicionales de clasificación por origen. Finalmente, con el fin de evaluar la lengua electrónica como herramienta de autenticación, se compararon los resultados obtenidos por esta técnica para 50 muestras auténticas y 50 muestras adulteradas. Se emplearon las técnicas estadísticas de análisis de componentes principales (PCA), k vecinos más cercanos (KNN) y redes neuronales artificiales (ANN) con el fin de observar el potencial en la clasificación por origen y la diferenciación con respecto a productos adulterados. La caracterización de la miel cumplió con los principales parámetros de calidad reportados en los estándares locales y externos. Se logró diferenciar las muestras de miel según su zona climatica con un 77% de tasa de no error a partir de la información obtenida por los parámetros fisicoquìmicos, nariz y lengua electrónica. El PCA permitió diferenciar muestras de miel adulteradas de mieles autenticas, a partir de los datos obtenidos con lengua electrónica. Con este estudio se contribuye al reconocimiento de las características diferenciadoras de las mieles según su proveniencia, para incrementar su valor comercial en el mercado, y se establece un antecedente importante para el desarrollo de una metodología analítica para la verificación de autenticidad de mieles de abeja colombianas. (Texto tomado de la fuente).MaestríaMagíster en Ciencia y Tecnología de Alimentosxvii, 121 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosDepartamento de AgronomíaFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadasMiel de abejasHoneyQuímica analíticaAnalytic chemistryHive managementApiariosHoneyDifferentiationChemometricsElectronic noseElectrochemical sensorsMielDiferenciaciónQuimiometríaNariz electrónicaSensores electroquímicosCaracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicasCharacterization and differentiation of colombian honeys through the application of instrumental sensory tools and physicochemical propertiesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAgrosaviaAgrovocAl-Farsi, M., Al-Amri, A., Al-Hadhrami, A., & Al-Belushi, S. (2018). Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon, 4(10), e00874. https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00874Al, M., Daniel, D., Moise, A., Bobis, O., Laslo, L., & Bogdanov, S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry, 112(4), 863–867. https://doi.org/10.1016/j.foodchem.2008.06.055Alcañiz, M. (2011). Diseño de un sistema de lengua electrónica basado en técnicas electroquímicas voltamétricas y su aplicación en el ámbito agroalimentario [Universidad politécnica de Valencia]. http://tdx.cesca.cat/handle/10803/34322Amariei, S., Norocel, L., & Scripcä, L. A. (2020). An innovative method for preventing honey crystallization. Innovative Food Science & Emerging Technologies, 66, 102481. https://doi.org/https://doi.org/10.1016/j.ifset.2020.102481Ampuero, S., Bogdanov, S., & Bosset, J.-O. (2004). Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 218(2), 198–207. https://doi.org/10.1007/s00217-003-0834-9Apiarios el pinar. (2016). Proyecto “Validación a nivel nacional e internacional de la comercializacion de prototipos de productos de las abejas con base en la innovación y el desarrollo tecnológico.”Applied Biosystems. (2005). MarkerViewTM PCA Tutorial-1-PCA Tutorial (pp. 1–14). MDS Sciex.Ascencio Tuso, D. J. (2014). Evaluación de los cambios pre y postcosecha de la miel de especies de abejas sin aguijón [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/52276Babarinde, G. O., Babarinde, S. A., Adegbola, D. O., & Ajayeoba, S. I. (2011). Effects of harvesting methods on physicochemical and microbial qualities of honey. Journal of Food Science and Technology, 48(5), 628–634. https://doi.org/10.1007/s13197-011-0329-9Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174(April 2017), 33–44. https://doi.org/10.1016/j.chemolab.2017.12.004Ballabio, D., Robotti, E., Grisoni, F., Quasso, F., Bobba, M., Vercelli, S., Gosetti, F., Calabrese, G., Sangiorgi, E., Orlandi, M., & Marengo, E. (2018). Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey. Food Chemistry, 266, 79–89. https://doi.org/10.1016/j.foodchem.2018.05.084Ballabio, D., & Todeschini, R. (2009). Infrared Spectroscopy for Food Quality Analysis and Control Multivariate Classifi cation for Qualitative Analysis. Infrared Spectroscopy for Food Quality Analysis and Control, 83–104.Baroni, M. V., Arrua, C., Nores, M. L., Fayé, P., Díaz, M. del P., Chiabrando, G. A., & Wunderlin, D. A. (2009). Composition of honey from Córdoba (Argentina): Assessment of North/South provenance by chemometrics. Food Chemistry, 114(2), 727–733. https://doi.org/10.1016/j.foodchem.2008.10.018Barragán, M. (2014). Apicultura Campesina una Alternativa para el Desarrollo Rural en Ocamonte, Santander [Pontificia universidad Javeriana]. http://hdl.handle.net/10554/12407Belay, A., Solomon, W. K., Bultossa, G., Adgaba, N., & Melaku, S. (2013). Physicochemical properties of the Harenna forest honey, Bale, Ethiopia. Food Chemistry, 141(4), 3386–3392. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.06.035Benedetti, S., Mannino, S., Sabatini, A., & Marcazzan, G. (2004). Electronic nose and neural network use for the classification of honey. Http://Dx.Doi.Org/10.1051/Apido:2004025, 35. https://doi.org/10.1051/apido:2004025Bentabol Manzanares, A., García, Z. H., Galdón, B. R., Rodríguez, E. R., & Romero, C. D. (2011). Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chemistry, 126(2), 664–672. https://doi.org/10.1016/j.foodchem.2010.11.003Blanco, C. A., De La Fuente, R., Caballero, I., & Rodríguez-Méndez, M. L. (2015). Beer discrimination using a portable electronic tongue based on screen-printed electrodes. Journal of Food Engineering, 157, 57–62. https://doi.org/10.1016/j.jfoodeng.2015.02.018Bobis, O., Moise, A. R., Ballesteros, I., Reyes, E. S., Durán, S. S., Sánchez-Sánchez, J., Cruz-Quintana, S., Giampieri, F., Battino, M., & Alvarez-Suarez, J. M. (2020). Eucalyptus honey: Quality parameters, chemical composition and health-promoting properties. Food Chemistry, 325, 126870. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.126870Bogdanov, S., Lüllmann, C., Martin, P., von der Ohe, W., Russmann, H., Vorwohl, G., Oddo, L. P., Sabatini, A. G., Marcazzan, G. L., Piro, R., Flamini, C., Morlot, M., Lhéritier, J., Borneck, R., Marioleas, P., Tsigouri, A., Kerkvliet, J., Ortiz, A., Ivanov, T., … Vit, P. (1999). Honey quality and international regulatory standards: Review by the international honey commission. Bee World, 80(2), 61–69. https://doi.org/10.1080/0005772x.1999.11099428Bogdanov, S., Ruoff, K., & Oddo, L. P. (2004). Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35, S4–S17. https://doi.org/10.1051/apidoBommarco, R., Marini, L., & Vaissière, B. E. (2012). Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 169(4), 1025–1032. https://doi.org/10.1007/s00442-012-2271-6Bougrini, M., Tahri, K., Haddi, Z., El Bari, N., Llobet, E., Jaffrezic-Renault, N., & Bouchikhi, B. (2014). Aging time and brand determination of pasteurized milk using a multisensor e-nose combined with a voltammetric e-tongue. Materials Science and Engineering C, 45, 348–358. https://doi.org/10.1016/j.msec.2014.09.030Bougrini, M., Tahri, K., Saidi, T., El Alami El Hassani, N., Bouchikhi, B., & El Bari, N. (2016a). Classification of Honey According to Geographical and Botanical Origins and Detection of Its Adulteration Using Voltammetric Electronic Tongue. Food Analytical Methods, 9(8), 2161–2173. https://doi.org/10.1007/s12161-015-0393-2Bougrini, M., Tahri, K., Saidi, T., El Alami El Hassani, N., Bouchikhi, B., & El Bari, N. (2016b). Classification of Honey According to Geographical and Botanical Origins and Detection of Its Adulteration Using Voltammetric Electronic Tongue. Food Analytical Methods, 9(8), 2161–2173. https://doi.org/10.1007/s12161-015-0393-2Brereton, R. G. (2015). Pattern recognition in chemometrics. Chemometrics and Intelligent Laboratory Systems, 149, 90–96. https://doi.org/https://doi.org/10.1016/j.chemolab.2015.06.012Brown, S. D. (2010). Book Reviews: Introduction to Multivariate Statistical Analysis in Chemometrics. In Applied Spectroscopy (Vol. 64, Issue 4). https://doi.org/10.1366/000370210791114185Burbano, H., Ruelas-Monjardín, L. C., Nava-Tablada, M. E., Cervantes, J., Barradas, V. L., Fonte, S., Vanek, S., Loayza, L., Mazzocchi, G., Andrade C., H. J., Segura M, M. A., Sierra R., E., Angel Sanchez, D. I., Trujillo, H. C., Office, U. S. G. A., Gómez Sal, A., De los Ríos, J., Gallego, A., Vélez, L., … Alpizar, F. (2017). La importancia de los servicios ecosistemicos para la agricultura. Evaluación de Los Ecosistemas Del Milenio de España, 33(2), 255–266. https://doi.org/10.7818/re.2014.22-1.00Cai, J., Wu, X., Yuan, L., Han, E., Zhou, L., & Zhou, A. (2013). Determination of Chinese Angelica honey adulterated with rice syrup by an electrochemical sensor and chemometrics. Analytical Methods, 5(9), 2324–2328. https://doi.org/10.1039/c3ay00041aCastro, L. (2018). Evaluación de la composición, calidad y generación de valor de miel de abejas originaria de zonas forestales en la laltillanura del departamento de Vichada [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/64664/1/1066733730.2018.pdfCavia, M. del mar. (2002). Estudio del envejecimiento de mieles de Burgus y Galicia: Influencia de la granulación inducida. Universidad de Burgos.Chen, H., Jin, L., Fan, C., & Wang, W. (2017). Non-targeted volatile profiles for the classification of the botanical origin of Chinese honey by solid-phase microextraction and gas chromatography–mass spectrometry combined with chemometrics. Journal of Separation Science, 40(22), 4377–4384. https://doi.org/10.1002/jssc.201700733Codex Alimentarius Commission. (2001). Codex Alimentarius Commission Standards. Codex Stan 12-1981, 1–8.Proyecto de Ley 103-2019 Senado, (2019).Correa, A. R., Cuenca, M. M., Zuluaga, C. M., Scampicchio, M. M., & Quicazán, M. C. (2017). Validación de la técnica de nariz electrónica para la determinación del perfil olfativo de miel de abejas. Ingenieria e Investigacion, 37(3), 45–51. https://doi.org/10.15446/ing.investig.v37n3.59656Cuenca, M. (2014). Desarrollo de una herramienta instrumental de gusto artificial aplicable a bebidas alcohólicas a base de miel de abejas. Universidad Nacional de Colombia. Departamento de Ingeniería Química y Ambiental.Da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196(April), 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051De Groot, R. S., Wilson, M. A., & Boumans, R. M. J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3), 393–408. https://doi.org/10.1016/S0921-8009(02)00089-7Dias, L. A., Peres, A. M., Vilas-Boas, M., Rocha, M. A., Estevinho, L., & Machado, A. A. S. C. (2008). An electronic tongue for honey classification. Microchimica Acta, 163(1–2), 97–102. https://doi.org/10.1007/s00604-007-0923-8Díaz, C. (2009). Influencia de las condiciones de almacenamiento sobre la calidad físico-química y biólogica de la miel. Tesis Doctoral, 271. https://zaguan.unizar.es/record/2052/files/TESIS-2009-036.pdfDymerski, T., Gebicki, J., Wardencki, W., & Namieśnik, J. (2014). Application of an electronic nose instrument to fast classification of Polish honey types. Sensors (Switzerland), 14(6), 10709–10724. https://doi.org/10.3390/s140610709El Alami El Hassani, N., Tahri, K., Llobet, E., Bouchikhi, B., Errachid, A., Zine, N., & El Bari, N. (2018). Emerging approach for analytical characterization and geographical classification of Moroccan and French honeys by means of a voltammetric electronic tongue. Food Chemistry, 243, 36–42. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.09.067El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60(2), 279–287. https://doi.org/https://doi.org/10.1016/j.aoas.2015.10.015Elamine, Y., Inácio, P. M. C., Lyoussi, B., Anjos, O., Estevinho, L. M., da Graça Miguel, M., & Gomes, H. L. (2019). Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sensors and Actuators B: Chemical, 285, 24–33. https://doi.org/https://doi.org/10.1016/j.snb.2019.01.023Elamine, Y., Lyoussi, B., Miguel, M. G., Anjos, O., Estevinho, L., Alaiz, M., Girón-Calle, J., Martín, J., & Vioque, J. (2020). Physicochemical characteristics and antiproliferative and antioxidant activities of moroccan zantaz honey rich in methyl syringate. Food Chemistry, 128098. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.128098Elbanna, K., Attalla, K., Elbadry, M., Abdeltawab, A., Gamal-Eldin, H., & Fawzy Ramadan, M. (2014). Impact of floral sources and processing on the antimicrobial activities of different unifloral honeys. Asian Pacific Journal of Tropical Disease. https://doi.org/10.1016/S2222-1808(14)60504-1Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2), 197–206. https://doi.org/10.1021/acs.jchemed.7b00361Eliasson, A.-C., & Larsson, K. (1993). Cereals in breadmaking : a molecular colloidal approach (C. Press (ed.)).Escriche, I., Kadar, M., Domenech, E., & Gil-Sánchez, L. (2012). A potentiometric electronic tongue for the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile. Journal of Food Engineering, 109(3), 449–456. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2011.10.036Escuredo, O., Míguez, M., Fernández González, M., & Carmen Seijo, M. (2013). Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chemistry, 138(2–3), 851–856. https://doi.org/10.1016/j.foodchem.2012.11.015Europeo, P. (2018). El comercio de la Miel en Europa. http://www.europarl.europa.eu/news/es/headlines/economy/20180222STO98435/el-mercado-de-la-miel-en-europa-infografiaFaal, S., Loghavi, M., & Kamgar, S. (2019). Physicochemical properties of Iranian ziziphus honey and emerging approach for predicting them using electronic nose. Measurement, 148, 106936. https://doi.org/https://doi.org/10.1016/j.measurement.2019.106936Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of conditioning on HMF content in unifloral honeys. Food Chemistry, 85(2), 305–313. https://doi.org/https://doi.org/10.1016/j.foodchem.2003.07.010FAO. (2018). Estadísticas de producción de miel.Fattori, S. B. (2004). “La Miel” Propiedades, Composición y Análisis Físico-Químicos. 359100, 243. www.apimondia.orgFawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010Feng, P., Shao, F., Shi, Y., & Wan, Q. (2014). Gas sensors based on semiconducting nanowire field-effect transistors. Sensors (Basel, Switzerland), 14(9), 17406–17429. https://doi.org/10.3390/s140917406Fontaine, A. (2018). Predictive Analytics with scikit-learn and TensorFlow.Frank, I. E., & Todeschini, R. (1994). The Data Analysis Handbook. In Data Handling in Science and Technology (Vol. 14, Issue C). https://doi.org/10.1016/S0922-3487(08)70048-0Gamboa Abril, V., Diaz Moreno, C., & Figueroa Ramirez, J. (2012). Tipificación de mieles de mielato de Robre (Quercus Humboldtti) de Boyacá y Santander.Garnica, D., Arcos, A., & Gómez, J. (2006). Guía Ambiental Apícola. www.humboldt.org.coGay Martin, M. (2012). Nuevos avances en sensores voltamétricos nanoestructurados y miniaturizados. Aplicación en una Lengua Electrónica en el Sector Alimentario. 165.Gomes, S., Dias, L. G., Moreira, L. L., Rodrigues, P., & Estevinho, L. (2010). Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology, 48(2), 544–548. https://doi.org/10.1016/j.fct.2009.11.029González-Miret, M. L., Terrab, A., Hernanz, D., Fernández-Recamales, M. Á., & Heredia, F. J. (2005). Multivariate correlation between color and mineral composition of honeys and by their botanical origin. Journal of Agricultural and Food Chemistry, 53(7), 2574–2580. https://doi.org/10.1021/jf048207pGranato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83–90. https://doi.org/https://doi.org/10.1016/j.tifs.2017.12.006Hajinezhad, M., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., & Aghbashlo, M. (2017). Detecting Adulteration in Lotus Honey Using a Machine Olfactory System. Journal of Agricultural Machinery, 7(2), 439–450.Harvey, M., McMeekin, A., & Warde, A. (2004). Qualities of food. In Qualities of food. https://doi.org/10.7765/9781526137609Huang, L., Liu, H., Zhang, B., & Wu, D. (2015). Application of Electronic Nose with Multivariate Analysis and Sensor Selection for Botanical Origin Identification and Quality Determination of Honey. Food and Bioprocess Technology, 8(2), 359–370. https://doi.org/10.1007/s11947-014-1407-6Huidobro, J. F., & Simal, J. (1984). Determinación del color y turbidez en las mieles. Anales de Bromatolog­a, 36(2), 225–245.IDEAM. (2010). Valores medios multianuales de humedad relativa en % promedio 1981-2010.Jaramillo, D. (2002). Introducción a la ciencia del suelo. Introduccion a La Ciencia Del Suelo, 619.Karabagias, I. K., Maia, M., Karabagias, V. K., Gatzias, I., & Badeka, A. V. (2020). Quality and origin characterisation of Portuguese, Greek, Oceanian, and Asian honey, based on poly-parametric analysis hand in hand with dimension reduction and classification techniques. European Food Research and Technology, 246(5), 987–1006. https://doi.org/10.1007/s00217-020-03461-8Kavanagh, S., Gunnoo, J., Marques Passos, T., Stout, J. C., & White, B. (2019). Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chemistry, 272, 66–75. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.08.035Kek, S. P., Chin, N. L., Tan, S. W., Yusof, Y. A., & Chua, L. S. (2017). Classification of Honey from Its Bee Origin via Chemical Profiles and Mineral Content. Food Analytical Methods, 10(1), 19–30. https://doi.org/10.1007/s12161-016-0544-0Kenjerić, F. Č., Mannino, S., Bennedetti, S., Primorac, L., & Čačić Kenjerić, D. (2009). Honey botanical origin determination by electronic nose. Journal of Apicultural Research, 48(2), 99–103. https://doi.org/10.3896/IBRA.1.48.2.03Kumar, A., Gill, J. P. S., Bedi, J. S., Manav, M., Ansari, M. J., & Walia, G. S. (2018). Sensorial and physicochemical analysis of Indian honeys for assessment of quality and floral origins. Food Research International, 108, 571–583. https://doi.org/https://doi.org/10.1016/j.foodres.2018.04.005Lammertyn, J., Veraverbeke, E. A., & Irudayaraj, J. (2004). zNoseTM technology for the classification of honey based on rapid aroma profiling. Sensors and Actuators B: Chemical, 98(1), 54–62. https://doi.org/https://doi.org/10.1016/j.snb.2003.09.012Laverde Rodríguez, J. C., Egea Hernández, L. M., Rodríguez Zárate, D. M., & Peña Sáenz, J. E. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de las abejas y la apicultura en Colombia con énfasis en miel de Abejas. In Animal Genetics (Vol. 39, Issue 5, pp. 561–563).Li, S., & Thomas, A. (2020). Cyclic Voltammetry Emerged carbon nanomaterials from metal-organic precursors for electro- chemical catalysis in energy conversion Fuel Cell Degradation and Failure Analysis. Cv.Lorenzo, C. (2002). La miel de Madrid.Major, N., Marković, K., Krpan, M., Šarić, G., Hruškar, M., & Vahčić, N. (2011). Rapid honey characterization and botanical classification by an electronic tongue. Talanta, 85(1), 569–574. https://doi.org/10.1016/j.talanta.2011.04.025Mandić, M., Primorac, L., Čačić Kenjerić, D., Bubalo, D., Perl, A., & Flanjak, I. (2006). Characterisation of Oak Mistletoe and Common Thistle Honeys by Physicochemical, Sensory and Melissopalynology Parameters. Deutsche Lebensmittel-Rundschau: Zeitschrift Für Lebensmittelkunde Und Lebensmittelrecht, 102.Mendes, E., Brojo Proença, E., Ferreira, I. M. P. L. V. ., & Ferreira, M. A. (1998). Quality evaluation of Portuguese honey. Carbohydrate Polymers, 37(3), 219–223. https://doi.org/https://doi.org/10.1016/S0144-8617(98)00063-0Cadena Productiva de las Abejas y la Apicultura., Ministerio de agricultura y desarrollo rural 23 (2015).Ministerio de Agricultura y Desarrollo Rural. (2018). Cadena Productiva de las Abejas y la Apicultura en Colombia. http://www.agronet.gov.co/www/docs_apicola/2008225164159_Plegable CPAA.pdfMissio da Silva, P., Gonzaga, L. V., Biluca, F. C., Schulz, M., Vitali, L., Micke, G. A., Oliveira Costa, A. C., & Fett, R. (2020). Stability of Brazilian Apis mellifera L. honey during prolonged storage: Physicochemical parameters and bioactive compounds. LWT, 129, 109521. https://doi.org/10.1016/j.lwt.2020.109521Mohaghegh, S., Arefi, R., Ameri, S., & Rose, D. (1995). Design and Development of An Artificial Neural Network for Estimation of Formation Permeability. SPE Computer Applications, 7(06), 151–154. https://doi.org/10.2118/28237-PANates Parra, G., Montoya, P. M., Chamorro, F. J., Ramírez, N., Giraldo, C., & Obregón, D. (2013). Origen geográfico y botánico de mieles de Apis mellifera (APIDAE) en cuatro departamentos de Colombia. Acta Biológica Colombiana, 18(3), 427–438. https://revistas.unal.edu.co/index.php/actabiol/article/view/38290Nyawali, B., Chungu, D., Chisha-Kasumu, E., Vinya, R., Chileshe, F., & Ng’andwe, P. (2015). Enzymatic browning reduction in white cabbage (Brassica oleracea) using honey: Does honey color matter? LWT - Food Science and Technology, 61(2), 543–549. https://doi.org/https://doi.org/10.1016/j.lwt.2014.12.006O’Sullivan G., M. (2017). A Handbook for Sensory and Consumer-Driven New Product Development. In A Handbook for Sensory and Consumer-Driven New Product Development. https://doi.org/10.1016/c2014-0-03843-9Oliveri, P., & Downey, G. (2012). Multivariate class modeling for the verification of food-authenticity claims. TrAC Trends in Analytical Chemistry, 35, 74–86. https://doi.org/https://doi.org/10.1016/j.trac.2012.02.005Organización de la Cadena Productiva de las Abejas y la Apicultura en Colombia. (2011). Acuerdo de competitividad 2011-2025 (No. 2011–2025).Oroian, M., & Ropciuc, S. (2019). Romanian honey authentication using voltammetric electronic tongue. Correlation of voltammetric data with physico-chemical parameters and phenolic compounds. Computers and Electronics in Agriculture, 157, 371–379. https://doi.org/https://doi.org/10.1016/j.compag.2019.01.008Ortiz Valbuena, A. (1992). Contribución a la denominación de origen de la miel de alcarria.Otles, S. (2009). Handbook of Food Analysis Instruments (1st Editio). CRC Press.Parra, F. (2019). Capitulo 6. Métodos de clasificación. Estadística y Machine Learning Con R. https://bookdown.org/content/2274/portada.html/ 2021-01-13Pasias, I. N., Kiriakou, I. K., & Proestos, C. (2017). HMF and diastase activity in honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. Food Chemistry, 229, 425–431. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.02.084Patel, H. K., Austin, R. H., & Barber, J. (2014). The Electronic Nose: Artificial Olfaction Technology. In Biological and Medical Physics, Biomedical Engineering. http://link.springer.com/10.1007/978-81-322-1548-6Pearson, K. (1901). On Lines and Planes of Closets Fit to Systems of Points in Space. Philosophical Magazine, 559–572.Pereira, J. R., da R. Campos, A. N., de Oliveira, F. C., Silva, V. R. O., David, G. F., Da Silva, J. G., Nascimento, W. W. G., Silva, M. H. L., & Denadai, Â. M. L. (2020). Physical-chemical characterization of commercial honeys from Minas Gerais, Brazil. Food Bioscience, 36(April 2019), 100644. https://doi.org/10.1016/j.fbio.2020.100644Peris, M., & Escuder Gilabert, L. (2016). Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science & Technology, 58(0924–2244), 40–54.Persaud, K. (2016). Chapter 1- Electronic Noses and Tongues in the Food Industry (M. L. B. T.-E. N. and T. in F. S. Rodríguez Méndez (ed.); pp. 1–12). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-800243-8.00001-9Persaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299(5881), 352–355. https://doi.org/10.1038/299352a0Pita-Calvo, C., & Vázquez, M. (2017). Differences between honeydew and blossom honeys: A review. Trends in Food Science and Technology, 59, 79–87. https://doi.org/10.1016/j.tifs.2016.11.015Pourtallier, J., & Taliercio, Y. (1972). Honey control analyses. In Apiacta (Vol. 1, pp. 2–5).Quicazán, M. C. (2015). Guía Práctica Para el control y la Evaluacion de la calidad de miel y Polen (p. 36).Quicazán S, M. C., Díaz M, A. C., & Zuluaga D, C. M. (2011). La nariz electrónica, una novedosa herramienta para el control de procesos y calidad en la industria agroalimentaria. Vitae, 18(2), 209–217.Radovic, B. S., Careri, M., Mangia, A., Musci, M., Gerboles, M., & Anklam, E. (2001). Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72(4), 511–520. https://doi.org/https://doi.org/10.1016/S0308-8146(00)00263-6Recuero de los Santos, P. (2018). Machine Learning a tu alcance: La matriz de confusión. https://empresas.blogthinkbig.com/ml-a-tu-alcance-matriz-confusion/ 2020-11-13Rodríguez Medina, D. A. (2016). Identificación de la huella digital para miel de abejas con origen en zonas cafeteras de Colombia. Universidad Nacional de Colombia.Sakač, N., & Sak-Bosnar, M. (2012). A rapid method for the determination of honey diastase activity. Talanta, 93, 135–138. https://doi.org/https://doi.org/10.1016/j.talanta.2012.01.063Salamanca Grosso, G., Osorio, M., & Roberto, I. (2015). Perfil de componentes volátiles de mieles florales y monoflorales colombianas. https://doi.org/10.13140/RG.2.2.15475.78883Sandoval Niño, Z. L., & Prieto Ortiz, F. A. (2007). Caracterización de café cereza empleando técnicas de visión artificial. 60(64), 4105–4127.Santamaria, A. (2009). Diagnóstico productivo y comercial de la cadena apícola de los programas para la sustitución de cultivos ilícitos y desarrollo alternativo de Acción Social y UNODC (pp. 0–137).Saxena, S., Gautam, S., & Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food Chemistry, 118(2), 391–397. https://doi.org/10.1016/j.foodchem.2009.05.001Schramm, D. D., Karim, M., Schrader, H. R., Holt, R. R., Cardetti, M., & Keen, C. L. (2003). Honey with high levels of antioxidants can provide protection to healthy human subjects. Journal of Agricultural and Food Chemistry, 51(6), 1732–1735. https://doi.org/10.1021/jf025928kSerra Bonvehi, J., Ventura Coll, F., & Orantes Bermejo, J. F. (2019). Characterization of avocado honey (Persea americana Mill.) produced in Southern Spain. Food Chemistry, 287, 214–221. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.02.068Siddiqui, I. R. (1970). The sugars of honey. Advances in Carbohydrate Chemistry and Biochemistry, 25(C), 285–309. https://doi.org/10.1016/S0065-2318(08)60430-8Silva, A. A., Lima Neto, I. A., Misságia, R. M., Ceia, M. A., Carrasquilla, A. G., & Archilha, N. L. (2015). Artificial neural networks to support petrographic classification of carbonate-siliciclastic rocks using well logs and textural information. Journal of Applied Geophysics, 117, 118–125. https://doi.org/https://doi.org/10.1016/j.jappgeo.2015.03.027Silva, L. R., Sousa, A., & Taveira, M. (2017). Characterization of Portuguese honey from Castelo Branco region according to their pollen spectrum, physicochemical characteristics and mineral contents. Journal of Food Science and Technology, 54(8), 2551–2561. https://doi.org/10.1007/s13197-017-2700-ySimsek, A., Bilsel, M., & Goren, A. C. (2012). 13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS. Food Chemistry, 130(4), 1115–1121. https://doi.org/https://doi.org/10.1016/j.foodchem.2011.08.017Siti Nurhidayah, S., Shirwan, M., Sani, A., Azwan, M., Yuswan, H., Kartinee, N., Noorzianna, Y., Wasoh, H., Nadiha, N., Zaki, M., & Mohd, A. (2020). Discrimination of Malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning. Food Chemistry, November, 128654. https://doi.org/10.1016/j.foodchem.2020.128654Skoog, D. A., West, D. M., & Holler, James, F. (1997). Fundamentos de Química Analítica.Sobrino-Gregorio, L., Bataller, R., Soto, J., & Escriche, I. (2018). Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control, 91, 254–260. https://doi.org/10.1016/j.foodcont.2018.04.003Solayman, M., Islam, M. A., Paul, S., Ali, Y., Khalil, M. I., Alam, N., & Gan, S. H. (2016). Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 219–233. https://doi.org/10.1111/1541-4337.12182Stolzenbach, S., Byrne, D. V, & Bredie, W. L. P. (2011). Sensory local uniqueness of Danish honeys. Food Research International, 44(9), 2766–2774. https://doi.org/https://doi.org/10.1016/j.foodres.2011.06.006Tan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104–115. https://doi.org/https://doi.org/10.1016/j.aiia.2020.06.003Tiwari, K., Tudu, B., Bandhopadhya, R., & Chatterjee, A. (2012). Discrimination of monofloral honey using cyclic voltammetry. Proceedings - 2012 3rd National Conference on Emerging Trends and Applications in Computer Science, NCETACS-2012, Ic, 132–136. https://doi.org/10.1109/NCETACS.2012.6203312Tiwari, K., Tudu, B., Bandyopadhyay, R., & Chatterjee, A. (2013). Identification of monofloral honey using voltammetric electronic tongue. Journal of Food Engineering, 117(2), 205–210. https://doi.org/10.1016/j.jfoodeng.2013.02.023Tiwari, K., Tudu, B., Bandyopadhyay, R., Chatterjee, A., & Pramanik, P. (2018). Voltammetric sensor for electrochemical determination of the floral origin of honey based on a zinc oxide nanoparticle modified carbon paste electrode. Journal of Sensors and Sensor Systems, 7(1), 319–329. https://doi.org/10.5194/jsss-7-319-2018Tosi, E., Martinet, R., Ortega, M., Lucero, H., & Ré, E. (2008). Honey diastase activity modified by heating. Food Chemistry, 106(3), 883–887. https://doi.org/10.1016/j.foodchem.2007.04.025Urrego R, J. F. (2017). Carecterizacion de Mieles de Apis mellifera ,Colectadas De Diferentes Regiones de Antioquia. [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/59936Valcárcel, M., & Cárdenas, S. (2004). Qualitative Analysis. Encyclopedia of Analytical Science: Second Edition, 405–411. https://doi.org/10.1016/B0-12-369397-7/00707-XVanhanen, L. P., Emmertz, A., & Savage, G. P. (2011). Mineral analysis of mono-floral New Zealand honey. Food Chemistry, 128(1), 236–240. https://doi.org/10.1016/j.foodchem.2011.02.064Vásquez, C. L. (2010). Caracterización de mieles de San Pedro de Atacama basada en análisis físicos , químicos y melisopalinológicos .Tesis pregrado Licenciado en Biología. Universidad Astral de Chile.Velásquez, C., Gil, J. ., Urrego, J. ., Durango, D., & Castañeda, I. . (2016). Palinológico y fisicoquímicos de miel de abejas ( Apis mellifera l . ) Procedente de algunos municipios del oriente y suroeste de Antioquia ( COLOMBIA ). Revista de La Facultad de Ciencias Universidad Nacional de Colombia, Sede Medellín, 5(2), 65–87.Velásquez Giraldo, A. (2013). Caracterización físico-química y microbiológica de la miel de Apis mellifera sp. del Suroeste de Antioquia, Colombia. Ingeniería y Ciencia - Ing.Cienc., 9(18), 61–74. http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1843Vit, Patricia. Silvia, R.M. Roubik, P. D. (2013). Pot-Honey (P. Vit, S. R. M. Pedro, & D. W. Roubik (eds.)). Springer. https://doi.org/10.1007/978-1-4614-4960-7Wang, J. (2000). Analytical electrochemistry (Second Edi). Wiley-VCH.Wei, Z., & Wang, J. (2014). Tracing floral and geographical origins of honeys by potentiometric and voltammetric electronic tongue. Computers and Electronics in Agriculture, 108, 112–122. https://doi.org/10.1016/j.compag.2014.07.014Wei, Z., Wang, J., & Liao, W. (2009). Technique potential for classification of honey by electronic tongue. Journal of Food Engineering, 94(3–4), 260–266. https://doi.org/10.1016/j.jfoodeng.2009.03.016White, J. W., & Maher, J. (1953). Transglucosidation by honey invertase. Archives of Biochemistry and Biophysics, 42(2), 360–367. https://doi.org/https://doi.org/10.1016/0003-9861(53)90365-8Wu, L., Du, B., Vander Heyden, Y., Chen, L., Zhao, L., Wang, M., & Xue, X. (2017). Recent advancements in detecting sugar-based adulterants in honey – A challenge. TrAC - Trends in Analytical Chemistry, 86, 25–38. https://doi.org/10.1016/j.trac.2016.10.013Yucel, Y. (2013). Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics. Food Chemistry, 140(1/2), 231–237. https://doi.org/10.1016/j.foodchem.2013.02.046Yücel, Y., & Pinar Sultanoǧlu, P. (2013). Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Bioscience, 1, 16–25. https://doi.org/https://doi.org/10.1016/j.fbio.2013.02.001Zhou, J., Suo, Z., Zhao, P., Cheng, N., Gao, H., Zhao, J., & Cao, W. (2013). Jujube honey from china: Physicochemical characteristics and mineral contents. Journal of Food Science, 78(3). https://doi.org/10.1111/1750-3841.12049Zuluaga, C., Díaz, C., & Quicazán, M. (2014). Nariz Electrónica. Fundamentos, manejo de datos y aplicación en productos apícolas (Primera Ed). Universidad Nacional de Colombia.Zuluaga Domínguez, C. M., Nieto Veloza, A., & Quicazán de Cuenca, M. (2018). Classification of Colombian honeys by electronic nose and physical-chemical parameters, using neural networks and genetic algorithms. Journal of Apicultural Research, 57(1). https://doi.org/10.1080/00218839.2017.1339521Zuluaga Domínguez, C. M., VIT, P., Drummond Murillo, S., Moreno, A. C., & Quicazán, M. C. (2013). Perfil aromático y contenido de humedad como parámetros discriminantes para la clasificación quimiométrica de mieles de pote de diferentes especies de Meliponini. 1–8.EstudiantesInvestigadoresMaestrosPadres y familiasPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80155/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55ORIGINAL1018420810.2021.pdf1018420810.2021.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf3508277https://repositorio.unal.edu.co/bitstream/unal/80155/6/1018420810.2021.pdf417314800b5cc7320fc1c606a2addb2eMD56THUMBNAIL1018420810.2021.pdf.jpg1018420810.2021.pdf.jpgGenerated Thumbnailimage/jpeg5286https://repositorio.unal.edu.co/bitstream/unal/80155/7/1018420810.2021.pdf.jpg0cb257a9fa5773eb95e4a8d2389d5929MD57unal/80155oai:repositorio.unal.edu.co:unal/801552024-07-29 00:00:10.427Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==