Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales
The purpose of this study was to identify, analyze and describe the articulation processes of different semiotic representation registers in a teaching proposal around the rational approximation a algebraic irrational numbers. The methodological design took as reference elements of didactic engineer...
- Autores:
-
Lourido Guerrero, Diana Marcela
- Tipo de recurso:
- Informe
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/78934
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/78934
- Palabra clave:
- 370 - Educación
Pensamiento numérico
Números irracionales
Sistema de numeración decimal
Registros de representación semiótica
Number thinking
Irrational numbers
Decimal number system
Semiotic representation registers
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_d4f5600b7be1027c6c1edc2edff6c683 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/78934 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales |
title |
Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales |
spellingShingle |
Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales 370 - Educación Pensamiento numérico Números irracionales Sistema de numeración decimal Registros de representación semiótica Number thinking Irrational numbers Decimal number system Semiotic representation registers |
title_short |
Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales |
title_full |
Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales |
title_fullStr |
Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales |
title_full_unstemmed |
Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales |
title_sort |
Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales |
dc.creator.fl_str_mv |
Lourido Guerrero, Diana Marcela |
dc.contributor.advisor.spa.fl_str_mv |
Pontón Ladino, Teresa |
dc.contributor.author.spa.fl_str_mv |
Lourido Guerrero, Diana Marcela |
dc.contributor.researchgroup.spa.fl_str_mv |
EDUCACIÓN EN CIENCIAS EXACTAS Y NATURALES - EduCEN |
dc.subject.ddc.spa.fl_str_mv |
370 - Educación |
topic |
370 - Educación Pensamiento numérico Números irracionales Sistema de numeración decimal Registros de representación semiótica Number thinking Irrational numbers Decimal number system Semiotic representation registers |
dc.subject.proposal.spa.fl_str_mv |
Pensamiento numérico Números irracionales Sistema de numeración decimal Registros de representación semiótica |
dc.subject.proposal.eng.fl_str_mv |
Number thinking Irrational numbers Decimal number system Semiotic representation registers |
description |
The purpose of this study was to identify, analyze and describe the articulation processes of different semiotic representation registers in a teaching proposal around the rational approximation a algebraic irrational numbers. The methodological design took as reference elements of didactic engineering in the conception and analysis of the teaching proposal. Through the constant comparison offered by Grounded Theory, in particular, open, axial and selective coding processes are used. The didactic variables that defined the design arise from the meticulous review of research in the field of Mathematics Education around irrationals, as well as from the analysis of the elements of the semiotic-cognitive perspective. It was found that the coordination in a teaching proposal of the numeric and symbolic registers with the one-dimensional and cartesian registers allows students to construct reasoning against the difference between the exact value and the rounded value of a number, the latter being a necessary condition to discriminate the difference between rational and irrational numbers. |
publishDate |
2021 |
dc.date.accessioned.spa.fl_str_mv |
2021-01-27T00:16:54Z |
dc.date.available.spa.fl_str_mv |
2021-01-27T00:16:54Z |
dc.date.issued.spa.fl_str_mv |
2021-01-22 |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_93fc |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_93fc |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Lourido, D. (2021). Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales. Tesis de Maestría, Universidad Nacional de Colombia. |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/78934 |
identifier_str_mv |
Lourido, D. (2021). Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales. Tesis de Maestría, Universidad Nacional de Colombia. |
url |
https://repositorio.unal.edu.co/handle/unal/78934 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Adjiage, R. (1999). L’ expression des nombres rationnels et leur enseignement initial (Tesis Docotoral). Université Louis Pasteur. https://tel.archives-ouvertes.fr/tel-00012146 Ángel, M. P., & Rojas, A. H. (2014). El caso de los procesos infinitos presentes en la construcción de los números reales en algunos libros de texto de matemáticas de 8° vistos desde la teoría APOE. Facultad de Ciencia y Tecnología, Universidad Pedagógica Nacional. Artigue, M., Douady, R., Moreno, L. y Gómez, P. (1995). Ingeniería didáctica en educación matemática. Un esquema para la investigación y la innovación en la enseñanza y el aprendizaje de las matemáticas. Grupo Editorial Iberoamérica, (SA Editor: Pedro Gómez. Mèxico DF, 5). Brousseau, G. (2007). Iniciación al estudio de la teoría de las situaciones didácticas (1a ed.; D. Fregona, Ed.). (Vol. 7) Libros Zorzal. Calderón R., N. O. (2014). Diferentes construcciones del número real (Tesis de Maestría). Facultad de Ingenieria y Administración, Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/46409/ Coriat, M., & Scaglia, S. (2000). Representación de los números reales en la recta. Enseñanza de las ciencias. Revista de investigación y experiencias didácticas, 18(1), 25–34. Duval, R. (1988). Gráficas y ecuaciones: la articulación de dos registros. In Annales de Didactique et de Sciences Cognitives (Vol. 1, pp. 235-253). Duval, R. (1999). Los problemas fundamentales en el aprendizaje de las matemáticas y las formas superiores en el desarrollo cognitivo (2da ed.; M. I.D., Ed.). Cali, Colombia: Universidad del Valle, Instituto de Educación y Pedagogía, Grupo de Educación Matemática. Duval, R. (2006). Un tema crucial en la educación matemática: La habilidad para cambiar el registro de representación. La Gaceta de la RSME, 9(1), 143–168. Duval, R. (2016). Un análisis cognitivo de problemas de comprensión en el aprendizaje de las matemáticas. En Comprensión y aprendizaje en matemáticas: perspectivas seleccionadas. (pp. 61–94). Editorial Universidad Distrital Francisco José de Caldas. Duval, R. (2017a). Semiosis y pensamiento humano: registros semióticos y aprendizajes intelectuales (Traducción). Cali: Programa Editorial Universidad del Valle. Duval, R. (2017b). Understanding the Mathematical Way of Thinking – The Registers of Semiotic Representations. Springer International Publishing. (T. Campos, Ed.) https://doi.org/10.1007/978-3-319-56910-9 Flórez, R. (1999). Evaluación pedagógica y cognición.. Santafé de Bogotá. McGrawHill. García, H. (2016). Propuesta Multirregistro para la conceptualización de los procesos de homogenización y equivalencia de las representaciones fraccionarias en grado seéptimo de la IE Albeto Mendoza Mayor. (Tesis de Maestría). Facultad de Ingenieria y Administración, Universidad Nacional de Colombia sede Palmira. García, A. (2017). Los números reales como conjuntos de intervalos, ventajas y limitaciones de su consideración en la educación media. (Tesis de maestría), Instituto de Educación y Pedagogía, Universidad del Valle. Marmolejo, G. A., y González, M. T. (2015). Control visual en la construcción del área de superficies planas en los textos escolares. Una metodología de análisis. Revista Latinoamericana de Investigacion en Matematica Educativa, 18(3), 301–328. https://doi.org/10.12802/relime.13.1831 Ministerio de Educación Nacional. (1998). Lineamientos Curriculares en Matemáticas. Áreas Obligatorias y Fundamentales (Primera Ed; E. Ministerio, Ed.). Bogotá. Ministerio de Educación Nacional República de Colombia. (2006). Estándares Básicos de Competencias en Matemáticas. Potenciar el pensamiento matemático: ¡un reto escolar ! En Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas (pp. 46–95). Ministerio de Educación Nacional de Colombia. (2016). Derechos Básicos de Aprendizaje. Colombia Aprende. http://colombiaaprende.edu.co/html/micrositios/1752/w3-article-349446.html Moreno, L. E. & Waldegg, G. (1995). Variación y representación: del número al continuo. Educación Matemática, 7(01), 12-28. http://www.revista-educacion-matematica.org.mx/revista/ Niss, M. (1998). ¿Por qué enseñamos matemáticas en la escuela? En L. Puig (Ed.), Investigar y enseñar. Variedades de la educación matemática (pp. 7–16). Universidad de los Andes. http: //ued. uniandes. edu.co Obando, G. (2015). Sistema de prácticas matemáticas en relación con las Razones, las Proporciones y la Proporcionalidad en los grados 3 y 4.(Tesis Dcotoral). Instituto de Educación y pedagogía, Universidad del Valle. Pontón, T. (2008). Una Propuesta Multirregistro para la Conceptualización Inicial de las Fracciones. (Tesis de Maestría). Instituto de Educación y Pedagogía, Universidad del Valle. Reina, L., & Wilhelmi, M. R. (2012). Configuraciones epistémicas asociadas al número irracional. Sentidos y desafíos en Educación Secundaria. Educación Matemática, 24(3), 67–97. Romero, I. (1995). La introducción del número real en educación secundaria. (Tesis Doctoral). Universidad de Granada. Romero, I., y Rico, L. (1999). Representación y comprensión del concepto de número real. Una experiencia didáctica en secundaria. Revista EMA, 4(2), 117–151. Sánchez, J. C., y Valdivé F., C. (2011). El número irracional: un punto de vista epistemológico con interés didáctico. Revista Científica Teorías, Enfoques y Aplicaciones en las Ciencias Sociales, 4(8), 31-45. Scaglia, S. (2000). Dos conflictos al representar números reales en la recta. (Tesis Doctoral). Universidad de Granada. Scott, K. W., & Howell, D. (2008). Clarifying Analysis and Interpretation in Grounded Theory: Using a Conditional Relationship Guide and Reflective Coding Matrix. International Journal of Qualitative Methods, 7(2), 1–15. https://doi.org/10.1177/160940690800700201 Sirotic, N., & Zazkis, R. (2007). Irrational numbers on the number line - Where are they? International Journal of Mathematical Education in Science and Technology, 38(4), 477–488. https://doi.org/10.1080/00207390601151828 Spinadel, V. W. De. (2003). La familia de números metálicos. 6, 17–44. http://157.92.136.232/index.php/CIMBAGE/article/view/317 Strauss, A., & Corbin, J. (1994). Grounded Theory Methodology: An overview. Handbook of qualitative research. London, 17(1), 273–285. Waldegg, G. (1996). La contribución de Simon Stevin a la construcción del concepto de número. Educación Matemática, 8(2), 5–17. http://www.revista-educacion-matematica.org.mx/revista/ Zazkis, R., & Sirotic, N. (2004). Making sense of irrational numbers: focusing on representation. The 28th International Conference of the International Group for the Psychology of Mathematics Education, 4, (pp. 497–504). http://www.emis.ams.org/proceedings/PME28/RR/RR082_Zazkis.pdf Zazkis, R., & Sirotic, N. (2010). Representing and defining irrational numbers: Exposing the missing link. En CBMS issues in Mathematics Education athematics Education (Vol. 7, pp. 1–27). https://doi.org/10.1090/cbmath/016/01 González, P. (2008). La solución de Eudoxo a la crisis de los inconmensurables. Sigma 33(33), 101–130. Konic, P. (2011). Evaluación de conocimientos de futuros profesores para la enseñanza de los números decimales. (Tesis Doctoral). Universidad de Granada. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
160 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ingeniería y Administración - Maestría en Enseñanza de las Ciencias Exactas y Naturales |
dc.publisher.department.spa.fl_str_mv |
Maestría en Enseñanza de las Ciencias Exactas y Naturales |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/78934/1/1113515509.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/78934/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/78934/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/78934/4/1113515509.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
86f980b901e6667181a4a61360a512b1 cccfe52f796b7c63423298c2d3365fc6 dab767be7a093b539031785b3bf95490 11839be34ff24352bed63a586b429eb5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089492002242560 |
spelling |
Atribución-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pontón Ladino, Teresa7c580063-9774-4c90-9f52-74163a913521-1Lourido Guerrero, Diana Marcela51386c37-8ccc-4ab3-b6f4-c8463aea681aEDUCACIÓN EN CIENCIAS EXACTAS Y NATURALES - EduCEN2021-01-27T00:16:54Z2021-01-27T00:16:54Z2021-01-22Lourido, D. (2021). Análisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionales. Tesis de Maestría, Universidad Nacional de Colombia.https://repositorio.unal.edu.co/handle/unal/78934The purpose of this study was to identify, analyze and describe the articulation processes of different semiotic representation registers in a teaching proposal around the rational approximation a algebraic irrational numbers. The methodological design took as reference elements of didactic engineering in the conception and analysis of the teaching proposal. Through the constant comparison offered by Grounded Theory, in particular, open, axial and selective coding processes are used. The didactic variables that defined the design arise from the meticulous review of research in the field of Mathematics Education around irrationals, as well as from the analysis of the elements of the semiotic-cognitive perspective. It was found that the coordination in a teaching proposal of the numeric and symbolic registers with the one-dimensional and cartesian registers allows students to construct reasoning against the difference between the exact value and the rounded value of a number, the latter being a necessary condition to discriminate the difference between rational and irrational numbers.Este estudio tuvo como propósito identificar, analizar y describir los procesos de articulación de distintos registros de representación semiótica en una propuesta de enseñanza alrededor de la aproximación racional a números irracionales algebraicos. El diseño metodológico tomó como referencia elementos de la Ingeniería Didáctica en la concepción y análisis de la propuesta de enseñanza. Se analiza lo ocurrido durante la implementación por medio de la comparación constante que ofrece la Teoría Fundamentada, en particular se recurre a los procesos de codificación abierta, axial y selectiva. Las variables didácticas que definieron el diseño, surgen de la revisión minuciosa de investigaciones en el campo de la Educación Matemática alrededor de los irracionales, así como del análisis de los elementos de la perspectiva semiótico-cognitiva. Se encontró que la coordinación en una propuesta de enseñanza de los registros numéricos y simbólicos con los registros unidimensional y cartesiano permite a los estudiantes construir razonamientos frente a la diferencia entre el valor exacto y el valor redondeado de un número, siendo esto último, condición necesaria para discriminar la diferencia entre números racionales e irracionales.Maestría160application/pdfspa370 - EducaciónPensamiento numéricoNúmeros irracionalesSistema de numeración decimalRegistros de representación semióticaNumber thinkingIrrational numbersDecimal number systemSemiotic representation registersAnálisis exploratorio de los elementos semiótico-cognitivos vinculados a la enseñanza de los números irracionalesDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_93fchttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/WPPalmira - Ingeniería y Administración - Maestría en Enseñanza de las Ciencias Exactas y NaturalesMaestría en Enseñanza de las Ciencias Exactas y NaturalesUniversidad Nacional de Colombia - Sede PalmiraAdjiage, R. (1999). L’ expression des nombres rationnels et leur enseignement initial (Tesis Docotoral). Université Louis Pasteur. https://tel.archives-ouvertes.fr/tel-00012146Ángel, M. P., & Rojas, A. H. (2014). El caso de los procesos infinitos presentes en la construcción de los números reales en algunos libros de texto de matemáticas de 8° vistos desde la teoría APOE. Facultad de Ciencia y Tecnología, Universidad Pedagógica Nacional.Artigue, M., Douady, R., Moreno, L. y Gómez, P. (1995). Ingeniería didáctica en educación matemática. Un esquema para la investigación y la innovación en la enseñanza y el aprendizaje de las matemáticas. Grupo Editorial Iberoamérica, (SA Editor: Pedro Gómez. Mèxico DF, 5).Brousseau, G. (2007). Iniciación al estudio de la teoría de las situaciones didácticas (1a ed.; D. Fregona, Ed.). (Vol. 7) Libros Zorzal.Calderón R., N. O. (2014). Diferentes construcciones del número real (Tesis de Maestría). Facultad de Ingenieria y Administración, Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/46409/Coriat, M., & Scaglia, S. (2000). Representación de los números reales en la recta. Enseñanza de las ciencias. Revista de investigación y experiencias didácticas, 18(1), 25–34.Duval, R. (1988). Gráficas y ecuaciones: la articulación de dos registros. In Annales de Didactique et de Sciences Cognitives (Vol. 1, pp. 235-253).Duval, R. (1999). Los problemas fundamentales en el aprendizaje de las matemáticas y las formas superiores en el desarrollo cognitivo (2da ed.; M. I.D., Ed.). Cali, Colombia: Universidad del Valle, Instituto de Educación y Pedagogía, Grupo de Educación Matemática.Duval, R. (2006). Un tema crucial en la educación matemática: La habilidad para cambiar el registro de representación. La Gaceta de la RSME, 9(1), 143–168.Duval, R. (2016). Un análisis cognitivo de problemas de comprensión en el aprendizaje de las matemáticas. En Comprensión y aprendizaje en matemáticas: perspectivas seleccionadas. (pp. 61–94). Editorial Universidad Distrital Francisco José de Caldas.Duval, R. (2017a). Semiosis y pensamiento humano: registros semióticos y aprendizajes intelectuales (Traducción). Cali: Programa Editorial Universidad del Valle.Duval, R. (2017b). Understanding the Mathematical Way of Thinking – The Registers of Semiotic Representations. Springer International Publishing. (T. Campos, Ed.) https://doi.org/10.1007/978-3-319-56910-9Flórez, R. (1999). Evaluación pedagógica y cognición.. Santafé de Bogotá. McGrawHill.García, H. (2016). Propuesta Multirregistro para la conceptualización de los procesos de homogenización y equivalencia de las representaciones fraccionarias en grado seéptimo de la IE Albeto Mendoza Mayor. (Tesis de Maestría). Facultad de Ingenieria y Administración, Universidad Nacional de Colombia sede Palmira.García, A. (2017). Los números reales como conjuntos de intervalos, ventajas y limitaciones de su consideración en la educación media. (Tesis de maestría), Instituto de Educación y Pedagogía, Universidad del Valle.Marmolejo, G. A., y González, M. T. (2015). Control visual en la construcción del área de superficies planas en los textos escolares. Una metodología de análisis. Revista Latinoamericana de Investigacion en Matematica Educativa, 18(3), 301–328. https://doi.org/10.12802/relime.13.1831Ministerio de Educación Nacional. (1998). Lineamientos Curriculares en Matemáticas. Áreas Obligatorias y Fundamentales (Primera Ed; E. Ministerio, Ed.). Bogotá.Ministerio de Educación Nacional República de Colombia. (2006). Estándares Básicos de Competencias en Matemáticas. Potenciar el pensamiento matemático: ¡un reto escolar ! En Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas (pp. 46–95).Ministerio de Educación Nacional de Colombia. (2016). Derechos Básicos de Aprendizaje. Colombia Aprende. http://colombiaaprende.edu.co/html/micrositios/1752/w3-article-349446.htmlMoreno, L. E. & Waldegg, G. (1995). Variación y representación: del número al continuo. Educación Matemática, 7(01), 12-28. http://www.revista-educacion-matematica.org.mx/revista/Niss, M. (1998). ¿Por qué enseñamos matemáticas en la escuela? En L. Puig (Ed.), Investigar y enseñar. Variedades de la educación matemática (pp. 7–16). Universidad de los Andes. http: //ued. uniandes. edu.coObando, G. (2015). Sistema de prácticas matemáticas en relación con las Razones, las Proporciones y la Proporcionalidad en los grados 3 y 4.(Tesis Dcotoral). Instituto de Educación y pedagogía, Universidad del Valle.Pontón, T. (2008). Una Propuesta Multirregistro para la Conceptualización Inicial de las Fracciones. (Tesis de Maestría). Instituto de Educación y Pedagogía, Universidad del Valle.Reina, L., & Wilhelmi, M. R. (2012). Configuraciones epistémicas asociadas al número irracional. Sentidos y desafíos en Educación Secundaria. Educación Matemática, 24(3), 67–97.Romero, I. (1995). La introducción del número real en educación secundaria. (Tesis Doctoral). Universidad de Granada.Romero, I., y Rico, L. (1999). Representación y comprensión del concepto de número real. Una experiencia didáctica en secundaria. Revista EMA, 4(2), 117–151.Sánchez, J. C., y Valdivé F., C. (2011). El número irracional: un punto de vista epistemológico con interés didáctico. Revista Científica Teorías, Enfoques y Aplicaciones en las Ciencias Sociales, 4(8), 31-45.Scaglia, S. (2000). Dos conflictos al representar números reales en la recta. (Tesis Doctoral). Universidad de Granada.Scott, K. W., & Howell, D. (2008). Clarifying Analysis and Interpretation in Grounded Theory: Using a Conditional Relationship Guide and Reflective Coding Matrix. International Journal of Qualitative Methods, 7(2), 1–15. https://doi.org/10.1177/160940690800700201Sirotic, N., & Zazkis, R. (2007). Irrational numbers on the number line - Where are they? International Journal of Mathematical Education in Science and Technology, 38(4), 477–488. https://doi.org/10.1080/00207390601151828Spinadel, V. W. De. (2003). La familia de números metálicos. 6, 17–44. http://157.92.136.232/index.php/CIMBAGE/article/view/317Strauss, A., & Corbin, J. (1994). Grounded Theory Methodology: An overview. Handbook of qualitative research. London, 17(1), 273–285.Waldegg, G. (1996). La contribución de Simon Stevin a la construcción del concepto de número. Educación Matemática, 8(2), 5–17. http://www.revista-educacion-matematica.org.mx/revista/Zazkis, R., & Sirotic, N. (2004). Making sense of irrational numbers: focusing on representation. The 28th International Conference of the International Group for the Psychology of Mathematics Education, 4, (pp. 497–504). http://www.emis.ams.org/proceedings/PME28/RR/RR082_Zazkis.pdfZazkis, R., & Sirotic, N. (2010). Representing and defining irrational numbers: Exposing the missing link. En CBMS issues in Mathematics Education athematics Education (Vol. 7, pp. 1–27). https://doi.org/10.1090/cbmath/016/01González, P. (2008). La solución de Eudoxo a la crisis de los inconmensurables. Sigma 33(33), 101–130.Konic, P. (2011). Evaluación de conocimientos de futuros profesores para la enseñanza de los números decimales. (Tesis Doctoral). Universidad de Granada.ORIGINAL1113515509.2021.pdf1113515509.2021.pdfapplication/pdf5678934https://repositorio.unal.edu.co/bitstream/unal/78934/1/1113515509.2021.pdf86f980b901e6667181a4a61360a512b1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/78934/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/78934/3/license_rdfdab767be7a093b539031785b3bf95490MD53THUMBNAIL1113515509.2021.pdf.jpg1113515509.2021.pdf.jpgGenerated Thumbnailimage/jpeg5159https://repositorio.unal.edu.co/bitstream/unal/78934/4/1113515509.2021.pdf.jpg11839be34ff24352bed63a586b429eb5MD54unal/78934oai:repositorio.unal.edu.co:unal/789342023-07-19 23:03:54.606Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |