Uso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD

Ilustraciones, tablas

Autores:
Garzón García, Alba Mery
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82125
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82125
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Inocuidad alimentaria
Procesamiento de alimentos
Food processing
Escherichia coli
Tommy Atkins
Mango
Dinámica de fluidos computacional
Microbiología predictiva
Parámetros cinéticos
Procesamiento mínimo
Atributos de calidad
Computational fluid dynamics
Predictive microbiology
Kinetic parameters
Quality attributes
Fresh-cut
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_cb47d36cf4a8fe89a5394423b1678adf
oai_identifier_str oai:repositorio.unal.edu.co:unal/82125
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.none.fl_str_mv Uso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD
dc.title.translated.eng.fl_str_mv Use of UV-C light on “Tommy Atkins” mango and its effect on quality and safety attributes: Mathematical study based on CFD
title Uso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD
spellingShingle Uso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD
630 - Agricultura y tecnologías relacionadas
Inocuidad alimentaria
Procesamiento de alimentos
Food processing
Escherichia coli
Tommy Atkins
Mango
Dinámica de fluidos computacional
Microbiología predictiva
Parámetros cinéticos
Procesamiento mínimo
Atributos de calidad
Computational fluid dynamics
Predictive microbiology
Kinetic parameters
Quality attributes
Fresh-cut
title_short Uso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD
title_full Uso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD
title_fullStr Uso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD
title_full_unstemmed Uso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD
title_sort Uso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD
dc.creator.fl_str_mv Garzón García, Alba Mery
dc.contributor.advisor.none.fl_str_mv Dussán Sarria, Saúl
dc.contributor.author.none.fl_str_mv Garzón García, Alba Mery
dc.contributor.educationalvalidator.none.fl_str_mv Hleap Zapata, José Igor
Ruíz Cruz, Saúl
dc.contributor.researchgroup.spa.fl_str_mv Manejo y agroindustrialización de productos de origen biológico
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Inocuidad alimentaria
Procesamiento de alimentos
Food processing
Escherichia coli
Tommy Atkins
Mango
Dinámica de fluidos computacional
Microbiología predictiva
Parámetros cinéticos
Procesamiento mínimo
Atributos de calidad
Computational fluid dynamics
Predictive microbiology
Kinetic parameters
Quality attributes
Fresh-cut
dc.subject.agrovoc.none.fl_str_mv Inocuidad alimentaria
Procesamiento de alimentos
Food processing
Escherichia coli
Tommy Atkins
Mango
dc.subject.proposal.spa.fl_str_mv Dinámica de fluidos computacional
Microbiología predictiva
Parámetros cinéticos
Procesamiento mínimo
Atributos de calidad
dc.subject.proposal.eng.fl_str_mv Computational fluid dynamics
Predictive microbiology
Kinetic parameters
Quality attributes
Fresh-cut
description Ilustraciones, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-08-25T22:14:34Z
dc.date.available.none.fl_str_mv 2022-08-25T22:14:34Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82125
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82125
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdel-Fattah, A. ., Hegazy, E. A., & Ezz El-Din, H. (2000). Thymol-blue dyed poly(vinyl butyral) films for monitoring ultraviolet radiation. Journal of Photochemistry and Photobiology A: Chemistry, 137(1), 37–43. https://doi.org/10.1016/S1010-6030(00)00355-5
Adhikari, A., Syamaladevi, R. M., Killinger, K., & Sablani, S. S. (2015). Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces. International Journal of Food Microbiology, 210, 136–142. https://doi.org/10.1016/j.ijfoodmicro.2015.06.018
Agronet. (2018). CORPOICA identifica los mejores mangos criollos para mercado interno y exportación. http://www.agronet.gov.co/Noticias/Paginas/Noticia171.aspx
Alfano, O. M., Romero, R. L., & Cassano, A. E. (1986). Radiation field modelling in photoreactors-I. homogeneous media. Chemical Engineering Science, 41(3), 421–444. https://doi.org/10.1016/0009-2509(86)87025-7
Ali, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2018). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 58(15), 2632–2649. https://doi.org/10.1080/10408398.2017.1339180
Allende, A., Tomás-Barberán, F. A., & Gil, M. I. (2006). Minimal processing for healthy traditional foods. Trends in Food Science & Technology, 17(9), 513–519. https://doi.org/10.1016/J.TIFS.2006.04.005
Almeida-Miguel, A. C., Durigan, J. F., Marques, K. M., Ascari-Morgado, C. M., & Ferraudo, A. S. (2016). Prevention of chilling injury in “Tommy Atkins” mangoes previously stored at 5 °C, using heat tratment and radiation UV (UV-C). Revista Brasileira de Fruticultura, 38(1), 53–63. https://doi.org/10.1590/0100-2945-123/14
Alothman, M., Bhat, R., & Karim, A. A. (2009). UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science & Emerging Technologies, 10(4), 512–516. https://doi.org/10.1016/J.IFSET.2009.03.004
Anandharamakrishnan, C. (2013). Computational fluid dynamics applications in food processing. Springer-Verlag. https://doi.org/10.1007/978-1-4614-7990-1_1
ANSYS Inc. (2006). 8.8.3 Refractive index. https://www.sharcnet.ca/Software/Fluent6/html/ug/node359.htm
ANSYS Inc. (2009a). 5.3.2 Radiative transfer equation. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node111.htm
ANSYS Inc. (2009b). 5.3.6 Discrete ordinates (DO) radiation model theory. http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node115.htm
AOAC International. (2012). Official Methods of Analysis of AOAC International (G. W. Latimer (Ed.); 19th Edition). AOAC International.
Ares, G., Giménez, A., & Gámbaro, A. (2008). Sensory shelf life estimation of minimally processed lettuce considering two stages of consumers’ decision-making process. Appetite, 50(2–3), 529–535. https://doi.org/10.1016/J.APPET.2007.11.002
Artés-Hernández, F., Escalona, V. H., Robles, P. A., Martínez-Hernández, G. B., & Artés, F. (2009). Effect of UV-C radiation on quality of minimally processed spinach leaves. Journal of the Science of Food and Agriculture, 89(3), 414–421. https://doi.org/10.1002/JSFA.3460
Artés-Hernández, F., Martínez-Hernández, G. B., Aguayo, E., Gómez, P. A., & Artés, F. (2017). Fresh-cut fruit and vegetables: Emerging eco-friendly techniques for sanitation and preserving safety. In I. Kahramanoglu (Ed.), Postharvest handling. IntechOpen. https://doi.org/10.5772/INTECHOPEN.69476
Artés-Hernández, F., Robles, P. A., Gómez, P. A., Tomás-Callejas, A., Artés, F., & Martínez-Hernández, G. B. (2021). Quality changes of fresh-cut watermelon during storage as affected by cut intensity and UV-C pre-treatment. Food and Bioprocess Technology, 14(3), 505–517. https://doi.org/10.1007/S11947-021-02587-1/TABLES/2
Artés, F., & Allende, A. (2015). Minimal processing of fresh fruit, vegetables, and juices. In D. W. Sun (Ed.), Emerging technologies for food processing (pp. 583–597). Academic Press.
Artés, Francisco, & Allende, A. (2014). Minimal processing of fresh fruit, vegetables, and juices. In D.-W. Sun (Ed.), Emerging technologies for food processing (Second Edition, pp. 583–597). Academic Press. https://doi.org/10.1016/B978-0-12-411479-1.00031-0
Aryal, s., baniya, m. k., danekhu, k., kunwar, p., gurung, r., & koirala, n. (2019). total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4). https://doi.org/10.3390/PLANTS8040096
Asohofrucol. (2016a). Información Hortofrutícola. http://www.asohofrucol.com.co/interna.php?cat=3&scat=45&act=1
Asohofrucol. (2016b). Principales líneas productivas 2016. http://www.asohofrucol.com.co/imagenes/Principales_lineas_productivas_2016.pdf
Atilgan, M. R., Yildiz, S., Kaya, Z., & Unluturk, S. (2021). Kinetic and process modeling of uv-c irradiation of foods. In K. Knoerzer & K. Muthukumarappan (Eds.), Innovative food processing technologies: A Comprehensive Review (Vol. 2, pp. 227–255). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22972-7
Azeredo, H. M. C. de. (2004). Fundamentos de estabilidade de alimentos. Embrapa Agroindústria Tropical.
Bachmann, R. (1978). Apparatus for automatic low-bacteria to aseptic filling and packing of foodstuffs (Patent No. 4,121,107). Oblon, Fisher, Spivak, McClelland & Maier. https://patentimages.storage.googleapis.com/1b/fa/e9/22350344d707cf/US4121107.pdf
Bachmann, R., & Sturm, W. (1979). Method for automatic low-bacteria to aseptic filling and packing of foodstuffs employing ultraviolet radiation (Patent No. 4,175,140). Oblon, Fisher, Spivak, McClelland & Maier. https://patentimages.storage.googleapis.com/cd/25/70/bc4d84f94eac0c/US4175140.pdf
Baeza, A., Silveira, A. C., & Escalona, V. (2015). Empleo de radiación UV-C como método de desinfección para la elaboración de rúcula (Eruca sativa Mill.) mínimamente procesada. Agrociencia (Uruguay), 19(2), 26–35. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482015000200004
Baka, M., Mercier, J., Corcuff, R., Castaigne, F., & Arul, J. (1999). Photochemical treatment to improve storability of fresh strawberries. Journal of Food Science, 64(6), 1068–1072. https://doi.org/10.1111/j.1365-2621.1999.tb12284.x
Balaguera-López, H. E., & Arévalo, A. H. (2012). Estudio de algunos cambios bioquímicos durante el crecimiento y hasta la cosecha del fruto de champa (Campomanesia lineatifolia R. & P. familia myrtaceae). Revista Brasileira de Fruticultura, 34(2), 460–468. https://doi.org/10.1590/S0100-29452012000200019
Barreto, C. F., Navroski, R., Duarte-Marques, L. O., dos Santos, R. F., Barbosa-Malgarim, M., & Martins, C. R. (2021). Influência da radiação ultravioleta e aditivos na conservação de kiwis minimamente processados. Brazilian Journal of Food Technology, 24, e2020024. https://doi.org/10.1590/1981-6723.02420
Barreto, M., Castillo-Ruiz, M., & Retamal, P. (2016). Salmonella enterica: una revisión de la trilogía agente, hospedero y ambiente, y su trascendencia en Chile. Revista Chilena de Infectología, 33(5), 547–557. https://doi.org/10.4067/S0716-10182016000500010
Beltrán, A., Ramos, M., & Alvarez, M. (2010). Estudio de la vida útil de fresas (Fragaria vesca) mediante tratamiento con radiación ultravioleta de onda corta (UV-C). Revista Tecnológica ESPOL, 23(2), 17–24. http://www.rte.espol.edu.ec/index.php/tecnologica/article/view/51/22
Benjamin, B., Uba, A., Yusha’u, M., Maikaje, D. B., Nyakaat, N. N., & Daniel, A. M. (2018). Isolation of Escheria Coli from fruits and vegetables in Kaduna metropolis. International Journal of Engineering Science and Computing, 8(7), 18598–18601. http://ijesc.org/upload/938bc913555306cae8ae43345c8c1f23.Isolation of Escheria Coli from Fruits and Vegetables in Kaduna Metropolis.pdf
Bevilacqua, A., Speranza, B., Sinigaglia, M., & Corbo, M. R. (2015). A focus on the death kinetics in predictive microbiology: benefits and limits of the most important models and some tools dealing with their application in foods. Foods, 4(4), 565–580. https://doi.org/10.3390/foods4040565
Bhagat, B., & Chakraborty, S. (2022). Potential of pulsed light treatment to pasteurize pomegranate juice: Microbial safety, enzyme inactivation, and phytochemical retention. LWT, 159, 113215. https://doi.org/10.1016/J.LWT.2022.113215
Brandl, M. T. (2006). Fitness of human enteric pathogens on plants and implications for food safety. Annual Review of Phytopathology, 44, 367–392. https://doi.org/10.1146/annurev.phyto.44.070505.143359
Buosi, D. T. M., de Moraes, J. O., Cheng, Y., Cheng, R. A., Moraru, C. I., & Carciofi, B. A. M. (2022). Effective pulsed light treatments for inactivating Salmonella enterica serotypes. Food Control, 135, 108776. https://doi.org/10.1016/J.FOODCONT.2021.108776
Butson, E. T., Cheung, T., Yu, P. K. N., & Butson, M. J. (2010). Measuring solar UV radiation with EBT radiochromic film. Physics in Medicine and Biology, 55(20), N487–N493. https://doi.org/10.1088/0031-9155/55/20/N01
Butson, M. J., Yu, P. K. N., Cheung, T., & Metcalfe, P. (2003). Radiochromic film for medical radiation dosimetry. Materials Science and Engineering: R: Reports, 41(3–5), 61–120. https://doi.org/10.1016/S0927-796X(03)00034-2
Cao, M., Wang, D., Qiu, L., Ren, X., & Ma, H. (2021). Shelf life prediction of ‘royal gala’ apples based on quality attributes and storage temperature. Horticultural Science and Technology, 39(3), 343–355. https://doi.org/10.7235/HORT.20210031
Cardelli, C., & Labuza, T. P. (2001). Application of Weibull hazard analysis to the determination of the shelf life of roasted and ground coffee. LWT, 34(5), 273–278. https://doi.org/10.1006/FSTL.2000.0732
Castañeda-Ruelas, G., Eslava-Campos, C., Castro-del Campo, N., León-Félix, J., & Chaidez-Quiroz, C. (2014). Listeriosis en México: importancia clínica y epidemiológica. Salud Pública de México, 56(6), 654–659. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342014000600016
Castillejo, N., Martínez-Zamora, L., & Artés-Hernández, F. (2022). Postharvest UV radiation enhanced biosynthesis of flavonoids and carotenes in bell peppers. Postharvest Biology and Technology, 184, 111774. https://doi.org/10.1016/J.POSTHARVBIO.2021.111774
Chang, J. C. H., Ossoff, S. F., Lobe, D. C., Dorfman, M. H., Dumais, C. M., Qualls, R. G., & Johnson, J. D. (1985). UV inactivation of pathogenic and indicator microorganisms. Applied and Environmental Microbiology, 49(6), 1361–1365.
Charles, F., Vidal, V., Olive, F., Filgueiras, H., & Sallanon, H. (2013). Pulsed light treatment as new method to maintain physical and nutritional quality of fresh-cut mangoes. Innovative Food Science & Emerging Technologies, 18, 190–195. https://doi.org/10.1016/J.IFSET.2013.02.004
Chisari, M., Barbagallo, R. N., Spagna, G., & Artes, F. (2011). Improving the quality of fresh-cut melon through inactivation of degradative oxidase and pectinase enzymatic activities by UV-C treatment. International Journal of Food Science & Technology, 46(3), 463–468. https://doi.org/10.1111/j.1365-2621.2010.02466.x
Chlebicz, A., & Śliżewska, K. (2018). Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. International Journal of Environmental Research and Public Health, 15(5), 863. https://doi.org/10.3390/ijerph15050863
Chun, H. H., Kim, H. J., Won, M., Chung, K. S., & Song, K. Bin. (2010). A comparison of kinetic models of foodborne pathogen inactivation by aqueous chlorine dioxide, fumaric acid, and ultraviolet-C. Journal of Applied Biological Chemistry, 53(2), 243–248. https://doi.org/10.3839/jksabc.2010.038
Coello-Torres, A., Fernández-Galván, D., & Galán-Saúco, V. (1997). Guía Descriptiva de Cultivares de Mango (P. y A. Consejería de Agricultura (Ed.)). Litografía Gráficas Sabater. https://www.icia.es/icia/download/fruticulturatropical/Guia descriptiva de cultivares de mango_optimized.pdf
Corpas-Iguarán, E. J., & Tapasco-Alzate, O. A. (2014). Hallazgos de la biosíntesis del etileno en frutas climatéricas y de los factores que afectan la ruta metabólica. Alimentos Hoy, 22(31), 46–63. http://www.alimentoshoy.acta.org.co/index.php/hoy/article/view/255/239
Cossart, P., & Sansonetti, P. J. (2004). Bacterial invasion: The paradigms of enteroinvasive pathogens. Science, 304(5668), 242–248. https://doi.org/10.1126/science.1090124
Costa, L., Vicente, A. R., Civello, P. M., Chaves, A. R., & Martínez, G. A. (2006). UV-C treatment delays postharvest senescence in broccoli florets. Postharvest Biology and Technology, 39(2), 204–210. https://doi.org/10.1016/J.POSTHARVBIO.2005.10.012
Courraud, J., Berger, J., Cristol, J., & Avallone, S. (2013). Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chemistry, 136(2), 871–877. https://doi.org/10.1016/J.FOODCHEM.2012.08.076
Dandekar, T., Fieselmann, A., Fischer, E., Popp, J., Hensel, M., & Noster, J. (2015). Salmonella-how a metabolic generalist adopts an intracellular lifestyle during infection. Frontiers in Cellular and Infection Microbiology, 4, 191. https://doi.org/10.3389/fcimb.2014.00191
de Almeida-Lopes, M. M., de Lucena, H. H., Souza da Silveira, M. R., dos Santos Garruti, D., Feitosa Machado, T., Souza de Aragão, F. A., & de Oliveira Silva, E. (2021). The use of electrolyzed water as a disinfectant for fresh cut mango. Scientia Horticulturae, 287, 110227. https://doi.org/10.1016/J.SCIENTA.2021.110227
De Almeida-Melo, E., & Rodrigues De Araújo, C. (2011). Mangas das variedades espada, rosa e tommy atkins : compostos bioativos e potencial antioxidante. CIÊNCIAS AGRÁRIAS, 32(4), 1451–1460. https://doi.org/10.5433/1679-0359.2011v32n4p1451
De Corato, U. (2020). Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60(6), 940–975. https://doi.org/10.1080/10408398.2018.1553025
de Curtis, M. L., Franceschi, O., & De Castro, N. (2002). Listeria monocytogenes en vegetales mínimamente procesados. Archivos Latinoamericanos de Nutrición, 52(3), 282–288. http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0004-06222002000300009
de Morais, P. L. D., Filgueiras, H. A., de Pinho, J. L. N., Alves, R. E., & de Assis, J. S. (2003). Vida útil de mangos cv. Tommy atkins recolectados en el estadio de maduración comercial. Revista Iberoamericana de Tecnología Postcosecha, 5(1), 26–32. http://www.redalyc.org/html/813/81350104/
de Siqueira-Oliveira, L., Eça, K. S., de Aquino, A. C., & Vasconcelos, L. B. (2018). Hydrogen peroxide (H2O2) for postharvest fruit and vegetable disinfection. In M. Wasim-Siddiqui (Ed.), Postharvest disinfection of fruits and vegetables (First Edition, pp. 91–99). Academic Press. https://doi.org/10.1016/b978-0-12-812698-1.00004-2
Devic, S. (2011). Radiochromic film dosimetry: Past, present, and future. Physica Medica, 27(3), 122–134. https://doi.org/10.1016/j.ejmp.2010.10.001
Díaz-Sobac, R., & Vernon-Carter, J. (2009). Inocuidad microbiológica de frutas frescas y mínimamente procesadas. CYTA-Journal of Food, 2(3), 133–136. https://doi.org/10.1080/11358129909487594
Djioua, T., Charles, F., Freire, M., Filgueiras, H., Ducamp-Collin, M. N., & Sallanon, H. (2010). Combined effects of postharvest heat treatment and chitosan coating on quality of fresh-cut mangoes (Mangifera indica L.). International Journal of Food Science & Technology, 45(4), 849–855. https://doi.org/10.1111/J.1365-2621.2010.02209.X
Dussán-Sarria, S., Perea-Camayo, M. A., & Hleap-Zapata, J. I. (2019). Efecto de diferentes antioxidantes y envases en atributos físico-químicos y sensoriales de orellana refrigerada. Información Tecnológica, 30(6), 55–62. https://doi.org/10.4067/S0718-07642019000600055
Dussán-Sarria, S., Ramírez-Yela, J. I., & Hleap-Zapata, J. I. (2017). Conservación de mango mínimamente procesado usando un recubrimiento comestible a base de aceite de aguacate. Información Tecnológica, 28(3), 67–74. https://doi.org/10.4067/S0718-07642017000300008
Dussán-Sarria, S., Torres-León, C., & Hleap-Zapata, J. I. (2014). Efecto de un recubrimiento comestible y de diferentes empaques durante el almacenamiento refrigerado de mango Tommy Atkins mínimamente procesado. Información Tecnológica, 25(4), 123–130. https://doi.org/10.4067/S0718-07642014000400014
Dussán-Sarria, S., Torres-León, C., & Reyes-Calvache, P. M. (2014). Efecto del recubrimiento comestible sobre los atributos físicoquímicos de mango “Tommy Atkins” mínimamente procesado y refrigerado. Acta Agronómica, 63(3), 212–221. https://doi.org/10.15446/acag.v63n3.40973
Ediriweera, M. K., Tennekoon, K. H., & Samarakoon, S. R. (2017). A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mangifera indica (Mango). Evidence-Based Complementary and Alternative Medicine, 2017. https://doi.org/10.1155/2017/6949835
Escobar-Hernández, A., Márquez-Cardozo, C. J., Restrepo-Florez, C. E., & Cordoba-Pérez, L. J. (2014). Aplicación de tecnología de barreras para la conservación de mezclas de vegetales mínimamente procesados. Revista Facultad Nacional de Agronomía Medellín, 67(1), 7237–7245. https://doi.org/10.15446/rfnam.v67n1.42652
Falguera, V., Pagán, J., Garza, S., Garvín, A., & Ibarz, A. (2012). Inactivation of polyphenol oxidase by ultraviolet irradiation: Protective effect of melanins. Journal of Food Engineering, 110(2), 305–309. https://doi.org/10.1016/J.JFOODENG.2011.04.005
Feliziani, E., Lichter, A., Smilanick, J. L., & Ippolito, A. (2016). Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biology and Technology, 122, 53–69. https://doi.org/10.1016/J.POSTHARVBIO.2016.04.016
Fenoglio, D., Ferrario, M., Schenk, M., & Guerrero, S. (2020). Effect of pilot-scale UV-C light treatment assisted by mild heat on E. coli, L. plantarum and S. cerevisiae inactivation in clear and turbid fruit juices. Storage study of surviving populations. International Journal of Food Microbiology, 332, 108767. https://doi.org/10.1016/J.IJFOODMICRO.2020.108767
Franco-Vega, A., Reyes-Jurado, F., González-Albarrán, D., Ramírez-Corona, N., Palou, E., & López-Malo, A. (2021). Developments and advances of high intensity pulsed light and its combination with other treatments for microbial inactivation in food products. Food Engineering Reviews, 13(4), 741–768. https://doi.org/10.1007/S12393-021-09280-1
Fratianni, A., Adiletta, G., Matteo, M. Di, Panfili, G., Niro, S., Gentile, C., Farina, V., Cinquanta, L., & Corona, O. (2020). Evolution of carotenoid content, antioxidant activity and volatiles compounds in dried mango fruits (Mangifera Indica L.). Foods 2020, 9(10), 1424. https://doi.org/10.3390/FOODS9101424
García-Mogollón, C., Cury-Regno, K. I., & Dussán-Sarria, S. (2010). Evaluación poscosecha y estimación de vida útil de guayaba fresca utilizando el modelo de Weibull. Acta Agronómica, 59(3), 347–355. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/17664/18534
Gardner, D. W. M., & Shama, G. (1998). The kinetics of Bacillus subtilis spore inactivation on filter paper by u.v. light and u.v. light in combination with hydrogen peroxide. Journal of Applied Microbiology, 84(4), 633–641. https://doi.org/10.1046/j.1365-2672.1998.00391.x
Gardner, D. W. M., & Shama, G. (1999). UV intensity measurement and modelling and disinfection performance prediction for irradiation of solid surfaces with UV light. Food and Bioproducts Processing, 77(3), 232–242. https://doi.org/10.1205/096030899532510
Gardner, D. W. M., & Shama, G. (2000). Modeling UV-Induced Inactivation of Microorganisms on Surfaces. Journal of Food Protection, 63(1), 63–70. https://doi.org/10.4315/0362-028X-63.1.63
Garzón-García, A. M., Ruiz-Cruz, S., Márquez-Ríos, E., Dussán-Sarria, S., Hleap-Zapata, J. I., & Lobatón, H. F. (2020). Computational fluid dynamics as a technique for the UV-C light dose determination in horticultural products. Biotecnia, 22(1), 84–92. https://doi.org/10.18633/BIOTECNIA.V22I1.1128
Geeraerd, A. H., Valdramidis, V. P., & Van Impe, J. F. (2005). GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology, 102(1), 95–105. https://doi.org/10.1016/j.ijfoodmicro.2004.11.038
George, D. S., Razali, Z., Santhirasegaram, V., & Somasundram, C. (2015). Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut Chokanan mango and Josephine pineapple. Journal of Food Science, 80(2), S426–S434. https://doi.org/10.1111/1750-3841.12762
George, D. S., Razali, Z., Santhirasegaram, V., & Somasundram, C. (2016). Effect of postharvest ultraviolet-C treatment on the proteome changes in fresh cut mango (Mangifera indica L. cv. Chokanan). Journal of the Science of Food and Agriculture, 96(8), 2851–2860. https://doi.org/10.1002/JSFA.7454
Gil, M. I., Gómez-López, V. M., Hung, Y. C., & Allende, A. (2015). Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food and Bioprocess Technology, 8(6), 1336–1348. https://doi.org/10.1007/s11947-014-1444-1
Gil, M. I., Selma, M. V., López-Gálvez, F., & Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: Problems and solutions. International Journal of Food Microbiology, 134(1–2), 37–45. https://doi.org/10.1016/j.ijfoodmicro.2009.05.021
Giménez, A., Ares, F., & Ares, G. (2012). Sensory shelf-life estimation: A review of current methodological approaches. Food Research International, 49(1), 311–325. https://doi.org/10.1016/J.FOODRES.2012.07.008
Giménez, A., & Ares, G. (2019). Sensory shelf life estimation. In C. M. Galanakis (Ed.), Food Quality and Shelf Life (pp. 333–357). Academic Press. https://doi.org/10.1016/B978-0-12-817190-5.00011-2
Gómez, P. L., Alzamora, S. M., Castro, M. A., & Salvatori, D. M. (2010). Effect of ultraviolet-C light dose on quality of cut-apple: Microorganism, color and compression behavior. Journal of Food Engineering, 98(1), 60–70. https://doi.org/10.1016/J.JFOODENG.2009.12.008
González-Aguilar, G. A., Villegas-Ochoa, M. A., Martínez-Téllez, M. A., Gardea, A. A., & Ayala-Zavala, J. F. (2007). Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72(3), S197–S202. https://doi.org/10.1111/j.1750-3841.2007.00295.x
González-Aguilar, G. A., Zavaleta-Gatica, R., & Tiznado-Hernández, M. E. (2007). Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biology and Technology, 45(1), 108–116. https://doi.org/10.1016/J.POSTHARVBIO.2007.01.012
González-Mendoza, D., Torrentera-Olivera, N. G., Ceceña Duran, C., & Grimaldo-Juarez, O. (2017). Water as contamination source of Salmonella and Escherichia coli in vegetable production in Mexico: A review. Revista Bio Ciencias, 3(3), 156–162. https://doi.org/10.15741/revbio.edit.04.06
González-Vega, R. I., Cárdenas-López, J. L., López-Elías, J. A., Ruiz-Cruz, S., Reyes-Díaz, A., Perez-Perez, L. M., Cinco-Moroyoqui, F. J., Robles-Zepeda, R. E., Borboa-Flores, J., & Del-Toro-Sánchez, C. L. (2021). Optimization of growing conditions for pigments production from microalga Navicula incerta using response surface methodology and its antioxidant capacity. Saudi Journal of Biological Sciences, 28(2), 1401–1416. https://doi.org/10.1016/J.SJBS.2020.11.076
Graça, A., Santo, D., Quintas, C., & Nunes, C. (2017). Growth of Escherichia coli, Salmonella enterica and Listeria spp., and their inactivation using ultraviolet energy and electrolyzed water, on ‘Rocha’ fresh-cut pears. Food Control, 77, 41–49. https://doi.org/10.1016/j.foodcont.2017.01.017
Grasso, C., Forniti, R., & Botondi, R. (2022). Post-harvest quality evaluation of “Soreli” kiwifruit at two ripening °Brix values from vineyards of different age under hail nets. Foods, 11(3), 431. https://doi.org/10.3390/FOODS11030431
Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004). Advantages and limitations on processing foods by UV light. Food Science and Technology International, 10(3), 137–147. https://doi.org/10.1177/1082013204044359
Güler, S. K., Bostan, S. Z., & Çon, A. H. (2017). Effects of gamma irradiation on chemical and sensory characteristics of natural hazelnut kernels. Postharvest Biology and Technology, 123, 12–21. https://doi.org/10.1016/J.POSTHARVBIO.2016.08.007
Gutiérrez, D., Ruiz-López, G., Sgroppo, S., & Rodríguez, S. (2016). Uso de la radiación UV-C en el proceso de elaboración de hortalizas de IV gama. Agrociencia Uruguay, 20(2), 7–13. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482016000200002
Han, R.-M., Zhang, J.-P., & Skibsted, L. H. (2012). Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 17(2), 2140. https://doi.org/10.3390/MOLECULES17022140
Harris, L. J., Zagory, D., & Gorny, J. R. (2011). Factores de seguridad. In A. A. Kader (Ed.), Tecnología postcosecha de cultivos hortofrutícolas (pp. 342–345). Universidad de California. Centro de Información e Investigación en Tecnología Postcosecha.
Hashemabadi, S. H., Ghaderzadeh, F., & Taghipour, F. (2014). CFD simulation of UV disinfection reactor for applesauce with a low UV absorption coefficient. Journal of Chemical and Petroleum Engineering, 48(2), 103–116. https://doi.org/10.22059/JCHPE.2014.7561
He, X., Wang, J., Guo, S., Zhang, J., Wei, B., Sun, J., & Shu, S. (2018). Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 149, 16–25. https://doi.org/10.1016/j.compag.2017.10.001
Hinojosa, A., Silveira, A. C., Ospina, M., Char, C., Sáenz, C., & Escalona, V. H. (2013). Safety of ready-to-eat watercress using environmentally friendly sanitization methods. Journal of Food Quality, 36(1), 66–76. https://doi.org/10.1111/jfq.12016
Ho, C. K. (2009). Evaluation of reflection and refraction in simulations of ultraviolet disinfection using the discrete ordinates radiation model. Water Science and Technology, 59(12), 2421–2428. https://doi.org/10.2166/wst.2009.260
Hough, G., Langohr, K., Gomez, G., & Curia, A. (2003). Survival analysis applied to sensory shelf life of foods. Journal of Food Science, 68(1), 359–362. https://doi.org/10.1111/j.1365-2621.2003.tb14165.x
Hough, Guillermo, & Garitta, L. (2012). Methodology for sensory shelf-life estimation: a review. Journal of Sensory Studies, 27(3), 137–147. https://doi.org/10.1111/J.1745-459X.2012.00383.X
Hough, Guillermo, Puglieso, M. L., Sanchez, R., & da Silva, O. M. (1999). Sensory and microbiological shelf-life of a commercial Ricotta cheese. Journal of Dairy Science, 82(3), 454–459. https://doi.org/10.3168/JDS.S0022-0302(99)75253-7
Hu, H. H. (2012). Computational fluid dynamics. In P. K. Kundu, C. I. M., & D. R. Dowling (Eds.), Fluid mechanics (pp. 421–472). Academic Press. https://doi.org/10.1016/B978-0-12-382100-3.10010-1
Huang, H., Ge, Z., Limwachiranon, J., Li, L., Li, W., & Luo, Z. (2017). UV-C treatment affects browning and starch metabolism of minimally processed lily bulb. Postharvest Biology and Technology, 128, 105–111. https://doi.org/10.1016/J.POSTHARVBIO.2017.02.010
Imaizumi, T., Yamauchi, M., Sekiya, M., Shimonishi, Y., & Tanaka, F. (2018). Responses of phytonutrients and tissue condition in persimmon and cucumber to postharvest UV-C irradiation. Postharvest Biology and Technology, 145, 33–40. https://doi.org/10.1016/J.POSTHARVBIO.2018.06.003
Incropera, F. P., & De Witt, D. P. (1999). Fundamentos de transferencia de calor. Prentice Hall.
Instituto Colombiano de Normas Técnicas y Certificación. (2013). NTC 6005: Alimentos Mínimamente Procesados (pp. 1–13).
Instituto Colombiano de Normas Técnicas y Certificación. (2018). Nueva edicion de la norma ISO 22000. http://www.icontec.org/Paginas/Nueva-edicion-de-la-norma-ISO-22000.aspx
Instituto Nacional de Vigilancia de Medicamentos y Alimentos. (1997). Decreto 3075 de 1997. https://www.invima.gov.co/images/stories/aliementos/decreto_3075_1997.pdf
Instituto Nacional de Vigilancia de Medicamentos y Alimentos. (2013). Resolución 2674 de 2013. https://www.invima.gov.co/resoluciones-en-alimentos/resolucion-2674-2013-pdf/detail.html
Instituto Tecnológico del Plástico. (2012). Guía del usuario del envase plástico. https://www.sena-sa.com/wp-content/uploads/2020/04/elenvaseplastico.pdf
Jaimez-Suarez, S., & Gómez-Álvarez, L. M. (2013). Evaluación de un producto a base de ácidos orgánicos frente a E. coli y Salmonella spp. en la desinfección de lechuga fresca. Alimentos Hoy, 22(29), 20–32. https://alimentoshoy.acta.org.co/index.php/hoy/article/view/229/222
Jeon, M.-J., & Ha, J.-W. (2018). Efficacy of UV-A, UV-B, and UV-C irradiation on inactivation of foodborne pathogens in different neutralizing buffer solutions. LWT, 98(14), 591–597. https://doi.org/10.1016/j.lwt.2018.09.030
John, D., & Ramaswamy, H. S. (2020). Comparison of pulsed light inactivation kinetics and modeling of Escherichia coli (ATCC-29055), Clostridium sporogenes (ATCC-7955) and Geobacillus stearothermophilus (ATCC-10149). Current Research in Food Science, 3, 82–91. https://doi.org/10.1016/J.CRFS.2020.03.005
Kader, A. A. (2008). Parámetros de calidad y estándares de clasificación en mango. Revisión de información disponible y futuras necesidades de investigación. https://www.mango.org/wp-content/uploads/2018/03/Mango_Grade_Standards_Final_Report_Spn.pdf
Kan, J., Hui, Y., Lin, X., Liu, Y., & Jin, C. (2021). Postharvest ultraviolet-C treatment of peach fruit: Changes in transcriptome profile focusing on genes involved in softening and senescence. Journal of Food Processing and Preservation, 45(10), e15813. https://doi.org/10.1111/JFPP.15813
Karpiński, T. M., & Adamczak, A. (2019). Fucoxanthin-an antibacterial carotenoid. antioxidants, 8, 239. https://doi.org/10.3390/ANTIOX8080239
Kaushal, P., & Sharma, H. K. (2011). Concept of computational fluid dynamics (CFD) and its applications in food processing equipment design. Journal of Food Processing & Technology, 3(1), 1–7. https://doi.org/10.4172/2157-7110.1000138
Kavakli, I. H., Ozturk, N., & Gul, S. (2019). DNA repair by photolyases. Advances in Protein Chemistry and Structural Biology, 115, 1–19. https://doi.org/10.1016/BS.APCSB.2018.10.003
Kaya, Z., Unluturk, S., Martin-Belloso, O., & Soliva-Fortuny, R. (2020). Effectiveness of pulsed light treatments assisted by mild heat on Saccharomyces cerevisiae inactivation in verjuice and evaluation of its quality during storage. Innovative Food Science & Emerging Technologies, 66, 102517. https://doi.org/10.1016/J.IFSET.2020.102517
Khubone, L. W., & Mditshwa, A. (2018). The effects of UV-C irradiation on postharvest quality of tomatoes (Solanum lycopersicum). Acta Horticulturae, 1201, 75–82. https://doi.org/10.17660/ACTAHORTIC.2018.1201.11
Kim, H. G., & Song, K. Bin. (2017). Combined treatment with chlorine dioxide gas, fumaric acid, and ultraviolet-C light for inactivating Escherichia coli O157:H7 and Listeria monocytogenes inoculated on plums. Food Control, 71, 371–375. https://doi.org/10.1016/j.foodcont.2016.07.022
Kingwascharapong, P., Iida, Y., Tanaka, F., & Tanaka, F. (2020). Simulation of a UV-C conveyor system using computational fluid dynamics techniques on the uniformity of the incident UV-C dose distribution to strawberry. Journal of the Faculty of Agriculture, Kyushu University, 65(2), 371–378. https://doi.org/10.5109/4103903
Koutchma, T., Forney, L., & Moraru, C. (2009). Ultraviolet light in food technology: principles and applications (T. Koutchma (Ed.)). CRC Press. https://doi.org/10.1201/9781420059519.ch4
Kumar, M., Saurabh, V., Tomar, M., Hasan, M., Changan, S., Sasi, M., Maheshwari, C., Prajapati, U., Singh, S., Prajapat, R. K., Dhumal, S., Punia, S., Amarowicz, R., & Mekhemar, M. (2021). Mango (Mangifera indica L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Antioxidants, 10(2), 299. https://doi.org/10.3390/ANTIOX10020299
Lamikanra, O., Kueneman, D., Ukuku, D., & Bett-Garber, K. L. (2005). Effect of processing under ultraviolet light on the shelf life of fresh-cut cantaloupe melon. Journal of Food Science, 70(9), C534–C539. https://doi.org/10.1111/j.1365-2621.2005.tb08301.x
Lasagabaster, A., & Martínez de Marañón, I. (2017). Comparative study on the inactivation and photoreactivation response of Listeria monocytogenes seafood isolates and a Listeria innocua surrogate after pulsed light treatment. Food and Bioprocess Technology, 10, 1931–1935. https://doi.org/10.1007/S11947-017-1972-6
Law, J. W.-F., Ab Mutalib, N.-S., Chan, K.-G., & Lee, L.-H. (2015). An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Frontiers in Microbiology, 6, 1227. https://doi.org/10.3389/fmicb.2015.01227
Lázaro, A., & Lorenzo, C. de. (2015). Texture analysis in melon landraces through instrumental and sensory methods. International Journal of Food Properties, 18(7), 1575–1583. https://doi.org/10.1080/10942912.2014.923441
Li, P., Yu, X., & Xu, B. (2017). Effects of UV-C light exposure and refrigeration on phenolic and antioxidant profiles of subtropical fruits (litchi, longan, and rambutan) in different fruit forms. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/8785121
Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of postharvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit. Scientia Horticulturae, 241, 107–114. https://doi.org/10.1016/J.SCIENTA.2018.06.075
Liu, J., Stevens, C., Khan, V. A., Lu, J. Y., Wilson, C. L., Adeyeye’, O., Kabwe’, M. K., Pusey, P. L., Chalutz, E., Sultana, T., & Droby, S. (1993). Application of ultraviolet-C light on storage rots and ripening of tomatoes. Journal of Food Protection, 56(10), 868–872. https://doi.org/10.4315/0362-028X-56.10.868
Liu, Z., Hu, S., Soteyome, T., Bai, C., Liu, J., Wang, Z., Kjellerup, B. V., & Xu, Z. (2021). Intense pulsed light for inactivation of foodborne gram-positive bacteria in planktonic cultures and bacterial biofilms. LWT, 152, 112374. https://doi.org/10.1016/J.LWT.2021.112374
Londoño-Londoño, J. (2012). Antioxidantes: importancia biológica y métodos para medir su actividad. In Desarrollo y transversalidad (pp. 129–162). Corporación Universitaria Lasallista. http://repository.lasallista.edu.co/dspace/handle/10567/133
Luna-Guevara, J. J., Arenas-Hernandez, M. M. P., Martínez De La Peña, C., Silva, J. L., & Luna-Guevara, M. L. (2019). The role of pathogenic E. coli in fresh vegetables: behavior, contamination factors, and preventive measures. International Journal of Microbiology, 2019, 1–10. https://doi.org/10.1155/2019/2894328
Ma, X., Zheng, B., Ma, Y., Xu, W., Wu, H., & Wang, S. (2018). Carotenoid accumulation and expression of carotenoid biosynthesis genes in mango flesh during fruit development and ripening. Scientia Horticulturae, 237, 201–206. https://doi.org/10.1016/J.SCIENTA.2018.04.009
Mahecha, G., De Civetta, L. A., & Rodríguez, C. (1991). Normas de calidad para las variedades de mango “Tommy Atkins” y “común” (hilacha). Revista Colombiana de Química, 20(2), 10–17. https://doi.org/10.15446/rev.colomb.quim
Maherani, B., Hossain, F., Criado, P., Ben-Fadhel, Y., Salmieri, S., & Lacroix, M. (2016). World market development and consumer acceptance of irradiation technology. Foods, 5(4), 79. https://doi.org/10.3390/FOODS5040079
Maldonado-Celis, M. E., Yahia, E. M., Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., Restrepo, B., & Guerrero Ospina, J. C. (2019). Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Frontiers in Plant Science, 10, 1073. https://doi.org/10.3389/fpls.2019.01073
Marques, A., Chicaybam, G., Araujo, M. T., Manhães, L. R. T., & Sabaa-Srur, A. U. O. (2010). Composição centesimal e de minerais de casca e polpa de manga (Mangifera indica L.) cv. Tommy Atkins. Revista Brasileira de Fruticultura, 32(4), 1206–1210. https://doi.org/10.1590/S0100-29452010005000117
Márquez-Villacorta, L., Pretell-Vásquez, C., & Minchón-Medina, C. (2011). Efecto del tratamiento desinfectante y tiempo de almacenamiento sobre las características fisicoquímicas, microbiológicas y sensoriales de rebanadas de mango (Mangifera indica) Kent mínimamente procesado. Pueblo Continente, 22(2), 385–403. http://journal.upao.edu.pe/PuebloContinente/article/view/432
Márquez-Villacorta, L., & Pretell-Vásquez, C. P. (2013). Irradiación UV-C en frutas tropicales mínimamente procesadas. Scientia Agropecuaria, 4(3), 147–161. https://www.redalyc.org/articulo.oa?id=357633706001
Martínez-González, M. E., Balois-Morales, R., Alia-Tejacal, I., Cortes-Cruz, M. A., Palomino-Hermosillo, Y. A., & López-Gúzman, G. G. (2010). Poscosecha de frutos: maduración y cambios bioquímicos. Revista Mexicana de Ciencias Agrícolas, Extra 19, 4075–4087. https://doi.org/10.29312/remexca.v0i19.674
Martínez-Hernández, G. B., Artés-Hernández, F., Gómez, P. A., Formica, A. C., & Artés, F. (2013). Combination of electrolysed water, UV-C and superatmospheric O2 packaging for improving fresh-cut broccoli quality. Postharvest Biology and Technology, 76, 125–134. https://doi.org/10.1016/J.POSTHARVBIO.2012.09.013
Mathew, E. N., Muyyarikkandy, M. S., Kuttappan, D., & Amalaradjou, M. A. (2018). Attachment of Salmonella enterica on mangoes and survival under conditions simulating commercial mango packing house and importer facility. Frontiers in Microbiology, 9, 1519. https://doi.org/10.3389/fmicb.2018.01519
Maurer, L. H., Bersch, A. M., Santos, R. O., Trindade, S. C., Costa, E. L., Peres, M. M., Malmann, C. A., Schneider, M., Bochi, V. C., Sautter, C. K., & Emanuelli, T. (2017). Postharvest UV-C irradiation stimulates the non-enzymatic and enzymatic antioxidant system of ‘Isabel’ hybrid grapes (Vitis labrusca × Vitis vinifera L.). Food Research International, 102, 738–747. https://doi.org/10.1016/j.foodres.2017.09.053
Michailidis, M., Karagiannis, E., Polychroniadou, C., Tanou, G., Karamanoli, K., & Molassiotis, A. (2019). Metabolic features underlying the response of sweet cherry fruit to postharvest UV-C irradiation. Plant Physiology and Biochemistry, 144, 49–57. https://doi.org/10.1016/J.PLAPHY.2019.09.030
Millán-Villarroel, D., Romero-González, L., Brito, M., & Ramos-Villarroel, A. Y. (2015). Luz ultravioleta: inactivación microbiana en frutas. Saber, 27(3), 454–469. http://www.ojs.udo.edu.ve/index.php/saber/article/view/1897
Ministerio de Salud y Protección Social. (2013a). La inocuidad de alimentos y su importancia en la cadena agroalimentaria. https://www.minsalud.gov.co/Documents/Archivos-temporal-jd/alimentos-temporal.pdf
Ministerio de Salud y Protección Social. (2013b). Resolución 3929 de 2013. https://www.invima.gov.co/images/pdf/normatividad/alimentos/resoluciones/resoluciones/2013/Resolucion-3929-2013.pdf
Modest, M. F. (2013). The radiative transfer equation in participating media (RTE). In M. F. Modest (Ed.), Radiative Heat Transfer (pp. 279–302). Academic Press. https://doi.org/10.1016/B978-0-12-386944-9.50010-8
Mohamed, N. T. S., Ding, P., Kadir, J., & Ghazali, H. M. (2017). Potential of UVC germicidal irradiation in suppressing crown rot disease, retaining postharvest quality and antioxidant capacity of Musa AAA “Berangan” during fruit ripening. Food Science & Nutrition, 5, 967–980. https://doi.org/10.1002/FSN3.482
Moharram, H. A., & Youssef, M. M. (2014). Methods for determining the antioxidant activity: A review. Alexandria Journal of Food Science and Technology, 11(1), 31–42.
Monroy, C. A., Marin-Arango, Z. T., & Giraldo, G. A. (2017). Efecto de diferentes cortes en lechuga Batavia (Lactuca sativa L). Alimentos Hoy, 25(40), 77–86. https://alimentoshoy.acta.org.co/index.php/hoy/article/view/434/358
Morales, M., Soledad Hernández-, M., Cabezas, M., Barrera, J., & Martínez, O. (2001). Caracterización de la maduración del fruto de pina nativa (Ananas comosus L. Merrill) CV. India. Agronomía Colombiana, 18(1–3), 63–69. https://revistas.unal.edu.co/index.php/agrocol/article/view/21706
Moreno, B. L., & Deaquiz-Oyola, Y. A. (2015). Caracterización de parámetros fisicoquímicos en frutos de mora (Rubus alpinus Macfad). Acta Agronómica, 65(2), 130–136. https://doi.org/10.15446/acag.v65n2.45587
Moreno, C., Andrade-Cuvi, M. J., Zaro, M. J., Darre, M., Vicente, A. R., & Concellón, A. (2017). Short UV-C treatment prevents browning and extends the shelf-life of fresh-cut carambola. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/2548791
Mukherjee, S. K., & Litz, R. E. (2009). 1 Introduction: Botany and importance. In R. E. Litz (Ed.), The mango: Botany, production and uses (pp. 1–18). CAB International.
Muoki, P. N., Makokha, A. O., Onyango, C. A., & Ojijo, N. K. O. (2009). Potential contribution of mangoes to reduction of vitamin A deficiency in Kenya. Ecology of Food and Nutrition, 48(6), 482–498. https://doi.org/10.1080/03670240903308604
Nigro, F., & Ippolito, A. (2016). UV-C light to reduce decay and improve quality of stored fruit and vegetables: a short review. Acta Horticulturae, 1144, 293–298. https://doi.org/10.17660/ActaHortic.2016.1144.43
Nigro, F., Ippolito, A., & Lima, G. (1998). Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology, 13(3), 171–181. https://doi.org/10.1016/S0925-5214(98)00009-X
Norton, T., & Sun, D.-W. (2006). Computational fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: A review. Trends in Food Science and Technology, 17(11), 600–620. https://doi.org/10.1016/j.tifs.2006.05.004
Norton, T., & Sun, D.-W. (2007). An overview of CFD applications in the food industry. In D.-W. Sun (Ed.), Computational fluids dynamics in food processing (pp. 1–41). CRC Press. https://doi.org/10.1201/9781420009217.ch1
Norton, T., & Sun, D.-W. (2010). CFD: An innovative and effective design tool for the food industry. In J. Aguilera, R. Simpson, J. Welti-Chanes, D. Bermudez-Aguirre, & G. Barbosa-Canovas (Eds.), Food Engineering Interfaces (pp. 45–68). Springer. https://doi.org/10.1007/978-1-4419-7475-4_3
Ntsoane, M. L., Zude-Sasse, M., Mahajan, P., & Sivakumar, D. (2019). Quality assesment and postharvest technology of mango: A review of its current status and future perspectives. Scientia Horticulturae, 249, 77–85. https://doi.org/10.1016/J.SCIENTA.2019.01.033
Obande, M. A., & Shama, G. (2011). The use of biodosimetry to measure the UV-C dose delivered to a sphere, and implications for the commercial treatment of fruit. Journal of Food Engineering, 104(1), 1–5. https://doi.org/10.1016/J.JFOODENG.2010.11.017
Obande, M. A., Tucker, G. A., & Shama, G. (2011). Effect of preharvest UV-C treatment of tomatoes (Solanum lycopersicon Mill.) on ripening and pathogen resistance. Postharvest Biology and Technology, 62(2), 188–192. https://doi.org/10.1016/J.POSTHARVBIO.2011.06.001
Ordoñez-Santos, L. E., Martínez-Girón, J., Villamizar-Vargas, R. H., & Villamizar-Vargas, R. H. (2018). Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. DYNA, 85(206), 128–134. https://doi.org/10.15446/dyna.v85n206.68089
Ortega, V. G., Ramírez, J. A., Velázquez, G., Tovar, B., Mata, M., & Montalvo, E. (2013). Effect of high hydrostatic pressure on antioxidant content of “Ataulfo” mango during postharvest maturation. Food Science and Technology, 33(3), 561–568. https://doi.org/10.1590/S0101-20612013005000062
Ostos, S. L., Díaz, A. C., & Suarez, H. (2012). Evaluación de diferentes condiciones de proceso en la fortificación de mango (Tommy Atkins) con calcio mediante impregnación a vacío. Revista Chilena de Nutrición, 39(2), 181–190. https://doi.org/10.4067/S0717-75182012000200007
Pan, Y.-G., & Zu, H. (2012). Effect of UV-C Radiation on the Quality of Fresh-cut Pineapples. Procedia Engineering, 37, 113–119. https://doi.org/10.1016/J.PROENG.2012.04.212
Parish, M. E., Beuchat, L. R., Suslow, T. V., Harris, L. J., Garrett, E. H., Farber, J. N., & Busta, F. F. (2003). Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety, 2(s1), 161–173. https://doi.org/10.1111/j.1541-4337.2003.tb00033.x
Park, M.-H., & Kim, J.-G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109–112. https://doi.org/10.1016/J.POSTHARVBIO.2014.09.013
Pataro, G., Sinik, M., Capitoli, M. M., Donsì, G., & Ferrari, G. (2015). The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science & Emerging Technologies, 30, 103–111. https://doi.org/10.1016/J.IFSET.2015.06.003
Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60. https://doi.org/10.1007/s11947-012-0867-9
Penteado, A. L., de Castro, M. F. P. M., & Rezende, A. C. B. (2014). Salmonella enterica serovar Enteritidis and Listeria monocytogenes in mango (Mangifera indica L.) pulp: growth, survival and cross‐contamination. Journal of the Science of Food and Agriculture, 94(13), 2746–2751. https://doi.org/10.1002/jsfa.6619
Pérez-Gálvez, A., Viera, I., & Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 1–39. https://doi.org/10.3390/ANTIOX9060505
Pérez-Pérez, E. P., & López-Malo, A. (2011). Tecnologías involucradas en el procesamiento mínimo de frutas y hortalizas. Temas Selectos de Ingeniería de Alimentos, 5(2), 13–27. https://www.udlap.mx/WP/tsia/files/No5-Vol-2/TSIA-5(2)-Pérez-Perez-et-al-2011.pdf
Pérez-Perez, L. M., Del-Toro-Sánchez, C. L., Sánchez-Chavez, E., González-Vega, R. I., Reyes-Díaz, A., Borboa-Flores, J., Soto-Parra, J. M., & Flores-Cordova, M. A. (2020). Bioaccesibilidad de compuestos antioxidantes de diferentes variedades de frijol (Phaseolus vulgaris L.) en México, mediante un sistema gastrointestinal in vitro. Biotecnia, 22(1), 117–125. https://doi.org/10.18633/BIOTECNIA.V22I1.1159
Pinela, J., & Ferreira, I. C. F. R. (2017). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 57(10), 2095–2111. https://doi.org/10.1080/10408398.2015.1046547
Pinzón, I. M. del P., Fischer, G., & Corredor, G. (2007). Determinación de los estados de madurez del fruto de la gulupa (Passiflora edulis Sims.). Agronomía Colombiana, 25(1), 83–95. http://www.scielo.org.co/pdf/agc/v25n1/v25n1a10.pdf
Prajapati, U., Asrey, R., Varghese, E., Singh, A. K., & Pal Singh, M. (2021). Effects of postharvest ultraviolet-C treatment on shelf-life and quality of bitter gourd fruit during storage. Food Packaging and Shelf Life, 28, 100665. https://doi.org/10.1016/J.FPSL.2021.100665
Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena–an overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19. https://doi.org/10.1080/10408390600976841
Preetha, P., Pandiselvam, R., Varadharaju, N., Kennedy, Z. J., Balakrishnan, M., & Kothakota, A. (2021). Effect of pulsed light treatment on inactivation kinetics of Escherichia coli (MTCC 433) in fruit juices. Food Control, 121, 107547. https://doi.org/10.1016/J.FOODCONT.2020.107547
Pretell-Vásquez, C., Márquez-Villacorta, L., Siche, R., & Hayayumi-Valdivia, M. (2020). Efecto del ozono y tiempo de almacenamiento sobre las características fisicoquímicas de espárrago verde (Asparagus officinalis L.) mínimamente procesado. Ciencia & Tecnología Agropecuaria, 21(3), 2–16. https://doi.org/10.21930/RCTA.VOL21_NUM3_ART:1506
Pristijono, P., Bowyer, M. C., Papoutsis, K., Scarlett, C. J., Vuong, Q. V., Stathopoulos, C. E., & Golding, J. B. (2019). Improving the storage quality of Tahitian limes (Citrus latifolia) by pre-storage UV-C irradiation. Journal of Food Science and Technology, 56, 1–7. https://doi.org/10.1007/s13197-019-03623-x
Pristijono, P., Golding, J. B., & Bowyer, M. C. (2019). Postharvest UV-C treatment, followed by storage in a continuous low-level ethylene atmosphere, maintains the quality of ‘Kensington pride’ mango fruit stored at 20 °C. Horticulturae, 5(1), 1–12. https://doi.org/10.3390/horticulturae5010001
Puig-Peña, Y., Leyva-Castillo, V., Rodríguez-Suárez, A., Carrera-Vara, J., Molejón, P. L., Pérez-Muñoz, Y., & Dueñas-Moreira, O. (2002). Calidad microbiológica de las hortalizas y factores asociados a la contaminación en áreas de cultivo en La Habana. Revista Habanera de Ciencias Médicas, 13(1), 111–119. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2014000100013
Quek, P. H., & Hu, J. (2008a). Influence of photoreactivating light intensity and incubation temperature on photoreactivation of Escherichia coli following LP and MP UV disinfection. Journal of Applied Microbiology, 105(1), 124–133. https://doi.org/10.1111/J.1365-2672.2008.03723.X
Quek, P. H., & Hu, J. (2008b). Indicators for photoreactivation and dark repair studies following ultraviolet disinfection. Journal of Industrial Microbiology and Biotechnology, 35(6), 533–533. https://doi.org/10.1007/S10295-008-0314-0
Quintero-Cerón, J. P., Bohorquez-Pérez, Y., Valenzuela-Real, C., & Solanilla-Duque, J. F. (2013). Avances en la aplicación de luz ultravioleta de onda corta (UVC) en frutas y vegetales enteros y mínimamente procesados: revisión. Revista Tumbaga, 1(8), 29–60. http://revistas.ut.edu.co/index.php/tumbaga/article/view/294/349
Ramírez-Méndez, R., Quijada, O., Castellano, G., Burgos, M. E., Camacho, R., & Marin R., C. (2010). Características físicas y químicas de frutos de trece cultivares de mango (Mangifera indica L) en el municipio Mara en la planicie de Maracaibo. Revista Iberoamericana de Tecnología Postcosecha, 10(2), 65–72. http://www.redalyc.org/html/813/81315091002/
Rangel-Marrón, M., & López-Malo, A. (2012). Cambios en frutas tropicales frescas, cortadas y empacadas en atmósfera modificada durante su almacenamiento en refrigeración. Temas Selectos de Ingeniería de Alimentos, 6(2), 94–109. http://web.udlap.mx/tsia/files/2013/12/TSIA-62Rangel-Marron-et-al-2012.pdf
Rani, K., Manasa, C. B., Jagadeesh, S., & Thammaiah, N. (2019). Colour measurement of ripening mango fruits as influenced by pre-harvest treatments using L* a* b* coordinates. Journal of Pharmacognosy and Phytochemistry, 8(1), 2466–2470.
Raybaudi-Massilia, R., Calderón-Gabaldón, M. I., Mosqueda-Melgar, J., & Tapia, M. S. (2013). Inactivation of Salmonella enterica ser. Poona and Listeria monocytogenes on fresh-cut “Maradol” red papaya (Carica papaya L) treated with UV-C light and malic acid. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 8(1–2), 37–44. https://doi.org/10.1007/s00003-013-0808-1
Razali, Z., Somasundram, C., Nurulain, S. Z., Kunasekaran, W., & Alias, M. R. (2021). Postharvest quality of cherry tomatoes coated with mucilage from dragon fruit and irradiated with UV-C. Polymers, 13(17), 2919. https://doi.org/10.3390/POLYM13172919
Rees, C. E. D., Doyle, L., & Taylor, C. M. (2017). Listeria monocytogenes. In C. E. R. Dodd, T. Aldsworth, R. A. Stein, D. O. Cliver, & H. P. Riemann (Eds.), Foodborne diseases (pp. 253–276). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-385007-2.00012-7
Ren, H. W., & Zhang, Y. (2011). Applications of computational fluid dynamics (CFD) in the Food Industry. Advanced Materials Research, 236–238, 2273–2278. https://doi.org/10.4028/www.scientific.net/AMR.236-238.2273
Ribeiro, S. M. R., Queiroz, J. H., Lopes de Queiroz, M. E., Campos, F. M., & Sant’Ana, H. M. P. (2007). Antioxidant in mango (Mangifera indica L.) pulp. Plant Foods for Human Nutrition, 62(1), 13–17. https://doi.org/10.1007/s11130-006-0035-3
Rivera-Pastrana, D. M., Gardea, A. A., Yahia, E. M., Martínez-Téllez, M. A., & González-Aguilar, G. A. (2014). Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging activity of papaya fruit. Journal of Food Science and Technology, 51(12), 3821–3829. https://doi.org/10.1007/S13197-013-0942-X
Rivera-Pastrana, Dulce M., Béjar, A. A. G., Martínez-Téllez, M. Á., Rivera-Domínguez, M., & González-Aguilar, G. A. (2007). Efectos bioquímicos postcosecha de la irradiación UV-C en frutas y hortalizas. Revista Fitotecnia Mexicana, 30(4), 361–372. http://www.redalyc.org/articulo.oa?id=61030403
Robles-Sánchez, R. M., Rojas-Graü, M. A., Odriozola-Serrano, I., González-Aguilar, G. A., & Martín-Belloso, O. (2009). Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut ‘Kent’ mango (Mangifera indica L.). Postharvest Biology and Technology, 51(3), 384–390. https://doi.org/10.1016/J.POSTHARVBIO.2008.09.003
Rodriguez-Amaya, D. B. (2019). Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 124, 200–205. https://doi.org/10.1016/J.FOODRES.2018.05.028
Rodríguez-Mijangos, R., Gonzalez-Boué, G., Barffuson-Dominguez, F., López-Vargas, J. M., & Gómez-Yépiz, M. S. (2014). Cámara de irradiación UV-C económica y sus potenciales aplicaciones en la desinfección de alimentos. EPISTEMUS, 16, 72–78. https://biblat.unam.mx/hevila/EpistemusCienciatecnologiaysalud/2014/no16/10.pdf
Romero, L., Colivet, J., Aron, N. M., & Ramos-Villarroel, A. (2017). Impact of ultraviolet light on quality attributes of stored fresh-cut mango. The Annals of the University Dunarea de Jos of Galati Fascicle VI – Food Technology, 41(1), 62–80. http://eds.a.ebscohost.com/eds/detail/detail?vid=0&sid=7221daa0-c4ff-44c6-aa97-f4f0446caa61%40sessionmgr4008&bdata=Jmxhbmc9ZXMmc2l0ZT1lZHMtbGl2ZQ%3D%3D#AN=125098472&db=fsr
Rosalie, R., Léchaudel, M., Dhuique-Mayer, C., Dufossé, L., & Joas, J. (2018). Antioxidant and enzymatic responses to oxidative stress induced by cold temperature storage and ripening in mango (Mangifera indica L. cv. ‘Cogshall’) in relation to carotenoid content. Journal of Plant Physiology, 224–225, 75–85. https://doi.org/10.1016/J.JPLPH.2018.03.011
Ruales, J., Baenas, N., Moreno, D. A., Stinco, C. M., Meléndez-Martínez, A. J., & García-Ruiz, A. (2018). Biological Active Ecuadorian Mango ‘Tommy Atkins’ Ingredients—An Opportunity to Reduce Agrowaste. Nutrients, 10(9). https://doi.org/10.3390/nu10091138
Ruelas-Chacón, X., De La, M., Reyes-Vega, L., Valdivia-Urdiales, B., Carlos Contreras-Esquivel, J., César Montañez-Saenz, J., Aguilera-Carbó, A. F., & Darío Peralta-Rodríguez, R. (2013). Conservación de Frutas y Hortalizas Frescas y Mínimamente Procesadas con Recubrimientos Comestibles. Revista Científica de La Universidad Autónoma de Coahuila, 5(9), 31–37.
Ruiz-Cruz, S., Acedo-Félix, E., Díaz-Cinco, M., Islas-Osuna, M. A., & González-Aguilar, G. A. (2007). Efficacy of sanitizers in reducing Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes populations on fresh-cut carrots. Food Control, 18(11), 1383–1390. https://doi.org/10.1016/j.foodcont.2006.09.008
Ruiz-Cruz, S., Alvarez-Parrilla, E., de la Rosa, L. A., Martinez-Gonzalez, A. I., de Jesus Ornelas-Paz, J., Mendoza-Wilson, A. M., & Gonzalez-Aguilar, G. A. (2010). Effect of different sanitizers on microbial, sensory and nutritional quality of fresh-cut jalapeno peppers. American Journal of Agricultural and Biological Science, 5(3), 331–341. https://doi.org/10.3844/ajabssp.2010.331.341
Rybak, K., Wiktor, A., Pobiega, K., Witrowa-Rajchert, D., & Nowacka, M. (2021). Impact of pulsed light treatment on the quality properties and microbiological aspects of red bell pepper fresh-cuts. LWT, 149, 111906. https://doi.org/10.1016/J.LWT.2021.111906
Saini, R. K., & Keum, Y. S. (2018). Significance of genetic, environmental, and pre- and postharvest factors affecting carotenoid contents in crops: A review. Journal of Agricultural and Food Chemistry, 66(21), 5310–5325. https://doi.org/10.1021/ACS.JAFC.8B01613/ASSET/IMAGES/ACS.JAFC.8B01613.SOCIAL.JPEG_V03
Salinas-Roca, B., Guerreiro, A., Welti-Chanes, J., Antunes, M. D. C., & Martín-Belloso, O. (2018). Improving quality of fresh-cut mango using polysaccharide-based edible coatings. International Journal of Food Science & Technology, 53(4), 938–945. https://doi.org/10.1111/IJFS.13666
Sandia National Laboratories. (2007). UV disinfection. https://www.sandia.gov/cfd-water/uvdisinfection.htm
Santo, D., Graça, A., Nunes, C., & Quintas, C. (2018). Escherichia coli and Cronobacter sakazakii in ‘Tommy Atkins’ minimally processed mangos: Survival, growth and effect of UV-C and electrolyzed water. Food Microbiology, 70, 49–54. https://doi.org/10.1016/j.fm.2017.09.008
Sastry, S. K., Datta, A. K., & Worobo, R. W. (2000). Ultraviolet light. Journal of Food Science, 65, 90–92. https://doi.org/10.1111/j.1750-3841.2000.tb00623.x
Scott, G., & Richardson, P. (1997). The application of computational fluid dynamics in the food industry. Trends in Food Science & Technology, 8(4), 119–124. https://doi.org/10.1016/S0924-2244(97)01028-5
Sgroppo, S. C., & Sosa, C. A. (2009). Zapallo anco (Cucurbita moschata D.) fresco cortado tratado con luz UV-C. FACENA, 25, 7–19. https://revistas.unne.edu.ar/index.php/fce/article/view/5474
Shama, G. (2005). Ultraviolet Light. In Y. H. Hui (Ed.), Handbook of Food Science, Technology, and Engineering (pp. 122-1–122–14). CRC Press.
Shama, G. (2007). Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biology and Technology, 44(1), 1–8. https://doi.org/10.1016/J.POSTHARVBIO.2006.11.004
Sharifi-Yazdi, M. K., & Darghahi, H. (2006). Inactivation of pathogenic bacteria using pulsed UV-light and its application in water disinfection and quality control. Acta Medica Iranica, 44(5), 305–308. https://acta.tums.ac.ir/index.php/acta/article/view/3205
Shehata, S. A., Abdeldaym, E. A., Ali, M. R., Mohamed, R. M., Bob, R. I., & Abdelgawad, K. F. (2020). Effect of some citrus essential oils on post-harvest shelf life and physicochemical quality of strawberries during cold storage. Agronomy, 10(10), 1466. https://doi.org/10.3390/AGRONOMY10101466
Shen, Y., Sun, Y., Qiao, L., Chen, J., Liu, D., & Ye, X. (2013). Effect of UV-C treatments on phenolic compounds and antioxidant capacity of minimally processed Satsuma mandarin during refrigerated storage. Postharvest Biology and Technology, 76, 50–57. https://doi.org/10.1016/J.POSTHARVBIO.2012.09.006
Silveira, A. C., Conesa, A., Aguayo, E., & Artés, F. (2008). Alternative sanitizers to chlorine for use on fresh‐cut “Galia” (Cucumis melo var. catalupensis) melon. Journal of Food Science, 73(9), M405–M411. https://doi.org/10.1111/j.1750-3841.2008.00939.x
Sivapalasingam, S., Barrett, E., Kimura, A., Van Duyne, S., De Witt, W., Ying, M., Frisch, A., Phan, Q., Gould, E., Shillam, P., Reddy, V., Cooper, T., Hoekstra, M., Higgins, C., Sanders, J. P., Tauxe, R. V., & Slutsker, L. (2003). A multistate outbreak of Salmonella enterica Serotype Newport infection linked to mango consumption: Impact of water-dip disinfestation technology. Clinical Infectious Diseases, 37(12), 1585–1590. https://doi.org/10.1086/379710
Soto-Varela, Z., Pérez-Lavalle, L., & Estrada-Alvarado, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: una mirada en Colombia. Salud Uninorte, 32(1), 105–122. http://www.scielo.org.co/pdf/sun/v32n1/v32n1a10.pdf
Sripong, K., Jitareerat, P., & Uthairatanakij, A. (2019). UV irradiation induces resistance against fruit rot disease and improves the quality of harvested mangosteen. Postharvest Biology and Technology, 149, 187–194. https://doi.org/10.1016/J.POSTHARVBIO.2018.12.001
Stannard, C. J., Abbiss, J. S., & Wood, J. M. (1983). Combined Treatment with hydrogen peroxide and ultraviolet irradiation to reduce microbial contamination levels in pre-formed food packaging cartons. Journal of Food Protection, 46(12), 1060–1064. https://doi.org/10.4315/0362-028X-46.12.1060
Stannard, C. J., Abbiss, J. S., & Wood, J. M. (1985). Efficiency of treatments involving ultraviolet irradiation for decontaminating packaging board of different surface compositions. Journal of Food Protection, 48(9), 786–789. https://doi.org/10.4315/0362-028X-48.9.786
Stevens, C., Khan, V. A., Tang, A. Y., & Lu, J. Y. (1990). The effect of ultraviolet radiation on mold rots and nutrients of stored sweet potatoes. Journal of Food Protection, 53(3), 223–226. https://doi.org/10.4315/0362-028X-53.3.223
Stevens, C., Khan, V. A., Wilson, C. L., Lu, J. Y., Chalutz, E., & Droby, S. (2005). The effect of fruit orientation of postharvest commodities following low dose ultraviolet light-C treatment on host induced resistance to decay. Crop Protection, 24(8), 756–759. https://doi.org/10.1016/J.CROPRO.2004.12.008
Strawn, L. K., & Danyluk, M. D. (2010). Fate of Escherichia coli O157:H7 and Salmonella spp. on fresh and frozen cut mangoes and papayas. International Journal of Food Microbiology, 138(1–2), 78–84. https://doi.org/10.1016/J.IJFOODMICRO.2009.12.002
Sultan, T. (2016). Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor. Chemosphere, 155, 170–179. https://doi.org/10.1016/j.chemosphere.2016.04.050
Syamaladevi, R. M., Lu, X., Sablani, S. S., Insan, S. K., Adhikari, A., Killinger, K., Rasco, B., Dhingra, A., Bandyopadhyay, A., & Annapure, U. (2013). Inactivation of Escherichia coli population on fruit surfaces using ultraviolet-C light: Influence of fruit surface characteristics. Food and Bioprocess Technology, 6(11), 2959–2973. https://doi.org/10.1007/s11947-012-0989-0
Tafur-Garzón, M. allister. (2009). La inocuidad de alimentos y el comercio internacional. Revista Colombiana de Ciencias Pecuarias, 22(3), 330–338. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902009000300009
Tanaka, F., Nashiro, K., Trivittayasil, V., & Uchino, T. (2016). Simulation of UV-C dose distribution and inactivation of mold spore on strawberries in a conveyor system. Food Science and Technology Research, 22(4), 461–466. https://doi.org/10.3136/fstr.22.461
Taze, B. H., & Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233, 370–377. https://doi.org/10.1016/J.SCIENTA.2018.02.012
Terry, L. A., & Joyce, D. C. (2004). Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biology and Technology, 32(1), 1–13. https://doi.org/10.1016/J.POSTHARVBIO.2003.09.016
Tharanathan, R. N., Yashoda, H. M., & Prabha, T. N. (2006). Mango (Mangifera indica L.), “the king of fruits”—an overview. Food Reviews International, 22(2), 95–123. https://doi.org/10.1080/87559120600574493
Thompson, C. L., & Sancar, A. (2002). Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock. Oncogene, 21(58), 9043–9056. https://doi.org/10.1038/sj.onc.1205958
Trivittayasil, V., Nashiro, K., Tanaka, F., Hamanaka, D., & Uchino, T. (2015). Inactivation characteristics and modeling of mold spores by UV-C radiation based on irradiation dose. Food Science and Technology Research, 21(3), 365–370. https://doi.org/10.3136/fstr.21.365
Trivittayasil, V., Tanaka, F., & Uchino, T. (2016). Simulation of UV-C intensity distribution and inactivation of mold spores on strawberries. Food Science and Technology Research, 22(2), 185–192. https://doi.org/10.3136/fstr.22.185
U.S. Food and Drugs Administration. (2020, October 3). Country fresh expands voluntary recall. https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/country-fresh-expands-voluntary-recall
van Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1–2), 139–159. https://doi.org/10.1016/S0168-1605(01)00742-5
van Boekel, M. A. J. S. (2008). Kinetic modeling of food quality: A critical review. comprehensive reviews in food science and food safety, 7(1), 144–158. https://doi.org/10.1111/j.1541-4337.2007.00036.x
Velderrain-Rodríguez, G. R., Salmerón-Ruiz, M. L., González-Aguilar, G. A., Martín-Belloso, O., & Soliva-Fortuny, R. (2021). Ultraviolet/visible intense pulsed light irradiation of fresh-cut avocado enhances its phytochemicals content and preserves quality attributes. Journal of Food Processing and Preservation, 45(3), e15289. https://doi.org/10.1111/JFPP.15289
Villamizar-Vargas, R., Quiceno-Gómez, C., & Giraldo-Giraldo, G. (2019). Cambios fisicoquímicos durante la maduración del mango Tommy Atkins en la poscosecha. Revista U.D.C.A Actualidad & Divulgación Científica, 22(1). https://doi.org/10.31910/RUDCA.V22.N1.2019.1159
Virto, R., Sanz, D., Álvarez, I., Condón, S., & Raso, J. (2006). Application of the Weibull model to describe inactivation of Listeria monocytogenes and Escherichia coli by citric and lactic acid at different temperatures. Journal of the Science of Food and Agriculture, 86(6), 865–870. https://doi.org/10.1002/jsfa.2424
Wang, C. Y., Chen, C.-T., & Wang, S. Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry, 117(3), 426–431. https://doi.org/10.1016/J.FOODCHEM.2009.04.037
Wang, D., Chen, L., Ma, Y., Zhang, M., Zhao, Y., & Zhao, X. (2019). Effect of UV-C treatment on the quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root. Food Chemistry, 278, 659–664. https://doi.org/10.1016/J.FOODCHEM.2018.11.102
WHO. (2018a). E. coli. http://www.who.int/es/news-room/fact-sheets/detail/e-coli
WHO. (2018b). Inocuidad de los alimentos. http://www.who.int/es/news-room/fact-sheets/detail/food-safety
WHO. (2018c). Listeriosis. World Health Organization. https://www.who.int/mediacentre/factsheets/listeriosis/es/
WHO. (2018d). Salmonella (no tifoidea). http://www.who.int/es/news-room/fact-sheets/detail/salmonella-(non-typhoidal)
WHO. (2020). Foodborne diseases. https://www.who.int/health-topics/foodborne-diseases#tab=tab_1
Wiley, R. C., & Yildiz, F. (2017). Introduction to minimally processed refrigerated (MPR) fruits and vegetables. In R. C. Wiley & F. Yildiz (Eds.), Minimally processed refrigerated fruits and vegetables (Second Edition, pp. 3–15). Springer Science+Business Media LLC. https://doi.org/https://doi.org/10.1007/978-1-4939-7018-6
Wilson, C. L., Upchurch, B., El Ghaouth, A., Stevens, C., Khan, V., Droby, S., & Chalutz, E. (1997). Using an on-line UV-C apparatus to treat harvested fruit for controlling postharvest decay. HortTechnology, 7(3), 278–282. http://horttech.ashspublications.org/content/7/3/278.abstract
Wu, J., Liu, W., Yuan, L., Guan, W.-Q., Brennan, C. S., Zhang, Y.-Y., Zhang, J., & Wang, Z.-D. (2017). The influence of postharvest UV-C treatment on anthocyanin biosynthesis in fresh-cut red cabbage. Scientific Reports, 7(1), 5232. https://doi.org/10.1038/s41598-017-04778-3
Xia, B., & Sun, D.-W. (2002). Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture, 34(1–3), 5–24. https://doi.org/10.1016/S0168-1699(01)00177-6
Xiang, Q., Fan, L., Zhang, R., Ma, Y., Liu, S., & Bai, Y. (2020). Effect of UVC light-emitting diodes on apple juice: Inactivation of Zygosaccharomyces rouxii and determination of quality. Food Control, 111, 107082. https://doi.org/10.1016/J.FOODCONT.2019.107082
Xu, L., Tian, C., Lu, X., Ling, L., Lv, J., Wu, M., & Zhu, G. (2015). Photoreactivation of Escherichia coli is impaired at high growth temperatures. Journal of Photochemistry and Photobiology B: Biology, 147, 37–46. https://doi.org/10.1016/J.JPHOTOBIOL.2015.03.012
Yan, R., Yun, J., Gurtler, J., & Fan, X. (2017). Radiochromic film dosimetry for UV-C treatments of apple fruit. Postharvest Biology and Technology, 127, 14–20. https://doi.org/10.1016/J.POSTHARVBIO.2017.01.003
Yang, X., Wu, Q., Huang, J., Wu, S., Zhang, J., Chen, L., Wei, X., Ye, Y., Li, Y., Wang, J., Lei, T., Xue, L., Pang, R., & Zhang, Y. (2020). Prevalence and characterization of Salmonella isolated from raw vegetables in China. Food Control, 109, 106915. https://doi.org/10.1016/J.FOODCONT.2019.106915
Yoon, J. H., Han, A., Paek, J., & Lee, S. Y. (2019). Evaluation of non-isothermal inactivation on survivals of pathogenic bacteria by predictive models. LWT, 101, 366–373. https://doi.org/10.1016/J.LWT.2018.11.023
Zafar, T. A., & Sidhu, J. S. (2017). Composition and Nutritional Properties of Mangoes. In M. Siddiq, J. K. Brecht, & J. S. Sidhu (Eds.), Handbook of Mango Fruit: Production, Postharvest Science, Processing Technology and Nutrition (pp. 217–236). Wiley-Blackwell.
Zambrano-Zaragoza, M. L., Quintanar-Guerrero, D., González-Reza, R. M., Cornejo-Villegas, M. A., Leyva-Gómez, G., & Urbán-Morlán, Z. (2021). Effects of UV-C and edible nano-coating as a combined strategy to preserve fresh-cut cucumber. Polymers, 13(21), 3705. https://doi.org/10.3390/POLYM13213705
Zambrano, J., Valera, A., Maffei, M., Materano, W., Quintero, I., & Graterol, K. (2017). Efecto de un recubrimiento comestible formulado con mucílago del cactus (Opuntia elatior Mill.) sobre la calidad de frutos de piña mínimamente procesados. Bioagro, 29(2), 129–136. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612017000200007&lng=es&nrm=iso&tlng=es
Zeng, J. K., Jiang, Z. T., Li, W., Zhang, L. B., & Shao, Y. Z. (2020). Effects of UV-C irradiation on postharvest quality and antioxidant properties of wampee fruit [Clausena lansium [Lour.) Skeels) during cold storage. Fruits, 75(1), 36–43. https://doi.org/10.17660/TH2020/75.1.4
Zhou, X., Li, Z., Lan, J., Yan, Y., & Zhu, N. (2017). Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection. Ultrasonics Sonochemistry, 35, 471–477. https://doi.org/10.1016/J.ULTSONCH.2016.10.028
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 186 páginas + anexos
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ingeniería y Administración - Doctorado en Ciencia y Tecnología de Alimentos
dc.publisher.faculty.spa.fl_str_mv Facultad de Administración
dc.publisher.place.spa.fl_str_mv Palmira Valle del Cauca, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82125/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82125/2/1118305527.2022.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
66dd1d94769e591eee99ffd4e2c815d8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885977780649984
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dussán Sarria, Saúl1daea1f3b8eba056e95bd97ae433e171Garzón García, Alba Merye23bb826b0f49d9ee80faf81de93f6d9Hleap Zapata, José IgorRuíz Cruz, SaúlManejo y agroindustrialización de productos de origen biológico2022-08-25T22:14:34Z2022-08-25T22:14:34Z2021https://repositorio.unal.edu.co/handle/unal/82125Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablasEl mango es una fruta de alto nivel nutricional y potencial para el procesamiento mínimo. Sin embargo, este proceso puede acelerar su de deterioro y contaminación microbiana. Por esto, es necesario aplicar una tecnología que ayude a preservar los atributos de calidad e inocuidad durante el almacenamiento. En el primer capítulo, se validó la dinámica de fluidos computacional (CFD) y el modelo de radiación de ordenadas discretas (DO) como herramienta para la simulación de una cámara de desinfección para el tratamiento con luz ultravioleta de onda corta (UV-C). Con la información obtenida de la simulación, se efectuó el modelamiento de las cinéticas de inactivación in vitro de suspensiones de los patógenos Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium y Listeria monocytogenes en términos de dosis de UV-C. En el segundo capítulo, se realizó la integración de CFD con los parámetros cinéticos con el fin de pronosticar dosis de UV-C para inactivar los patógenos inoculados en el mango ‘Tommy Atkins’ mínimamente procesado, y calcular una dosis óptima mediante el promedio de los tiempos de tratamiento. En el tercer capítulo, se evaluó el efecto de la dosis óptima de 6 kJ/m2 en los atributos de calidad del mango mínimamente procesado almacenado por 12 días a 5 °C. Los resultados mostraron que la aplicación de esta dosis permitió asegurar la inocuidad y preservar la mayoría de los atributos de calidad del mango ‘Tommy Atkins’ mínimamente procesado. Se concluyó que el uso de la CFD en integración con las cinéticas de inactivación es prometedor para la estimación de tratamientos con UV-C en mango mínimamente procesado y podría ser usado en otros productos hortofrutícolas. (Texto tomado de la fuente)Mango is a highly nutritional fruit with potential for minimal processing. However, this process can accelerate its deterioration and microbial contamination. Therefore, it is necessary to apply a technology that helps to preserve quality and safety attributes during storage. In the first chapter, the computational fluid dynamics (CFD) and the discrete ordinate (DO) radiation model were validated as a tool for the simulation of a disinfection chamber for treatment with short-wave ultraviolet light (UV-C). With the information obtained from the simulation, in vitro inactivation kinetics of suspensions of the pathogens Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were modeled in terms of UV-C dose. In the second chapter, the integration of CFD with the kinetic parameters was performed to predict UV-C doses to inactivate each of these pathogens inoculated in fresh-cut 'Tommy Atkins' mango and to calculate an optimal dose by averaging of treatment times. In the third chapter, the effect of the optimal dose of 6 kJ/m2 on the quality attributes of fresh-cut 'Tommy Atkins' mango stored for 12 days at 5 ° C was evaluated. The results showed that the application of this dose ensured safety and preserve most of the quality attributes of fresh-cut mango. It was concluded that the use of CFD in integration with inactivation kinetics is promising for estimating UV-C treatments in fresh-cut mango and could be used in other horticultural products.DoctoradoDoctor en Ciencia y Tecnología de AlimentosEn el primer capítulo, se validó la dinámica de fluidos computacional (CFD) y el modelo de radiación de ordenadas discretas (DO) como herramienta para la simulación de una cámara de desinfección para el tratamiento con luz ultravioleta de onda corta (UV-C). Con la información obtenida de la simulación, se efectuó el modelamiento de las cinéticas de inactivación in vitro de suspensiones de los patógenos Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium y Listeria monocytogenes en términos de dosis de UV-C. En el segundo capítulo, se realizó la integración de CFD con los parámetros cinéticos con el fin de pronosticar dosis de UV-C para inactivar los patógenos inoculados en el mango ‘Tommy Atkins’ mínimamente procesado, y calcular una dosis óptima mediante el promedio de los tiempos de tratamiento. En el tercer capítulo, se evaluó el efecto de la dosis óptima de 6 kJ/m2 en los atributos de calidad del mango mínimamente procesado almacenado por 12 días a 5 °C.Ingeniería de Procesos Agroalimentariosxx, 186 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ingeniería y Administración - Doctorado en Ciencia y Tecnología de AlimentosFacultad de AdministraciónPalmira Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadasInocuidad alimentariaProcesamiento de alimentosFood processingEscherichia coliTommy AtkinsMangoDinámica de fluidos computacionalMicrobiología predictivaParámetros cinéticosProcesamiento mínimoAtributos de calidadComputational fluid dynamicsPredictive microbiologyKinetic parametersQuality attributesFresh-cutUso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFDUse of UV-C light on “Tommy Atkins” mango and its effect on quality and safety attributes: Mathematical study based on CFDTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbdel-Fattah, A. ., Hegazy, E. A., & Ezz El-Din, H. (2000). Thymol-blue dyed poly(vinyl butyral) films for monitoring ultraviolet radiation. Journal of Photochemistry and Photobiology A: Chemistry, 137(1), 37–43. https://doi.org/10.1016/S1010-6030(00)00355-5Adhikari, A., Syamaladevi, R. M., Killinger, K., & Sablani, S. S. (2015). Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces. International Journal of Food Microbiology, 210, 136–142. https://doi.org/10.1016/j.ijfoodmicro.2015.06.018Agronet. (2018). CORPOICA identifica los mejores mangos criollos para mercado interno y exportación. http://www.agronet.gov.co/Noticias/Paginas/Noticia171.aspxAlfano, O. M., Romero, R. L., & Cassano, A. E. (1986). Radiation field modelling in photoreactors-I. homogeneous media. Chemical Engineering Science, 41(3), 421–444. https://doi.org/10.1016/0009-2509(86)87025-7Ali, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2018). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 58(15), 2632–2649. https://doi.org/10.1080/10408398.2017.1339180Allende, A., Tomás-Barberán, F. A., & Gil, M. I. (2006). Minimal processing for healthy traditional foods. Trends in Food Science & Technology, 17(9), 513–519. https://doi.org/10.1016/J.TIFS.2006.04.005Almeida-Miguel, A. C., Durigan, J. F., Marques, K. M., Ascari-Morgado, C. M., & Ferraudo, A. S. (2016). Prevention of chilling injury in “Tommy Atkins” mangoes previously stored at 5 °C, using heat tratment and radiation UV (UV-C). Revista Brasileira de Fruticultura, 38(1), 53–63. https://doi.org/10.1590/0100-2945-123/14Alothman, M., Bhat, R., & Karim, A. A. (2009). UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science & Emerging Technologies, 10(4), 512–516. https://doi.org/10.1016/J.IFSET.2009.03.004Anandharamakrishnan, C. (2013). Computational fluid dynamics applications in food processing. Springer-Verlag. https://doi.org/10.1007/978-1-4614-7990-1_1ANSYS Inc. (2006). 8.8.3 Refractive index. https://www.sharcnet.ca/Software/Fluent6/html/ug/node359.htmANSYS Inc. (2009a). 5.3.2 Radiative transfer equation. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node111.htmANSYS Inc. (2009b). 5.3.6 Discrete ordinates (DO) radiation model theory. http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node115.htmAOAC International. (2012). Official Methods of Analysis of AOAC International (G. W. Latimer (Ed.); 19th Edition). AOAC International.Ares, G., Giménez, A., & Gámbaro, A. (2008). Sensory shelf life estimation of minimally processed lettuce considering two stages of consumers’ decision-making process. Appetite, 50(2–3), 529–535. https://doi.org/10.1016/J.APPET.2007.11.002Artés-Hernández, F., Escalona, V. H., Robles, P. A., Martínez-Hernández, G. B., & Artés, F. (2009). Effect of UV-C radiation on quality of minimally processed spinach leaves. Journal of the Science of Food and Agriculture, 89(3), 414–421. https://doi.org/10.1002/JSFA.3460Artés-Hernández, F., Martínez-Hernández, G. B., Aguayo, E., Gómez, P. A., & Artés, F. (2017). Fresh-cut fruit and vegetables: Emerging eco-friendly techniques for sanitation and preserving safety. In I. Kahramanoglu (Ed.), Postharvest handling. IntechOpen. https://doi.org/10.5772/INTECHOPEN.69476Artés-Hernández, F., Robles, P. A., Gómez, P. A., Tomás-Callejas, A., Artés, F., & Martínez-Hernández, G. B. (2021). Quality changes of fresh-cut watermelon during storage as affected by cut intensity and UV-C pre-treatment. Food and Bioprocess Technology, 14(3), 505–517. https://doi.org/10.1007/S11947-021-02587-1/TABLES/2Artés, F., & Allende, A. (2015). Minimal processing of fresh fruit, vegetables, and juices. In D. W. Sun (Ed.), Emerging technologies for food processing (pp. 583–597). Academic Press.Artés, Francisco, & Allende, A. (2014). Minimal processing of fresh fruit, vegetables, and juices. In D.-W. Sun (Ed.), Emerging technologies for food processing (Second Edition, pp. 583–597). Academic Press. https://doi.org/10.1016/B978-0-12-411479-1.00031-0Aryal, s., baniya, m. k., danekhu, k., kunwar, p., gurung, r., & koirala, n. (2019). total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4). https://doi.org/10.3390/PLANTS8040096Asohofrucol. (2016a). Información Hortofrutícola. http://www.asohofrucol.com.co/interna.php?cat=3&scat=45&act=1Asohofrucol. (2016b). Principales líneas productivas 2016. http://www.asohofrucol.com.co/imagenes/Principales_lineas_productivas_2016.pdfAtilgan, M. R., Yildiz, S., Kaya, Z., & Unluturk, S. (2021). Kinetic and process modeling of uv-c irradiation of foods. In K. Knoerzer & K. Muthukumarappan (Eds.), Innovative food processing technologies: A Comprehensive Review (Vol. 2, pp. 227–255). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22972-7Azeredo, H. M. C. de. (2004). Fundamentos de estabilidade de alimentos. Embrapa Agroindústria Tropical.Bachmann, R. (1978). Apparatus for automatic low-bacteria to aseptic filling and packing of foodstuffs (Patent No. 4,121,107). Oblon, Fisher, Spivak, McClelland & Maier. https://patentimages.storage.googleapis.com/1b/fa/e9/22350344d707cf/US4121107.pdfBachmann, R., & Sturm, W. (1979). Method for automatic low-bacteria to aseptic filling and packing of foodstuffs employing ultraviolet radiation (Patent No. 4,175,140). Oblon, Fisher, Spivak, McClelland & Maier. https://patentimages.storage.googleapis.com/cd/25/70/bc4d84f94eac0c/US4175140.pdfBaeza, A., Silveira, A. C., & Escalona, V. (2015). Empleo de radiación UV-C como método de desinfección para la elaboración de rúcula (Eruca sativa Mill.) mínimamente procesada. Agrociencia (Uruguay), 19(2), 26–35. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482015000200004Baka, M., Mercier, J., Corcuff, R., Castaigne, F., & Arul, J. (1999). Photochemical treatment to improve storability of fresh strawberries. Journal of Food Science, 64(6), 1068–1072. https://doi.org/10.1111/j.1365-2621.1999.tb12284.xBalaguera-López, H. E., & Arévalo, A. H. (2012). Estudio de algunos cambios bioquímicos durante el crecimiento y hasta la cosecha del fruto de champa (Campomanesia lineatifolia R. & P. familia myrtaceae). Revista Brasileira de Fruticultura, 34(2), 460–468. https://doi.org/10.1590/S0100-29452012000200019Barreto, C. F., Navroski, R., Duarte-Marques, L. O., dos Santos, R. F., Barbosa-Malgarim, M., & Martins, C. R. (2021). Influência da radiação ultravioleta e aditivos na conservação de kiwis minimamente processados. Brazilian Journal of Food Technology, 24, e2020024. https://doi.org/10.1590/1981-6723.02420Barreto, M., Castillo-Ruiz, M., & Retamal, P. (2016). Salmonella enterica: una revisión de la trilogía agente, hospedero y ambiente, y su trascendencia en Chile. Revista Chilena de Infectología, 33(5), 547–557. https://doi.org/10.4067/S0716-10182016000500010Beltrán, A., Ramos, M., & Alvarez, M. (2010). Estudio de la vida útil de fresas (Fragaria vesca) mediante tratamiento con radiación ultravioleta de onda corta (UV-C). Revista Tecnológica ESPOL, 23(2), 17–24. http://www.rte.espol.edu.ec/index.php/tecnologica/article/view/51/22Benjamin, B., Uba, A., Yusha’u, M., Maikaje, D. B., Nyakaat, N. N., & Daniel, A. M. (2018). Isolation of Escheria Coli from fruits and vegetables in Kaduna metropolis. International Journal of Engineering Science and Computing, 8(7), 18598–18601. http://ijesc.org/upload/938bc913555306cae8ae43345c8c1f23.Isolation of Escheria Coli from Fruits and Vegetables in Kaduna Metropolis.pdfBevilacqua, A., Speranza, B., Sinigaglia, M., & Corbo, M. R. (2015). A focus on the death kinetics in predictive microbiology: benefits and limits of the most important models and some tools dealing with their application in foods. Foods, 4(4), 565–580. https://doi.org/10.3390/foods4040565Bhagat, B., & Chakraborty, S. (2022). Potential of pulsed light treatment to pasteurize pomegranate juice: Microbial safety, enzyme inactivation, and phytochemical retention. LWT, 159, 113215. https://doi.org/10.1016/J.LWT.2022.113215Brandl, M. T. (2006). Fitness of human enteric pathogens on plants and implications for food safety. Annual Review of Phytopathology, 44, 367–392. https://doi.org/10.1146/annurev.phyto.44.070505.143359Buosi, D. T. M., de Moraes, J. O., Cheng, Y., Cheng, R. A., Moraru, C. I., & Carciofi, B. A. M. (2022). Effective pulsed light treatments for inactivating Salmonella enterica serotypes. Food Control, 135, 108776. https://doi.org/10.1016/J.FOODCONT.2021.108776Butson, E. T., Cheung, T., Yu, P. K. N., & Butson, M. J. (2010). Measuring solar UV radiation with EBT radiochromic film. Physics in Medicine and Biology, 55(20), N487–N493. https://doi.org/10.1088/0031-9155/55/20/N01Butson, M. J., Yu, P. K. N., Cheung, T., & Metcalfe, P. (2003). Radiochromic film for medical radiation dosimetry. Materials Science and Engineering: R: Reports, 41(3–5), 61–120. https://doi.org/10.1016/S0927-796X(03)00034-2Cao, M., Wang, D., Qiu, L., Ren, X., & Ma, H. (2021). Shelf life prediction of ‘royal gala’ apples based on quality attributes and storage temperature. Horticultural Science and Technology, 39(3), 343–355. https://doi.org/10.7235/HORT.20210031Cardelli, C., & Labuza, T. P. (2001). Application of Weibull hazard analysis to the determination of the shelf life of roasted and ground coffee. LWT, 34(5), 273–278. https://doi.org/10.1006/FSTL.2000.0732Castañeda-Ruelas, G., Eslava-Campos, C., Castro-del Campo, N., León-Félix, J., & Chaidez-Quiroz, C. (2014). Listeriosis en México: importancia clínica y epidemiológica. Salud Pública de México, 56(6), 654–659. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342014000600016Castillejo, N., Martínez-Zamora, L., & Artés-Hernández, F. (2022). Postharvest UV radiation enhanced biosynthesis of flavonoids and carotenes in bell peppers. Postharvest Biology and Technology, 184, 111774. https://doi.org/10.1016/J.POSTHARVBIO.2021.111774Chang, J. C. H., Ossoff, S. F., Lobe, D. C., Dorfman, M. H., Dumais, C. M., Qualls, R. G., & Johnson, J. D. (1985). UV inactivation of pathogenic and indicator microorganisms. Applied and Environmental Microbiology, 49(6), 1361–1365.Charles, F., Vidal, V., Olive, F., Filgueiras, H., & Sallanon, H. (2013). Pulsed light treatment as new method to maintain physical and nutritional quality of fresh-cut mangoes. Innovative Food Science & Emerging Technologies, 18, 190–195. https://doi.org/10.1016/J.IFSET.2013.02.004Chisari, M., Barbagallo, R. N., Spagna, G., & Artes, F. (2011). Improving the quality of fresh-cut melon through inactivation of degradative oxidase and pectinase enzymatic activities by UV-C treatment. International Journal of Food Science & Technology, 46(3), 463–468. https://doi.org/10.1111/j.1365-2621.2010.02466.xChlebicz, A., & Śliżewska, K. (2018). Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. International Journal of Environmental Research and Public Health, 15(5), 863. https://doi.org/10.3390/ijerph15050863Chun, H. H., Kim, H. J., Won, M., Chung, K. S., & Song, K. Bin. (2010). A comparison of kinetic models of foodborne pathogen inactivation by aqueous chlorine dioxide, fumaric acid, and ultraviolet-C. Journal of Applied Biological Chemistry, 53(2), 243–248. https://doi.org/10.3839/jksabc.2010.038Coello-Torres, A., Fernández-Galván, D., & Galán-Saúco, V. (1997). Guía Descriptiva de Cultivares de Mango (P. y A. Consejería de Agricultura (Ed.)). Litografía Gráficas Sabater. https://www.icia.es/icia/download/fruticulturatropical/Guia descriptiva de cultivares de mango_optimized.pdfCorpas-Iguarán, E. J., & Tapasco-Alzate, O. A. (2014). Hallazgos de la biosíntesis del etileno en frutas climatéricas y de los factores que afectan la ruta metabólica. Alimentos Hoy, 22(31), 46–63. http://www.alimentoshoy.acta.org.co/index.php/hoy/article/view/255/239Cossart, P., & Sansonetti, P. J. (2004). Bacterial invasion: The paradigms of enteroinvasive pathogens. Science, 304(5668), 242–248. https://doi.org/10.1126/science.1090124Costa, L., Vicente, A. R., Civello, P. M., Chaves, A. R., & Martínez, G. A. (2006). UV-C treatment delays postharvest senescence in broccoli florets. Postharvest Biology and Technology, 39(2), 204–210. https://doi.org/10.1016/J.POSTHARVBIO.2005.10.012Courraud, J., Berger, J., Cristol, J., & Avallone, S. (2013). Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chemistry, 136(2), 871–877. https://doi.org/10.1016/J.FOODCHEM.2012.08.076Dandekar, T., Fieselmann, A., Fischer, E., Popp, J., Hensel, M., & Noster, J. (2015). Salmonella-how a metabolic generalist adopts an intracellular lifestyle during infection. Frontiers in Cellular and Infection Microbiology, 4, 191. https://doi.org/10.3389/fcimb.2014.00191de Almeida-Lopes, M. M., de Lucena, H. H., Souza da Silveira, M. R., dos Santos Garruti, D., Feitosa Machado, T., Souza de Aragão, F. A., & de Oliveira Silva, E. (2021). The use of electrolyzed water as a disinfectant for fresh cut mango. Scientia Horticulturae, 287, 110227. https://doi.org/10.1016/J.SCIENTA.2021.110227De Almeida-Melo, E., & Rodrigues De Araújo, C. (2011). Mangas das variedades espada, rosa e tommy atkins : compostos bioativos e potencial antioxidante. CIÊNCIAS AGRÁRIAS, 32(4), 1451–1460. https://doi.org/10.5433/1679-0359.2011v32n4p1451De Corato, U. (2020). Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60(6), 940–975. https://doi.org/10.1080/10408398.2018.1553025de Curtis, M. L., Franceschi, O., & De Castro, N. (2002). Listeria monocytogenes en vegetales mínimamente procesados. Archivos Latinoamericanos de Nutrición, 52(3), 282–288. http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0004-06222002000300009de Morais, P. L. D., Filgueiras, H. A., de Pinho, J. L. N., Alves, R. E., & de Assis, J. S. (2003). Vida útil de mangos cv. Tommy atkins recolectados en el estadio de maduración comercial. Revista Iberoamericana de Tecnología Postcosecha, 5(1), 26–32. http://www.redalyc.org/html/813/81350104/de Siqueira-Oliveira, L., Eça, K. S., de Aquino, A. C., & Vasconcelos, L. B. (2018). Hydrogen peroxide (H2O2) for postharvest fruit and vegetable disinfection. In M. Wasim-Siddiqui (Ed.), Postharvest disinfection of fruits and vegetables (First Edition, pp. 91–99). Academic Press. https://doi.org/10.1016/b978-0-12-812698-1.00004-2Devic, S. (2011). Radiochromic film dosimetry: Past, present, and future. Physica Medica, 27(3), 122–134. https://doi.org/10.1016/j.ejmp.2010.10.001Díaz-Sobac, R., & Vernon-Carter, J. (2009). Inocuidad microbiológica de frutas frescas y mínimamente procesadas. CYTA-Journal of Food, 2(3), 133–136. https://doi.org/10.1080/11358129909487594Djioua, T., Charles, F., Freire, M., Filgueiras, H., Ducamp-Collin, M. N., & Sallanon, H. (2010). Combined effects of postharvest heat treatment and chitosan coating on quality of fresh-cut mangoes (Mangifera indica L.). International Journal of Food Science & Technology, 45(4), 849–855. https://doi.org/10.1111/J.1365-2621.2010.02209.XDussán-Sarria, S., Perea-Camayo, M. A., & Hleap-Zapata, J. I. (2019). Efecto de diferentes antioxidantes y envases en atributos físico-químicos y sensoriales de orellana refrigerada. Información Tecnológica, 30(6), 55–62. https://doi.org/10.4067/S0718-07642019000600055Dussán-Sarria, S., Ramírez-Yela, J. I., & Hleap-Zapata, J. I. (2017). Conservación de mango mínimamente procesado usando un recubrimiento comestible a base de aceite de aguacate. Información Tecnológica, 28(3), 67–74. https://doi.org/10.4067/S0718-07642017000300008Dussán-Sarria, S., Torres-León, C., & Hleap-Zapata, J. I. (2014). Efecto de un recubrimiento comestible y de diferentes empaques durante el almacenamiento refrigerado de mango Tommy Atkins mínimamente procesado. Información Tecnológica, 25(4), 123–130. https://doi.org/10.4067/S0718-07642014000400014Dussán-Sarria, S., Torres-León, C., & Reyes-Calvache, P. M. (2014). Efecto del recubrimiento comestible sobre los atributos físicoquímicos de mango “Tommy Atkins” mínimamente procesado y refrigerado. Acta Agronómica, 63(3), 212–221. https://doi.org/10.15446/acag.v63n3.40973Ediriweera, M. K., Tennekoon, K. H., & Samarakoon, S. R. (2017). A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mangifera indica (Mango). Evidence-Based Complementary and Alternative Medicine, 2017. https://doi.org/10.1155/2017/6949835Escobar-Hernández, A., Márquez-Cardozo, C. J., Restrepo-Florez, C. E., & Cordoba-Pérez, L. J. (2014). Aplicación de tecnología de barreras para la conservación de mezclas de vegetales mínimamente procesados. Revista Facultad Nacional de Agronomía Medellín, 67(1), 7237–7245. https://doi.org/10.15446/rfnam.v67n1.42652Falguera, V., Pagán, J., Garza, S., Garvín, A., & Ibarz, A. (2012). Inactivation of polyphenol oxidase by ultraviolet irradiation: Protective effect of melanins. Journal of Food Engineering, 110(2), 305–309. https://doi.org/10.1016/J.JFOODENG.2011.04.005Feliziani, E., Lichter, A., Smilanick, J. L., & Ippolito, A. (2016). Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biology and Technology, 122, 53–69. https://doi.org/10.1016/J.POSTHARVBIO.2016.04.016Fenoglio, D., Ferrario, M., Schenk, M., & Guerrero, S. (2020). Effect of pilot-scale UV-C light treatment assisted by mild heat on E. coli, L. plantarum and S. cerevisiae inactivation in clear and turbid fruit juices. Storage study of surviving populations. International Journal of Food Microbiology, 332, 108767. https://doi.org/10.1016/J.IJFOODMICRO.2020.108767Franco-Vega, A., Reyes-Jurado, F., González-Albarrán, D., Ramírez-Corona, N., Palou, E., & López-Malo, A. (2021). Developments and advances of high intensity pulsed light and its combination with other treatments for microbial inactivation in food products. Food Engineering Reviews, 13(4), 741–768. https://doi.org/10.1007/S12393-021-09280-1Fratianni, A., Adiletta, G., Matteo, M. Di, Panfili, G., Niro, S., Gentile, C., Farina, V., Cinquanta, L., & Corona, O. (2020). Evolution of carotenoid content, antioxidant activity and volatiles compounds in dried mango fruits (Mangifera Indica L.). Foods 2020, 9(10), 1424. https://doi.org/10.3390/FOODS9101424García-Mogollón, C., Cury-Regno, K. I., & Dussán-Sarria, S. (2010). Evaluación poscosecha y estimación de vida útil de guayaba fresca utilizando el modelo de Weibull. Acta Agronómica, 59(3), 347–355. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/17664/18534Gardner, D. W. M., & Shama, G. (1998). The kinetics of Bacillus subtilis spore inactivation on filter paper by u.v. light and u.v. light in combination with hydrogen peroxide. Journal of Applied Microbiology, 84(4), 633–641. https://doi.org/10.1046/j.1365-2672.1998.00391.xGardner, D. W. M., & Shama, G. (1999). UV intensity measurement and modelling and disinfection performance prediction for irradiation of solid surfaces with UV light. Food and Bioproducts Processing, 77(3), 232–242. https://doi.org/10.1205/096030899532510Gardner, D. W. M., & Shama, G. (2000). Modeling UV-Induced Inactivation of Microorganisms on Surfaces. Journal of Food Protection, 63(1), 63–70. https://doi.org/10.4315/0362-028X-63.1.63Garzón-García, A. M., Ruiz-Cruz, S., Márquez-Ríos, E., Dussán-Sarria, S., Hleap-Zapata, J. I., & Lobatón, H. F. (2020). Computational fluid dynamics as a technique for the UV-C light dose determination in horticultural products. Biotecnia, 22(1), 84–92. https://doi.org/10.18633/BIOTECNIA.V22I1.1128Geeraerd, A. H., Valdramidis, V. P., & Van Impe, J. F. (2005). GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology, 102(1), 95–105. https://doi.org/10.1016/j.ijfoodmicro.2004.11.038George, D. S., Razali, Z., Santhirasegaram, V., & Somasundram, C. (2015). Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut Chokanan mango and Josephine pineapple. Journal of Food Science, 80(2), S426–S434. https://doi.org/10.1111/1750-3841.12762George, D. S., Razali, Z., Santhirasegaram, V., & Somasundram, C. (2016). Effect of postharvest ultraviolet-C treatment on the proteome changes in fresh cut mango (Mangifera indica L. cv. Chokanan). Journal of the Science of Food and Agriculture, 96(8), 2851–2860. https://doi.org/10.1002/JSFA.7454Gil, M. I., Gómez-López, V. M., Hung, Y. C., & Allende, A. (2015). Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food and Bioprocess Technology, 8(6), 1336–1348. https://doi.org/10.1007/s11947-014-1444-1Gil, M. I., Selma, M. V., López-Gálvez, F., & Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: Problems and solutions. International Journal of Food Microbiology, 134(1–2), 37–45. https://doi.org/10.1016/j.ijfoodmicro.2009.05.021Giménez, A., Ares, F., & Ares, G. (2012). Sensory shelf-life estimation: A review of current methodological approaches. Food Research International, 49(1), 311–325. https://doi.org/10.1016/J.FOODRES.2012.07.008Giménez, A., & Ares, G. (2019). Sensory shelf life estimation. In C. M. Galanakis (Ed.), Food Quality and Shelf Life (pp. 333–357). Academic Press. https://doi.org/10.1016/B978-0-12-817190-5.00011-2Gómez, P. L., Alzamora, S. M., Castro, M. A., & Salvatori, D. M. (2010). Effect of ultraviolet-C light dose on quality of cut-apple: Microorganism, color and compression behavior. Journal of Food Engineering, 98(1), 60–70. https://doi.org/10.1016/J.JFOODENG.2009.12.008González-Aguilar, G. A., Villegas-Ochoa, M. A., Martínez-Téllez, M. A., Gardea, A. A., & Ayala-Zavala, J. F. (2007). Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72(3), S197–S202. https://doi.org/10.1111/j.1750-3841.2007.00295.xGonzález-Aguilar, G. A., Zavaleta-Gatica, R., & Tiznado-Hernández, M. E. (2007). Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biology and Technology, 45(1), 108–116. https://doi.org/10.1016/J.POSTHARVBIO.2007.01.012González-Mendoza, D., Torrentera-Olivera, N. G., Ceceña Duran, C., & Grimaldo-Juarez, O. (2017). Water as contamination source of Salmonella and Escherichia coli in vegetable production in Mexico: A review. Revista Bio Ciencias, 3(3), 156–162. https://doi.org/10.15741/revbio.edit.04.06González-Vega, R. I., Cárdenas-López, J. L., López-Elías, J. A., Ruiz-Cruz, S., Reyes-Díaz, A., Perez-Perez, L. M., Cinco-Moroyoqui, F. J., Robles-Zepeda, R. E., Borboa-Flores, J., & Del-Toro-Sánchez, C. L. (2021). Optimization of growing conditions for pigments production from microalga Navicula incerta using response surface methodology and its antioxidant capacity. Saudi Journal of Biological Sciences, 28(2), 1401–1416. https://doi.org/10.1016/J.SJBS.2020.11.076Graça, A., Santo, D., Quintas, C., & Nunes, C. (2017). Growth of Escherichia coli, Salmonella enterica and Listeria spp., and their inactivation using ultraviolet energy and electrolyzed water, on ‘Rocha’ fresh-cut pears. Food Control, 77, 41–49. https://doi.org/10.1016/j.foodcont.2017.01.017Grasso, C., Forniti, R., & Botondi, R. (2022). Post-harvest quality evaluation of “Soreli” kiwifruit at two ripening °Brix values from vineyards of different age under hail nets. Foods, 11(3), 431. https://doi.org/10.3390/FOODS11030431Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004). Advantages and limitations on processing foods by UV light. Food Science and Technology International, 10(3), 137–147. https://doi.org/10.1177/1082013204044359Güler, S. K., Bostan, S. Z., & Çon, A. H. (2017). Effects of gamma irradiation on chemical and sensory characteristics of natural hazelnut kernels. Postharvest Biology and Technology, 123, 12–21. https://doi.org/10.1016/J.POSTHARVBIO.2016.08.007Gutiérrez, D., Ruiz-López, G., Sgroppo, S., & Rodríguez, S. (2016). Uso de la radiación UV-C en el proceso de elaboración de hortalizas de IV gama. Agrociencia Uruguay, 20(2), 7–13. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482016000200002Han, R.-M., Zhang, J.-P., & Skibsted, L. H. (2012). Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 17(2), 2140. https://doi.org/10.3390/MOLECULES17022140Harris, L. J., Zagory, D., & Gorny, J. R. (2011). Factores de seguridad. In A. A. Kader (Ed.), Tecnología postcosecha de cultivos hortofrutícolas (pp. 342–345). Universidad de California. Centro de Información e Investigación en Tecnología Postcosecha.Hashemabadi, S. H., Ghaderzadeh, F., & Taghipour, F. (2014). CFD simulation of UV disinfection reactor for applesauce with a low UV absorption coefficient. Journal of Chemical and Petroleum Engineering, 48(2), 103–116. https://doi.org/10.22059/JCHPE.2014.7561He, X., Wang, J., Guo, S., Zhang, J., Wei, B., Sun, J., & Shu, S. (2018). Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 149, 16–25. https://doi.org/10.1016/j.compag.2017.10.001Hinojosa, A., Silveira, A. C., Ospina, M., Char, C., Sáenz, C., & Escalona, V. H. (2013). Safety of ready-to-eat watercress using environmentally friendly sanitization methods. Journal of Food Quality, 36(1), 66–76. https://doi.org/10.1111/jfq.12016Ho, C. K. (2009). Evaluation of reflection and refraction in simulations of ultraviolet disinfection using the discrete ordinates radiation model. Water Science and Technology, 59(12), 2421–2428. https://doi.org/10.2166/wst.2009.260Hough, G., Langohr, K., Gomez, G., & Curia, A. (2003). Survival analysis applied to sensory shelf life of foods. Journal of Food Science, 68(1), 359–362. https://doi.org/10.1111/j.1365-2621.2003.tb14165.xHough, Guillermo, & Garitta, L. (2012). Methodology for sensory shelf-life estimation: a review. Journal of Sensory Studies, 27(3), 137–147. https://doi.org/10.1111/J.1745-459X.2012.00383.XHough, Guillermo, Puglieso, M. L., Sanchez, R., & da Silva, O. M. (1999). Sensory and microbiological shelf-life of a commercial Ricotta cheese. Journal of Dairy Science, 82(3), 454–459. https://doi.org/10.3168/JDS.S0022-0302(99)75253-7Hu, H. H. (2012). Computational fluid dynamics. In P. K. Kundu, C. I. M., & D. R. Dowling (Eds.), Fluid mechanics (pp. 421–472). Academic Press. https://doi.org/10.1016/B978-0-12-382100-3.10010-1Huang, H., Ge, Z., Limwachiranon, J., Li, L., Li, W., & Luo, Z. (2017). UV-C treatment affects browning and starch metabolism of minimally processed lily bulb. Postharvest Biology and Technology, 128, 105–111. https://doi.org/10.1016/J.POSTHARVBIO.2017.02.010Imaizumi, T., Yamauchi, M., Sekiya, M., Shimonishi, Y., & Tanaka, F. (2018). Responses of phytonutrients and tissue condition in persimmon and cucumber to postharvest UV-C irradiation. Postharvest Biology and Technology, 145, 33–40. https://doi.org/10.1016/J.POSTHARVBIO.2018.06.003Incropera, F. P., & De Witt, D. P. (1999). Fundamentos de transferencia de calor. Prentice Hall.Instituto Colombiano de Normas Técnicas y Certificación. (2013). NTC 6005: Alimentos Mínimamente Procesados (pp. 1–13).Instituto Colombiano de Normas Técnicas y Certificación. (2018). Nueva edicion de la norma ISO 22000. http://www.icontec.org/Paginas/Nueva-edicion-de-la-norma-ISO-22000.aspxInstituto Nacional de Vigilancia de Medicamentos y Alimentos. (1997). Decreto 3075 de 1997. https://www.invima.gov.co/images/stories/aliementos/decreto_3075_1997.pdfInstituto Nacional de Vigilancia de Medicamentos y Alimentos. (2013). Resolución 2674 de 2013. https://www.invima.gov.co/resoluciones-en-alimentos/resolucion-2674-2013-pdf/detail.htmlInstituto Tecnológico del Plástico. (2012). Guía del usuario del envase plástico. https://www.sena-sa.com/wp-content/uploads/2020/04/elenvaseplastico.pdfJaimez-Suarez, S., & Gómez-Álvarez, L. M. (2013). Evaluación de un producto a base de ácidos orgánicos frente a E. coli y Salmonella spp. en la desinfección de lechuga fresca. Alimentos Hoy, 22(29), 20–32. https://alimentoshoy.acta.org.co/index.php/hoy/article/view/229/222Jeon, M.-J., & Ha, J.-W. (2018). Efficacy of UV-A, UV-B, and UV-C irradiation on inactivation of foodborne pathogens in different neutralizing buffer solutions. LWT, 98(14), 591–597. https://doi.org/10.1016/j.lwt.2018.09.030John, D., & Ramaswamy, H. S. (2020). Comparison of pulsed light inactivation kinetics and modeling of Escherichia coli (ATCC-29055), Clostridium sporogenes (ATCC-7955) and Geobacillus stearothermophilus (ATCC-10149). Current Research in Food Science, 3, 82–91. https://doi.org/10.1016/J.CRFS.2020.03.005Kader, A. A. (2008). Parámetros de calidad y estándares de clasificación en mango. Revisión de información disponible y futuras necesidades de investigación. https://www.mango.org/wp-content/uploads/2018/03/Mango_Grade_Standards_Final_Report_Spn.pdfKan, J., Hui, Y., Lin, X., Liu, Y., & Jin, C. (2021). Postharvest ultraviolet-C treatment of peach fruit: Changes in transcriptome profile focusing on genes involved in softening and senescence. Journal of Food Processing and Preservation, 45(10), e15813. https://doi.org/10.1111/JFPP.15813Karpiński, T. M., & Adamczak, A. (2019). Fucoxanthin-an antibacterial carotenoid. antioxidants, 8, 239. https://doi.org/10.3390/ANTIOX8080239Kaushal, P., & Sharma, H. K. (2011). Concept of computational fluid dynamics (CFD) and its applications in food processing equipment design. Journal of Food Processing & Technology, 3(1), 1–7. https://doi.org/10.4172/2157-7110.1000138Kavakli, I. H., Ozturk, N., & Gul, S. (2019). DNA repair by photolyases. Advances in Protein Chemistry and Structural Biology, 115, 1–19. https://doi.org/10.1016/BS.APCSB.2018.10.003Kaya, Z., Unluturk, S., Martin-Belloso, O., & Soliva-Fortuny, R. (2020). Effectiveness of pulsed light treatments assisted by mild heat on Saccharomyces cerevisiae inactivation in verjuice and evaluation of its quality during storage. Innovative Food Science & Emerging Technologies, 66, 102517. https://doi.org/10.1016/J.IFSET.2020.102517Khubone, L. W., & Mditshwa, A. (2018). The effects of UV-C irradiation on postharvest quality of tomatoes (Solanum lycopersicum). Acta Horticulturae, 1201, 75–82. https://doi.org/10.17660/ACTAHORTIC.2018.1201.11Kim, H. G., & Song, K. Bin. (2017). Combined treatment with chlorine dioxide gas, fumaric acid, and ultraviolet-C light for inactivating Escherichia coli O157:H7 and Listeria monocytogenes inoculated on plums. Food Control, 71, 371–375. https://doi.org/10.1016/j.foodcont.2016.07.022Kingwascharapong, P., Iida, Y., Tanaka, F., & Tanaka, F. (2020). Simulation of a UV-C conveyor system using computational fluid dynamics techniques on the uniformity of the incident UV-C dose distribution to strawberry. Journal of the Faculty of Agriculture, Kyushu University, 65(2), 371–378. https://doi.org/10.5109/4103903Koutchma, T., Forney, L., & Moraru, C. (2009). Ultraviolet light in food technology: principles and applications (T. Koutchma (Ed.)). CRC Press. https://doi.org/10.1201/9781420059519.ch4Kumar, M., Saurabh, V., Tomar, M., Hasan, M., Changan, S., Sasi, M., Maheshwari, C., Prajapati, U., Singh, S., Prajapat, R. K., Dhumal, S., Punia, S., Amarowicz, R., & Mekhemar, M. (2021). Mango (Mangifera indica L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Antioxidants, 10(2), 299. https://doi.org/10.3390/ANTIOX10020299Lamikanra, O., Kueneman, D., Ukuku, D., & Bett-Garber, K. L. (2005). Effect of processing under ultraviolet light on the shelf life of fresh-cut cantaloupe melon. Journal of Food Science, 70(9), C534–C539. https://doi.org/10.1111/j.1365-2621.2005.tb08301.xLasagabaster, A., & Martínez de Marañón, I. (2017). Comparative study on the inactivation and photoreactivation response of Listeria monocytogenes seafood isolates and a Listeria innocua surrogate after pulsed light treatment. Food and Bioprocess Technology, 10, 1931–1935. https://doi.org/10.1007/S11947-017-1972-6Law, J. W.-F., Ab Mutalib, N.-S., Chan, K.-G., & Lee, L.-H. (2015). An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Frontiers in Microbiology, 6, 1227. https://doi.org/10.3389/fmicb.2015.01227Lázaro, A., & Lorenzo, C. de. (2015). Texture analysis in melon landraces through instrumental and sensory methods. International Journal of Food Properties, 18(7), 1575–1583. https://doi.org/10.1080/10942912.2014.923441Li, P., Yu, X., & Xu, B. (2017). Effects of UV-C light exposure and refrigeration on phenolic and antioxidant profiles of subtropical fruits (litchi, longan, and rambutan) in different fruit forms. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/8785121Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of postharvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit. Scientia Horticulturae, 241, 107–114. https://doi.org/10.1016/J.SCIENTA.2018.06.075Liu, J., Stevens, C., Khan, V. A., Lu, J. Y., Wilson, C. L., Adeyeye’, O., Kabwe’, M. K., Pusey, P. L., Chalutz, E., Sultana, T., & Droby, S. (1993). Application of ultraviolet-C light on storage rots and ripening of tomatoes. Journal of Food Protection, 56(10), 868–872. https://doi.org/10.4315/0362-028X-56.10.868Liu, Z., Hu, S., Soteyome, T., Bai, C., Liu, J., Wang, Z., Kjellerup, B. V., & Xu, Z. (2021). Intense pulsed light for inactivation of foodborne gram-positive bacteria in planktonic cultures and bacterial biofilms. LWT, 152, 112374. https://doi.org/10.1016/J.LWT.2021.112374Londoño-Londoño, J. (2012). Antioxidantes: importancia biológica y métodos para medir su actividad. In Desarrollo y transversalidad (pp. 129–162). Corporación Universitaria Lasallista. http://repository.lasallista.edu.co/dspace/handle/10567/133Luna-Guevara, J. J., Arenas-Hernandez, M. M. P., Martínez De La Peña, C., Silva, J. L., & Luna-Guevara, M. L. (2019). The role of pathogenic E. coli in fresh vegetables: behavior, contamination factors, and preventive measures. International Journal of Microbiology, 2019, 1–10. https://doi.org/10.1155/2019/2894328Ma, X., Zheng, B., Ma, Y., Xu, W., Wu, H., & Wang, S. (2018). Carotenoid accumulation and expression of carotenoid biosynthesis genes in mango flesh during fruit development and ripening. Scientia Horticulturae, 237, 201–206. https://doi.org/10.1016/J.SCIENTA.2018.04.009Mahecha, G., De Civetta, L. A., & Rodríguez, C. (1991). Normas de calidad para las variedades de mango “Tommy Atkins” y “común” (hilacha). Revista Colombiana de Química, 20(2), 10–17. https://doi.org/10.15446/rev.colomb.quimMaherani, B., Hossain, F., Criado, P., Ben-Fadhel, Y., Salmieri, S., & Lacroix, M. (2016). World market development and consumer acceptance of irradiation technology. Foods, 5(4), 79. https://doi.org/10.3390/FOODS5040079Maldonado-Celis, M. E., Yahia, E. M., Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., Restrepo, B., & Guerrero Ospina, J. C. (2019). Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Frontiers in Plant Science, 10, 1073. https://doi.org/10.3389/fpls.2019.01073Marques, A., Chicaybam, G., Araujo, M. T., Manhães, L. R. T., & Sabaa-Srur, A. U. O. (2010). Composição centesimal e de minerais de casca e polpa de manga (Mangifera indica L.) cv. Tommy Atkins. Revista Brasileira de Fruticultura, 32(4), 1206–1210. https://doi.org/10.1590/S0100-29452010005000117Márquez-Villacorta, L., Pretell-Vásquez, C., & Minchón-Medina, C. (2011). Efecto del tratamiento desinfectante y tiempo de almacenamiento sobre las características fisicoquímicas, microbiológicas y sensoriales de rebanadas de mango (Mangifera indica) Kent mínimamente procesado. Pueblo Continente, 22(2), 385–403. http://journal.upao.edu.pe/PuebloContinente/article/view/432Márquez-Villacorta, L., & Pretell-Vásquez, C. P. (2013). Irradiación UV-C en frutas tropicales mínimamente procesadas. Scientia Agropecuaria, 4(3), 147–161. https://www.redalyc.org/articulo.oa?id=357633706001Martínez-González, M. E., Balois-Morales, R., Alia-Tejacal, I., Cortes-Cruz, M. A., Palomino-Hermosillo, Y. A., & López-Gúzman, G. G. (2010). Poscosecha de frutos: maduración y cambios bioquímicos. Revista Mexicana de Ciencias Agrícolas, Extra 19, 4075–4087. https://doi.org/10.29312/remexca.v0i19.674Martínez-Hernández, G. B., Artés-Hernández, F., Gómez, P. A., Formica, A. C., & Artés, F. (2013). Combination of electrolysed water, UV-C and superatmospheric O2 packaging for improving fresh-cut broccoli quality. Postharvest Biology and Technology, 76, 125–134. https://doi.org/10.1016/J.POSTHARVBIO.2012.09.013Mathew, E. N., Muyyarikkandy, M. S., Kuttappan, D., & Amalaradjou, M. A. (2018). Attachment of Salmonella enterica on mangoes and survival under conditions simulating commercial mango packing house and importer facility. Frontiers in Microbiology, 9, 1519. https://doi.org/10.3389/fmicb.2018.01519Maurer, L. H., Bersch, A. M., Santos, R. O., Trindade, S. C., Costa, E. L., Peres, M. M., Malmann, C. A., Schneider, M., Bochi, V. C., Sautter, C. K., & Emanuelli, T. (2017). Postharvest UV-C irradiation stimulates the non-enzymatic and enzymatic antioxidant system of ‘Isabel’ hybrid grapes (Vitis labrusca × Vitis vinifera L.). Food Research International, 102, 738–747. https://doi.org/10.1016/j.foodres.2017.09.053Michailidis, M., Karagiannis, E., Polychroniadou, C., Tanou, G., Karamanoli, K., & Molassiotis, A. (2019). Metabolic features underlying the response of sweet cherry fruit to postharvest UV-C irradiation. Plant Physiology and Biochemistry, 144, 49–57. https://doi.org/10.1016/J.PLAPHY.2019.09.030Millán-Villarroel, D., Romero-González, L., Brito, M., & Ramos-Villarroel, A. Y. (2015). Luz ultravioleta: inactivación microbiana en frutas. Saber, 27(3), 454–469. http://www.ojs.udo.edu.ve/index.php/saber/article/view/1897Ministerio de Salud y Protección Social. (2013a). La inocuidad de alimentos y su importancia en la cadena agroalimentaria. https://www.minsalud.gov.co/Documents/Archivos-temporal-jd/alimentos-temporal.pdfMinisterio de Salud y Protección Social. (2013b). Resolución 3929 de 2013. https://www.invima.gov.co/images/pdf/normatividad/alimentos/resoluciones/resoluciones/2013/Resolucion-3929-2013.pdfModest, M. F. (2013). The radiative transfer equation in participating media (RTE). In M. F. Modest (Ed.), Radiative Heat Transfer (pp. 279–302). Academic Press. https://doi.org/10.1016/B978-0-12-386944-9.50010-8Mohamed, N. T. S., Ding, P., Kadir, J., & Ghazali, H. M. (2017). Potential of UVC germicidal irradiation in suppressing crown rot disease, retaining postharvest quality and antioxidant capacity of Musa AAA “Berangan” during fruit ripening. Food Science & Nutrition, 5, 967–980. https://doi.org/10.1002/FSN3.482Moharram, H. A., & Youssef, M. M. (2014). Methods for determining the antioxidant activity: A review. Alexandria Journal of Food Science and Technology, 11(1), 31–42.Monroy, C. A., Marin-Arango, Z. T., & Giraldo, G. A. (2017). Efecto de diferentes cortes en lechuga Batavia (Lactuca sativa L). Alimentos Hoy, 25(40), 77–86. https://alimentoshoy.acta.org.co/index.php/hoy/article/view/434/358Morales, M., Soledad Hernández-, M., Cabezas, M., Barrera, J., & Martínez, O. (2001). Caracterización de la maduración del fruto de pina nativa (Ananas comosus L. Merrill) CV. India. Agronomía Colombiana, 18(1–3), 63–69. https://revistas.unal.edu.co/index.php/agrocol/article/view/21706Moreno, B. L., & Deaquiz-Oyola, Y. A. (2015). Caracterización de parámetros fisicoquímicos en frutos de mora (Rubus alpinus Macfad). Acta Agronómica, 65(2), 130–136. https://doi.org/10.15446/acag.v65n2.45587Moreno, C., Andrade-Cuvi, M. J., Zaro, M. J., Darre, M., Vicente, A. R., & Concellón, A. (2017). Short UV-C treatment prevents browning and extends the shelf-life of fresh-cut carambola. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/2548791Mukherjee, S. K., & Litz, R. E. (2009). 1 Introduction: Botany and importance. In R. E. Litz (Ed.), The mango: Botany, production and uses (pp. 1–18). CAB International.Muoki, P. N., Makokha, A. O., Onyango, C. A., & Ojijo, N. K. O. (2009). Potential contribution of mangoes to reduction of vitamin A deficiency in Kenya. Ecology of Food and Nutrition, 48(6), 482–498. https://doi.org/10.1080/03670240903308604Nigro, F., & Ippolito, A. (2016). UV-C light to reduce decay and improve quality of stored fruit and vegetables: a short review. Acta Horticulturae, 1144, 293–298. https://doi.org/10.17660/ActaHortic.2016.1144.43Nigro, F., Ippolito, A., & Lima, G. (1998). Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology, 13(3), 171–181. https://doi.org/10.1016/S0925-5214(98)00009-XNorton, T., & Sun, D.-W. (2006). Computational fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: A review. Trends in Food Science and Technology, 17(11), 600–620. https://doi.org/10.1016/j.tifs.2006.05.004Norton, T., & Sun, D.-W. (2007). An overview of CFD applications in the food industry. In D.-W. Sun (Ed.), Computational fluids dynamics in food processing (pp. 1–41). CRC Press. https://doi.org/10.1201/9781420009217.ch1Norton, T., & Sun, D.-W. (2010). CFD: An innovative and effective design tool for the food industry. In J. Aguilera, R. Simpson, J. Welti-Chanes, D. Bermudez-Aguirre, & G. Barbosa-Canovas (Eds.), Food Engineering Interfaces (pp. 45–68). Springer. https://doi.org/10.1007/978-1-4419-7475-4_3Ntsoane, M. L., Zude-Sasse, M., Mahajan, P., & Sivakumar, D. (2019). Quality assesment and postharvest technology of mango: A review of its current status and future perspectives. Scientia Horticulturae, 249, 77–85. https://doi.org/10.1016/J.SCIENTA.2019.01.033Obande, M. A., & Shama, G. (2011). The use of biodosimetry to measure the UV-C dose delivered to a sphere, and implications for the commercial treatment of fruit. Journal of Food Engineering, 104(1), 1–5. https://doi.org/10.1016/J.JFOODENG.2010.11.017Obande, M. A., Tucker, G. A., & Shama, G. (2011). Effect of preharvest UV-C treatment of tomatoes (Solanum lycopersicon Mill.) on ripening and pathogen resistance. Postharvest Biology and Technology, 62(2), 188–192. https://doi.org/10.1016/J.POSTHARVBIO.2011.06.001Ordoñez-Santos, L. E., Martínez-Girón, J., Villamizar-Vargas, R. H., & Villamizar-Vargas, R. H. (2018). Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. DYNA, 85(206), 128–134. https://doi.org/10.15446/dyna.v85n206.68089Ortega, V. G., Ramírez, J. A., Velázquez, G., Tovar, B., Mata, M., & Montalvo, E. (2013). Effect of high hydrostatic pressure on antioxidant content of “Ataulfo” mango during postharvest maturation. Food Science and Technology, 33(3), 561–568. https://doi.org/10.1590/S0101-20612013005000062Ostos, S. L., Díaz, A. C., & Suarez, H. (2012). Evaluación de diferentes condiciones de proceso en la fortificación de mango (Tommy Atkins) con calcio mediante impregnación a vacío. Revista Chilena de Nutrición, 39(2), 181–190. https://doi.org/10.4067/S0717-75182012000200007Pan, Y.-G., & Zu, H. (2012). Effect of UV-C Radiation on the Quality of Fresh-cut Pineapples. Procedia Engineering, 37, 113–119. https://doi.org/10.1016/J.PROENG.2012.04.212Parish, M. E., Beuchat, L. R., Suslow, T. V., Harris, L. J., Garrett, E. H., Farber, J. N., & Busta, F. F. (2003). Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety, 2(s1), 161–173. https://doi.org/10.1111/j.1541-4337.2003.tb00033.xPark, M.-H., & Kim, J.-G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109–112. https://doi.org/10.1016/J.POSTHARVBIO.2014.09.013Pataro, G., Sinik, M., Capitoli, M. M., Donsì, G., & Ferrari, G. (2015). The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science & Emerging Technologies, 30, 103–111. https://doi.org/10.1016/J.IFSET.2015.06.003Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60. https://doi.org/10.1007/s11947-012-0867-9Penteado, A. L., de Castro, M. F. P. M., & Rezende, A. C. B. (2014). Salmonella enterica serovar Enteritidis and Listeria monocytogenes in mango (Mangifera indica L.) pulp: growth, survival and cross‐contamination. Journal of the Science of Food and Agriculture, 94(13), 2746–2751. https://doi.org/10.1002/jsfa.6619Pérez-Gálvez, A., Viera, I., & Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 1–39. https://doi.org/10.3390/ANTIOX9060505Pérez-Pérez, E. P., & López-Malo, A. (2011). Tecnologías involucradas en el procesamiento mínimo de frutas y hortalizas. Temas Selectos de Ingeniería de Alimentos, 5(2), 13–27. https://www.udlap.mx/WP/tsia/files/No5-Vol-2/TSIA-5(2)-Pérez-Perez-et-al-2011.pdfPérez-Perez, L. M., Del-Toro-Sánchez, C. L., Sánchez-Chavez, E., González-Vega, R. I., Reyes-Díaz, A., Borboa-Flores, J., Soto-Parra, J. M., & Flores-Cordova, M. A. (2020). Bioaccesibilidad de compuestos antioxidantes de diferentes variedades de frijol (Phaseolus vulgaris L.) en México, mediante un sistema gastrointestinal in vitro. Biotecnia, 22(1), 117–125. https://doi.org/10.18633/BIOTECNIA.V22I1.1159Pinela, J., & Ferreira, I. C. F. R. (2017). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 57(10), 2095–2111. https://doi.org/10.1080/10408398.2015.1046547Pinzón, I. M. del P., Fischer, G., & Corredor, G. (2007). Determinación de los estados de madurez del fruto de la gulupa (Passiflora edulis Sims.). Agronomía Colombiana, 25(1), 83–95. http://www.scielo.org.co/pdf/agc/v25n1/v25n1a10.pdfPrajapati, U., Asrey, R., Varghese, E., Singh, A. K., & Pal Singh, M. (2021). Effects of postharvest ultraviolet-C treatment on shelf-life and quality of bitter gourd fruit during storage. Food Packaging and Shelf Life, 28, 100665. https://doi.org/10.1016/J.FPSL.2021.100665Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena–an overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19. https://doi.org/10.1080/10408390600976841Preetha, P., Pandiselvam, R., Varadharaju, N., Kennedy, Z. J., Balakrishnan, M., & Kothakota, A. (2021). Effect of pulsed light treatment on inactivation kinetics of Escherichia coli (MTCC 433) in fruit juices. Food Control, 121, 107547. https://doi.org/10.1016/J.FOODCONT.2020.107547Pretell-Vásquez, C., Márquez-Villacorta, L., Siche, R., & Hayayumi-Valdivia, M. (2020). Efecto del ozono y tiempo de almacenamiento sobre las características fisicoquímicas de espárrago verde (Asparagus officinalis L.) mínimamente procesado. Ciencia & Tecnología Agropecuaria, 21(3), 2–16. https://doi.org/10.21930/RCTA.VOL21_NUM3_ART:1506Pristijono, P., Bowyer, M. C., Papoutsis, K., Scarlett, C. J., Vuong, Q. V., Stathopoulos, C. E., & Golding, J. B. (2019). Improving the storage quality of Tahitian limes (Citrus latifolia) by pre-storage UV-C irradiation. Journal of Food Science and Technology, 56, 1–7. https://doi.org/10.1007/s13197-019-03623-xPristijono, P., Golding, J. B., & Bowyer, M. C. (2019). Postharvest UV-C treatment, followed by storage in a continuous low-level ethylene atmosphere, maintains the quality of ‘Kensington pride’ mango fruit stored at 20 °C. Horticulturae, 5(1), 1–12. https://doi.org/10.3390/horticulturae5010001Puig-Peña, Y., Leyva-Castillo, V., Rodríguez-Suárez, A., Carrera-Vara, J., Molejón, P. L., Pérez-Muñoz, Y., & Dueñas-Moreira, O. (2002). Calidad microbiológica de las hortalizas y factores asociados a la contaminación en áreas de cultivo en La Habana. Revista Habanera de Ciencias Médicas, 13(1), 111–119. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2014000100013Quek, P. H., & Hu, J. (2008a). Influence of photoreactivating light intensity and incubation temperature on photoreactivation of Escherichia coli following LP and MP UV disinfection. Journal of Applied Microbiology, 105(1), 124–133. https://doi.org/10.1111/J.1365-2672.2008.03723.XQuek, P. H., & Hu, J. (2008b). Indicators for photoreactivation and dark repair studies following ultraviolet disinfection. Journal of Industrial Microbiology and Biotechnology, 35(6), 533–533. https://doi.org/10.1007/S10295-008-0314-0Quintero-Cerón, J. P., Bohorquez-Pérez, Y., Valenzuela-Real, C., & Solanilla-Duque, J. F. (2013). Avances en la aplicación de luz ultravioleta de onda corta (UVC) en frutas y vegetales enteros y mínimamente procesados: revisión. Revista Tumbaga, 1(8), 29–60. http://revistas.ut.edu.co/index.php/tumbaga/article/view/294/349Ramírez-Méndez, R., Quijada, O., Castellano, G., Burgos, M. E., Camacho, R., & Marin R., C. (2010). Características físicas y químicas de frutos de trece cultivares de mango (Mangifera indica L) en el municipio Mara en la planicie de Maracaibo. Revista Iberoamericana de Tecnología Postcosecha, 10(2), 65–72. http://www.redalyc.org/html/813/81315091002/Rangel-Marrón, M., & López-Malo, A. (2012). Cambios en frutas tropicales frescas, cortadas y empacadas en atmósfera modificada durante su almacenamiento en refrigeración. Temas Selectos de Ingeniería de Alimentos, 6(2), 94–109. http://web.udlap.mx/tsia/files/2013/12/TSIA-62Rangel-Marron-et-al-2012.pdfRani, K., Manasa, C. B., Jagadeesh, S., & Thammaiah, N. (2019). Colour measurement of ripening mango fruits as influenced by pre-harvest treatments using L* a* b* coordinates. Journal of Pharmacognosy and Phytochemistry, 8(1), 2466–2470.Raybaudi-Massilia, R., Calderón-Gabaldón, M. I., Mosqueda-Melgar, J., & Tapia, M. S. (2013). Inactivation of Salmonella enterica ser. Poona and Listeria monocytogenes on fresh-cut “Maradol” red papaya (Carica papaya L) treated with UV-C light and malic acid. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 8(1–2), 37–44. https://doi.org/10.1007/s00003-013-0808-1Razali, Z., Somasundram, C., Nurulain, S. Z., Kunasekaran, W., & Alias, M. R. (2021). Postharvest quality of cherry tomatoes coated with mucilage from dragon fruit and irradiated with UV-C. Polymers, 13(17), 2919. https://doi.org/10.3390/POLYM13172919Rees, C. E. D., Doyle, L., & Taylor, C. M. (2017). Listeria monocytogenes. In C. E. R. Dodd, T. Aldsworth, R. A. Stein, D. O. Cliver, & H. P. Riemann (Eds.), Foodborne diseases (pp. 253–276). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-385007-2.00012-7Ren, H. W., & Zhang, Y. (2011). Applications of computational fluid dynamics (CFD) in the Food Industry. Advanced Materials Research, 236–238, 2273–2278. https://doi.org/10.4028/www.scientific.net/AMR.236-238.2273Ribeiro, S. M. R., Queiroz, J. H., Lopes de Queiroz, M. E., Campos, F. M., & Sant’Ana, H. M. P. (2007). Antioxidant in mango (Mangifera indica L.) pulp. Plant Foods for Human Nutrition, 62(1), 13–17. https://doi.org/10.1007/s11130-006-0035-3Rivera-Pastrana, D. M., Gardea, A. A., Yahia, E. M., Martínez-Téllez, M. A., & González-Aguilar, G. A. (2014). Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging activity of papaya fruit. Journal of Food Science and Technology, 51(12), 3821–3829. https://doi.org/10.1007/S13197-013-0942-XRivera-Pastrana, Dulce M., Béjar, A. A. G., Martínez-Téllez, M. Á., Rivera-Domínguez, M., & González-Aguilar, G. A. (2007). Efectos bioquímicos postcosecha de la irradiación UV-C en frutas y hortalizas. Revista Fitotecnia Mexicana, 30(4), 361–372. http://www.redalyc.org/articulo.oa?id=61030403Robles-Sánchez, R. M., Rojas-Graü, M. A., Odriozola-Serrano, I., González-Aguilar, G. A., & Martín-Belloso, O. (2009). Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut ‘Kent’ mango (Mangifera indica L.). Postharvest Biology and Technology, 51(3), 384–390. https://doi.org/10.1016/J.POSTHARVBIO.2008.09.003Rodriguez-Amaya, D. B. (2019). Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 124, 200–205. https://doi.org/10.1016/J.FOODRES.2018.05.028Rodríguez-Mijangos, R., Gonzalez-Boué, G., Barffuson-Dominguez, F., López-Vargas, J. M., & Gómez-Yépiz, M. S. (2014). Cámara de irradiación UV-C económica y sus potenciales aplicaciones en la desinfección de alimentos. EPISTEMUS, 16, 72–78. https://biblat.unam.mx/hevila/EpistemusCienciatecnologiaysalud/2014/no16/10.pdfRomero, L., Colivet, J., Aron, N. M., & Ramos-Villarroel, A. (2017). Impact of ultraviolet light on quality attributes of stored fresh-cut mango. The Annals of the University Dunarea de Jos of Galati Fascicle VI – Food Technology, 41(1), 62–80. http://eds.a.ebscohost.com/eds/detail/detail?vid=0&sid=7221daa0-c4ff-44c6-aa97-f4f0446caa61%40sessionmgr4008&bdata=Jmxhbmc9ZXMmc2l0ZT1lZHMtbGl2ZQ%3D%3D#AN=125098472&db=fsrRosalie, R., Léchaudel, M., Dhuique-Mayer, C., Dufossé, L., & Joas, J. (2018). Antioxidant and enzymatic responses to oxidative stress induced by cold temperature storage and ripening in mango (Mangifera indica L. cv. ‘Cogshall’) in relation to carotenoid content. Journal of Plant Physiology, 224–225, 75–85. https://doi.org/10.1016/J.JPLPH.2018.03.011Ruales, J., Baenas, N., Moreno, D. A., Stinco, C. M., Meléndez-Martínez, A. J., & García-Ruiz, A. (2018). Biological Active Ecuadorian Mango ‘Tommy Atkins’ Ingredients—An Opportunity to Reduce Agrowaste. Nutrients, 10(9). https://doi.org/10.3390/nu10091138Ruelas-Chacón, X., De La, M., Reyes-Vega, L., Valdivia-Urdiales, B., Carlos Contreras-Esquivel, J., César Montañez-Saenz, J., Aguilera-Carbó, A. F., & Darío Peralta-Rodríguez, R. (2013). Conservación de Frutas y Hortalizas Frescas y Mínimamente Procesadas con Recubrimientos Comestibles. Revista Científica de La Universidad Autónoma de Coahuila, 5(9), 31–37.Ruiz-Cruz, S., Acedo-Félix, E., Díaz-Cinco, M., Islas-Osuna, M. A., & González-Aguilar, G. A. (2007). Efficacy of sanitizers in reducing Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes populations on fresh-cut carrots. Food Control, 18(11), 1383–1390. https://doi.org/10.1016/j.foodcont.2006.09.008Ruiz-Cruz, S., Alvarez-Parrilla, E., de la Rosa, L. A., Martinez-Gonzalez, A. I., de Jesus Ornelas-Paz, J., Mendoza-Wilson, A. M., & Gonzalez-Aguilar, G. A. (2010). Effect of different sanitizers on microbial, sensory and nutritional quality of fresh-cut jalapeno peppers. American Journal of Agricultural and Biological Science, 5(3), 331–341. https://doi.org/10.3844/ajabssp.2010.331.341Rybak, K., Wiktor, A., Pobiega, K., Witrowa-Rajchert, D., & Nowacka, M. (2021). Impact of pulsed light treatment on the quality properties and microbiological aspects of red bell pepper fresh-cuts. LWT, 149, 111906. https://doi.org/10.1016/J.LWT.2021.111906Saini, R. K., & Keum, Y. S. (2018). Significance of genetic, environmental, and pre- and postharvest factors affecting carotenoid contents in crops: A review. Journal of Agricultural and Food Chemistry, 66(21), 5310–5325. https://doi.org/10.1021/ACS.JAFC.8B01613/ASSET/IMAGES/ACS.JAFC.8B01613.SOCIAL.JPEG_V03Salinas-Roca, B., Guerreiro, A., Welti-Chanes, J., Antunes, M. D. C., & Martín-Belloso, O. (2018). Improving quality of fresh-cut mango using polysaccharide-based edible coatings. International Journal of Food Science & Technology, 53(4), 938–945. https://doi.org/10.1111/IJFS.13666Sandia National Laboratories. (2007). UV disinfection. https://www.sandia.gov/cfd-water/uvdisinfection.htmSanto, D., Graça, A., Nunes, C., & Quintas, C. (2018). Escherichia coli and Cronobacter sakazakii in ‘Tommy Atkins’ minimally processed mangos: Survival, growth and effect of UV-C and electrolyzed water. Food Microbiology, 70, 49–54. https://doi.org/10.1016/j.fm.2017.09.008Sastry, S. K., Datta, A. K., & Worobo, R. W. (2000). Ultraviolet light. Journal of Food Science, 65, 90–92. https://doi.org/10.1111/j.1750-3841.2000.tb00623.xScott, G., & Richardson, P. (1997). The application of computational fluid dynamics in the food industry. Trends in Food Science & Technology, 8(4), 119–124. https://doi.org/10.1016/S0924-2244(97)01028-5Sgroppo, S. C., & Sosa, C. A. (2009). Zapallo anco (Cucurbita moschata D.) fresco cortado tratado con luz UV-C. FACENA, 25, 7–19. https://revistas.unne.edu.ar/index.php/fce/article/view/5474Shama, G. (2005). Ultraviolet Light. In Y. H. Hui (Ed.), Handbook of Food Science, Technology, and Engineering (pp. 122-1–122–14). CRC Press.Shama, G. (2007). Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biology and Technology, 44(1), 1–8. https://doi.org/10.1016/J.POSTHARVBIO.2006.11.004Sharifi-Yazdi, M. K., & Darghahi, H. (2006). Inactivation of pathogenic bacteria using pulsed UV-light and its application in water disinfection and quality control. Acta Medica Iranica, 44(5), 305–308. https://acta.tums.ac.ir/index.php/acta/article/view/3205Shehata, S. A., Abdeldaym, E. A., Ali, M. R., Mohamed, R. M., Bob, R. I., & Abdelgawad, K. F. (2020). Effect of some citrus essential oils on post-harvest shelf life and physicochemical quality of strawberries during cold storage. Agronomy, 10(10), 1466. https://doi.org/10.3390/AGRONOMY10101466Shen, Y., Sun, Y., Qiao, L., Chen, J., Liu, D., & Ye, X. (2013). Effect of UV-C treatments on phenolic compounds and antioxidant capacity of minimally processed Satsuma mandarin during refrigerated storage. Postharvest Biology and Technology, 76, 50–57. https://doi.org/10.1016/J.POSTHARVBIO.2012.09.006Silveira, A. C., Conesa, A., Aguayo, E., & Artés, F. (2008). Alternative sanitizers to chlorine for use on fresh‐cut “Galia” (Cucumis melo var. catalupensis) melon. Journal of Food Science, 73(9), M405–M411. https://doi.org/10.1111/j.1750-3841.2008.00939.xSivapalasingam, S., Barrett, E., Kimura, A., Van Duyne, S., De Witt, W., Ying, M., Frisch, A., Phan, Q., Gould, E., Shillam, P., Reddy, V., Cooper, T., Hoekstra, M., Higgins, C., Sanders, J. P., Tauxe, R. V., & Slutsker, L. (2003). A multistate outbreak of Salmonella enterica Serotype Newport infection linked to mango consumption: Impact of water-dip disinfestation technology. Clinical Infectious Diseases, 37(12), 1585–1590. https://doi.org/10.1086/379710Soto-Varela, Z., Pérez-Lavalle, L., & Estrada-Alvarado, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: una mirada en Colombia. Salud Uninorte, 32(1), 105–122. http://www.scielo.org.co/pdf/sun/v32n1/v32n1a10.pdfSripong, K., Jitareerat, P., & Uthairatanakij, A. (2019). UV irradiation induces resistance against fruit rot disease and improves the quality of harvested mangosteen. Postharvest Biology and Technology, 149, 187–194. https://doi.org/10.1016/J.POSTHARVBIO.2018.12.001Stannard, C. J., Abbiss, J. S., & Wood, J. M. (1983). Combined Treatment with hydrogen peroxide and ultraviolet irradiation to reduce microbial contamination levels in pre-formed food packaging cartons. Journal of Food Protection, 46(12), 1060–1064. https://doi.org/10.4315/0362-028X-46.12.1060Stannard, C. J., Abbiss, J. S., & Wood, J. M. (1985). Efficiency of treatments involving ultraviolet irradiation for decontaminating packaging board of different surface compositions. Journal of Food Protection, 48(9), 786–789. https://doi.org/10.4315/0362-028X-48.9.786Stevens, C., Khan, V. A., Tang, A. Y., & Lu, J. Y. (1990). The effect of ultraviolet radiation on mold rots and nutrients of stored sweet potatoes. Journal of Food Protection, 53(3), 223–226. https://doi.org/10.4315/0362-028X-53.3.223Stevens, C., Khan, V. A., Wilson, C. L., Lu, J. Y., Chalutz, E., & Droby, S. (2005). The effect of fruit orientation of postharvest commodities following low dose ultraviolet light-C treatment on host induced resistance to decay. Crop Protection, 24(8), 756–759. https://doi.org/10.1016/J.CROPRO.2004.12.008Strawn, L. K., & Danyluk, M. D. (2010). Fate of Escherichia coli O157:H7 and Salmonella spp. on fresh and frozen cut mangoes and papayas. International Journal of Food Microbiology, 138(1–2), 78–84. https://doi.org/10.1016/J.IJFOODMICRO.2009.12.002Sultan, T. (2016). Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor. Chemosphere, 155, 170–179. https://doi.org/10.1016/j.chemosphere.2016.04.050Syamaladevi, R. M., Lu, X., Sablani, S. S., Insan, S. K., Adhikari, A., Killinger, K., Rasco, B., Dhingra, A., Bandyopadhyay, A., & Annapure, U. (2013). Inactivation of Escherichia coli population on fruit surfaces using ultraviolet-C light: Influence of fruit surface characteristics. Food and Bioprocess Technology, 6(11), 2959–2973. https://doi.org/10.1007/s11947-012-0989-0Tafur-Garzón, M. allister. (2009). La inocuidad de alimentos y el comercio internacional. Revista Colombiana de Ciencias Pecuarias, 22(3), 330–338. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902009000300009Tanaka, F., Nashiro, K., Trivittayasil, V., & Uchino, T. (2016). Simulation of UV-C dose distribution and inactivation of mold spore on strawberries in a conveyor system. Food Science and Technology Research, 22(4), 461–466. https://doi.org/10.3136/fstr.22.461Taze, B. H., & Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233, 370–377. https://doi.org/10.1016/J.SCIENTA.2018.02.012Terry, L. A., & Joyce, D. C. (2004). Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biology and Technology, 32(1), 1–13. https://doi.org/10.1016/J.POSTHARVBIO.2003.09.016Tharanathan, R. N., Yashoda, H. M., & Prabha, T. N. (2006). Mango (Mangifera indica L.), “the king of fruits”—an overview. Food Reviews International, 22(2), 95–123. https://doi.org/10.1080/87559120600574493Thompson, C. L., & Sancar, A. (2002). Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock. Oncogene, 21(58), 9043–9056. https://doi.org/10.1038/sj.onc.1205958Trivittayasil, V., Nashiro, K., Tanaka, F., Hamanaka, D., & Uchino, T. (2015). Inactivation characteristics and modeling of mold spores by UV-C radiation based on irradiation dose. Food Science and Technology Research, 21(3), 365–370. https://doi.org/10.3136/fstr.21.365Trivittayasil, V., Tanaka, F., & Uchino, T. (2016). Simulation of UV-C intensity distribution and inactivation of mold spores on strawberries. Food Science and Technology Research, 22(2), 185–192. https://doi.org/10.3136/fstr.22.185U.S. Food and Drugs Administration. (2020, October 3). Country fresh expands voluntary recall. https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/country-fresh-expands-voluntary-recallvan Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1–2), 139–159. https://doi.org/10.1016/S0168-1605(01)00742-5van Boekel, M. A. J. S. (2008). Kinetic modeling of food quality: A critical review. comprehensive reviews in food science and food safety, 7(1), 144–158. https://doi.org/10.1111/j.1541-4337.2007.00036.xVelderrain-Rodríguez, G. R., Salmerón-Ruiz, M. L., González-Aguilar, G. A., Martín-Belloso, O., & Soliva-Fortuny, R. (2021). Ultraviolet/visible intense pulsed light irradiation of fresh-cut avocado enhances its phytochemicals content and preserves quality attributes. Journal of Food Processing and Preservation, 45(3), e15289. https://doi.org/10.1111/JFPP.15289Villamizar-Vargas, R., Quiceno-Gómez, C., & Giraldo-Giraldo, G. (2019). Cambios fisicoquímicos durante la maduración del mango Tommy Atkins en la poscosecha. Revista U.D.C.A Actualidad & Divulgación Científica, 22(1). https://doi.org/10.31910/RUDCA.V22.N1.2019.1159Virto, R., Sanz, D., Álvarez, I., Condón, S., & Raso, J. (2006). Application of the Weibull model to describe inactivation of Listeria monocytogenes and Escherichia coli by citric and lactic acid at different temperatures. Journal of the Science of Food and Agriculture, 86(6), 865–870. https://doi.org/10.1002/jsfa.2424Wang, C. Y., Chen, C.-T., & Wang, S. Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry, 117(3), 426–431. https://doi.org/10.1016/J.FOODCHEM.2009.04.037Wang, D., Chen, L., Ma, Y., Zhang, M., Zhao, Y., & Zhao, X. (2019). Effect of UV-C treatment on the quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root. Food Chemistry, 278, 659–664. https://doi.org/10.1016/J.FOODCHEM.2018.11.102WHO. (2018a). E. coli. http://www.who.int/es/news-room/fact-sheets/detail/e-coliWHO. (2018b). Inocuidad de los alimentos. http://www.who.int/es/news-room/fact-sheets/detail/food-safetyWHO. (2018c). Listeriosis. World Health Organization. https://www.who.int/mediacentre/factsheets/listeriosis/es/WHO. (2018d). Salmonella (no tifoidea). http://www.who.int/es/news-room/fact-sheets/detail/salmonella-(non-typhoidal)WHO. (2020). Foodborne diseases. https://www.who.int/health-topics/foodborne-diseases#tab=tab_1Wiley, R. C., & Yildiz, F. (2017). Introduction to minimally processed refrigerated (MPR) fruits and vegetables. In R. C. Wiley & F. Yildiz (Eds.), Minimally processed refrigerated fruits and vegetables (Second Edition, pp. 3–15). Springer Science+Business Media LLC. https://doi.org/https://doi.org/10.1007/978-1-4939-7018-6Wilson, C. L., Upchurch, B., El Ghaouth, A., Stevens, C., Khan, V., Droby, S., & Chalutz, E. (1997). Using an on-line UV-C apparatus to treat harvested fruit for controlling postharvest decay. HortTechnology, 7(3), 278–282. http://horttech.ashspublications.org/content/7/3/278.abstractWu, J., Liu, W., Yuan, L., Guan, W.-Q., Brennan, C. S., Zhang, Y.-Y., Zhang, J., & Wang, Z.-D. (2017). The influence of postharvest UV-C treatment on anthocyanin biosynthesis in fresh-cut red cabbage. Scientific Reports, 7(1), 5232. https://doi.org/10.1038/s41598-017-04778-3Xia, B., & Sun, D.-W. (2002). Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture, 34(1–3), 5–24. https://doi.org/10.1016/S0168-1699(01)00177-6Xiang, Q., Fan, L., Zhang, R., Ma, Y., Liu, S., & Bai, Y. (2020). Effect of UVC light-emitting diodes on apple juice: Inactivation of Zygosaccharomyces rouxii and determination of quality. Food Control, 111, 107082. https://doi.org/10.1016/J.FOODCONT.2019.107082Xu, L., Tian, C., Lu, X., Ling, L., Lv, J., Wu, M., & Zhu, G. (2015). Photoreactivation of Escherichia coli is impaired at high growth temperatures. Journal of Photochemistry and Photobiology B: Biology, 147, 37–46. https://doi.org/10.1016/J.JPHOTOBIOL.2015.03.012Yan, R., Yun, J., Gurtler, J., & Fan, X. (2017). Radiochromic film dosimetry for UV-C treatments of apple fruit. Postharvest Biology and Technology, 127, 14–20. https://doi.org/10.1016/J.POSTHARVBIO.2017.01.003Yang, X., Wu, Q., Huang, J., Wu, S., Zhang, J., Chen, L., Wei, X., Ye, Y., Li, Y., Wang, J., Lei, T., Xue, L., Pang, R., & Zhang, Y. (2020). Prevalence and characterization of Salmonella isolated from raw vegetables in China. Food Control, 109, 106915. https://doi.org/10.1016/J.FOODCONT.2019.106915Yoon, J. H., Han, A., Paek, J., & Lee, S. Y. (2019). Evaluation of non-isothermal inactivation on survivals of pathogenic bacteria by predictive models. LWT, 101, 366–373. https://doi.org/10.1016/J.LWT.2018.11.023Zafar, T. A., & Sidhu, J. S. (2017). Composition and Nutritional Properties of Mangoes. In M. Siddiq, J. K. Brecht, & J. S. Sidhu (Eds.), Handbook of Mango Fruit: Production, Postharvest Science, Processing Technology and Nutrition (pp. 217–236). Wiley-Blackwell.Zambrano-Zaragoza, M. L., Quintanar-Guerrero, D., González-Reza, R. M., Cornejo-Villegas, M. A., Leyva-Gómez, G., & Urbán-Morlán, Z. (2021). Effects of UV-C and edible nano-coating as a combined strategy to preserve fresh-cut cucumber. Polymers, 13(21), 3705. https://doi.org/10.3390/POLYM13213705Zambrano, J., Valera, A., Maffei, M., Materano, W., Quintero, I., & Graterol, K. (2017). Efecto de un recubrimiento comestible formulado con mucílago del cactus (Opuntia elatior Mill.) sobre la calidad de frutos de piña mínimamente procesados. Bioagro, 29(2), 129–136. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612017000200007&lng=es&nrm=iso&tlng=esZeng, J. K., Jiang, Z. T., Li, W., Zhang, L. B., & Shao, Y. Z. (2020). Effects of UV-C irradiation on postharvest quality and antioxidant properties of wampee fruit [Clausena lansium [Lour.) Skeels) during cold storage. Fruits, 75(1), 36–43. https://doi.org/10.17660/TH2020/75.1.4Zhou, X., Li, Z., Lan, J., Yan, Y., & Zhu, N. (2017). Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection. Ultrasonics Sonochemistry, 35, 471–477. https://doi.org/10.1016/J.ULTSONCH.2016.10.028Evaluación de alternativas tecnológicas agroindustriales y ambientales en el procesamiento mínimo y conservación de mango 'Tommy Atkins'Universidad Nacional de Colombia - Sede PalmiraEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82125/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1118305527.2022.pdf1118305527.2022.pdfTesis de Doctorado en Ciencia y Tecnología de Alimentosapplication/pdf3214614https://repositorio.unal.edu.co/bitstream/unal/82125/2/1118305527.2022.pdf66dd1d94769e591eee99ffd4e2c815d8MD52unal/82125oai:repositorio.unal.edu.co:unal/821252022-08-25 17:14:37.347Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=