Caracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)

ilustraciones, diagramas, fotografías

Autores:
Herrera Cardona, Andrea
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86109
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86109
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Glucanos
Canna edulis
Propiedades fisicoquímicas
glucans
Canna edulis
chemicophysical properties
Almidón de achira
Propiedades químicas
Características morfológicas
Cristalinidad
Gelatinización
Comportamiento reológico
Claridad de la pasta
Achira starch
Chemical properties
Morphological characteristics
Crystallinity
Gelatinization,
Rheological behavior
Pasta clarity
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_c94b0c601cb07c162ce395157b63668d
oai_identifier_str oai:repositorio.unal.edu.co:unal/86109
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)
dc.title.translated.eng.fl_str_mv Physicochemical and functional characterization of starch from two clones of Achira (Canna edulis)
title Caracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)
spellingShingle Caracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Glucanos
Canna edulis
Propiedades fisicoquímicas
glucans
Canna edulis
chemicophysical properties
Almidón de achira
Propiedades químicas
Características morfológicas
Cristalinidad
Gelatinización
Comportamiento reológico
Claridad de la pasta
Achira starch
Chemical properties
Morphological characteristics
Crystallinity
Gelatinization,
Rheological behavior
Pasta clarity
title_short Caracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)
title_full Caracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)
title_fullStr Caracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)
title_full_unstemmed Caracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)
title_sort Caracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)
dc.creator.fl_str_mv Herrera Cardona, Andrea
dc.contributor.advisor.spa.fl_str_mv Rincón Prat, Sonia Lucía
García Muñoz, María Cristina
dc.contributor.author.spa.fl_str_mv Herrera Cardona, Andrea
dc.contributor.researchgroup.spa.fl_str_mv Biomasa y Optimización Térmica de Procesos Biot
Innovación tecnológica de procesos agroindustriales para el desarrollo rural (Agrosavia)
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Glucanos
Canna edulis
Propiedades fisicoquímicas
glucans
Canna edulis
chemicophysical properties
Almidón de achira
Propiedades químicas
Características morfológicas
Cristalinidad
Gelatinización
Comportamiento reológico
Claridad de la pasta
Achira starch
Chemical properties
Morphological characteristics
Crystallinity
Gelatinization,
Rheological behavior
Pasta clarity
dc.subject.agrovoc.spa.fl_str_mv Glucanos
Canna edulis
Propiedades fisicoquímicas
dc.subject.agrovoc.eng.fl_str_mv glucans
Canna edulis
chemicophysical properties
dc.subject.proposal.spa.fl_str_mv Almidón de achira
Propiedades químicas
Características morfológicas
Cristalinidad
Gelatinización
Comportamiento reológico
Claridad de la pasta
dc.subject.proposal.eng.fl_str_mv Achira starch
Chemical properties
Morphological characteristics
Crystallinity
Gelatinization,
Rheological behavior
Pasta clarity
description ilustraciones, diagramas, fotografías
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-17T19:50:11Z
dc.date.available.none.fl_str_mv 2024-05-17T19:50:11Z
dc.date.issued.none.fl_str_mv 2024-05-15
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86109
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86109
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acuña Pinto, H. M. (2012). Extracción, caracterización y aplicación de almidón de ñame variedad blanco (dioscorea trifida) originario de la región amazónica colombiana para la elaboración de productos horneados [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/9785/
Aleixandre, A., & Rosell, C. M. (2022). Starch gels enriched with phenolics: Effects on paste properties, structure and digestibility. Lwt, 161(October 2021), 113350. https://doi.org/10.1016/j.lwt.2022.113350
Alvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis Físico-Químico y Morfológico de Almidones de Ñame, Yuca y Papa y Determinación de la Viscosidad de las Pastas Physicochemical and Morphological Analyses of Yam, Cassava and Potato Starches and Determination of their Viscosity. Información Tecnológica, 19(1), 19–28
Anderson, R. A., Conway, H. F., & Peplinski, A. J. (1970). Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. In Starch - Stärke (Vol. 22, Issue 4). https://doi.org/10.1002/star.19700220408
AOAC. (2019). Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International (21st Editi). AOAC
AOAC INTERNATIONAL. (1997). Official Method 996.11 : Starch (Total) in Cereal Products - Amyloglucosidase- -Amylase Method. First Action 1996 AOAC-AACC Method, 32.2.05a. In Journal of AOAC International.
Aprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. Journal of Food Science and Technology, 51(12), 3669–3679. https://doi.org/10.1007/s13197-012-0915-5
Aristizábal, J., & Sánchez, T. (2007). Guía técnica para producción y análisis de almidón de yuca. Fao, 163, 134. https://doi.org/9253056770-9789253056774
Ávila Martín, L. (2018). Efecto de la adición de ácido cítrico y proteína de lactosuero en la elaboración de películas basadas en almidón de Canna indica L [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/68666/1015401865.2018.pdf?sequence=1&isAllowed=y
Bertolini, A. (2010). Starches: Characterization, properties, and applications. CRC Press, Taylor & Francys group
Caicedo, G., Rozo, S., & Rengifo, G. (2003). La Achira: Alternativa agroindustrial para áreas de economía campesina. In Corpoica. CORPOICA
Canton Trevisol, T., Oliveira Henriques, R., Antunes Souza, A. J., Cesca, K., & Furigo, A. (2023). Starch- and carboxymethyl cellulose-based films as active beauty masks with papain incorporation. International Journal of Biological Macromolecules, 231(July 2022), 123258. https://doi.org/10.1016/j.ijbiomac.2023.123258
Chai, K., Lu, K., Xu, Z., Tong, Z., & Ji, H. (2018). Rapid and selective recovery of acetophenone from petrochemical effluents by crosslinked starch polymer. Journal of Hazardous Materials, 348(July 2017), 20–28. https://doi.org/10.1016/j.jhazmat.2018.01.034
Chen, N., Wang, Q., Wang, M. X., Li, N. yang, Briones, A. V., Cassani, L., Prieto, M. A., Carandang, M. B., Liu, C., Gu, C. M., & Sun, J. Y. (2022). Characterization of the physicochemical, thermal and rheological properties of cashew kernel starch. Food Chemistry: X, 15(July), 100432. https://doi.org/10.1016/j.fochx.2022.100432
Chen, P., Xie, F., Zhao, L., Qiao, Q., & Liu, X. (2017). Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content. Food Hydrocolloids, 69, 359–368. https://doi.org/10.1016/j.foodhyd.2017.03.003
Chibuogwu, C., Amadi, B., Anyaegbunam, Z., Emesiani, B., & Ofoefule, S. (2019). Application of Starch and Starch Derivatives in Pharmaceutical Formulation. IntechOpen, 13. http://dx.doi.org/10.1039/C7RA00172J%0Ahttps://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics%0Ahttp://dx.doi.org/10.1016/j.colsurfa.2011.12.014
Chiranthika, N. N. G., Chandrasekara, A., & Gunathilake, K. D. P. P. (2022). Physicochemical characterization of flours and starches derived from selected underutilized roots and tuber crops grown in Sri Lanka. Food Hydrocolloids, 124(PA), 107272. https://doi.org/10.1016/j.foodhyd.2021.107272
Choque-Quispe, D., Ligarda-Samanez, C. A., Ramos-Pacheco, B. S., Taipe-Pardo, F., Peralta-Guevara, D. E., & Solano Reynoso, A. M. (2019). Evaluación de las isotermas de sorción de granos y harina de kiwicha (Amaranthus caudatus). Revista ION, 31(2), 67–81. https://doi.org/10.18273/revion.v31n2-2018005
Chuenkamol, B., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2007). Characterization of low-substituted hydroxypropylated canna starch. Food Hydrocolloids, 21(7), 1123–1132. https://doi.org/10.1016/j.foodhyd.2006.08.013
Cisneros, F. H., Zevillanos, R., & Cisneros-Zevallos, L. (2009). Characterization of starch from two ecotypes of andean achira roots (Canna edulis). Journal of Agricultural and Food Chemistry, 57(16), 7363–7368. https://doi.org/10.1021/jf9004687
Craig, S. A. S., Maningat, C. C., Seib, P. A., & Hoseney, R. C. (1989). Starch paste clarity. In Cereal Chem (Vol. 66, Issue 3, pp. 173–182)
Cui, C., Jia, Y., Sun, Q., Yu, M., Ji, N., Dai, L., Wang, Y., Qin, Y., Xiong, L., & Sun, Q. (2022). Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydrate Polymers, 291(May). https://doi.org/10.1016/j.carbpol.2022.119624
Digaitis, R., Falkman, P., Oltner, V., Briggner, L. E., & Kocherbitov, V. (2022). Hydration and dehydration induced changes in porosity of starch microspheres. Carbohydrate Polymers, 291(February), 1–10. https://doi.org/10.1016/j.carbpol.2022.119542
Enesi, R. O., Pypers, P., Kreye, C., Tariku, M., Six, J., & Hauser, S. (2022). Effects of expanding cassava planting and harvesting windows on root yield, starch content and revenue in southwestern Nigeria. Field Crops Research, 286(July), 108639. https://doi.org/10.1016/j.fcr.2022.108639
Fan, D., Liu, Y., Hu, B., Lin, L., Huang, L., Wang, L., Zhao, J., Zhang, H., & Chen, W. (2016). Influence of microwave parameters and water activity on radical generation in rice starch. Food Chemistry, 196, 34–41. https://doi.org/10.1016/j.foodchem.2015.09.012
FAOSTAT. (2020). Datos sobre alimentación y agricultura. Producción de cultivos. FAO. http://www.fao.org/faostat/es/#data/QC
Fonseca-Florido, H. A., Gómez-Aldapa, C. A., Velazquez, G., Hernández-Hernández, E., Mata-Padilla, J. M., Solís-Rosales, S. G., & Méndez-Montealvo, G. (2017a). Gelling of amaranth and achira starch blends in excess and limited water. Lwt, 81, 265–273. https://doi.org/10.1016/j.lwt.2017.03.061
Fonseca-Florido, H. A., Gómez-Aldapa, C. A., Velazquez, G., Hernández-Hernández, E., Mata-Padilla, J. M., Solís-Rosales, S. G., & Méndez-Montealvo, G. (2017b). Gelling of amaranth and achira starch blends in excess and limited water. LWT - Food Science and Technology, 81, 265–273. https://doi.org/10.1016/j.lwt.2017.03.061
Fuentes, C., Perez-Rea, D., Bergenståhl, B., Carballo, S., Sjöö, M., & Nilsson, L. (2019). Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. International Journal of Biological Macromolecules, 125, 829–838. https://doi.org/10.1016/j.ijbiomac.2018.12.120
García Acosta, O. R., Pinzón Fandiño, M. I., & Sánchez Ante, L. T. (2013). Extracción y propiedades funcionales del almidón de yuca, manihot esculenta, variedad ica, como materia prima para la elaboración de películas comestibles. @limentech, Ciencia y Tecnología Alimentaria, 11(1), 13–21. http://revistas.unipamplona.edu.co/ojs_viceinves/index.php/ALIMENTECH/article/view/382
García, Y., Cabrera, D., & Fuenmayor, C. A. (2020). Obtención y caracterización de harinas compuestas de Cucurbita moschata D . y Cajanus cajan L . como fuentes alternativas de proteína y vitamina A Obtaining and characterizing composite flours from Cucurbita moschata D . Obtención de harinas. 69, 89–96. https://doi.org/0.15446/acag.v69n2.80412
Garnica, A. M., Romero, A. R., Cerón, M. D. S., & Prieto Contreras, L. (2010). Características funcionales de almidones nativos extraídos de clones promisorios de papa (Solanum tuberosum l. subespecie andigena ) para la industria de alimentos. Revista Alimentos Hoy, 19(21), 3–15. http://alimentoshoy.acta.org.co/index.php/hoy/article/view/1/10
Granados, C., Guzmán, L., Acevedo, D., Díaz, M., & Herrera, A. (2014). PROPIEDADES FUNCIONALES DEL ALMIDON DE SAGU (Maranta arundinacea). Biotecnología En El Sector Agropecuario y Agroindustrial, 12(2), 90–96. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200010&lng=en&nrm=iso&tlng=es
Guízar Miranda, A., Montañéz Sotoa, J. L., & García Ruiza, I. (2008). Parcial caracterización de nuevos almidones obtenidos del tubérculo de camote del cerro (Dioscorea spp). Revista Iberoamericana de Tecnología Postcosecha, 9(March 2014), 81–88
Gutiérrez, T. J. (2018). Biological Macromolecule Composite Films Made from Sagu Starch and Flour / Poly ( ε-Caprolactone ) Blends Processed by Blending / Thermo. Journal of Polymers and the Environment, 26(9), 3902–3912. https://doi.org/10.1007/s10924-018-1268-6
Hedayati, S., & Niakousari, M. (2018). Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites. Food Hydrocolloids, 81, 1–5. https://doi.org/10.1016/j.foodhyd.2018.02.024
Herceg, Z., Batur, V., Jambrak, A. R., Badanjak, M., Brnčić, S. R., & Lalas, V. (2010). Modification of rheological, thermophysical, textural and some physical properties of corn starch by tribomechanical treatment. Carbohydrate Polymers, 80(4), 1072–1077. https://doi.org/10.1016/j.carbpol.2010.01.026
Hernández Medina, M., Torruco Uco, J. G., Chel Guerrero, L., & Betancur Ancona, D. (2008). Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/s0101-20612008000300031
Hoover R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253–267
Hoseney, R. C. (1991). Principios de ciencia y tecnología de los cereales (S. A. ACRIBIA (ed.)). American Association of Cereals Chemists
Huang, Y., Jin, Y., Fang, Y., Li, Y., & Zhao, H. (2013). Simultaneous utilization of non-starch polysaccharides and starch and viscosity reduction for bioethanol fermentation from fresh Canna edulis Ker. tubers. Bioresource Technology, 128, 560–564. https://doi.org/10.1016/j.biortech.2012.09.134
Irani, M., Razavi, S. M. A., Abdel-Aal, E. S. M., Hucl, P., & Patterson, C. A. (2019). Viscoelastic and textural properties of canary seed starch gels in comparison with wheat starch gel. International Journal of Biological Macromolecules, 124, 270–281. https://doi.org/10.1016/j.ijbiomac.2018.11.216
Jan, N., Naik, H. R., Gani, G., Bashir, O., Amin, T., Wani, S. M., & Sofi, S. A. (2022). Influence of replacement of wheat flour by rice flour on rheo ‑ structural changes , in vitro starch digestibility and consumer acceptability of low ‑ gluten pretzels. Food Production, Processing and Nutrition, 4(9), 1–12. https://doi.org/10.1186/s43014-022-00088-y
Jaramillo Montenegro, L. P. (2013). Obtención de almidones modificados de achira y caracterrización de sus propiedades de interés en la industria de alimentos [Universdidad del Valle]. https://doi.org/10.1190/segam2013-0137.1
Kaur, L., Singh, J., & Liu, Q. (2007). Starch - A potential biomaterial for biomedical applications. Nanomaterials and Nanosystems for Biomedical Applications, 83–98. https://doi.org/10.1007/978-1-4020-6289-6_5
Kaur, P., Kaur, K., Basha, S. J., & Kennedy, J. F. (2022). Current trends in the preparation, characterization and applications of oat starch — A review. International Journal of Biological Macromolecules, 212(March), 172–181. https://doi.org/10.1016/j.ijbiomac.2022.05.117
Kayode, B. I., Kayode, R. M. O., Salami, K. O., Obilana, A. O., George, T. T., Dudu, O. E., Adebo, O. A., Njobeh, P. B., Diarra, S. S., & Oyeyinka, S. A. (2021). Morphology and physicochemical properties of starch isolated from frozen cassava root. LWT, 147, 111546. https://doi.org/10.1016/j.lwt.2021.111546
Kheto, A., Das, R., Deb, S., Bist, Y., Kumar, Y., Tarafdar, A., & Saxena, D. C. (2022). Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review. International Journal of Biological Macromolecules, 222(PA), 636–651. https://doi.org/10.1016/j.ijbiomac.2022.09.191
Kuakpetoon, D., & Wang, Y. J. (2001). Characterization of different starches oxidized by hypochlorite. Starch/Staerke, 53(5), 211–218. https://doi.org/10.1002/1521-379X(200105)53:5<211::AID-STAR211>3.0.CO;2-M
Lan, T., Wang, J., Lei, Y., Lei, J., Sun, X., & Ma, T. (2023). A new source of starchy flour : Physicochemical and nutritional properties of starchy kiwifruit flour. Food Chemistry. https://doi.org/10.1016/j.foodchem.2023.137627
Lares, M., & Pérez, E. (2006). Determination of the mineral fraction and rheological properties of microwave modified starch from canna edulis. Plant Foods for Human Nutrition, 61(3), 109–113. https://doi.org/10.1007/s11130-006-0007-7
Leonel, M., Bolfarini, A. C. B., Rodrigues da Silva, M. J., Souza, J. M. A., & Leonel, S. (2020). Banana fruits with high content of resistant starch: Effect of genotypes and phosphorus fertilization. International Journal of Biological Macromolecules, 150, 1020–1026. https://doi.org/10.1016/J.IJBIOMAC.2019.10.217
Leonel, M., Del Bem, M. S., dos Santos, T. P. R., & Franco, C. M. L. (2021). Preparation and properties of phosphate starches from tuberous roots. International Journal of Biological Macromolecules, 183, 898–907. https://doi.org/10.1016/j.ijbiomac.2021.05.045
Leonel, M., Sarmiento, S., Cereda, M. P., & Guerreiro, L. (2002). Extração E Caracterização Do Amido De Starch Extraction and Characterization of. Brazilian Journal of Food Technology, 5(January), 23–32.
Li, S., Ye, F., Zhou, Y., Lei, L., & Zhao, G. (2019). Rheological and textural insights into the blending of sweet potato and cassava starches: In hot and cooled pastes as well as in fresh and dried gels. Food Hydrocolloids, 89(August 2018), 901–911. https://doi.org/10.1016/j.foodhyd.2018.11.041
Lobo Arias, M., Medina Cano, C. I., Grisales Arias, J. D., Yepes Agudelo, A. F., & Álvarez Guzmán, J. A. (2017). Caracterización y evaluación morfológicas de la colección colombiana de achira, Canna edulis Ker Gawl. (Cannaceae). Corpoica Ciencia y Tecnologia Agropecuaria, 18(1), 47–73. https://doi.org/10.21930/rcta.vol18_num1_art:558
Lourith, N., & Kanlayavattanakul, M. (2023). Sustainable approach to natural makeup cosmetics containing microencapsulated butterfly pea anthocyanins. Sustainable Chemistry and Pharmacy, 32(January), 101005. https://doi.org/10.1016/j.scp.2023.101005
Maldonado, G., Romero, J. V., Mojica, S. L., Garnica, J. P., & Volverás, B. (2018). EVALUACION AGRONOMICA DE SIETE CLONES DE ACHIRA PARA TRES SUBREGIONES PRODUCTORAS DE ALMIDON EN CUNDINAMARCA, HUILA Y NARIÑO, DURANTE EL PERIODO 2016-2017 (Vol. 2, Issue 6). https://www.ptonline.com/articles/how-to-get-better-mfi-results%0Amuhammadkahfi16060474066@mhs.unesa.ac.id
Malki, M. K. S., Wijesinghe, J. A. A. C., Ratnayake, R. H. M. K., & Thilakarathna, G. C. (2023). Characterization of arrowroot (Maranta arundinacea) starch as a potential starch source for the food industry. Heliyon, 9(9), e20033. https://doi.org/10.1016/j.heliyon.2023.e20033
Medina, J. A., & Salas, J. C. (2008). Caracterización morfológica del granulo de almidón nativo: Apariencia, forma, tamaño y su distribución. Revista de Ingeniería, 27, 56–62. https://doi.org/10.16924/revinge.27.6
Mendez, G., Velazquez, G., Fonseca, H. A., Morales, E., & Soler, A. (2022). Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality. Lwt, 153(September 2021), 112509. https://doi.org/10.1016/j.lwt.2021.112509
Mex, R., Garma, P., Bolivar, N., & Guillén, M. (2016). análisis-Proximal-y-Fitoquímico-de-Cinco-Variedades-de-Maíz-. Revista Latinoamericana de Recursos Naturales, 12(2), 74–80. https://www.itson.mx/publicaciones/rlrn/Documents/v12-n2-4-análisis-Proximal-y-Fitoquímico-de-Cinco-Variedades-de-Maíz-del-Estado-de-Campeche-%28México%29.pdf
Minagricultura. (2022). Reporte: Área, producción y rendimiento nacional por cultivo. Biblioteca Digital – Agronet. Estadísticas. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Montes, E., Torres, R., Andrade, R., Pérez, O., Marimon, J., & Meza, I. (2009). Modelado de las isotermas de desorción del ñame (Dioscorea rotundata). DYNA (Colombia), 76(157), 145–152.
Montoya López, J., & Giraldo Giraldo, G. A. (2010). Caracterización Físico-Química De Harina De Trigo, Masa Y Pan. Revista de Investigaciones Universidad Del Quindío, 20(1), 29–35. https://doi.org/10.33975/riuq.vol20n1.703
NTC. Instituto Colombiano de Normas Técnicas y certificación. (2015). Norma Técnica Colombiana, NTC 440:2015. Productos alimenticios. Métodos de ensayo. (p. 6). ICONTEC. https://doi.org/ICS: 67.050
Obadi, M., Qi, Y., & Xu, B. (2023). High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydrate Polymers, 299(October 2022), 120185. https://doi.org/10.1016/j.carbpol.2022.120185
OCDE/FAO. (2020). OCDE-FAO Perspectivas Agrícolas 2019‑2028. In OCDE-FAO Perspectivas Agrícolas 2019‑2028. Organización para la Cooperación y el Desarrollo Económicos (OCDE) y la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). https://doi.org/10.4060/ca4076es
Ospitia Ferrer, N. A. (2019). Determinación de la actividad desintegrante en tabletas, de almidones obtenidos de plantas nativas colombianas, modificados químicamente por carboximetilación:achira (Canna edulis) y arracacha (Arracacia xanthorrhiza) [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/72854/2/NoraAlejandraOspitiaFerrer.2019.pdf
Otegbayo, B., Oguniyan, D., & Akinwumi, O. (2014). Physicochemical and functional characterization of yam starch for potential industrial applications. Starch/Staerke, 66(3–4), 235–250. https://doi.org/10.1002/star.201300056
Pardo C, O. H., Castañeda, J. C., & Ortiz, C. A. (2013). Caracterización estructural y térmica de almidones provenientes de diferentes variedades de papa. Acta Agronomica, 62(4), 289–295.
Pedrosa, M. T., Sampaio, U. M., & Schmiele, M. (2018). Identification and analysis of starch. In Starches for Food Application: Chemical, Technological and Health Properties. https://doi.org/10.1016/B978-0-12-809440-2.00002-2
Pérez-Santos, D. M., Velazquez, G., Canonico-Franco, M., Morales-Sanchez, E., Gaytan-Martínez, M., Yañez-Limon, J. M., & Herrera-Gomez, A. (2016). Modeling the limited degree of starch gelatinization. Starch/Staerke, 68(7–8), 727–733. https://doi.org/10.1002/star.201500220
Perez, E., & Lares, M. (2005). Chemical Composition , Mineral Profile , and Functional Properties of Canna ( Canna edulis ) and Arrowroot ( Maranta spp .) Starches. Plant Foods for Human Nutrition, 60, 113–116. https://doi.org/10.1007/s11130-005-6838-9
Pérez, E., & Lares, M. (2005). Chemical composition, mineral profile, and functional properties of Canna (Canna edulis) and Arrowroot (Maranta spp.) starches. Plant Foods for Human Nutrition, 60(3), 113–116. https://doi.org/10.1007/s11130-005-6838-9
Peroni, F. H. G., Rocha, T. S., & Franco, C. M. L. (2006). Some structural and physicochemical characteristics of tuber and root starches. Food Science and Technology International, 12(6), 505–513. https://doi.org/10.1177/1082013206073045
Piyachomkwan, K., Chotineeranat, S., Kijkhunasatian, C., Tonwitowat, R., Prammanee, S., Oates, C. G., & Sriroth, K. (2002). Edible canna (Canna edulis) as a complementary starch source to cassava for the starch industry. Industrial Crops and Products, 16(1), 11–21. https://doi.org/10.1016/S0926-6690(02)00003-1
Prieto Chacón, E. M. (2007). Estudios de las transiciones térmicas del almidón y el almidón termoplástico mediante análisis térmicos (DSC y TGA) (Issue 69). Universidad de los Andes.
Priyan V, V., & Narayanasamy, S. (2022). Effective removal of pharmaceutical contaminants ibuprofen and sulfamethoxazole from water by Corn starch nanoparticles: An ecotoxicological assessment. Environmental Toxicology and Pharmacology, 94(September 2021), 103930. https://doi.org/10.1016/j.etap.2022.103930
Przetaczek-Rożnowska, I., Fortuna, T., Wodniak, M., Łabanowska, M., Pająk, P., & Królikowska, K. (2019). Properties of potato starch treated with microwave radiation and enriched with mineral additives. International Journal of Biological Macromolecules, 124, 229–234. https://doi.org/10.1016/j.ijbiomac.2018.11.153
Purwitasari, L., Wulanjati, M. P., Pranoto, Y., & Witasari, L. D. (2023). Characterization of porous starch from edible canna (Canna edulis Kerr.) produced by enzymatic hydrolysis using thermostable α-amylase. Food Chemistry Advances, 2, 100152. https://doi.org/10.1016/J.FOCHA.2022.100152
Radley, J. A. (1976). Industrial uses of starch and its derivatives. https://doi.org/10.1007/978-94-010-1329-1
Rahman, S. M. (2007). Handbook of Food Preservation. In International Journal of Food Science & Technology. Taylor & Francis Group. https://doi.org/10.1046/j.1365-2621.2001.00462.x
Ramírez-Miranda, M., Cruz y Victoria, M. T., Vizcarra-Mendoza, M. G., & Anaya-Sosa, I. (2014). Determination of moisture sorption isotherms and their thermodynamics properties of nixtamalized maize flour. Revista Mexicana de Ingeniera Quimica, 13(1), 165–178.
Rockland, L. B., & Beuchat, L. R. (1987). Water Activity: Theory and Applications to Food (2nd ed.). Marcell Dekker.
Rodríguez, D., Espitia, M., Caicedo, Y., & Baena, Y. (2005). Caracterización de algunas propiedades fisicoquímicas y farmacotécnicas del almidón de arracacha ( Arracacia xanthorriza ). Revista Colombiana de Ciencias Químico-Farmacéuticas, 34(2), 140–146.
Rodríguez, G. (2003). Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (Arracacia xanthorriza) y ñame (Dioscorea sp.). CORPOICA. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Concepción+de+un+modelo+de+agroindustria+rural+para+la+elaboración+de+harina+y+almidón+a+partir+de+raíces+y+tubérculos+promisorios+,+con+énfasis+en+los+casos+de+achira+(+Canna+edulis+),+arracac
Rodríguez, G., García, H., Camacho, J. H., & Arias, F. L. (2003). El almidón de Achira o Sagú (Canna Edulis, Ker) (Vol. 47, Issue 12, pp. 1086–1093). CORPOICA. https://doi.org/10.1134/S106935131112007X
Rojas Rivera, M. A. (2012). Estudios de las caracterisricas fisiologicas de la yuca (Vol. 1, Issue 1, p. 111).
Rostamabadi, H., Rohit, T., Karaca, A. C., Nowacka, M., Colussi, R., Feksa Frasson, S., Aaliya, B., Valiyapeediyekkal Sunooj, K., & Falsafi, S. R. (2022). How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends in Food Science and Technology, 128(July), 217–237. https://doi.org/10.1016/j.tifs.2022.08.009
Saartrat, S., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2005). Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers, 61(2), 211–221. https://doi.org/10.1016/j.carbpol.2005.05.024
Salas Cuestas, S. Y. (2018). Caracterización fisicoquímica y propiedades funcionales del almidón de arracacha (arracacia xanthorrhiza ) modificado por irradiación UV-C. Universidad del Tolima.
Salazar, D., Arancibia, M., Ocaña, I., Rodríguez-Maecker, R., Bedón, M., López-Caballero, M. E., & Montero, M. P. (2021). Characterization and technological potential of underutilized ancestral andean crop flours from ecuador. Agronomy, 11(9). https://doi.org/10.3390/agronomy11091693
Sánchez Rivera, M. M., & Bello Pérez, L. A. (2008). Efecto de la temperatura en la reacción de oxidación del almidón de plátano (Musa paradisiaca L.). Estimacipon de la energía de activación. Revista Mexicana de Ingeniería Química, 7(3), 275–281
Sanguino, D., & Salazar, Z. (2013). Determinación De Actividad De Agua En Un Alimento. 1, 1–4.
Satin, M. (1998). Functional properties of starches. AGSI Agriculture, 1–9. http://www.academia.edu/download/33271247/starches.pdf
Silveira Thys, R. C., Zapata Noreña, C. P., Ferreira Marczak, L. D., Gomes Aires, A., & Cladera-Olivera, F. (2010). Adsorption isotherms of pinhão (Araucaria angustifolia seeds) starch and thermodynamic analysis. Journal of Food Engineering, 100(3), 468–473. https://doi.org/10.1016/j.jfoodeng.2010.04.033
Singh, N., Ogunseitan, O. A., Wong, M. H., & Tang, Y. (2022). Sustainable materials alternative to petrochemical plastics pollution: A review analysis. Sustainable Horizons, 2(April), 100016. https://doi.org/10.1016/j.horiz.2022.100016
Singla, D., Singh, A., Dhull, S. B., Kumar, P., Malik, T., & Kumar, P. (2020). Taro starch: Isolation, morphology, modification and novel applications concern - A review. International Journal of Biological Macromolecules, 163, 1283–1290. https://doi.org/10.1016/j.ijbiomac.2020.07.093
Sun, X., Sun, Z., Saleh, A. S. M., Zhao, K., Ge, X., Shen, H., Zhang, Q., Yuan, L., Yu, X., & Li, W. (2021). Understanding the granule, growth ring, blocklets, crystalline and molecular structure of normal and waxy wheat A- and B- starch granules. Food Hydrocolloids, 121(April), 107034. https://doi.org/10.1016/j.foodhyd.2021.107034
Sundaram, B., Kumar, P., Suganthy, N., Kesika, P., & Chaiyasut, C. (2022). Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. Journal of Drug Delivery Science and Technology, 77(July), 103890. https://doi.org/10.1016/j.jddst.2022.103890
Takahashi, S., Maningat, C. C., & Seib, P. A. (1986). Acetylated and hydroxypropylated wheat starch: paste and gel properties compared with modified maize and tapioca starches.pdf. In Cereal Chemistry (Vol. 66, Issue 6, pp. 499–506).
Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch - Composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151–165. https://doi.org/10.1016/j.jcs.2003.12.001
Thitipraphunkul, K., Uttapap, D., Piyachomkwan, K., & Takeda, Y. (2003a). A comparative study of edible canna (Canna edulis) starch from different cultivars. Part I: Chemical composition and physicochemical properties. Carbohydrate Polymers, 53(3), 317–324. https://doi.org/10.1016/S0144-8617(03)00081-X
Thitipraphunkul, K., Uttapap, D., Piyachomkwan, K., & Takeda, Y. (2003b). A comparative study of edible canna (Canna edulis) starch from different cultivars. Part II. Molecular structure of amylose and amylopectin. Carbohydrate Polymers, 54(4), 489–498. https://doi.org/10.1016/j.carbpol.2003.08.003
Tien, C. (2019). Adsorption Equilibrium Relationships, Isotherm Expressions, Their Determinations, and Predictions. In Introduction to Adsorption. https://doi.org/10.1016/b978-0-12-816446-4.00003-8
Timm, N. da S., Coradi, P. C., Lang, G. H., Ramos, A. H., Cañizares, L. da C. C., Ferreira, C. D., & de Oliveira, M. (2023). Effects of drying temperature of corn from the center and extremities of the corncob on morphology and technological, thermal, and pasting properties of isolated starch. Journal of Food Engineering, 336(June 2022). https://doi.org/10.1016/j.jfoodeng.2022.111215
Utrilla-Coello, R. G., Hernández-Jaimes, C., Carrillo-Navas, H., González, F., Rodríguez, E., Bello-Pérez, L. A., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2014). Acid hydrolysis of native corn starch: Morphology, crystallinity, rheological and thermal properties. Carbohydrate Polymers, 103(1), 596–602. https://doi.org/10.1016/j.carbpol.2014.01.046
Van Hung, P., & Morita, N. (2005). Physicochemical properties and enzymatic digestibility of starch from edible canna (Canna edulis) grown in Vietnam. Carbohydrate Polymers, 61(3), 314–321. https://doi.org/10.1016/j.carbpol.2005.04.021
Villa, C. C., Galus, S., Nowacka, M., Magri, A., Petriccione, M., & Gutiérrez, T. J. (2020). Molecular sieves for food applications: A review. Trends in Food Science and Technology, 102(January), 102–122. https://doi.org/10.1016/j.tifs.2020.05.027
Vilpoux, O. F., Brito, V. H., & Cereda, M. P. (2019). Starch Extracted From Corms , Roots , Rhizomes , and Tubers for Food Application. In Solid Waste Landfilling. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809440-2.00004-6
Vilpoux, O. F., & Santos Silveira Junior, J. F. (2023). Global production and use of starch. In Starchy Crops Morphology, Extraction, Properties and Applications (pp. 43–66). Elsevier. https://doi.org/10.1016/B978-0-323-90058-4.00014-1
Wang, D., Zheng, X., Liu, W., Sun, Q., Chen, H. H., & Mu, H. (2023). Preparation and characterization of debranched starches: Influence of botanical source and debranching time. Food Chemistry, 407(December 2022), 135141. https://doi.org/10.1016/j.foodchem.2022.135141
Wang, S., Zhang, P., Li, Y., Li, J., Li, X., Yang, J., Ji, M., Li, F., & Zhang, C. (2023). Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydrate Polymers, 307(January), 120627. https://doi.org/10.1016/j.carbpol.2023.120627
Wang, Y., Wang, X., Hu, G., Al-Romaima, A., Liu, X., Bai, X., Li, J., Li, Z., & Qiu, M. (2022). Effect of green coffee oil as a natural active emulsifying agent on the properties of corn starch-based films. Lwt, 170(October), 114087. https://doi.org/10.1016/j.lwt.2022.114087
Watcharatewinkul, Y., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2009). Pasting properties of a heat-moisture treated canna starch in relation to its structural characteristics. Carbohydrate Polymers, 75(3), 505–511. https://doi.org/10.1016/j.carbpol.2008.08.018
Wu, C., Sun, R., Zhang, Q., & Zhong, G. (2020). Synthesis and characterization of citric acid esterified canna starch ( RS4 ) by semi-dry method using vacuum-microwave-infrared assistance. Carbohydrate Polymers, 250(June), 116985. https://doi.org/10.1016/j.carbpol.2020.116985
Xiao, W., Shen, M., Ren, Y., Wen, H., Li, J., Rong, L., Liu, W., & Xie, J. (2022). Controlling the pasting, rheological, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch. Food Hydrocolloids, 123(235), 107136. https://doi.org/10.1016/j.foodhyd.2021.107136
Xie, F., Ren, X., Wu, H., Zhang, H., Wu, Y., Song, Z., & Ai, L. (2022). Pectins of different resources influences cold storage properties of corn starch gels: Structure-property relationships. Food Hydrocolloids, 124(PA), 107287. https://doi.org/10.1016/j.foodhyd.2021.107287
Xie, F., Yuan, C., Zhang, H., Wu, Y., & Ai, L. (2023). Structure-function relationship between galactomannans and their effects on freeze-thaw stability, retrogradation, and texture of corn starch gels during cold storage. Food Chemistry, 398(August 2022), 133915. https://doi.org/10.1016/j.foodchem.2022.133915
Yaruro Cáceres, N. C. (2018). Evaluación de las propiedades fisicoquímicas, térmicas y microestructurales del almidón de Achira (Canna edulis) [Universidad Nacional de Colombia]. In Universidad Nacional de Colombia Facultad. https://repositorio.unal.edu.co/bitstream/handle/unal/69533/1143232250.2019.pdf?sequence=1&isAllowed=y
Yaruro Cáceres, N. C., Suarez Mahecha, H., de Francisco, A., Vásquez Mejia, S. M., & Diaz Moreno, C. (2021). Physicochemical, thermal, microstructural and paste properties comparison of four achira (Canna edulis sp.) starch ecotypes. International Journal of Gastronomy and Food Science, 25(June). https://doi.org/10.1016/j.ijgfs.2021.100380
Zamudio, P. B., Vargas, A., Gutiérrez, F., & Bello, L. A. (2010). Caracterización fisicoquímica de almidones doblemente modificados de plátano. Agrociencia, 44(3), 283–295.
Zárate Polanco et al, L. (2014). Extracción y caracterización de almidón nativo de clones promisorios de papa criolla (Solanum tuberosum, Grupo Phureja). Revista Latinoamericana de La Papa, 18(1), 1–24. https://doi.org/10.37066/ralap.v18i1.206
Zhang, C., Qiu, M., Wang, T., Luo, L., Xu, W., Wu, J., Zhao, F., Liu, K., Zhang, Y., & Wang, X. (2021). Preparation, structure characterization, and specific gut microbiota properties related to anti-hyperlipidemic action of type 3 resistant starch from Canna edulis. Food Chemistry, 351(11), 129340. https://doi.org/10.1016/j.foodchem.2021.129340
Zhang, H., Jing, W. jiang, Xu, J. ju, Ma, B. ju, Wang, W. lu, Zhang, W. yang, Gu, J. fei, Liu, L. jun, Wang, Z. qin, & Yang, J. chang. (2020). Changes in starch quality of mid-season indica rice varieties in the lower reaches of the Yangtze River in last 80 years. Journal of Integrative Agriculture, 19(12), 2983–2996. https://doi.org/10.1016/S2095-3119(20)63431-1
Zhang, J., Wang, Z., & Shi, X. (2010). Canna edulis Ker By-product : Chemical Composition and Characteristics of the Dietary Fiber. Food Science and Technology International, 16(4), 305–313. https://doi.org/10.1177/1082013209353832
Zhang, J., Wang, Z. W., & Yang, J. A. (2010). Physicochemical properties of Canna edulis ker starch on heat-moisture treatment. International Journal of Food Properties, 13(6), 1266–1279. https://doi.org/10.1080/10942910903061828
Zhang, J., Wang, Z. W., Yu, W. J., & Wu, J. H. (2011). Pectins from Canna edulis Ker residue and their physicochemical characterization. Carbohydrate Polymers, 83(1), 210–216. https://doi.org/10.1016/j.carbpol.2010.07.043
Zhao, T., Pan, X., Ou, Z., Li, Q., & Zhang, W. (2022). Comprehensive evaluation of waterlogging tolerance of eleven Canna cultivars at flowering stage. Scientia Horticulturae, 296(June 2021), 110890. https://doi.org/10.1016/j.scienta.2022.110890
Zhou, L., Chai, K., Yao, X., & Ji, H. (2021). Enhanced recovery of acetophenone and 1-phenylethanol from petrochemical effluent by highly porous starch-based hypercrosslinked polymers. Chemical Engineering Journal, 418(January), 129351. https://doi.org/10.1016/j.cej.2021.129351
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 101 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Biosistemas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86109/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86109/4/1054568493.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86109/5/1054568493.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
000a31bad58a15aa7e9a088fe2a83877
3e8ca7a6bb9160777de7a077b59c7cf2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089838823997440
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rincón Prat, Sonia Lucía56b090576ed33831287c0cd0fe5bd10bGarcía Muñoz, María Cristinac2fc72bd55311116f3ba0c40c288f180Herrera Cardona, Andreaf6419c9be7e56682328539302742d76bBiomasa y Optimización Térmica de Procesos BiotInnovación tecnológica de procesos agroindustriales para el desarrollo rural (Agrosavia)2024-05-17T19:50:11Z2024-05-17T19:50:11Z2024-05-15https://repositorio.unal.edu.co/handle/unal/86109Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEste estudio aborda la caracterización de los almidones de dos clones de achira, denominados clon 2008 – 001 y clon 2007 – 006, con el propósito de identificar oportunidades para su aplicación industrial en concordancia con las actuales directrices y políticas ambientales, así como su uso en aditivos alimentarios. Ambos almidones demostraron similitudes fisicoquímicas, destacando su condición como fuentes ricas de almidón con igual contenido de amilosa (≈ 32 %). Los almidones tienen un elevado contenido de minerales, un pH ligeramente ácido (≈ 6,1), actividad de agua moderada (≈0,6) y un alto índice de blancura (≈ 92 %). En cuanto a características morfológicas, ambos clones exhibieron gránulos de superficie lisa y regular, con el clon 2008 – 001 mostrando una forma más ovalada y el clon 2007 – 006 una forma más redonda. El clon 2007 – 006 presentó una menor cristalinidad (21,7%), indicando un mayor potencial de asimilación por el organismo humano. En relación con las propiedades térmicas y reológicas, se observaron diferencias significativas. El clon 2008 – 001 presentó mayor temperatura de gelatinización (67,6 °C) en comparación con el clon 2007 – 006 (63,3 °C). El clon 2007 – 006 mostró viscosidad más alta (427 UB) y formó geles más firmes, mientras que el clon 2008 – 001 formó pastas más claras. Ambos almidones presentaron baja retrogradación, preservando la transparencia de las soluciones. Estos hallazgos subrayan la importancia de comprender las propiedades específicas de cada almidón para su aplicación precisa en la industria alimentaria y no alimentaria. (Texto tomado de la fuente).This study addresses the characterization of starches from two arrowroot clones, denominated as clone 2008 – 001 and clone 2007 – 006, with the purpose of identifying opportunities for their industrial application in accordance with current environmental guidelines and policies, as well as their use in food additives. Both starches demonstrated physicochemical similarities, emphasizing their status as rich sources of starch with an equal amylose content (≈ 32%). The starches exhibited a high mineral content, slightly acidic pH (≈ 6.1), moderate water activity (≈ 0.6), and a high whiteness index (≈ 92%). In terms of morphological characteristics, both clones displayed granules with a smooth and regular surface, with clone 2008 – 001 showing a more oval shape and clone 2007 – 006 a more rounded shape. Clone 2007 – 006 presented lower crystallinity (21.7%), indicating a greater potential for assimilation by the human body. Regarding thermal and rheological properties, significant differences were observed. Clone 2008 – 001 exhibited a higher gelatinization temperature (67.6 °C) compared to clone 2007 – 006 (63.3 °C). Clone 2007 – 006 showed higher viscosity (427 BU) and formed firmer gels, while clone 2008 – 001 formed clearer pastes. Both starches exhibited low retrogradation, preserving the transparency of solutions. These findings underscore the importance of understanding the specific properties of each starch for its precise application in the food and non-food industry.MaestríaMaestría en Ingeniería - Ingeniería de BiosistemasPoscosecha y procesos agroindustrialesxiv, 101 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de BiosistemasFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesGlucanosCanna edulisPropiedades fisicoquímicasglucansCanna edulischemicophysical propertiesAlmidón de achiraPropiedades químicasCaracterísticas morfológicasCristalinidadGelatinizaciónComportamiento reológicoClaridad de la pastaAchira starchChemical propertiesMorphological characteristicsCrystallinityGelatinization,Rheological behaviorPasta clarityCaracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)Physicochemical and functional characterization of starch from two clones of Achira (Canna edulis)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAcuña Pinto, H. M. (2012). Extracción, caracterización y aplicación de almidón de ñame variedad blanco (dioscorea trifida) originario de la región amazónica colombiana para la elaboración de productos horneados [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/9785/Aleixandre, A., & Rosell, C. M. (2022). Starch gels enriched with phenolics: Effects on paste properties, structure and digestibility. Lwt, 161(October 2021), 113350. https://doi.org/10.1016/j.lwt.2022.113350Alvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis Físico-Químico y Morfológico de Almidones de Ñame, Yuca y Papa y Determinación de la Viscosidad de las Pastas Physicochemical and Morphological Analyses of Yam, Cassava and Potato Starches and Determination of their Viscosity. Información Tecnológica, 19(1), 19–28Anderson, R. A., Conway, H. F., & Peplinski, A. J. (1970). Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. In Starch - Stärke (Vol. 22, Issue 4). https://doi.org/10.1002/star.19700220408AOAC. (2019). Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International (21st Editi). AOACAOAC INTERNATIONAL. (1997). Official Method 996.11 : Starch (Total) in Cereal Products - Amyloglucosidase- -Amylase Method. First Action 1996 AOAC-AACC Method, 32.2.05a. In Journal of AOAC International.Aprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. Journal of Food Science and Technology, 51(12), 3669–3679. https://doi.org/10.1007/s13197-012-0915-5Aristizábal, J., & Sánchez, T. (2007). Guía técnica para producción y análisis de almidón de yuca. Fao, 163, 134. https://doi.org/9253056770-9789253056774Ávila Martín, L. (2018). Efecto de la adición de ácido cítrico y proteína de lactosuero en la elaboración de películas basadas en almidón de Canna indica L [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/68666/1015401865.2018.pdf?sequence=1&isAllowed=yBertolini, A. (2010). Starches: Characterization, properties, and applications. CRC Press, Taylor & Francys groupCaicedo, G., Rozo, S., & Rengifo, G. (2003). La Achira: Alternativa agroindustrial para áreas de economía campesina. In Corpoica. CORPOICACanton Trevisol, T., Oliveira Henriques, R., Antunes Souza, A. J., Cesca, K., & Furigo, A. (2023). Starch- and carboxymethyl cellulose-based films as active beauty masks with papain incorporation. International Journal of Biological Macromolecules, 231(July 2022), 123258. https://doi.org/10.1016/j.ijbiomac.2023.123258Chai, K., Lu, K., Xu, Z., Tong, Z., & Ji, H. (2018). Rapid and selective recovery of acetophenone from petrochemical effluents by crosslinked starch polymer. Journal of Hazardous Materials, 348(July 2017), 20–28. https://doi.org/10.1016/j.jhazmat.2018.01.034Chen, N., Wang, Q., Wang, M. X., Li, N. yang, Briones, A. V., Cassani, L., Prieto, M. A., Carandang, M. B., Liu, C., Gu, C. M., & Sun, J. Y. (2022). Characterization of the physicochemical, thermal and rheological properties of cashew kernel starch. Food Chemistry: X, 15(July), 100432. https://doi.org/10.1016/j.fochx.2022.100432Chen, P., Xie, F., Zhao, L., Qiao, Q., & Liu, X. (2017). Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content. Food Hydrocolloids, 69, 359–368. https://doi.org/10.1016/j.foodhyd.2017.03.003Chibuogwu, C., Amadi, B., Anyaegbunam, Z., Emesiani, B., & Ofoefule, S. (2019). Application of Starch and Starch Derivatives in Pharmaceutical Formulation. IntechOpen, 13. http://dx.doi.org/10.1039/C7RA00172J%0Ahttps://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics%0Ahttp://dx.doi.org/10.1016/j.colsurfa.2011.12.014Chiranthika, N. N. G., Chandrasekara, A., & Gunathilake, K. D. P. P. (2022). Physicochemical characterization of flours and starches derived from selected underutilized roots and tuber crops grown in Sri Lanka. Food Hydrocolloids, 124(PA), 107272. https://doi.org/10.1016/j.foodhyd.2021.107272Choque-Quispe, D., Ligarda-Samanez, C. A., Ramos-Pacheco, B. S., Taipe-Pardo, F., Peralta-Guevara, D. E., & Solano Reynoso, A. M. (2019). Evaluación de las isotermas de sorción de granos y harina de kiwicha (Amaranthus caudatus). Revista ION, 31(2), 67–81. https://doi.org/10.18273/revion.v31n2-2018005Chuenkamol, B., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2007). Characterization of low-substituted hydroxypropylated canna starch. Food Hydrocolloids, 21(7), 1123–1132. https://doi.org/10.1016/j.foodhyd.2006.08.013Cisneros, F. H., Zevillanos, R., & Cisneros-Zevallos, L. (2009). Characterization of starch from two ecotypes of andean achira roots (Canna edulis). Journal of Agricultural and Food Chemistry, 57(16), 7363–7368. https://doi.org/10.1021/jf9004687Craig, S. A. S., Maningat, C. C., Seib, P. A., & Hoseney, R. C. (1989). Starch paste clarity. In Cereal Chem (Vol. 66, Issue 3, pp. 173–182)Cui, C., Jia, Y., Sun, Q., Yu, M., Ji, N., Dai, L., Wang, Y., Qin, Y., Xiong, L., & Sun, Q. (2022). Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydrate Polymers, 291(May). https://doi.org/10.1016/j.carbpol.2022.119624Digaitis, R., Falkman, P., Oltner, V., Briggner, L. E., & Kocherbitov, V. (2022). Hydration and dehydration induced changes in porosity of starch microspheres. Carbohydrate Polymers, 291(February), 1–10. https://doi.org/10.1016/j.carbpol.2022.119542Enesi, R. O., Pypers, P., Kreye, C., Tariku, M., Six, J., & Hauser, S. (2022). Effects of expanding cassava planting and harvesting windows on root yield, starch content and revenue in southwestern Nigeria. Field Crops Research, 286(July), 108639. https://doi.org/10.1016/j.fcr.2022.108639Fan, D., Liu, Y., Hu, B., Lin, L., Huang, L., Wang, L., Zhao, J., Zhang, H., & Chen, W. (2016). Influence of microwave parameters and water activity on radical generation in rice starch. Food Chemistry, 196, 34–41. https://doi.org/10.1016/j.foodchem.2015.09.012FAOSTAT. (2020). Datos sobre alimentación y agricultura. Producción de cultivos. FAO. http://www.fao.org/faostat/es/#data/QCFonseca-Florido, H. A., Gómez-Aldapa, C. A., Velazquez, G., Hernández-Hernández, E., Mata-Padilla, J. M., Solís-Rosales, S. G., & Méndez-Montealvo, G. (2017a). Gelling of amaranth and achira starch blends in excess and limited water. Lwt, 81, 265–273. https://doi.org/10.1016/j.lwt.2017.03.061Fonseca-Florido, H. A., Gómez-Aldapa, C. A., Velazquez, G., Hernández-Hernández, E., Mata-Padilla, J. M., Solís-Rosales, S. G., & Méndez-Montealvo, G. (2017b). Gelling of amaranth and achira starch blends in excess and limited water. LWT - Food Science and Technology, 81, 265–273. https://doi.org/10.1016/j.lwt.2017.03.061Fuentes, C., Perez-Rea, D., Bergenståhl, B., Carballo, S., Sjöö, M., & Nilsson, L. (2019). Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. International Journal of Biological Macromolecules, 125, 829–838. https://doi.org/10.1016/j.ijbiomac.2018.12.120García Acosta, O. R., Pinzón Fandiño, M. I., & Sánchez Ante, L. T. (2013). Extracción y propiedades funcionales del almidón de yuca, manihot esculenta, variedad ica, como materia prima para la elaboración de películas comestibles. @limentech, Ciencia y Tecnología Alimentaria, 11(1), 13–21. http://revistas.unipamplona.edu.co/ojs_viceinves/index.php/ALIMENTECH/article/view/382García, Y., Cabrera, D., & Fuenmayor, C. A. (2020). Obtención y caracterización de harinas compuestas de Cucurbita moschata D . y Cajanus cajan L . como fuentes alternativas de proteína y vitamina A Obtaining and characterizing composite flours from Cucurbita moschata D . Obtención de harinas. 69, 89–96. https://doi.org/0.15446/acag.v69n2.80412Garnica, A. M., Romero, A. R., Cerón, M. D. S., & Prieto Contreras, L. (2010). Características funcionales de almidones nativos extraídos de clones promisorios de papa (Solanum tuberosum l. subespecie andigena ) para la industria de alimentos. Revista Alimentos Hoy, 19(21), 3–15. http://alimentoshoy.acta.org.co/index.php/hoy/article/view/1/10Granados, C., Guzmán, L., Acevedo, D., Díaz, M., & Herrera, A. (2014). PROPIEDADES FUNCIONALES DEL ALMIDON DE SAGU (Maranta arundinacea). Biotecnología En El Sector Agropecuario y Agroindustrial, 12(2), 90–96. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200010&lng=en&nrm=iso&tlng=esGuízar Miranda, A., Montañéz Sotoa, J. L., & García Ruiza, I. (2008). Parcial caracterización de nuevos almidones obtenidos del tubérculo de camote del cerro (Dioscorea spp). Revista Iberoamericana de Tecnología Postcosecha, 9(March 2014), 81–88Gutiérrez, T. J. (2018). Biological Macromolecule Composite Films Made from Sagu Starch and Flour / Poly ( ε-Caprolactone ) Blends Processed by Blending / Thermo. Journal of Polymers and the Environment, 26(9), 3902–3912. https://doi.org/10.1007/s10924-018-1268-6Hedayati, S., & Niakousari, M. (2018). Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites. Food Hydrocolloids, 81, 1–5. https://doi.org/10.1016/j.foodhyd.2018.02.024Herceg, Z., Batur, V., Jambrak, A. R., Badanjak, M., Brnčić, S. R., & Lalas, V. (2010). Modification of rheological, thermophysical, textural and some physical properties of corn starch by tribomechanical treatment. Carbohydrate Polymers, 80(4), 1072–1077. https://doi.org/10.1016/j.carbpol.2010.01.026Hernández Medina, M., Torruco Uco, J. G., Chel Guerrero, L., & Betancur Ancona, D. (2008). Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/s0101-20612008000300031Hoover R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253–267Hoseney, R. C. (1991). Principios de ciencia y tecnología de los cereales (S. A. ACRIBIA (ed.)). American Association of Cereals ChemistsHuang, Y., Jin, Y., Fang, Y., Li, Y., & Zhao, H. (2013). Simultaneous utilization of non-starch polysaccharides and starch and viscosity reduction for bioethanol fermentation from fresh Canna edulis Ker. tubers. Bioresource Technology, 128, 560–564. https://doi.org/10.1016/j.biortech.2012.09.134Irani, M., Razavi, S. M. A., Abdel-Aal, E. S. M., Hucl, P., & Patterson, C. A. (2019). Viscoelastic and textural properties of canary seed starch gels in comparison with wheat starch gel. International Journal of Biological Macromolecules, 124, 270–281. https://doi.org/10.1016/j.ijbiomac.2018.11.216Jan, N., Naik, H. R., Gani, G., Bashir, O., Amin, T., Wani, S. M., & Sofi, S. A. (2022). Influence of replacement of wheat flour by rice flour on rheo ‑ structural changes , in vitro starch digestibility and consumer acceptability of low ‑ gluten pretzels. Food Production, Processing and Nutrition, 4(9), 1–12. https://doi.org/10.1186/s43014-022-00088-yJaramillo Montenegro, L. P. (2013). Obtención de almidones modificados de achira y caracterrización de sus propiedades de interés en la industria de alimentos [Universdidad del Valle]. https://doi.org/10.1190/segam2013-0137.1Kaur, L., Singh, J., & Liu, Q. (2007). Starch - A potential biomaterial for biomedical applications. Nanomaterials and Nanosystems for Biomedical Applications, 83–98. https://doi.org/10.1007/978-1-4020-6289-6_5Kaur, P., Kaur, K., Basha, S. J., & Kennedy, J. F. (2022). Current trends in the preparation, characterization and applications of oat starch — A review. International Journal of Biological Macromolecules, 212(March), 172–181. https://doi.org/10.1016/j.ijbiomac.2022.05.117Kayode, B. I., Kayode, R. M. O., Salami, K. O., Obilana, A. O., George, T. T., Dudu, O. E., Adebo, O. A., Njobeh, P. B., Diarra, S. S., & Oyeyinka, S. A. (2021). Morphology and physicochemical properties of starch isolated from frozen cassava root. LWT, 147, 111546. https://doi.org/10.1016/j.lwt.2021.111546Kheto, A., Das, R., Deb, S., Bist, Y., Kumar, Y., Tarafdar, A., & Saxena, D. C. (2022). Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review. International Journal of Biological Macromolecules, 222(PA), 636–651. https://doi.org/10.1016/j.ijbiomac.2022.09.191Kuakpetoon, D., & Wang, Y. J. (2001). Characterization of different starches oxidized by hypochlorite. Starch/Staerke, 53(5), 211–218. https://doi.org/10.1002/1521-379X(200105)53:5<211::AID-STAR211>3.0.CO;2-MLan, T., Wang, J., Lei, Y., Lei, J., Sun, X., & Ma, T. (2023). A new source of starchy flour : Physicochemical and nutritional properties of starchy kiwifruit flour. Food Chemistry. https://doi.org/10.1016/j.foodchem.2023.137627Lares, M., & Pérez, E. (2006). Determination of the mineral fraction and rheological properties of microwave modified starch from canna edulis. Plant Foods for Human Nutrition, 61(3), 109–113. https://doi.org/10.1007/s11130-006-0007-7Leonel, M., Bolfarini, A. C. B., Rodrigues da Silva, M. J., Souza, J. M. A., & Leonel, S. (2020). Banana fruits with high content of resistant starch: Effect of genotypes and phosphorus fertilization. International Journal of Biological Macromolecules, 150, 1020–1026. https://doi.org/10.1016/J.IJBIOMAC.2019.10.217Leonel, M., Del Bem, M. S., dos Santos, T. P. R., & Franco, C. M. L. (2021). Preparation and properties of phosphate starches from tuberous roots. International Journal of Biological Macromolecules, 183, 898–907. https://doi.org/10.1016/j.ijbiomac.2021.05.045Leonel, M., Sarmiento, S., Cereda, M. P., & Guerreiro, L. (2002). Extração E Caracterização Do Amido De Starch Extraction and Characterization of. Brazilian Journal of Food Technology, 5(January), 23–32.Li, S., Ye, F., Zhou, Y., Lei, L., & Zhao, G. (2019). Rheological and textural insights into the blending of sweet potato and cassava starches: In hot and cooled pastes as well as in fresh and dried gels. Food Hydrocolloids, 89(August 2018), 901–911. https://doi.org/10.1016/j.foodhyd.2018.11.041Lobo Arias, M., Medina Cano, C. I., Grisales Arias, J. D., Yepes Agudelo, A. F., & Álvarez Guzmán, J. A. (2017). Caracterización y evaluación morfológicas de la colección colombiana de achira, Canna edulis Ker Gawl. (Cannaceae). Corpoica Ciencia y Tecnologia Agropecuaria, 18(1), 47–73. https://doi.org/10.21930/rcta.vol18_num1_art:558Lourith, N., & Kanlayavattanakul, M. (2023). Sustainable approach to natural makeup cosmetics containing microencapsulated butterfly pea anthocyanins. Sustainable Chemistry and Pharmacy, 32(January), 101005. https://doi.org/10.1016/j.scp.2023.101005Maldonado, G., Romero, J. V., Mojica, S. L., Garnica, J. P., & Volverás, B. (2018). EVALUACION AGRONOMICA DE SIETE CLONES DE ACHIRA PARA TRES SUBREGIONES PRODUCTORAS DE ALMIDON EN CUNDINAMARCA, HUILA Y NARIÑO, DURANTE EL PERIODO 2016-2017 (Vol. 2, Issue 6). https://www.ptonline.com/articles/how-to-get-better-mfi-results%0Amuhammadkahfi16060474066@mhs.unesa.ac.idMalki, M. K. S., Wijesinghe, J. A. A. C., Ratnayake, R. H. M. K., & Thilakarathna, G. C. (2023). Characterization of arrowroot (Maranta arundinacea) starch as a potential starch source for the food industry. Heliyon, 9(9), e20033. https://doi.org/10.1016/j.heliyon.2023.e20033Medina, J. A., & Salas, J. C. (2008). Caracterización morfológica del granulo de almidón nativo: Apariencia, forma, tamaño y su distribución. Revista de Ingeniería, 27, 56–62. https://doi.org/10.16924/revinge.27.6Mendez, G., Velazquez, G., Fonseca, H. A., Morales, E., & Soler, A. (2022). Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality. Lwt, 153(September 2021), 112509. https://doi.org/10.1016/j.lwt.2021.112509Mex, R., Garma, P., Bolivar, N., & Guillén, M. (2016). análisis-Proximal-y-Fitoquímico-de-Cinco-Variedades-de-Maíz-. Revista Latinoamericana de Recursos Naturales, 12(2), 74–80. https://www.itson.mx/publicaciones/rlrn/Documents/v12-n2-4-análisis-Proximal-y-Fitoquímico-de-Cinco-Variedades-de-Maíz-del-Estado-de-Campeche-%28México%29.pdfMinagricultura. (2022). Reporte: Área, producción y rendimiento nacional por cultivo. Biblioteca Digital – Agronet. Estadísticas. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1Montes, E., Torres, R., Andrade, R., Pérez, O., Marimon, J., & Meza, I. (2009). Modelado de las isotermas de desorción del ñame (Dioscorea rotundata). DYNA (Colombia), 76(157), 145–152.Montoya López, J., & Giraldo Giraldo, G. A. (2010). Caracterización Físico-Química De Harina De Trigo, Masa Y Pan. Revista de Investigaciones Universidad Del Quindío, 20(1), 29–35. https://doi.org/10.33975/riuq.vol20n1.703NTC. Instituto Colombiano de Normas Técnicas y certificación. (2015). Norma Técnica Colombiana, NTC 440:2015. Productos alimenticios. Métodos de ensayo. (p. 6). ICONTEC. https://doi.org/ICS: 67.050Obadi, M., Qi, Y., & Xu, B. (2023). High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydrate Polymers, 299(October 2022), 120185. https://doi.org/10.1016/j.carbpol.2022.120185OCDE/FAO. (2020). OCDE-FAO Perspectivas Agrícolas 2019‑2028. In OCDE-FAO Perspectivas Agrícolas 2019‑2028. Organización para la Cooperación y el Desarrollo Económicos (OCDE) y la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). https://doi.org/10.4060/ca4076esOspitia Ferrer, N. A. (2019). Determinación de la actividad desintegrante en tabletas, de almidones obtenidos de plantas nativas colombianas, modificados químicamente por carboximetilación:achira (Canna edulis) y arracacha (Arracacia xanthorrhiza) [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/72854/2/NoraAlejandraOspitiaFerrer.2019.pdfOtegbayo, B., Oguniyan, D., & Akinwumi, O. (2014). Physicochemical and functional characterization of yam starch for potential industrial applications. Starch/Staerke, 66(3–4), 235–250. https://doi.org/10.1002/star.201300056Pardo C, O. H., Castañeda, J. C., & Ortiz, C. A. (2013). Caracterización estructural y térmica de almidones provenientes de diferentes variedades de papa. Acta Agronomica, 62(4), 289–295.Pedrosa, M. T., Sampaio, U. M., & Schmiele, M. (2018). Identification and analysis of starch. In Starches for Food Application: Chemical, Technological and Health Properties. https://doi.org/10.1016/B978-0-12-809440-2.00002-2Pérez-Santos, D. M., Velazquez, G., Canonico-Franco, M., Morales-Sanchez, E., Gaytan-Martínez, M., Yañez-Limon, J. M., & Herrera-Gomez, A. (2016). Modeling the limited degree of starch gelatinization. Starch/Staerke, 68(7–8), 727–733. https://doi.org/10.1002/star.201500220Perez, E., & Lares, M. (2005). Chemical Composition , Mineral Profile , and Functional Properties of Canna ( Canna edulis ) and Arrowroot ( Maranta spp .) Starches. Plant Foods for Human Nutrition, 60, 113–116. https://doi.org/10.1007/s11130-005-6838-9Pérez, E., & Lares, M. (2005). Chemical composition, mineral profile, and functional properties of Canna (Canna edulis) and Arrowroot (Maranta spp.) starches. Plant Foods for Human Nutrition, 60(3), 113–116. https://doi.org/10.1007/s11130-005-6838-9Peroni, F. H. G., Rocha, T. S., & Franco, C. M. L. (2006). Some structural and physicochemical characteristics of tuber and root starches. Food Science and Technology International, 12(6), 505–513. https://doi.org/10.1177/1082013206073045Piyachomkwan, K., Chotineeranat, S., Kijkhunasatian, C., Tonwitowat, R., Prammanee, S., Oates, C. G., & Sriroth, K. (2002). Edible canna (Canna edulis) as a complementary starch source to cassava for the starch industry. Industrial Crops and Products, 16(1), 11–21. https://doi.org/10.1016/S0926-6690(02)00003-1Prieto Chacón, E. M. (2007). Estudios de las transiciones térmicas del almidón y el almidón termoplástico mediante análisis térmicos (DSC y TGA) (Issue 69). Universidad de los Andes.Priyan V, V., & Narayanasamy, S. (2022). Effective removal of pharmaceutical contaminants ibuprofen and sulfamethoxazole from water by Corn starch nanoparticles: An ecotoxicological assessment. Environmental Toxicology and Pharmacology, 94(September 2021), 103930. https://doi.org/10.1016/j.etap.2022.103930Przetaczek-Rożnowska, I., Fortuna, T., Wodniak, M., Łabanowska, M., Pająk, P., & Królikowska, K. (2019). Properties of potato starch treated with microwave radiation and enriched with mineral additives. International Journal of Biological Macromolecules, 124, 229–234. https://doi.org/10.1016/j.ijbiomac.2018.11.153Purwitasari, L., Wulanjati, M. P., Pranoto, Y., & Witasari, L. D. (2023). Characterization of porous starch from edible canna (Canna edulis Kerr.) produced by enzymatic hydrolysis using thermostable α-amylase. Food Chemistry Advances, 2, 100152. https://doi.org/10.1016/J.FOCHA.2022.100152Radley, J. A. (1976). Industrial uses of starch and its derivatives. https://doi.org/10.1007/978-94-010-1329-1Rahman, S. M. (2007). Handbook of Food Preservation. In International Journal of Food Science & Technology. Taylor & Francis Group. https://doi.org/10.1046/j.1365-2621.2001.00462.xRamírez-Miranda, M., Cruz y Victoria, M. T., Vizcarra-Mendoza, M. G., & Anaya-Sosa, I. (2014). Determination of moisture sorption isotherms and their thermodynamics properties of nixtamalized maize flour. Revista Mexicana de Ingeniera Quimica, 13(1), 165–178.Rockland, L. B., & Beuchat, L. R. (1987). Water Activity: Theory and Applications to Food (2nd ed.). Marcell Dekker.Rodríguez, D., Espitia, M., Caicedo, Y., & Baena, Y. (2005). Caracterización de algunas propiedades fisicoquímicas y farmacotécnicas del almidón de arracacha ( Arracacia xanthorriza ). Revista Colombiana de Ciencias Químico-Farmacéuticas, 34(2), 140–146.Rodríguez, G. (2003). Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (Arracacia xanthorriza) y ñame (Dioscorea sp.). CORPOICA. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Concepción+de+un+modelo+de+agroindustria+rural+para+la+elaboración+de+harina+y+almidón+a+partir+de+raíces+y+tubérculos+promisorios+,+con+énfasis+en+los+casos+de+achira+(+Canna+edulis+),+arracacRodríguez, G., García, H., Camacho, J. H., & Arias, F. L. (2003). El almidón de Achira o Sagú (Canna Edulis, Ker) (Vol. 47, Issue 12, pp. 1086–1093). CORPOICA. https://doi.org/10.1134/S106935131112007XRojas Rivera, M. A. (2012). Estudios de las caracterisricas fisiologicas de la yuca (Vol. 1, Issue 1, p. 111).Rostamabadi, H., Rohit, T., Karaca, A. C., Nowacka, M., Colussi, R., Feksa Frasson, S., Aaliya, B., Valiyapeediyekkal Sunooj, K., & Falsafi, S. R. (2022). How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends in Food Science and Technology, 128(July), 217–237. https://doi.org/10.1016/j.tifs.2022.08.009Saartrat, S., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2005). Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers, 61(2), 211–221. https://doi.org/10.1016/j.carbpol.2005.05.024Salas Cuestas, S. Y. (2018). Caracterización fisicoquímica y propiedades funcionales del almidón de arracacha (arracacia xanthorrhiza ) modificado por irradiación UV-C. Universidad del Tolima.Salazar, D., Arancibia, M., Ocaña, I., Rodríguez-Maecker, R., Bedón, M., López-Caballero, M. E., & Montero, M. P. (2021). Characterization and technological potential of underutilized ancestral andean crop flours from ecuador. Agronomy, 11(9). https://doi.org/10.3390/agronomy11091693Sánchez Rivera, M. M., & Bello Pérez, L. A. (2008). Efecto de la temperatura en la reacción de oxidación del almidón de plátano (Musa paradisiaca L.). Estimacipon de la energía de activación. Revista Mexicana de Ingeniería Química, 7(3), 275–281Sanguino, D., & Salazar, Z. (2013). Determinación De Actividad De Agua En Un Alimento. 1, 1–4.Satin, M. (1998). Functional properties of starches. AGSI Agriculture, 1–9. http://www.academia.edu/download/33271247/starches.pdfSilveira Thys, R. C., Zapata Noreña, C. P., Ferreira Marczak, L. D., Gomes Aires, A., & Cladera-Olivera, F. (2010). Adsorption isotherms of pinhão (Araucaria angustifolia seeds) starch and thermodynamic analysis. Journal of Food Engineering, 100(3), 468–473. https://doi.org/10.1016/j.jfoodeng.2010.04.033Singh, N., Ogunseitan, O. A., Wong, M. H., & Tang, Y. (2022). Sustainable materials alternative to petrochemical plastics pollution: A review analysis. Sustainable Horizons, 2(April), 100016. https://doi.org/10.1016/j.horiz.2022.100016Singla, D., Singh, A., Dhull, S. B., Kumar, P., Malik, T., & Kumar, P. (2020). Taro starch: Isolation, morphology, modification and novel applications concern - A review. International Journal of Biological Macromolecules, 163, 1283–1290. https://doi.org/10.1016/j.ijbiomac.2020.07.093Sun, X., Sun, Z., Saleh, A. S. M., Zhao, K., Ge, X., Shen, H., Zhang, Q., Yuan, L., Yu, X., & Li, W. (2021). Understanding the granule, growth ring, blocklets, crystalline and molecular structure of normal and waxy wheat A- and B- starch granules. Food Hydrocolloids, 121(April), 107034. https://doi.org/10.1016/j.foodhyd.2021.107034Sundaram, B., Kumar, P., Suganthy, N., Kesika, P., & Chaiyasut, C. (2022). Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. Journal of Drug Delivery Science and Technology, 77(July), 103890. https://doi.org/10.1016/j.jddst.2022.103890Takahashi, S., Maningat, C. C., & Seib, P. A. (1986). Acetylated and hydroxypropylated wheat starch: paste and gel properties compared with modified maize and tapioca starches.pdf. In Cereal Chemistry (Vol. 66, Issue 6, pp. 499–506).Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch - Composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151–165. https://doi.org/10.1016/j.jcs.2003.12.001Thitipraphunkul, K., Uttapap, D., Piyachomkwan, K., & Takeda, Y. (2003a). A comparative study of edible canna (Canna edulis) starch from different cultivars. Part I: Chemical composition and physicochemical properties. Carbohydrate Polymers, 53(3), 317–324. https://doi.org/10.1016/S0144-8617(03)00081-XThitipraphunkul, K., Uttapap, D., Piyachomkwan, K., & Takeda, Y. (2003b). A comparative study of edible canna (Canna edulis) starch from different cultivars. Part II. Molecular structure of amylose and amylopectin. Carbohydrate Polymers, 54(4), 489–498. https://doi.org/10.1016/j.carbpol.2003.08.003Tien, C. (2019). Adsorption Equilibrium Relationships, Isotherm Expressions, Their Determinations, and Predictions. In Introduction to Adsorption. https://doi.org/10.1016/b978-0-12-816446-4.00003-8Timm, N. da S., Coradi, P. C., Lang, G. H., Ramos, A. H., Cañizares, L. da C. C., Ferreira, C. D., & de Oliveira, M. (2023). Effects of drying temperature of corn from the center and extremities of the corncob on morphology and technological, thermal, and pasting properties of isolated starch. Journal of Food Engineering, 336(June 2022). https://doi.org/10.1016/j.jfoodeng.2022.111215Utrilla-Coello, R. G., Hernández-Jaimes, C., Carrillo-Navas, H., González, F., Rodríguez, E., Bello-Pérez, L. A., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2014). Acid hydrolysis of native corn starch: Morphology, crystallinity, rheological and thermal properties. Carbohydrate Polymers, 103(1), 596–602. https://doi.org/10.1016/j.carbpol.2014.01.046Van Hung, P., & Morita, N. (2005). Physicochemical properties and enzymatic digestibility of starch from edible canna (Canna edulis) grown in Vietnam. Carbohydrate Polymers, 61(3), 314–321. https://doi.org/10.1016/j.carbpol.2005.04.021Villa, C. C., Galus, S., Nowacka, M., Magri, A., Petriccione, M., & Gutiérrez, T. J. (2020). Molecular sieves for food applications: A review. Trends in Food Science and Technology, 102(January), 102–122. https://doi.org/10.1016/j.tifs.2020.05.027Vilpoux, O. F., Brito, V. H., & Cereda, M. P. (2019). Starch Extracted From Corms , Roots , Rhizomes , and Tubers for Food Application. In Solid Waste Landfilling. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809440-2.00004-6Vilpoux, O. F., & Santos Silveira Junior, J. F. (2023). Global production and use of starch. In Starchy Crops Morphology, Extraction, Properties and Applications (pp. 43–66). Elsevier. https://doi.org/10.1016/B978-0-323-90058-4.00014-1Wang, D., Zheng, X., Liu, W., Sun, Q., Chen, H. H., & Mu, H. (2023). Preparation and characterization of debranched starches: Influence of botanical source and debranching time. Food Chemistry, 407(December 2022), 135141. https://doi.org/10.1016/j.foodchem.2022.135141Wang, S., Zhang, P., Li, Y., Li, J., Li, X., Yang, J., Ji, M., Li, F., & Zhang, C. (2023). Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydrate Polymers, 307(January), 120627. https://doi.org/10.1016/j.carbpol.2023.120627Wang, Y., Wang, X., Hu, G., Al-Romaima, A., Liu, X., Bai, X., Li, J., Li, Z., & Qiu, M. (2022). Effect of green coffee oil as a natural active emulsifying agent on the properties of corn starch-based films. Lwt, 170(October), 114087. https://doi.org/10.1016/j.lwt.2022.114087Watcharatewinkul, Y., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2009). Pasting properties of a heat-moisture treated canna starch in relation to its structural characteristics. Carbohydrate Polymers, 75(3), 505–511. https://doi.org/10.1016/j.carbpol.2008.08.018Wu, C., Sun, R., Zhang, Q., & Zhong, G. (2020). Synthesis and characterization of citric acid esterified canna starch ( RS4 ) by semi-dry method using vacuum-microwave-infrared assistance. Carbohydrate Polymers, 250(June), 116985. https://doi.org/10.1016/j.carbpol.2020.116985Xiao, W., Shen, M., Ren, Y., Wen, H., Li, J., Rong, L., Liu, W., & Xie, J. (2022). Controlling the pasting, rheological, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch. Food Hydrocolloids, 123(235), 107136. https://doi.org/10.1016/j.foodhyd.2021.107136Xie, F., Ren, X., Wu, H., Zhang, H., Wu, Y., Song, Z., & Ai, L. (2022). Pectins of different resources influences cold storage properties of corn starch gels: Structure-property relationships. Food Hydrocolloids, 124(PA), 107287. https://doi.org/10.1016/j.foodhyd.2021.107287Xie, F., Yuan, C., Zhang, H., Wu, Y., & Ai, L. (2023). Structure-function relationship between galactomannans and their effects on freeze-thaw stability, retrogradation, and texture of corn starch gels during cold storage. Food Chemistry, 398(August 2022), 133915. https://doi.org/10.1016/j.foodchem.2022.133915Yaruro Cáceres, N. C. (2018). Evaluación de las propiedades fisicoquímicas, térmicas y microestructurales del almidón de Achira (Canna edulis) [Universidad Nacional de Colombia]. In Universidad Nacional de Colombia Facultad. https://repositorio.unal.edu.co/bitstream/handle/unal/69533/1143232250.2019.pdf?sequence=1&isAllowed=yYaruro Cáceres, N. C., Suarez Mahecha, H., de Francisco, A., Vásquez Mejia, S. M., & Diaz Moreno, C. (2021). Physicochemical, thermal, microstructural and paste properties comparison of four achira (Canna edulis sp.) starch ecotypes. International Journal of Gastronomy and Food Science, 25(June). https://doi.org/10.1016/j.ijgfs.2021.100380Zamudio, P. B., Vargas, A., Gutiérrez, F., & Bello, L. A. (2010). Caracterización fisicoquímica de almidones doblemente modificados de plátano. Agrociencia, 44(3), 283–295.Zárate Polanco et al, L. (2014). Extracción y caracterización de almidón nativo de clones promisorios de papa criolla (Solanum tuberosum, Grupo Phureja). Revista Latinoamericana de La Papa, 18(1), 1–24. https://doi.org/10.37066/ralap.v18i1.206Zhang, C., Qiu, M., Wang, T., Luo, L., Xu, W., Wu, J., Zhao, F., Liu, K., Zhang, Y., & Wang, X. (2021). Preparation, structure characterization, and specific gut microbiota properties related to anti-hyperlipidemic action of type 3 resistant starch from Canna edulis. Food Chemistry, 351(11), 129340. https://doi.org/10.1016/j.foodchem.2021.129340Zhang, H., Jing, W. jiang, Xu, J. ju, Ma, B. ju, Wang, W. lu, Zhang, W. yang, Gu, J. fei, Liu, L. jun, Wang, Z. qin, & Yang, J. chang. (2020). Changes in starch quality of mid-season indica rice varieties in the lower reaches of the Yangtze River in last 80 years. Journal of Integrative Agriculture, 19(12), 2983–2996. https://doi.org/10.1016/S2095-3119(20)63431-1Zhang, J., Wang, Z., & Shi, X. (2010). Canna edulis Ker By-product : Chemical Composition and Characteristics of the Dietary Fiber. Food Science and Technology International, 16(4), 305–313. https://doi.org/10.1177/1082013209353832Zhang, J., Wang, Z. W., & Yang, J. A. (2010). Physicochemical properties of Canna edulis ker starch on heat-moisture treatment. International Journal of Food Properties, 13(6), 1266–1279. https://doi.org/10.1080/10942910903061828Zhang, J., Wang, Z. W., Yu, W. J., & Wu, J. H. (2011). Pectins from Canna edulis Ker residue and their physicochemical characterization. Carbohydrate Polymers, 83(1), 210–216. https://doi.org/10.1016/j.carbpol.2010.07.043Zhao, T., Pan, X., Ou, Z., Li, Q., & Zhang, W. (2022). Comprehensive evaluation of waterlogging tolerance of eleven Canna cultivars at flowering stage. Scientia Horticulturae, 296(June 2021), 110890. https://doi.org/10.1016/j.scienta.2022.110890Zhou, L., Chai, K., Yao, X., & Ji, H. (2021). Enhanced recovery of acetophenone and 1-phenylethanol from petrochemical effluent by highly porous starch-based hypercrosslinked polymers. Chemical Engineering Journal, 418(January), 129351. https://doi.org/10.1016/j.cej.2021.129351EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86109/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1054568493.2024.pdf1054568493.2024.pdfTesis de Maestría en Ingeniería de Biosistemasapplication/pdf2444745https://repositorio.unal.edu.co/bitstream/unal/86109/4/1054568493.2024.pdf000a31bad58a15aa7e9a088fe2a83877MD54THUMBNAIL1054568493.2024.pdf.jpg1054568493.2024.pdf.jpgGenerated Thumbnailimage/jpeg4931https://repositorio.unal.edu.co/bitstream/unal/86109/5/1054568493.2024.pdf.jpg3e8ca7a6bb9160777de7a077b59c7cf2MD55unal/86109oai:repositorio.unal.edu.co:unal/861092024-08-24 23:14:18.355Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=