Evaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibra

ilustraciones, fotografías

Autores:
Camargo Herrera, Angel David
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83538
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83538
https://repositorio.unal.edu.co/
Palabra clave:
600 - Tecnología (Ciencias aplicadas)
630 - Agricultura y tecnologías relacionadas
Leche como alimento
Tecnología de alimentos
Milk as food
Bebidas lácteas funcionales
Bacterias ácido-lácticas
Compuestos bioactivos
Matriz vegetal
Fermentación láctica. Español
Functional dairy foods
Lactic acid bacteria
Bioactive compounds
Plant matrix
Lactic acid fermentation
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_c1509583f74968fc1cb371911e621818
oai_identifier_str oai:repositorio.unal.edu.co:unal/83538
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibra
dc.title.translated.eng.fl_str_mv Evaluation of a process for the elaboration of a dairy drink using a vegetable culture medium source of probiotics, antioxidants and fiber
title Evaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibra
spellingShingle Evaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibra
600 - Tecnología (Ciencias aplicadas)
630 - Agricultura y tecnologías relacionadas
Leche como alimento
Tecnología de alimentos
Milk as food
Bebidas lácteas funcionales
Bacterias ácido-lácticas
Compuestos bioactivos
Matriz vegetal
Fermentación láctica. Español
Functional dairy foods
Lactic acid bacteria
Bioactive compounds
Plant matrix
Lactic acid fermentation
title_short Evaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibra
title_full Evaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibra
title_fullStr Evaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibra
title_full_unstemmed Evaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibra
title_sort Evaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibra
dc.creator.fl_str_mv Camargo Herrera, Angel David
dc.contributor.advisor.none.fl_str_mv Diaz Moreno, Amanda Consuelo
dc.contributor.author.none.fl_str_mv Camargo Herrera, Angel David
dc.contributor.researchgroup.spa.fl_str_mv Bioalimentos
dc.contributor.subjectmatterexpert.none.fl_str_mv Bernal Castro Camila Andrea
Gutiérrez Cortes Carolina
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0003-4063-887X
dc.contributor.cvlac.spa.fl_str_mv Camargo Herrera, Angel David
dc.contributor.scopus.spa.fl_str_mv Camargo Herrera, Angel David
dc.contributor.researchgate.spa.fl_str_mv Camargo, Angel
dc.contributor.googlescholar.spa.fl_str_mv Camargo Herrera, Angel David
dc.subject.ddc.spa.fl_str_mv 600 - Tecnología (Ciencias aplicadas)
630 - Agricultura y tecnologías relacionadas
topic 600 - Tecnología (Ciencias aplicadas)
630 - Agricultura y tecnologías relacionadas
Leche como alimento
Tecnología de alimentos
Milk as food
Bebidas lácteas funcionales
Bacterias ácido-lácticas
Compuestos bioactivos
Matriz vegetal
Fermentación láctica. Español
Functional dairy foods
Lactic acid bacteria
Bioactive compounds
Plant matrix
Lactic acid fermentation
dc.subject.lemb.spa.fl_str_mv Leche como alimento
Tecnología de alimentos
dc.subject.lemb.eng.fl_str_mv Milk as food
dc.subject.proposal.spa.fl_str_mv Bebidas lácteas funcionales
Bacterias ácido-lácticas
Compuestos bioactivos
Matriz vegetal
Fermentación láctica. Español
dc.subject.proposal.eng.fl_str_mv Functional dairy foods
Lactic acid bacteria
Bioactive compounds
Plant matrix
Lactic acid fermentation
description ilustraciones, fotografías
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-02-21T17:01:54Z
dc.date.available.none.fl_str_mv 2023-02-21T17:01:54Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83538
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83538
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv Abid, Y., Casillo, A., Gharsallah, H., Joulak, I., Lanzetta, R., Corsaro, M. M., Attia, H., & Azabou, S. (2018). Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International Journal of Biological Macromolecules, 108, 719–728. https://doi.org/10.1016/j.ijbiomac.2017.10.155
Ahmad, T., Cawood, M., Iqbal, Q., Ariño, A., Batool, A., Sabir Tariq, R. M., Azam, M., & Akhtar, S. (2019). Phytochemicals in Daucus carota and their health benefits—review article. Foods, 8(9), 1–22. https://doi.org/10.3390/FOODS8090424
Allgeyer, L. C., Miller, M. J., & Lee, S. Y. (2010). Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics. Journal of Dairy Science, 93(10), 4471–4479. https://doi.org/10.3168/jds.2009-2582
Arora, S., Siddiqui, S., & Gehlot, R. (2019). Physicochemical and Bioactive Compounds in Carrot and Beetroot Juice. Asian Journal of Dairy and Food Research, 38(03). https://doi.org/10.18805/ajdfr.dr-1363
Ashraf, R., & Shah, N. P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt - A review. International Journal of Food Microbiology, 149(3), 194–208. https://doi.org/10.1016/j.ijfoodmicro.2011.07.008
Authority, E. F. S. (2010). Guidance on the risk assessment of genetically modified microorganisms and their food and feed products. EFSA Journal, January, 1–67. https://doi.org/10.2903/j.efsa.20YY.NNNN.Available
Bender, I., Edesi, L., Hiiesalu, I., Ingver, A., Kaart, T., Kaldmäe, H., Talve, T., Tamm, I., & Luik, A. (2020). Organic carrot (Daucus carota L.) production has an advantage over conventional in quantity as well as in quality. Agronomy, 10(9). https://doi.org/10.3390/agronomy10091420
Bernal-Castro, C. (2017). Evaluación del comportamiento de cultivos probióticos y prebióticos en bebidas de frutos rojos. Tesis de Maestría. Instituto de Ciencia y Tecnología de Alimentos. Facultad de Ciencias Agrarias. Universidad Nacional de Colombia.
Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
Caldeira, L. A., Alves, É. E., Ribeiro, A. de M. F., Rocha Júnior, V. R., Antunes, A. B., dos Reis, A. F., Gomes, J. da C., de Carvalho, M. H. R., & Martinez, R. I. E. (2018). Viability of probiotic bacteria in bioyogurt with the addition of honey from Jataí and Africanized bees. Pesquisa Agropecuaria Brasileira, 53(2), 206–211. https://doi.org/10.1590/S0100-204X2018000200009
Chanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic Chemistry, 77, 176–189. https://doi.org/10.1016/j.bioorg.2018.01.006
Chung, H. J., Lee, H., Na, G., Jung, H., Kim, D. G., Shin, S. I., Jung, S. E., Choi, I. D., Lee, J. H., Sim, J. H., & Choi, H. K. (2020). Metabolic and lipidomic profiling of vegetable juices fermented with various probiotics. Biomolecules, 10(5), 1–17. https://doi.org/10.3390/biom10050725
Corbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1192–1206. https://doi.org/10.1111/1541-4337.12109
Daneshi, M., Ehsani, M. R., Razavi, S. H., & Labbafi, M. (2013). Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Electronic Journal of Biotechnology, 16(5). https://doi.org/10.2225/vol16-issue5-fulltext-2
Devaki, C. S., & Premavalli, K. S. (2019). Fermented Vegetable Beverages. In Fermented Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815271-3.00008-7
Dubey, N., Mishra, V., & Thakur, D. (2018). Plant-Based Antimicrobial Formulations. In Postharvest Disinfection of Fruits and Vegetables. Elsevier Inc. https://doi.org/10.1016/b978-0-12-812698-1.00011-x
Escamilla-Hurtado, M. L., Valdés-Martínez, S. E., Soriano-Santos, J., Gómez-Pliego, R., Verde-Calvo, J. R., Reyes-Dorantes, A., & Tomasini-Campocosio, A. (2005). Effect of culture conditions on production of butter flavor compounds by Pediococcus pentosaceus and Lactobacillus acidophilus in semisolid maize-based cultures. International Journal of Food Microbiology, 105(3), 305–316. https://doi.org/10.1016/j.ijfoodmicro.2005.04.014
Esmaeilnejad Moghadam, B., Keivaninahr, F., Nazemi, A., Fouladi, M., Rezaei Mokarram, R., & Zoroufchi Benis, K. (2019). Optimization of conjugated linoleic acid production by Bifidobacterium animalis subsp. Lactis and its application in fermented milk. Lwt, 108(March), 344–352. https://doi.org/10.1016/j.lwt.2019.03.071
Fazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018a). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(July), 387–399. https://doi.org/10.1016/j.jff.2018.07.039
Fazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018b). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(April), 387–399. https://doi.org/10.1016/j.jff.2018.07.039
Florence, A. C. R., Oliveira, R. P. S., Silva, R. C., Soares, F. A. S. M., Gioielli, L. A., & Oliveira, M. N. (2012). Organic milk improves Bifidobacterium lactis counts and bioactive fatty acids contents in fermented milk. LWT - Food Science and Technology, 49(1), 89–95. https://doi.org/10.1016/j.lwt.2012.04.023
Gänzle, M. G. (2019). Lactose a conditional prebiotic? Lactose, Evolutionary Role, Health Effects, and Applications, 155–173. https://doi.org/10.1016/b978-0-12-811720-0.00004-0
Gasaly, N., Riveros, K., & Gotteland, M. (2020). Fitoquímicos: una nueva clase de prebióticos. Revista Chilena de Nutrición, 47(2), 317–327. https://doi.org/10.4067/s0717-75182020000200317
Gibson, M., & Newsham, P. (2018). Milk and Dairy. In Food Science and the Culinary Arts. https://doi.org/10.1016/b978-0-12-811816-0.00011-7
Gies, M., Descalzo, A. M., Servent, A., & Dhuique-Mayer, C. (2019). Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. Lwt, 111(February), 105–110. https://doi.org/10.1016/j.lwt.2019.04.103
Gil-Rodríguez, A. M., & Beresford, T. P. (2019). Lipase inhibitory activity of skim milk fermented with different strains of lactic acid bacteria. Journal of Functional Foods, 60(May), 103413. https://doi.org/10.1016/j.jff.2019.06.015
Govender, M., Choonara, Y. E., Kumar, P., Du Toit, L. C., Van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. Non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, 15(1), 29–43. https://doi.org/10.1208/s12249-013-0027-1
Guneser, O., Isleten Hosoglu, M., Aydeniz Guneser, B., & Karagul Yuceer, Y. (2019). Engineering of Milk-Based Beverages: Status, Developments, and Consumer Trends. In Milk-Based Beverages (Vol. 2015). Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00001-3
Gupta, M., & Bajaj, B. K. (2017). Development of fermented oat flour beverage as a potential probiotic vehicle. Food Bioscience, 20(September), 104–109. https://doi.org/10.1016/j.fbio.2017.08.007
Hagi, T., Kobayashi, M., & Nomura, M. (2014). Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiology Letters, 350(2), 223–230. https://doi.org/10.1111/1574-6968.12341
Hallmann, E., & Rembialkowska, E. (2009). Roczniki Pa ń stwowego Zakładu Higieny Roczn . PZH 2009 , tom 60 , Nr 3. May 2014
Hettinga, K. A. (2019). Lactose in the dairy production chain. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00006-4
Hickson, M. (2014). Probiotics and the gastrointestinal microbiota. Advanced Nutrition and Dietetics in Gastroenterology, 81–86. https://doi.org/10.1002/9781118872796.ch2.3
Hill, D., Ross, R. P., Arendt, E., & Stanton, C. (2017). Microbiology of yogurt and bio-yogurts containing probiotics and prebiotics. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00004-3
Huppertz, T. (2016). Heat stability of milk. Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects: Fourth Edition, 57(2), 179–196. https://doi.org/10.1007/978-1-4939-2800-2_7
Januário, J. G. B., da Silva, I. C. F., de Oliveira, A. S., de Oliveira, J. F., Dionísio, J. N., Klososki, S. J., & Pimentel, T. C. (2017). Probiotic yoghurt flavored with organic beet with carrot, cassava, sweet potato or corn juice. International Food Research Journal, 24(1), 359–366. http://www.ifrj.upm.edu.my
Jia, R., Chen, H., Chen, H., & Ding, W. (2016). Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt. Journal of Dairy Science, 99(1), 221–227. https://doi.org/10.3168/jds.2015-10114
Kandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012
Karaman, S., & Ozcan, T. (2021). Determination of gelation properties and bio-therapeutic potential of black carrot fibre-enriched functional yoghurt produced using pectin and gum arabic as prebiotic. International Journal of Dairy Technology, 1–13. https://doi.org/10.1111/1471-0307.12776
Kasapoğlu, K. N., Daşkaya-Dikmen, C., Yavuz-Düzgün, M., Karaça, A. C., & Özçelik, B. (2019). Enrichment of Beverages with Health Beneficial Ingredients. In Value-Added Ingredients and Enrichments of Beverages. https://doi.org/10.1016/b978-0-12-816687-1.00003-5
Khan, R. S., Grigor, J., Winger, R., & Win, A. (2013). Functional food product development - Opportunities and challenges for food manufacturers. Trends in Food Science and Technology, 30(1), 27–37. https://doi.org/10.1016/j.tifs.2012.11.004
Kiros, E., Seifu, E., Bultosa, G., & Solomon, W. K. (2016). Effect of carrot juice and stabilizer on the physicochemical and microbiological properties of yoghurt. LWT - Food Science and Technology, 69, 191–196. https://doi.org/10.1016/j.lwt.2016.01.026
Koca Bozalan, N., & Karadeniz, F. (2011). Carotenoid profile, total phenolic content, and antioxidant activity of carrots. International Journal of Food Properties, 14(5), 1060–1068. https://doi.org/10.1080/10942910903580918
Kolaček, S., Hojsak, I., Berni Canani, R., Guarino, A., Indrio, F., Orel, R., Pot, B., Shamir, R., Szajewska, H., Vandenplas, Y., Van Goudoever, J., & Weizman, Z. (2017). Commercial Probiotic Products: A Call for Improved Quality Control. A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. Journal of Pediatric Gastroenterology and Nutrition, 65(1), 117–124. https://doi.org/10.1097/MPG.0000000000001603
Koutinas, A. A. (2017). Fermented Dairy Products. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00001-7
Kun, S., Rezessy-Szabó, J. M., Nguyen, Q. D., & Hoschke, Á. (2008). Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry, 43(8), 816–821. https://doi.org/10.1016/j.procbio.2008.03.008
Malakar, S., Paul, S. K., & Pou, K. R. J. (2020). Biotechnological Interventions in Beverage Production. In Biotechnological Progress and Beverage Consumption. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816678-9.00001-1
Mapelli-Brahm, P., Barba, F. J., Remize, F., Garcia, C., Fessard, A., Mousavi Khaneghah, A., Sant’Ana, A. S., Lorenzo, J. M., Montesano, D., & Meléndez-Martínez, A. J. (2020). The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science and Technology, 99(December 2019), 389–401. https://doi.org/10.1016/j.tifs.2020.03.013
Marsh, A. J., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science and Technology, 38(2), 113–124. https://doi.org/10.1016/j.tifs.2014.05.002
Mehriz Abou El Samh, M., Abou Dawood Sherein, A., & Hebeishy Essam, H. (2013). Properties and antioxident activity of propiotic yoghurt flavored with black carrot, pumpkin and strawberry. International Journal of Dairy Science, 8(2), 48–57. https://doi.org/10.3923/ijds.2013.48.57
Mgaya-Kilima, B., Remberg, S. F., Chove, B. E., & Wicklund, T. (2015). Physiochemical and antioxidant properties of roselle-mango juice blends; Effects of packaging material, storage temperature and time. Food Science and Nutrition, 3(2), 100–109. https://doi.org/10.1002/fsn3.174
Mohanty, D., Misra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008
Morifuji, M., Ichikawa, S., Kitade, M., Fukasawa, T., Asami, Y., Manabe, Y., & Sugawara, T. (2020). Exopolysaccharides from milk fermented by lactic acid bacteria enhance dietary carotenoid bioavailability in humans in a randomized crossover trial and in rats. American Journal of Clinical Nutrition, 111(4), 903–914. https://doi.org/10.1093/ajcn/nqaa020
Mudgil, D., & Barak, S. (2019). Dairy-Based Functional Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00003-7
Neveu, Perez-Jiménez, Vos, Crespy, Chaffaut, D., Mennen, Knox, Eisner, Cruz, Wishart, & Scalbert. (2010). Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database. Database: The Journal of Biological Databases and Curation, Volume 201(bap024).
Oliveira, R. P. de S., Perego, P., de Oliveira, M. N., & Converti, A. (2012). Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect. Food Research International, 48(1), 21–27. https://doi.org/10.1016/j.foodres.2012.02.012
Panse, M. L., & Phalke, S. D. (2019). Omega-3 Beverages. In Value-Added Ingredients and Enrichments of Beverages (Issue 2005). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816687-1.00011-4
Pereira, A. P., Oliveira, J. M., Mendes-Ferreira, A., Estevinho, L. M., & Mendes-Faia, A. (2016). Mead and Other Fermented Beverages. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00014-5
Perotti, M. C., Bergamini, C. V., Vénica, C. I., Vélez, M. A., Wolf, I. V., & Hynes, E. (2019). Production of Functional Milk-Based Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00006-2
Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. Advances in Nutrition, 10, S49–S66. https://doi.org/10.1093/advances/nmy063
Pokusaeva, K., Fitzgerald, G. F., & Van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 6(3), 285–306. https://doi.org/10.1007/s12263-010-0206-6
Pop, C. R., Topan, C., Rotar, A. M., Semeniuc, C., & Salanţă, L. (2015). Evaluation the Sensory and Probiotics Properties of the Yogurt Supplemented with Carrot Juice. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 72(2), 5–6. https://doi.org/10.15835/buasvmcn-fst:11533
Popkin, B. M., Malik, V., & Hu, F. B. (2015). Beverage: Health Effects. Encyclopedia of Food and Health, 372–380. https://doi.org/10.1016/B978-0-12-384947-2.00063-5
Porto, M. C. W., Kuniyoshi, T. M., Azevedo, P. O. S., Vitolo, M., & Oliveira, R. P. S. (2017). Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnology Advances, 35(3), 361–374. https://doi.org/10.1016/j.biotechadv.2017.03.004
Prabhurajeshwar, C., & Chandrakanth, R. K. (2017). Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomedical Journal, 40(5), 270–283. https://doi.org/10.1016/j.bj.2017.06.008
Pushpadass, H. A., Emerald, F. M. E., Balasubramanyam, B. V., & Patel, S. S. (2019). Rheological Properties of Milk-Based Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00011-6
Salehi, F. (2021). Rheological and physicochemical properties of vegetable juices and concentrates: A review. Journal of Food Processing and Preservation, 45(4), 1–13. https://doi.org/10.1111/jfpp.15326
Samoggia, A. (2016). Healthy Food: Determinants of Price Knowledge of Functional Dairy Products. Journal of Food Products Marketing, 22(8), 905–929. https://doi.org/10.1080/10454446.2015.1072867
Šeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., Tomić, A., Čanadanović-Brunet, J., Vulić, J., Šaponjac, V. T., & Ćetković, G. (2021). New concept of fortified yogurt formulation with encapsulated carrot waste extract. Lwt, 138(December 2020). https://doi.org/10.1016/j.lwt.2020.110732
Sims, I. M., Ryan, J. L. J., & Kim, S. H. (2014). Invitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp. Anaerobe, 25, 11–17. https://doi.org/10.1016/j.anaerobe.2013.11.001
Sogi, D. S., Siddiq, M., Greiby, I., & Dolan, K. D. (2013). Total phenolics, antioxidant activity, and functional properties of “Tommy Atkins” mango peel and kernel as affected by drying methods. Food Chemistry, 141(3), 2649–2655. https://doi.org/10.1016/j.foodchem.2013.05.053
Soria, A. C., Sanz, M. L., & Villamiel, M. (2009). Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chemistry, 114(2), 758–762. https://doi.org/10.1016/j.foodchem.2008.10.060
Sudibyo, A. (2018). Designing Functional Beverages Process : Highlighting Lessons Learned From Research and Development. Jurnal Industri Hasil Perkebunan, 13(1), 19–36. https://doi.org/10.33104/jihp.v13i1.3698
Szilagyi, A. (2019). Digestion, absorption, metabolism, and physiological effects of lactose. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00002-7
Tarrega, A., Marcano, J., & Fiszman, S. (2016). Yogurt viscosity and fruit pieces affect satiating capacity expectations. Food Research International, 89, 574–581. https://doi.org/10.1016/j.foodres.2016.09.011
Tesfaye, W., Suarez-Lepe, J. A., Loira, I., Palomero, F., & Morata, A. (2019). Dairy and Nondairy-Based Beverages as a Vehicle for Probiotics, Prebiotics, and Symbiotics: Alternatives to Health Versus Disease Binomial Approach Through Food. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00014-1
Turkmen, N., Akal, C., & Özer, B. (2019). Probiotic dairy-based beverages: A review. Journal of Functional Foods, 53(August 2018), 62–75. https://doi.org/10.1016/j.jff.2018.12.004
Tzanetakis, N., & Litopoulou-Tzanetaki, E. (1989). Biochemical Activities of Pediococcus pentosaceus isolates of Dairy Origin. Journal of Dairy Science, 72(4), 859–863. https://doi.org/10.3168/jds.S0022-0302(89)79178-5
Vicente, A. R., Manganaris, G. A., Sozzi, G. O., & Crisosto, C. H. (2009). Nutritional Quality of Fruits and Vegetables. In Postharvest Handling (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374112-7.00005-6
Walker, C., & Thomas, M. G. (2019). The evolution of lactose digestion. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00001-5
Wallace, T. C., & Giusti, M. M. (2008). Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. Journal of Food Science, 73(4). https://doi.org/10.1111/j.1750-3841.2008.00706.x
Yu, S., Zhou, C., Zhang, T., Jiang, B., & Mu, W. (2015). Short communication: 3-Phenyllactic acid production in milk by Pediococcus pentosaceus SK25 during laboratory fermentation process. Journal of Dairy Science, 98(2), 813–817. https://doi.org/10.3168/jds.2014-8645
Yusuf, E., Wojdyło, A., Oszmiański, J., & Nowicka, P. (2021). Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods, 10(4). https://doi.org/10.3390/foods10040808
Ammar, E.-T. M. A., Ismail, M. M., Khalil, A. E.-W. E., & Eid, M. Z. (2015). Impact of fortification with honey on some properties of bio-yoghurt. Journal of Microbiology, Biotechnology and Food Sciences, 04(06), 503–508. https://doi.org/10.15414/jmbfs.2015.4.6.503-508
Arena, M. P., Caggianiello, G., Russo, P., Albenzio, M., Massa, S., Fiocco, D., Capozzi, V., & Spano, G. (2015). Functional starters for functional yogurt. Foods, 4(1), 15–33. https://doi.org/10.3390/foods4010015
Badarinath, A. V, Rao, K. M., Madhu, C., Chetty, S., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A Review on In-vitro Antioxidant Methods: Comparisions, Correlations and Considerations. International Journal of PharmTech Research, 2(2), 1276–1285.
Behare, P., Kumar, H., & Mandal, S. (2015). Yogurt: Yogurt Based Products. In Encyclopedia of Food and Health (1st ed., pp. 625–631). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00767-4
Bernal, L. (2012). Evaluación de las Propiedades Bioactivas de Mora (Rubus glaucus) y Agraz (Vaccinium meridionale Swartz), en Fresco y Durante Procesos de Transformación. Universidad Nacional de Colombia.
Bosma, E. F., Forster, J., & Nielsen, A. T. (2017). Lactobacilli and pediococci as versatile cell factories – Evaluation of strain properties and genetic tools. Biotechnology Advances, 35(4), 419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002
Bove, C. G., De Angelis, M., Gatti, M., Calasso, M., Neviani, E., & Gobbetti, M. (2012). Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics, 12(21), 3206–3218. https://doi.org/10.1002/pmic.201200157
Bultosa, G. (2015). Functional Foods: Dietary Fibers, Prebiotics, Probiotics, and Synbiotics. In Encyclopedia of Food Grains: Second Edition (2nd ed., Vols. 2–4). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-394437-5.00245-X
Corrieu, G., & Béal, C. (2015). Yogurt: The Product and its Manufacture. Encyclopedia of Food and Health, 617–624. https://doi.org/10.1016/B978-0-12-384947-2.00766-2
Daneshi, M., Ehsani, M. R., Razavi, S. H., & Labbafi, M. (2013). Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Electronic Journal of Biotechnology, 16(5). https://doi.org/10.2225/vol16-issue5-fulltext-2
Datta, S. (2017). Chapter 10 - Sourcing, supply chain, and manufacturing of nutraceutical and functional foods. In Developing New Functional Food and Nutraceutical Products. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802780-6/00010-9
do Espírito Santo, A. P., Perego, P., Converti, A., & Oliveira, M. N. (2012). Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Science and Technology, 47(2), 393–399. https://doi.org/10.1016/j.lwt.2012.01.038
Dubey, N., Mishra, V., & Thakur, D. (2018). Plant-Based Antimicrobial Formulations. In Postharvest Disinfection of Fruits and Vegetables. Elsevier Inc. https://doi.org/10.1016/b978-0-12-812698-1.00011-x
Fan, L., & Cliff, M. (2017). Carrot juice yogurts: Composition, microbiology, and sensory acceptance. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00012-2
Fazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(April), 387–399. https://doi.org/10.1016/j.jff.2018.07.039
Figueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318
Flach, J., Waal, M. B. Van Der, Nieuwboer, M. Van Den, Claassen, E., & Larsen, O. F. A. (2017). The underexposed role of food matrices in probiotic products : Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2017.1334624
G. Zaini, R., Brandt, K., R. Clench, M., & L. Le Maitre, C. (2012). Effects of Bioactive Compounds from Carrots (Daucus carota L.), Polyacetylenes, Beta-Carotene and Lutein on Human Lymphoid Leukaemia Cells. Anti-Cancer Agents in Medicinal Chemistry, 12(6), 640–652. https://doi.org/10.2174/187152012800617704
Galvis-Sánchez, A. C., & Vinholes, J. (2017). Fruit Juices (Apple, Peach, and Pear) and Changes in the Carotenoid Profile. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 59–74). https://doi.org/10.1016/B978-0-12-802230-6.00005-9
Gardana, C., Del, C., Quicazán, M. C., Ruby, A., & Simonetti, P. (2018). Journal of Food Composition and Analysis Nutrients , phytochemicals and botanical origin of commercial bee pollen from di ff erent geographical areas. Journal of Food Composition and Analysis, 73(June), 29–38. https://doi.org/10.1016/j.jfca.2018.07.009
Gasaly, N., Riveros, K., & Gotteland, M. (2020). Fitoquímicos: una nueva clase de prebióticos. Revista Chilena de Nutrición, 47(2), 317–327. https://doi.org/10.4067/s0717-75182020000200317
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017a). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
Gies, M., Descalzo, A. M., Servent, A., & Dhuique-Mayer, C. (2019). Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. Lwt, 111(February), 105–110. https://doi.org/10.1016/j.lwt.2019.04.103
Hagi, T., Kobayashi, M., & Nomura, M. (2014). Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiology Letters, 350(2), 223–230. https://doi.org/10.1111/1574-6968.12341
Hashemi Gahruie, H., Eskandari, M. H., Mesbahi, G., & Hanifpour, M. A. (2015). Scientific and technical aspects of yogurt fortification: A review. Food Science and Human Wellness, 4(1), 1–8. https://doi.org/10.1016/j.fshw.2015.03.002
Huebner, J., Wehling, R. L., & Hutkins, R. W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17(7), 770–775. https://doi.org/10.1016/j.idairyj.2006.10.006
Januário, J. G. B., da Silva, I. C. F., de Oliveira, A. S., de Oliveira, J. F., Dionísio, J. N., Klososki, S. J., & Pimentel, T. C. (2017). Probiotic yoghurt flavored with organic beet with carrot, cassava, sweet potato or corn juice. International Food Research Journal, 24(1), 359–366. http://www.ifrj.upm.edu.my
Jones, R. M. (2016). The Use of Lactobacillus casei and Lactobacillus paracasei in Clinical Trials for the Improvement of Human Health. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804024-9.00009-4
Kiros, E., Seifu, E., Bultosa, G., & Solomon, W. K. (2016a). Effect of carrot juice and stabilizer on the physicochemical and microbiological properties of yoghurt. LWT - Food Science and Technology, 69, 191–196. https://doi.org/10.1016/j.lwt.2016.01.026
Koutinas, A. A. (2017). Fermented Dairy Products. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00001-7
Kun, S., Rezessy-Szabó, J. M., Nguyen, Q. D., & Hoschke, Á. (2008). Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry, 43(8), 816–821. https://doi.org/10.1016/j.procbio.2008.03.008
Luciano, W. A., Matte, T. C., Portela, I. A., de Medeiros, L. L., dos Santos Lima, M., Maciel, J. F., de Souza, E. L., Garcia, E. F., & Magnani, M. (2018). Effects of Lactobacillus acidophilus LA-3 on physicochemical and sensory parameters of açaí and mango based smoothies and its survival following simulated gastrointestinal conditions. Food Research International, 114, 159–168. https://doi.org/10.1016/j.foodres.2018.08.005
Machado, T. A. D. G., de Oliveira, M. E. G., Campos, M. I. F., de Assis, P. O. A., de Souza, E. L., Madruga, M. S., Pacheco, M. T. B., Pintado, M. M. E., & Queiroga, R. de C. R. do E. (2017). Impact of honey on quality characteristics of goat yogurt containing probiotic Lactobacillus acidophilus. LWT - Food Science and Technology, 80, 221–229. https://doi.org/10.1016/j.lwt.2017.02.013
Malakar, S., Paul, S. K., & Pou, K. R. J. (2020). Biotechnological Interventions in Beverage Production. In Biotechnological Progress and Beverage Consumption. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816678-9.00001-1
Mančušková, T., Medved’ová, A., & Valík, Ľ. (2015). Viability of Lactobacillus acidophilus NCFM Howaru Dophilus during storage at refrigeration temperatures. Acta Chimica Slovaca, 8(1), 17–21. https://doi.org/10.1515/acs-2015-0004
Mohanty, D., Misra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008
Mousavi, M., Heshmati, A., Garmakhany, A. D., Vahidinia, A., & Taheri, M. (2019). Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. Lwt, 102(September 2018), 80–88. https://doi.org/10.1016/j.lwt.2018.12.023
Nates-parra, G., Sc, M., Montoya, P. M., Sc, M., Chamorro, F. J., & Biología, L. (n.d.-a). Apis mellifera ( APIDAE ) EN CUATRO DEPARTAMENTOS DE COLOMBIA Geographical and Botanical Origin of Apis mellifera ( APIDAE ) Honey in four Colombian Departments. 18(3), 427–437.
Pandey, P., Grover, K., Dhillon, T. S., Kaur, A., & Javed, M. (2021). Evaluation of polyphenols enriched dairy products developed by incorporating black carrot (Daucus carota L.) concentrate. Heliyon, 7(5), e06880. https://doi.org/10.1016/j.heliyon.2021.e06880
Perricone, M., Corbo, M. R., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2014). Viability of Lactobacillus reuteri in fruit juices. Journal of Functional Foods, 10, 421–426. https://doi.org/10.1016/j.jff.2014.07.020
Pop, C. R., Topan, C., Rotar, A. M., Semeniuc, C., & Salanţă, L. (2015). Evaluation the Sensory and Probiotics Properties of the Yogurt Supplemented with Carrot Juice. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 72(2), 5–6. https://doi.org/10.15835/buasvmcn-fst:11533
Rabiu, B., Jay, A., Gibson, G., & Rastall, R. A. (2001). Synthesis and fermentation properties of novel galacto-oligosaccharides by beta-galactosidases from Bifidobacterium species. Applied and Environmental Microbiology, 67, 2526–2530. https://doi.org/10.1017/S002211207300042X
Šeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., Tomić, A., Čanadanović-Brunet, J., Vulić, J., Šaponjac, V. T., & Ćetković, G. (2021). New concept of fortified yogurt formulation with encapsulated carrot waste extract. Lwt, 138(December 2020). https://doi.org/10.1016/j.lwt.2020.110732
Sharma, K. D., Karki, S., Thakur, N. S., & Attri, S. (2012). Chemical composition, functional properties and processing of carrot-A review. Journal of Food Science and Technology, 49(1), 22–32. https://doi.org/10.1007/s13197-011-0310-7
Shewale, R. N., Sawale, P. D., Khedkar, C. D., & Singh, A. (2014). Selection criteria for probiotics: A review Department of Dairy Microbiology College of Dairy Technology , Pusad , India ; International Journal of Probiotics and Prebiotics, 9(1), 2014.
Sivieri, K., Freire, F. C., Lopes, N. P., Shiraishi, C. T. D., Pires, A. C. M. S., Lima, A. C. D., Zavarizi, A. C. M., Sgarbosa, L., & Bianchi, F. (2017). Synbiotic yogurts and the elderly. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00014-6
Soria, A. C., Sanz, M. L., & Villamiel, M. (2009). Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chemistry, 114(2), 758–762. https://doi.org/10.1016/j.foodchem.2008.10.060
Sudheer Kumar, Y., Varakumar, S., & Reddy, O. V. S. (2012). Evaluation of antioxidant and sensory properties of mango (Mangifera indica L.) wine. CYTA - Journal of Food, 10(1), 12–20. https://doi.org/10.1080/19476337.2010.530693
Tan, J., McKenzie, C., Vuillermin, P. J., Goverse, G., Vinuesa, C. G., Mebius, R. E., Macia, L., & Mackay, C. R. (2016). Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Reports, 15(12), 2809–2824. https://doi.org/10.1016/j.celrep.2016.05.047
Tesfaye, W., Suarez-Lepe, J. A., Loira, I., Palomero, F., & Morata, A. (2019). Dairy and Nondairy-Based Beverages as a Vehicle for Probiotics, Prebiotics, and Symbiotics: Alternatives to Health Versus Disease Binomial Approach Through Food. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00014-1
Theis, S. (2018). Authorised EU health claim for chicory inulin. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims (Vol. 3). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100922-2.00010-3
Tripuraneni, S. (2011). Effect of nutrient supplements on cucumber fermentation by lactic acid bacteria. 104. http://gradworks.umi.com/15/01/1501161.html
Vidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5(1), 235–243. https://doi.org/10.1016/j.jff.2012.10.012
Vinderola, G., Burns, P., & Reinheimer, J. (2017). Probiotics in Nondairy Products. In Vegetarian and Plant-Based Diets in Health and Disease Prevention (Issue 3). Elsevier. https://doi.org/10.1016/B978-0-12-803968-7.00044-7
Yusuf, E., Wojdyło, A., Oszmiański, J., & Nowicka, P. (2021). Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods, 10(4). https://doi.org/10.3390/foods10040808
Akalin, A. S., Unal, G., Dinkci, N., & Hayaloglu, A. A. (2012). Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate. Journal of Dairy Science, 95(7), 3617–3628. https://doi.org/10.3168/jds.2011-5297
Allgeyer, L. C., Miller, M. J., & Lee, S. Y. (2010). Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics. Journal of Dairy Science, 93(10), 4471–4479. https://doi.org/10.3168/jds.2009-2582
Ammar, E.-T. M. A., Ismail, M. M., Khalil, A. E.-W. E., & Eid, M. Z. (2015). Impact of fortification with honey on some properties of bio-yoghurt. Journal of Microbiology, Biotechnology and Food Sciences, 04(06), 503–508. https://doi.org/10.15414/jmbfs.2015.4.6.503-508
Arena, M. P., Caggianiello, G., Russo, P., Albenzio, M., Massa, S., Fiocco, D., Capozzi, V., & Spano, G. (2015). Functional starters for functional yogurt. Foods, 4(1), 15–33. https://doi.org/10.3390/foods4010015
Arora, S., Siddiqui, S., & Gehlot, R. (2019). Physicochemical and Bioactive Compounds in Carrot and Beetroot Juice. Asian Journal of Dairy and Food Research, 38(03). https://doi.org/10.18805/ajdfr.dr-1363
Ashraf, R., & Shah, N. P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt - A review. International Journal of Food Microbiology, 149(3), 194–208. https://doi.org/10.1016/j.ijfoodmicro.2011.07.008
Authority, E. F. S. (2010). Guidance on the risk assessment of genetically modified microorganisms and their food and feed products. EFSA Journal, January, 1–67. https://doi.org/10.2903/j.efsa.20YY.NNNN.Available
Badarinath, A. V, Rao, K. M., Madhu, C., Chetty, S., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A Review on In-vitro Antioxidant Methods: Comparisions, Correlations and Considerations. International Journal of PharmTech Research, 2(2), 1276–1285
Behare, P., Kumar, H., & Mandal, S. (2015). Yogurt: Yogurt Based Products. In Encyclopedia of Food and Health (1st ed., pp. 625–631). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00767-4
Bohn, T., Desmarchelier, C., Dragsted, L. O., Nielsen, C. S., Stahl, W., Rühl, R., Keijer, J., & Borel, P. (2017). Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Molecular Nutrition and Food Research, 61(6), 1–37. https://doi.org/10.1002/mnfr.201600685
Bosma, E. F., Forster, J., & Nielsen, A. T. (2017). Lactobacilli and pediococci as versatile cell factories – Evaluation of strain properties and genetic tools. Biotechnology Advances, 35(4), 419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002
ove, C. G., De Angelis, M., Gatti, M., Calasso, M., Neviani, E., & Gobbetti, M. (2012). Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics, 12(21), 3206–3218. https://doi.org/10.1002/pmic.201200157
Bultosa, G. (2015). Functional Foods: Dietary Fibers, Prebiotics, Probiotics, and Synbiotics. In Encyclopedia of Food Grains: Second Edition (2nd ed., Vols. 2–4). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-394437-5.00245-X
Butel, M. J. (2014). Probiotics, gut microbiota and health. Medecine et Maladies Infectieuses, 44(1), 1–8. https://doi.org/10.1016/j.medmal.2013.10.002
Caldeira, L. A., Alves, É. E., Ribeiro, A. de M. F., Rocha Júnior, V. R., Antunes, A. B., dos Reis, A. F., Gomes, J. da C., de Carvalho, M. H. R., & Martinez, R. I. E. (2018). Viability of probiotic bacteria in bioyogurt with the addition of honey from Jataí and Africanized bees. Pesquisa Agropecuaria Brasileira, 53(2), 206–211. https://doi.org/10.1590/S0100-204X2018000200009
Chanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic Chemistry, 77, 176–189. https://doi.org/10.1016/j.bioorg.2018.01.006
Chung, H. J., Lee, H., Na, G., Jung, H., Kim, D. G., Shin, S. I., Jung, S. E., Choi, I. D., Lee, J. H., Sim, J. H., & Choi, H. K. (2020). Metabolic and lipidomic profiling of vegetable juices fermented with various probiotics. Biomolecules, 10(5), 1–17. https://doi.org/10.3390/biom10050725
Corbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1192–1206. https://doi.org/10.1111/1541-4337.12109
Cunningham, M., Azcarate-Peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H. D., Hunter, K., Manurung, S., Obis, D., Petrova, M. I., Steinert, R. E., Swanson, K. S., van Sinderen, D., Vulevic, J., & Gibson, G. R. (2021). Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 29(8), 667–685. https://doi.org/10.1016/j.tim.2021.01.003
Daneshi, M., Ehsani, M. R., Razavi, S. H., & Labbafi, M. (2013). Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Electronic Journal of Biotechnology, 16(5). https://doi.org/10.2225/vol16-issue5-fulltext-2
Datta, S. (2017). Chapter 10 - Sourcing, supply chain, and manufacturing of nutraceutical and functional foods. In Developing New Functional Food and Nutraceutical Products. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802780-6/00010-9
De Bellis, P., Sisto, A., & Lavermicocca, P. (2021). Probiotic bacteria and plant-based matrices: An association with improved health-promoting features. Journal of Functional Foods, 87(July), 104821. https://doi.org/10.1016/j.jff.2021.104821
de Oliveira, P. M., Leite Júnior, B. R. de C., Martins, E. M. F., Martins, M. L., Vieira, É. N. R., de Barros, F. A. R., Cristianini, M., de Almeida Costa, N., & Ramos, A. M. (2021). Mango and carrot mixed juice: a new matrix for the vehicle of probiotic lactobacilli. Journal of Food Science and Technology, 58(1), 98–109. https://doi.org/10.1007/s13197-020-04518-y
Devaki, C. S., & Premavalli, K. S. (2019). Fermented Vegetable Beverages. In Fermented Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815271-3.00008-7
do Espírito Santo, A. P., Perego, P., Converti, A., & Oliveira, M. N. (2012). Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Science and Technology, 47(2), 393–399. https://doi.org/10.1016/j.lwt.2012.01.038
Do Espírito Santo, Ana Paula, Cartolano, N. S., Silva, T. F., Soares, F. A. S. M., Gioielli, L. A., Perego, P., Converti, A., & Oliveira, M. N. (2012). Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts. International Journal of Food Microbiology, 154(3), 135–144. https://doi.org/10.1016/j.ijfoodmicro.2011.12.025
Dubey, N., Mishra, V., & Thakur, D. (2018). Plant-Based Antimicrobial Formulations. In Postharvest Disinfection of Fruits and Vegetables. Elsevier Inc. https://doi.org/10.1016/b978-0-12-812698-1.00011-x
Escamilla-Hurtado, M. L., Valdés-Martínez, S. E., Soriano-Santos, J., Gómez-Pliego, R., Verde-Calvo, J. R., Reyes-Dorantes, A., & Tomasini-Campocosio, A. (2005). Effect of culture conditions on production of butter flavor compounds by Pediococcus pentosaceus and Lactobacillus acidophilus in semisolid maize-based cultures. International Journal of Food Microbiology, 105(3), 305–316. https://doi.org/10.1016/j.ijfoodmicro.2005.04.014
Esmaeilnejad Moghadam, B., Keivaninahr, F., Nazemi, A., Fouladi, M., Rezaei Mokarram, R., & Zoroufchi Benis, K. (2019). Optimization of conjugated linoleic acid production by Bifidobacterium animalis subsp. Lactis and its application in fermented milk. Lwt, 108(March), 344–352. https://doi.org/10.1016/j.lwt.2019.03.071
Fan, L., & Cliff, M. (2017). Carrot juice yogurts: Composition, microbiology, and sensory acceptance. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00012-2
Fazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018a). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(July), 387–399. https://doi.org/10.1016/j.jff.2018.07.039
Figueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318
Fijan, S. (2016). Antimicrobial Effect of Probiotics against Common Pathogens. Probiotics and Prebiotics in Human Nutrition and Health. https://doi.org/10.5772/63141
Flach, J., Waal, M. B. Van Der, Nieuwboer, M. Van Den, Claassen, E., & Larsen, O. F. A. (2017). The underexposed role of food matrices in probiotic products : Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2017.1334624
Florence, A. C. R., Oliveira, R. P. S., Silva, R. C., Soares, F. A. S. M., Gioielli, L. A., & Oliveira, M. N. (2012). Organic milk improves Bifidobacterium lactis counts and bioactive fatty acids contents in fermented milk. LWT - Food Science and Technology, 49(1), 89–95. https://doi.org/10.1016/j.lwt.2012.04.023
G. Zaini, R., Brandt, K., R. Clench, M., & L. Le Maitre, C. (2012). Effects of Bioactive Compounds from Carrots (Daucus carota L.), Polyacetylenes, Beta-Carotene and Lutein on Human Lymphoid Leukaemia Cells. Anti-Cancer Agents in Medicinal Chemistry, 12(6), 640–652. https://doi.org/10.2174/187152012800617704
Galvis-Sánchez, A. C., & Vinholes, J. (2017). Fruit Juices (Apple, Peach, and Pear) and Changes in the Carotenoid Profile. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 59–74). https://doi.org/10.1016/B978-0-12-802230-6.00005-9
Gardana, C., Del, C., Quicazán, M. C., Ruby, A., & Simonetti, P. (2018). Journal of Food Composition and Analysis Nutrients, phytochemicals and botanical origin of commercial bee pollen from di fferent geographical areas. Journal of Food Composition and Analysis, 73(June), 29–38. https://doi.org/10.1016/j.jfca.2018.07.009
Gasaly, N., Riveros, K., & Gotteland, M. (2020). Fitoquímicos: una nueva clase de prebióticos. Revista Chilena de Nutrición, 47(2), 317–327. https://doi.org/10.4067/s0717-75182020000200317
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017a). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
Gies, M., Descalzo, A. M., Servent, A., & Dhuique-Mayer, C. (2019). Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. Lwt, 111(February), 105–110. https://doi.org/10.1016/j.lwt.2019.04.103
Gil-Rodríguez, A. M., & Beresford, T. P. (2019). Lipase inhibitory activity of skim milk fermented with different strains of lactic acid bacteria. Journal of Functional Foods, 60(May), 103413. https://doi.org/10.1016/j.jff.2019.06.015
Govender, M., Choonara, Y. E., Kumar, P., Du Toit, L. C., Van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. Non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, 15(1), 29–43. https://doi.org/10.1208/s12249-013-0027-1
Guneser, O., Isleten Hosoglu, M., Aydeniz Guneser, B., & Karagul Yuceer, Y. (2019). Engineering of Milk-Based Beverages: Current Status, Developments, and Consumer Trends. In Milk-Based Beverages (Vol. 2015). Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00001-3
Gutiérrez-Cortés, C., Suarez, H., Buitrago, G., Nero, L. A., & Todorov, S. D. (2018). Characterization of bacteriocins produced by strains of Pediococcus pentosaceus isolated from Minas cheese. Annals of Microbiology, 68(6), 383–398. https://doi.org/10.1007/s13213-018-1345-z
Hagi, T., Kobayashi, M., & Nomura, M. (2014). Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiology Letters, 350(2), 223–230. https://doi.org/10.1111/1574-6968.12341
Han, D., Yan, Q., Liu, J., Jiang, Z., & Yang, S. (2021). Transcriptomic Analysis of Pediococcus pentosaceus Reveals Carbohydrate Metabolic Dynamics Under Lactic Acid Stress. Frontiers in Microbiology, 12(September), 1–12. https://doi.org/10.3389/fmicb.2021.736411
Hashemi Gahruie, H., Eskandari, M. H., Mesbahi, G., & Hanifpour, M. A. (2015). Scientific and technical aspects of yogurt fortification: A review. Food Science and Human Wellness, 4(1), 1–8. https://doi.org/10.1016/j.fshw.2015.03.002
He, M., Tan, C. P., Liu, Y., & Xu, Y. J. (2021). Foodomics: a new perspective on gut probiotics nutrition and health research. Current Opinion in Food Science, 41, 146–151. https://doi.org/10.1016/j.cofs.2021.04.004
Hickson, M. (2014). Probiotics and the gastrointestinal microbiota. Advanced Nutrition and Dietetics in Gastroenterology, 81–86. https://doi.org/10.1002/9781118872796.ch2.3
Hill, D., Ross, R. P., Arendt, E., & Stanton, C. (2017). Microbiology of yogurt and bio-yogurts containing probiotics and prebiotics. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00004-3
Huebner, J., Wehling, R. L., & Hutkins, R. W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17(7), 770–775. https://doi.org/10.1016/j.idairyj.2006.10.006
Huppertz, T. (2016). Heat stability of milk. Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects: Fourth Edition, 57(2), 179–196. https://doi.org/10.1007/978-1-4939-2800-2_7
Januário, J. G. B., da Silva, I. C. F., de Oliveira, A. S., de Oliveira, J. F., Dionísio, J. N., Klososki, S. J., & Pimentel, T. C. (2017). Probiotic yoghurt flavored with organic beet with carrot, cassava, sweet potato or corn juice. International Food Research Journal, 24(1), 359–366. http://www.ifrj.upm.edu.my
Jia, R., Chen, H., Chen, H., & Ding, W. (2016). Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt. Journal of Dairy Science, 99(1), 221–227. https://doi.org/10.3168/jds.2015-10114
Jiang, S., Cai, L., Lv, L., & Li, L. (2021). Pediococcus pentosaceus, a future additive or probiotic candidate. Microbial Cell Factories, 20(1), 1–14. https://doi.org/10.1186/s12934-021-01537-y
Jones, R. M. (2016). The Use of Lactobacillus casei and Lactobacillus paracasei in Clinical Trials for the Improvement of Human Health. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804024-9.00009-4
Kandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012
Karaman, S., & Ozcan, T. (2021). Determination of gelation properties and bio-therapeutic potential of black carrot fibre-enriched functional yoghurt produced using pectin and gum arabic as prebiotic. International Journal of Dairy Technology, 1–13. https://doi.org/10.1111/1471-0307.12776
Kasapoğlu, K. N., Daşkaya-Dikmen, C., Yavuz-Düzgün, M., Karaça, A. C., & Özçelik, B. (2019). Enrichment of Beverages With Health Beneficial Ingredients. In Value-Added Ingredients and Enrichments of Beverages. https://doi.org/10.1016/b978-0-12-816687-1.00003-5
Kaškonienė, V., Adaškevičiūtė, V., Kaškonas, P., Mickienė, R., & Maruška, A. (2020). Antimicrobial and antioxidant activities of natural and fermented bee pollen. Food Bioscience, 34(December 2018). https://doi.org/10.1016/j.fbio.2020.100532
Khan, R. S., Grigor, J., Winger, R., & Win, A. (2013). Functional food product development - Opportunities and challenges for food manufacturers. Trends in Food Science and Technology, 30(1), 27–37. https://doi.org/10.1016/j.tifs.2012.11.004
Kolaček, S., Hojsak, I., Berni Canani, R., Guarino, A., Indrio, F., Orel, R., Pot, B., Shamir, R., Szajewska, H., Vandenplas, Y., Van Goudoever, J., & Weizman, Z. (2017). Commercial Probiotic Products: A Call for Improved Quality Control. A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. Journal of Pediatric Gastroenterology and Nutrition, 65(1), 117–124. https://doi.org/10.1097/MPG.0000000000001603
Koutinas, A. A. (2017). Fermented Dairy Products. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00001-7
Kun, S., Rezessy-Szabó, J. M., Nguyen, Q. D., & Hoschke, Á. (2008). Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry, 43(8), 816–821. https://doi.org/10.1016/j.procbio.2008.03.008
Lillo-Pérez, S., Guerra-Valle, M., Orellana-Palma, P., & Petzold, G. (2021). Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. Lwt, 151(July). https://doi.org/10.1016/j.lwt.2021.112106
Lu, M., & Wang, N. S. (2016). Spoilage of Milk and Dairy Products. In The Microbiological Quality of Food: Foodborne Spoilers. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100502-6.00010-8
Luciano, W. A., Matte, T. C., Portela, I. A., de Medeiros, L. L., dos Santos Lima, M., Maciel, J. F., de Souza, E. L., Garcia, E. F., & Magnani, M. (2018). Effects of Lactobacillus acidophilus LA-3 on physicochemical and sensory parameters of açaí and mango based smoothies and its survival following simulated gastrointestinal conditions. Food Research International, 114, 159–168. https://doi.org/10.1016/j.foodres.2018.08.005
Machado, T. A. D. G., de Oliveira, M. E. G., Campos, M. I. F., de Assis, P. O. A., de Souza, E. L., Madruga, M. S., Pacheco, M. T. B., Pintado, M. M. E., & Queiroga, R. de C. R. do E. (2017). Impact of honey on quality characteristics of goat yogurt containing probiotic Lactobacillus acidophilus. LWT - Food Science and Technology, 80, 221–229. https://doi.org/10.1016/j.lwt.2017.02.013
Malakar, S., Paul, S. K., & Pou, K. R. J. (2020). Biotechnological Interventions in Beverage Production. In Biotechnological Progress and Beverage Consumption. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816678-9.00001-1
Mančušková, T., Medved’ová, A., & Valík, Ľ. (2015). Viability of Lactobacillus acidophilus NCFM Howaru Dophilus during storage at refrigeration temperatures. Acta Chimica Slovaca, 8(1), 17–21. https://doi.org/10.1515/acs-2015-0004
Mapelli-Brahm, P., Barba, F. J., Remize, F., Garcia, C., Fessard, A., Mousavi Khaneghah, A., Sant’Ana, A. S., Lorenzo, J. M., Montesano, D., & Meléndez-Martínez, A. J. (2020). The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science and Technology, 99(December 2019), 389–401. https://doi.org/10.1016/j.tifs.2020.03.013
Marsh, A. J., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science and Technology, 38(2), 113–124. https://doi.org/10.1016/j.tifs.2014.05.002
Mehriz Abou El Samh, M., Abou Dawood Sherein, A., & Hebeishy Essam, H. (2013). Properties and antioxident activity of propiotic yoghurt flavored with black carrot, pumpkin and strawberry. International Journal of Dairy Science, 8(2), 48–57. https://doi.org/10.3923/ijds.2013.48.57
Mgaya-Kilima, B., Remberg, S. F., Chove, B. E., & Wicklund, T. (2015). Physiochemical and antioxidant properties of roselle-mango juice blends; Effects of packaging material, storage temperature and time. Food Science and Nutrition, 3(2), 100–109. https://doi.org/10.1002/fsn3.174
Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as Potential Antioxidants: A Systematic Review. Journal of Agricultural and Food Chemistry, 63(14), 3615–3626. https://doi.org/10.1021/jf506326t
Mohanty, D., Misra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008
Morifuji, M., Ichikawa, S., Kitade, M., Fukasawa, T., Asami, Y., Manabe, Y., & Sugawara, T. (2020). Exopolysaccharides from milk fermented by lactic acid bacteria enhance dietary carotenoid bioavailability in humans in a randomized crossover trial and in rats. American Journal of Clinical Nutrition, 111(4), 903–914. https://doi.org/10.1093/ajcn/nqaa020
Mousavi, M., Heshmati, A., Garmakhany, A. D., Vahidinia, A., & Taheri, M. (2019). Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. Lwt, 102(September 2018), 80–88. https://doi.org/10.1016/j.lwt.2018.12.023
Muhialdin, B. J., Zawawi, N., Abdull Razis, A. F., Bakar, J., & Zarei, M. (2021). Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control, 127(March), 108140. https://doi.org/10.1016/j.foodcont.2021.108140
Oliveira, R. P. de S., Perego, P., de Oliveira, M. N., & Converti, A. (2012). Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect. Food Research International, 48(1), 21–27. https://doi.org/10.1016/j.foodres.2012.02.012
Olson, D., & Aryana, K. J. (2017). Omega-3 polyunsaturated fatty acids added to yogurt. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00007-9
Pandey, P., Grover, K., Dhillon, T. S., Kaur, A., & Javed, M. (2021). Evaluation of polyphenols enriched dairy products developed by incorporating black carrot (Daucus carota L.) concentrate. Heliyon, 7(5), e06880. https://doi.org/10.1016/j.heliyon.2021.e06880
Panse, M. L., & Phalke, S. D. (2019). Omega-3 Beverages. In Value-Added Ingredients and Enrichments of Beverages (Issue 2005). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816687-1.00011-4
Pathania, S., & Kaur, N. (2022). Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioactive Carbohydrates and Dietary Fibre, 27(November 2021), 100295. https://doi.org/10.1016/j.bcdf.2021.100295
Pereira, A. P., Oliveira, J. M., Mendes-Ferreira, A., Estevinho, L. M., & Mendes-Faia, A. (2016). Mead and Other Fermented Beverages. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00014-5
Perricone, M., Corbo, M. R., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2014). Viability of Lactobacillus reuteri in fruit juices. Journal of Functional Foods, 10, 421–426. https://doi.org/10.1016/j.jff.2014.07.020
Pokusaeva, K., Fitzgerald, G. F., & Van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 6(3), 285–306. https://doi.org/10.1007/s12263-010-0206-6
Pop, C. R., Topan, C., Rotar, A. M., Semeniuc, C., & Salanţă, L. (2015). Evaluation the Sensory and Probiotics Properties of the Yogurt Supplemented with Carrot Juice. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 72(2), 5–6. https://doi.org/10.15835/buasvmcn-fst:11533
Porto, M. C. W., Kuniyoshi, T. M., Azevedo, P. O. S., Vitolo, M., & Oliveira, R. P. S. (2017). Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnology Advances, 35(3), 361–374. https://doi.org/10.1016/j.biotechadv.2017.03.004
Prabhurajeshwar, C., & Chandrakanth, R. K. (2017). Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomedical Journal, 40(5), 270–283. https://doi.org/10.1016/j.bj.2017.06.008
Pushpadass, H. A., Emerald, F. M. E., Balasubramanyam, B. V., & Patel, S. S. (2019). Rheological Properties of Milk-Based Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00011-6
Quigley, E. M. M. (2019). Prebiotics and Probiotics in Digestive Health. Clinical Gastroenterology and Hepatology, 17(2), 333–344. https://doi.org/10.1016/j.cgh.2018.09.028
Rabiu, B., Jay, A., Gibson, G., & Rastall, R. A. (2001). Synthesis and fermentation properties of novel galacto-oligosaccharides by beta-galactosidases from Bifidobacterium species. Applied and Environmental Microbiology, 67, 2526–2530. https://doi.org/10.1017/S002211207300042X
Raccach, M. (2014). Pediococcus. Encyclopedia of Food Microbiology: Second Edition, 3, 1–5. https://doi.org/10.1016/B978-0-12-384730-0.00247-0
Riaz Rajoka, M. S., Shi, J., Mehwish, H. M., Zhu, J., Li, Q., Shao, D., Huang, Q., & Yang, H. (2017). Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 6(3), 121–130. https://doi.org/10.1016/j.fshw.2017.07.003
Salehi, F. (2021). Rheological and physicochemical properties of vegetable juices and concentrates: A review. Journal of Food Processing and Preservation, 45(4), 1–13. https://doi.org/10.1111/jfpp.15326
Samoggia, A. (2016). Healthy Food: Determinants of Price Knowledge of Functional Dairy Products. Journal of Food Products Marketing, 22(8), 905–929. https://doi.org/10.1080/10454446.2015.1072867
Šeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., Tomić, A., Čanadanović-Brunet, J., Vulić, J., Šaponjac, V. T., & Ćetković, G. (2021). New concept of fortified yogurt formulation with encapsulated carrot waste extract. Lwt, 138(December 2020). https://doi.org/10.1016/j.lwt.2020.110732
Sharma, K. D., Karki, S., Thakur, N. S., & Attri, S. (2012). Chemical composition, functional properties and processing of carrot-A review. Journal of Food Science and Technology, 49(1), 22–32. https://doi.org/10.1007/s13197-011-0310-7
Shewale, R. N., Sawale, P. D., Khedkar, C. D., & Singh, A. (2014). Selection criteria for probiotics: A review Department of Dairy Microbiology College of Dairy Technology , Pusad , India ; International Journal of Probiotics and Prebiotics, 9(1), 2014.
Sims, I. M., Ryan, J. L. J., & Kim, S. H. (2014). Invitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp. Anaerobe, 25, 11–17. https://doi.org/10.1016/j.anaerobe.2013.11.001
Sivieri, K., Freire, F. C., Lopes, N. P., Shiraishi, C. T. D., Pires, A. C. M. S., Lima, A. C. D., Zavarizi, A. C. M., Sgarbosa, L., & Bianchi, F. (2017). Synbiotic yogurts and the elderly. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00014-6
Sogi, D. S., Siddiq, M., Greiby, I., & Dolan, K. D. (2013). Total phenolics, antioxidant activity, and functional properties of “Tommy Atkins” mango peel and kernel as affected by drying methods. Food Chemistry, 141(3), 2649–2655. https://doi.org/10.1016/j.foodchem.2013.05.053
Soria, A. C., Sanz, M. L., & Villamiel, M. (2009). Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chemistry, 114(2), 758–762. https://doi.org/10.1016/j.foodchem.2008.10.060
Sudheer Kumar, Y., Varakumar, S., & Reddy, O. V. S. (2012). Evaluation of antioxidant and sensory properties of mango (Mangifera indica L.) wine. CYTA - Journal of Food, 10(1), 12–20. https://doi.org/10.1080/19476337.2010.530693
Sudibyo, A. (2018). Designing Functional Beverages Process : Highlighting Lessons Learned From Research and Development. Jurnal Industri Hasil Perkebunan, 13(1), 19–36. https://doi.org/10.33104/jihp.v13i1.3698
Tan, J., McKenzie, C., Vuillermin, P. J., Goverse, G., Vinuesa, C. G., Mebius, R. E., Macia, L., & Mackay, C. R. (2016). Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Reports, 15(12), 2809–2824. https://doi.org/10.1016/j.celrep.2016.05.047
Tarrega, A., Marcano, J., & Fiszman, S. (2016). Yogurt viscosity and fruit pieces affect satiating capacity expectations. Food Research International, 89, 574–581. https://doi.org/10.1016/j.foodres.2016.09.011
Tesfaye, W., Suarez-Lepe, J. A., Loira, I., Palomero, F., & Morata, A. (2019). Dairy and Nondairy-Based Beverages as a Vehicle for Probiotics, Prebiotics, and Symbiotics: Alternatives to Health Versus Disease Binomial Approach Through Food. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00014-1
Theis, S. (2018). Authorised EU health claim for chicory inulin. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims (Vol. 3). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100922-2.00010-3
Turkmen, N., Akal, C., & Özer, B. (2019). Probiotic dairy-based beverages: A review. Journal of Functional Foods, 53(August 2018), 62–75. https://doi.org/10.1016/j.jff.2018.12.004
Vénica, C. I., Spotti, M. J., Pavón, Y. L., Molli, J. S., & Perotti, M. C. (2020). Influence of carrot fibre powder addition on rheological, microstructure and sensory characteristics of stirred-type yogurt. International Journal of Food Science and Technology, 55(5), 1916–1923. https://doi.org/10.1111/ijfs.14415
Vidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5(1), 235–243. https://doi.org/10.1016/j.jff.2012.10.012
Vinderola, G., Burns, P., & Reinheimer, J. (2017). Probiotics in Nondairy Products. In Vegetarian and Plant-Based Diets in Health and Disease Prevention (Issue 3). Elsevier. https://doi.org/10.1016/B978-0-12-803968-7.00044-7
Walker, C., & Thomas, M. G. (2019). The evolution of lactose digestion. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00001-5
Wallace, T. C., & Giusti, M. M. (2008). Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. Journal of Food Science, 73(4). https://doi.org/10.1111/j.1750-3841.2008.00706.x
Yu, S., Zhou, C., Zhang, T., Jiang, B., & Mu, W. (2015). Short communication: 3-Phenyllactic acid production in milk by Pediococcus pentosaceus SK25 during laboratory fermentation process. Journal of Dairy Science, 98(2), 813–817. https://doi.org/10.3168/jds.2014-8645
Yusuf, E., Wojdyło, A., Oszmiański, J., & Nowicka, P. (2021). Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods, 10(4). https://doi.org/10.3390/foods10040808
Zuluaga-Domínguez, C. M., Nieto-Veloza, A., & Quicazán-de-Cuenca, M. (2017). Classification of Colombian honeys by electronic nose and physical-chemical parameters, using neural networks and genetic algorithms. Journal of Apicultural Research, 57(1), 145–152. https://doi.org/10.1080/00218839.2017.1339521
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 143 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83538/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83538/2/1022398004.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83538/3/1022398004.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
7ebba7ed8b11b503060a5fb54e7660d4
42637642b0c627be03641fc21c5cdf3a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089190122455040
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Diaz Moreno, Amanda Consuelo9a4b2923daba3652911330736468415eCamargo Herrera, Angel David29c6195445b7344a2a57e05258109b3aBioalimentosBernal Castro Camila AndreaGutiérrez Cortes Carolinahttps://orcid.org/0000-0003-4063-887XCamargo Herrera, Angel DavidCamargo Herrera, Angel DavidCamargo, AngelCamargo Herrera, Angel David2023-02-21T17:01:54Z2023-02-21T17:01:54Z2022https://repositorio.unal.edu.co/handle/unal/83538Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografíasDentro de las estrategias para el desarrollo de bebidas lácteas fermentadas con cualidades funcionales, se considera la inclusión de medios de cultivo vegetales fuente de antioxidantes y fibra inoculado con microorganismos probióticos comerciales. Esta condición, tiene una sinergia positiva en la viabilidad del probiótico a lo largo de su vida útil, incluso logrando una interacción entre fibras prebióticas y biomoléculas con actividad antioxidante y antimicrobiana propias de zanahoria y mango como matriz vegetal, productos con alto contenido natural de carotenoides provitamina A, compuestos fenólicos, micronutrientes y fibras solubles e insolubles. Acorde al consenso establecido por la Asociación Científica Internacional para el estudio de Probióticos y Prebióticos (ISAPP por sus siglas en inglés), un bioyogur se define como “una bebida láctea con potencial funcional debido a la inclusión de probióticos y/o diferentes compuestos fisiológicamente activos con propiedades beneficiosas para la salud del huésped”. El desarrollo de un producto de esta categoría, implica una selección de condiciones de proceso, que implican las siguientes etapas: • Selección del cultivo iniciador teniendo en cuenta la tasa de pos-acidificación y que presente una viscosidad media. • Evaluar las cinéticas de crecimiento y acidificación de cuatro cepas comerciales con potencial probiótico (Bifidobacterium lactis, Lactobacillus rhamnosus, Lactobacillus acidophilus y VEGE 092 un conglomerado de Pediococcus pentosaceus, Lactobacillus acidophilus y Lactobacilus paracasei) de la línea HOWARU de DANISCO-DUPONT ® utilizando leche descremada y caldo Man Rogosa Sharpe (MRS) para definir los parámetros cinéticos y seleccionar la cepa de trabajo. • Analizar los parámetros fisicoquímicos de la matriz vegetal (zanahoria y mango): pH, acidez titulable, sólidos solubles totales y un estimado de compuestos bioactivos: contenido de carotenoides totales, fenoles totales y fibra dietaria. • Evaluar el potencial prebiótico de tres fibras comerciales de la línea ORAFTI® (ORAFTI GR, ORAFTI GEL, ORAFTI P95) y una fuente de carbono alternativa (mielato de roble de Apis mellifera) utilizando la metodología de índice y actividad prebiótico. Definidas las condiciones anteriores, se evalúa el efecto de la inclusión de matriz vegetal (zanahoria y mango) en diferentes porcentajes (15, 20 y 25% p/v) y se determina la viabilidad de los microrganismos probióticos comerciales inoculados en la bebida láctea durante la fermentación, finalmente en este caso se seleccionó el porcentaje de inclusión de la matriz vegetal (20% de pulpa de zanahoria y del 3% de pulpa de mango como regulador de sabor). El seguimiento en cada etapa permite analizar el comportamiento del producto durante el proceso de fermentación y posteriormente durante almacenamiento refrigerado (4°C±1°C por 21 días), en esta etapa se determinó la viabilidad mediante recuento en placa por profundidad en agar MRS del cultivo probiótico y del cultivo iniciador, inoculados en la bebida láctea, también se evaluaron parámetros fisicoquímicos como pH, acidez titulable, sólidos solubles totales, textura, capacidad de retención de agua, color y el contenido de antioxidantes, fenoles totales, carotenoides totales y la actividad antimicrobiana. Para el día 21 del almacenamiento se obtuvo una densidad celular para el probiótico de 10,26 Log UFC/mL y para el cultivo iniciador de 8,66 Log UFC/mL al final del almacenamiento. Se encontraron cambios significativos (p<0,05) en la textura (34,16), capacidad de retención de agua (71%) y carotenoides totales (3,9692 µg caroteno/g muestra). (Texto tomado de la fuente)Within the strategies for developing fermented milk beverages with functional qualities, the inclusion of vegetable culture media sources of antioxidants and fiber inoculated with commercial probiotic microorganisms is considered. This condition has a positive synergy in the viability of the probiotic throughout its useful life, even achieving an interaction between prebiotic fibers and biomolecules with antioxidant and antimicrobial activity typical of carrot and mango as a vegetable matrix, products with a high natural content of carotenoids. Provitamin A, phenolic compounds, micronutrients, and soluble and insoluble fibers. According to the consensus established by the International Scientific Association for the Study of Probiotics and Prebiotics (ISAPP), a bioyogurt is defined as "a milk drink with functional potential due to the inclusion of probiotics and different physiologically active compounds with beneficial properties for the health of the host.” The development of a product in this category implies a selection of process conditions, which involve the following stages: • Selection of the starter culture, taking into account the rate of post-acidification and having a medium viscosity. • Evaluate the growth and acidification kinetics of four commercial strains with probiotic potential (Bifidobacterium lactis, Lactobacillus rhamnosus, Lactobacillus acidophilus, and VEGE 092, a conglomerate of Pediococcus pentosaceus, Lactobacillus acidophilus and Lactobacillus paracasei) of the DANISCO-DUPONT ® HOWARU line using milk. skimmed milk and Man Rogosa Sharpe (MRS) broth to define the kinetic parameters and select the working strain. • Analyze the physicochemical parameters of the vegetable matrix (carrot and mango): pH, titratable acidity, total soluble solids, and an estimate of bioactive compounds: the content of total carotenoids, total phenols, and dietary fiber. • Evaluate the prebiotic potential of three commercial fibers from the ORAFTI® line (ORAFTI GR, ORAFTI GEL, ORAFTI P95) and an alternative carbon source (Apis mellifera oak honeydew) using the prebiotic index and activity methodology. Once the previous conditions are defined, the effect of the inclusion of vegetable matrix (carrot and mango) in different percentages (15, 20, and 25% w/v) is evaluated, and the viability of the commercial probiotic microorganisms inoculated in the milk drink during fermentation, finally, in this case, the inclusion percentage of the vegetable matrix was selected (20% carrot pulp and 3% mango pulp as flavor regulator). Monitoring at each stage allows for analyzing the behavior of the product during the fermentation process and later during refrigerated storage (4°C±1°C for 21 days). At this stage, viability was determined by plate count by depth in MRS agar. of the probiotic culture and the starter culture, inoculated in the milk drink, physicochemical parameters were also evaluated, such as pH, titratable acidity, total soluble solids, texture, water retention capacity, color, and the content of antioxidants, total phenols, total carotenoids, and antimicrobial activity. For day 21 of storage, a cell density of 10.26 Log CFU/mL was obtained for the probiotic and for the starter culture of 8.66 Log CFU/mL at the end of storage. Significant changes (p<0.05) were found in texture (34.16), water retention capacity (71%), and total carotenoids (3.9692 µg carotene/g sample).Dirección de Investigación, Sede Bogotá–Universidad Nacional de ColombiaMaestríaMagíster en Ciencia y Tecnología de AlimentosAlimentos funcionalesxvi, 143 páginasapplication/pdfUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá600 - Tecnología (Ciencias aplicadas)630 - Agricultura y tecnologías relacionadasLeche como alimentoTecnología de alimentosMilk as foodBebidas lácteas funcionalesBacterias ácido-lácticasCompuestos bioactivosMatriz vegetalFermentación láctica. EspañolFunctional dairy foodsLactic acid bacteriaBioactive compoundsPlant matrixLactic acid fermentationEvaluación de un proceso para elaboración de una bebida láctea utilizando un medio de cultivo vegetal fuente de probióticos, antioxidantes y fibraEvaluation of a process for the elaboration of a dairy drink using a vegetable culture medium source of probiotics, antioxidants and fiberTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbid, Y., Casillo, A., Gharsallah, H., Joulak, I., Lanzetta, R., Corsaro, M. M., Attia, H., & Azabou, S. (2018). Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International Journal of Biological Macromolecules, 108, 719–728. https://doi.org/10.1016/j.ijbiomac.2017.10.155Ahmad, T., Cawood, M., Iqbal, Q., Ariño, A., Batool, A., Sabir Tariq, R. M., Azam, M., & Akhtar, S. (2019). Phytochemicals in Daucus carota and their health benefits—review article. Foods, 8(9), 1–22. https://doi.org/10.3390/FOODS8090424Allgeyer, L. C., Miller, M. J., & Lee, S. Y. (2010). Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics. Journal of Dairy Science, 93(10), 4471–4479. https://doi.org/10.3168/jds.2009-2582Arora, S., Siddiqui, S., & Gehlot, R. (2019). Physicochemical and Bioactive Compounds in Carrot and Beetroot Juice. Asian Journal of Dairy and Food Research, 38(03). https://doi.org/10.18805/ajdfr.dr-1363Ashraf, R., & Shah, N. P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt - A review. International Journal of Food Microbiology, 149(3), 194–208. https://doi.org/10.1016/j.ijfoodmicro.2011.07.008Authority, E. F. S. (2010). Guidance on the risk assessment of genetically modified microorganisms and their food and feed products. EFSA Journal, January, 1–67. https://doi.org/10.2903/j.efsa.20YY.NNNN.AvailableBender, I., Edesi, L., Hiiesalu, I., Ingver, A., Kaart, T., Kaldmäe, H., Talve, T., Tamm, I., & Luik, A. (2020). Organic carrot (Daucus carota L.) production has an advantage over conventional in quantity as well as in quality. Agronomy, 10(9). https://doi.org/10.3390/agronomy10091420Bernal-Castro, C. (2017). Evaluación del comportamiento de cultivos probióticos y prebióticos en bebidas de frutos rojos. Tesis de Maestría. Instituto de Ciencia y Tecnología de Alimentos. Facultad de Ciencias Agrarias. Universidad Nacional de Colombia.Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030Caldeira, L. A., Alves, É. E., Ribeiro, A. de M. F., Rocha Júnior, V. R., Antunes, A. B., dos Reis, A. F., Gomes, J. da C., de Carvalho, M. H. R., & Martinez, R. I. E. (2018). Viability of probiotic bacteria in bioyogurt with the addition of honey from Jataí and Africanized bees. Pesquisa Agropecuaria Brasileira, 53(2), 206–211. https://doi.org/10.1590/S0100-204X2018000200009Chanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic Chemistry, 77, 176–189. https://doi.org/10.1016/j.bioorg.2018.01.006Chung, H. J., Lee, H., Na, G., Jung, H., Kim, D. G., Shin, S. I., Jung, S. E., Choi, I. D., Lee, J. H., Sim, J. H., & Choi, H. K. (2020). Metabolic and lipidomic profiling of vegetable juices fermented with various probiotics. Biomolecules, 10(5), 1–17. https://doi.org/10.3390/biom10050725Corbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1192–1206. https://doi.org/10.1111/1541-4337.12109Daneshi, M., Ehsani, M. R., Razavi, S. H., & Labbafi, M. (2013). Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Electronic Journal of Biotechnology, 16(5). https://doi.org/10.2225/vol16-issue5-fulltext-2Devaki, C. S., & Premavalli, K. S. (2019). Fermented Vegetable Beverages. In Fermented Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815271-3.00008-7Dubey, N., Mishra, V., & Thakur, D. (2018). Plant-Based Antimicrobial Formulations. In Postharvest Disinfection of Fruits and Vegetables. Elsevier Inc. https://doi.org/10.1016/b978-0-12-812698-1.00011-xEscamilla-Hurtado, M. L., Valdés-Martínez, S. E., Soriano-Santos, J., Gómez-Pliego, R., Verde-Calvo, J. R., Reyes-Dorantes, A., & Tomasini-Campocosio, A. (2005). Effect of culture conditions on production of butter flavor compounds by Pediococcus pentosaceus and Lactobacillus acidophilus in semisolid maize-based cultures. International Journal of Food Microbiology, 105(3), 305–316. https://doi.org/10.1016/j.ijfoodmicro.2005.04.014Esmaeilnejad Moghadam, B., Keivaninahr, F., Nazemi, A., Fouladi, M., Rezaei Mokarram, R., & Zoroufchi Benis, K. (2019). Optimization of conjugated linoleic acid production by Bifidobacterium animalis subsp. Lactis and its application in fermented milk. Lwt, 108(March), 344–352. https://doi.org/10.1016/j.lwt.2019.03.071Fazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018a). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(July), 387–399. https://doi.org/10.1016/j.jff.2018.07.039Fazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018b). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(April), 387–399. https://doi.org/10.1016/j.jff.2018.07.039Florence, A. C. R., Oliveira, R. P. S., Silva, R. C., Soares, F. A. S. M., Gioielli, L. A., & Oliveira, M. N. (2012). Organic milk improves Bifidobacterium lactis counts and bioactive fatty acids contents in fermented milk. LWT - Food Science and Technology, 49(1), 89–95. https://doi.org/10.1016/j.lwt.2012.04.023Gänzle, M. G. (2019). Lactose a conditional prebiotic? Lactose, Evolutionary Role, Health Effects, and Applications, 155–173. https://doi.org/10.1016/b978-0-12-811720-0.00004-0Gasaly, N., Riveros, K., & Gotteland, M. (2020). Fitoquímicos: una nueva clase de prebióticos. Revista Chilena de Nutrición, 47(2), 317–327. https://doi.org/10.4067/s0717-75182020000200317Gibson, M., & Newsham, P. (2018). Milk and Dairy. In Food Science and the Culinary Arts. https://doi.org/10.1016/b978-0-12-811816-0.00011-7Gies, M., Descalzo, A. M., Servent, A., & Dhuique-Mayer, C. (2019). Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. Lwt, 111(February), 105–110. https://doi.org/10.1016/j.lwt.2019.04.103Gil-Rodríguez, A. M., & Beresford, T. P. (2019). Lipase inhibitory activity of skim milk fermented with different strains of lactic acid bacteria. Journal of Functional Foods, 60(May), 103413. https://doi.org/10.1016/j.jff.2019.06.015Govender, M., Choonara, Y. E., Kumar, P., Du Toit, L. C., Van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. Non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, 15(1), 29–43. https://doi.org/10.1208/s12249-013-0027-1Guneser, O., Isleten Hosoglu, M., Aydeniz Guneser, B., & Karagul Yuceer, Y. (2019). Engineering of Milk-Based Beverages: Status, Developments, and Consumer Trends. In Milk-Based Beverages (Vol. 2015). Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00001-3Gupta, M., & Bajaj, B. K. (2017). Development of fermented oat flour beverage as a potential probiotic vehicle. Food Bioscience, 20(September), 104–109. https://doi.org/10.1016/j.fbio.2017.08.007Hagi, T., Kobayashi, M., & Nomura, M. (2014). Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiology Letters, 350(2), 223–230. https://doi.org/10.1111/1574-6968.12341Hallmann, E., & Rembialkowska, E. (2009). Roczniki Pa ń stwowego Zakładu Higieny Roczn . PZH 2009 , tom 60 , Nr 3. May 2014Hettinga, K. A. (2019). Lactose in the dairy production chain. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00006-4Hickson, M. (2014). Probiotics and the gastrointestinal microbiota. Advanced Nutrition and Dietetics in Gastroenterology, 81–86. https://doi.org/10.1002/9781118872796.ch2.3Hill, D., Ross, R. P., Arendt, E., & Stanton, C. (2017). Microbiology of yogurt and bio-yogurts containing probiotics and prebiotics. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00004-3Huppertz, T. (2016). Heat stability of milk. Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects: Fourth Edition, 57(2), 179–196. https://doi.org/10.1007/978-1-4939-2800-2_7Januário, J. G. B., da Silva, I. C. F., de Oliveira, A. S., de Oliveira, J. F., Dionísio, J. N., Klososki, S. J., & Pimentel, T. C. (2017). Probiotic yoghurt flavored with organic beet with carrot, cassava, sweet potato or corn juice. International Food Research Journal, 24(1), 359–366. http://www.ifrj.upm.edu.myJia, R., Chen, H., Chen, H., & Ding, W. (2016). Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt. Journal of Dairy Science, 99(1), 221–227. https://doi.org/10.3168/jds.2015-10114Kandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012Karaman, S., & Ozcan, T. (2021). Determination of gelation properties and bio-therapeutic potential of black carrot fibre-enriched functional yoghurt produced using pectin and gum arabic as prebiotic. International Journal of Dairy Technology, 1–13. https://doi.org/10.1111/1471-0307.12776Kasapoğlu, K. N., Daşkaya-Dikmen, C., Yavuz-Düzgün, M., Karaça, A. C., & Özçelik, B. (2019). Enrichment of Beverages with Health Beneficial Ingredients. In Value-Added Ingredients and Enrichments of Beverages. https://doi.org/10.1016/b978-0-12-816687-1.00003-5Khan, R. S., Grigor, J., Winger, R., & Win, A. (2013). Functional food product development - Opportunities and challenges for food manufacturers. Trends in Food Science and Technology, 30(1), 27–37. https://doi.org/10.1016/j.tifs.2012.11.004Kiros, E., Seifu, E., Bultosa, G., & Solomon, W. K. (2016). Effect of carrot juice and stabilizer on the physicochemical and microbiological properties of yoghurt. LWT - Food Science and Technology, 69, 191–196. https://doi.org/10.1016/j.lwt.2016.01.026Koca Bozalan, N., & Karadeniz, F. (2011). Carotenoid profile, total phenolic content, and antioxidant activity of carrots. International Journal of Food Properties, 14(5), 1060–1068. https://doi.org/10.1080/10942910903580918Kolaček, S., Hojsak, I., Berni Canani, R., Guarino, A., Indrio, F., Orel, R., Pot, B., Shamir, R., Szajewska, H., Vandenplas, Y., Van Goudoever, J., & Weizman, Z. (2017). Commercial Probiotic Products: A Call for Improved Quality Control. A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. Journal of Pediatric Gastroenterology and Nutrition, 65(1), 117–124. https://doi.org/10.1097/MPG.0000000000001603Koutinas, A. A. (2017). Fermented Dairy Products. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00001-7Kun, S., Rezessy-Szabó, J. M., Nguyen, Q. D., & Hoschke, Á. (2008). Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry, 43(8), 816–821. https://doi.org/10.1016/j.procbio.2008.03.008Malakar, S., Paul, S. K., & Pou, K. R. J. (2020). Biotechnological Interventions in Beverage Production. In Biotechnological Progress and Beverage Consumption. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816678-9.00001-1Mapelli-Brahm, P., Barba, F. J., Remize, F., Garcia, C., Fessard, A., Mousavi Khaneghah, A., Sant’Ana, A. S., Lorenzo, J. M., Montesano, D., & Meléndez-Martínez, A. J. (2020). The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science and Technology, 99(December 2019), 389–401. https://doi.org/10.1016/j.tifs.2020.03.013Marsh, A. J., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science and Technology, 38(2), 113–124. https://doi.org/10.1016/j.tifs.2014.05.002Mehriz Abou El Samh, M., Abou Dawood Sherein, A., & Hebeishy Essam, H. (2013). Properties and antioxident activity of propiotic yoghurt flavored with black carrot, pumpkin and strawberry. International Journal of Dairy Science, 8(2), 48–57. https://doi.org/10.3923/ijds.2013.48.57Mgaya-Kilima, B., Remberg, S. F., Chove, B. E., & Wicklund, T. (2015). Physiochemical and antioxidant properties of roselle-mango juice blends; Effects of packaging material, storage temperature and time. Food Science and Nutrition, 3(2), 100–109. https://doi.org/10.1002/fsn3.174Mohanty, D., Misra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008Morifuji, M., Ichikawa, S., Kitade, M., Fukasawa, T., Asami, Y., Manabe, Y., & Sugawara, T. (2020). Exopolysaccharides from milk fermented by lactic acid bacteria enhance dietary carotenoid bioavailability in humans in a randomized crossover trial and in rats. American Journal of Clinical Nutrition, 111(4), 903–914. https://doi.org/10.1093/ajcn/nqaa020Mudgil, D., & Barak, S. (2019). Dairy-Based Functional Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00003-7Neveu, Perez-Jiménez, Vos, Crespy, Chaffaut, D., Mennen, Knox, Eisner, Cruz, Wishart, & Scalbert. (2010). Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database. Database: The Journal of Biological Databases and Curation, Volume 201(bap024).Oliveira, R. P. de S., Perego, P., de Oliveira, M. N., & Converti, A. (2012). Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect. Food Research International, 48(1), 21–27. https://doi.org/10.1016/j.foodres.2012.02.012Panse, M. L., & Phalke, S. D. (2019). Omega-3 Beverages. In Value-Added Ingredients and Enrichments of Beverages (Issue 2005). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816687-1.00011-4Pereira, A. P., Oliveira, J. M., Mendes-Ferreira, A., Estevinho, L. M., & Mendes-Faia, A. (2016). Mead and Other Fermented Beverages. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00014-5Perotti, M. C., Bergamini, C. V., Vénica, C. I., Vélez, M. A., Wolf, I. V., & Hynes, E. (2019). Production of Functional Milk-Based Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00006-2Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. Advances in Nutrition, 10, S49–S66. https://doi.org/10.1093/advances/nmy063Pokusaeva, K., Fitzgerald, G. F., & Van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 6(3), 285–306. https://doi.org/10.1007/s12263-010-0206-6Pop, C. R., Topan, C., Rotar, A. M., Semeniuc, C., & Salanţă, L. (2015). Evaluation the Sensory and Probiotics Properties of the Yogurt Supplemented with Carrot Juice. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 72(2), 5–6. https://doi.org/10.15835/buasvmcn-fst:11533Popkin, B. M., Malik, V., & Hu, F. B. (2015). Beverage: Health Effects. Encyclopedia of Food and Health, 372–380. https://doi.org/10.1016/B978-0-12-384947-2.00063-5Porto, M. C. W., Kuniyoshi, T. M., Azevedo, P. O. S., Vitolo, M., & Oliveira, R. P. S. (2017). Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnology Advances, 35(3), 361–374. https://doi.org/10.1016/j.biotechadv.2017.03.004Prabhurajeshwar, C., & Chandrakanth, R. K. (2017). Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomedical Journal, 40(5), 270–283. https://doi.org/10.1016/j.bj.2017.06.008Pushpadass, H. A., Emerald, F. M. E., Balasubramanyam, B. V., & Patel, S. S. (2019). Rheological Properties of Milk-Based Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00011-6Salehi, F. (2021). Rheological and physicochemical properties of vegetable juices and concentrates: A review. Journal of Food Processing and Preservation, 45(4), 1–13. https://doi.org/10.1111/jfpp.15326Samoggia, A. (2016). Healthy Food: Determinants of Price Knowledge of Functional Dairy Products. Journal of Food Products Marketing, 22(8), 905–929. https://doi.org/10.1080/10454446.2015.1072867Šeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., Tomić, A., Čanadanović-Brunet, J., Vulić, J., Šaponjac, V. T., & Ćetković, G. (2021). New concept of fortified yogurt formulation with encapsulated carrot waste extract. Lwt, 138(December 2020). https://doi.org/10.1016/j.lwt.2020.110732Sims, I. M., Ryan, J. L. J., & Kim, S. H. (2014). Invitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp. Anaerobe, 25, 11–17. https://doi.org/10.1016/j.anaerobe.2013.11.001Sogi, D. S., Siddiq, M., Greiby, I., & Dolan, K. D. (2013). Total phenolics, antioxidant activity, and functional properties of “Tommy Atkins” mango peel and kernel as affected by drying methods. Food Chemistry, 141(3), 2649–2655. https://doi.org/10.1016/j.foodchem.2013.05.053Soria, A. C., Sanz, M. L., & Villamiel, M. (2009). Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chemistry, 114(2), 758–762. https://doi.org/10.1016/j.foodchem.2008.10.060Sudibyo, A. (2018). Designing Functional Beverages Process : Highlighting Lessons Learned From Research and Development. Jurnal Industri Hasil Perkebunan, 13(1), 19–36. https://doi.org/10.33104/jihp.v13i1.3698Szilagyi, A. (2019). Digestion, absorption, metabolism, and physiological effects of lactose. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00002-7Tarrega, A., Marcano, J., & Fiszman, S. (2016). Yogurt viscosity and fruit pieces affect satiating capacity expectations. Food Research International, 89, 574–581. https://doi.org/10.1016/j.foodres.2016.09.011Tesfaye, W., Suarez-Lepe, J. A., Loira, I., Palomero, F., & Morata, A. (2019). Dairy and Nondairy-Based Beverages as a Vehicle for Probiotics, Prebiotics, and Symbiotics: Alternatives to Health Versus Disease Binomial Approach Through Food. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00014-1Turkmen, N., Akal, C., & Özer, B. (2019). Probiotic dairy-based beverages: A review. Journal of Functional Foods, 53(August 2018), 62–75. https://doi.org/10.1016/j.jff.2018.12.004Tzanetakis, N., & Litopoulou-Tzanetaki, E. (1989). Biochemical Activities of Pediococcus pentosaceus isolates of Dairy Origin. Journal of Dairy Science, 72(4), 859–863. https://doi.org/10.3168/jds.S0022-0302(89)79178-5Vicente, A. R., Manganaris, G. A., Sozzi, G. O., & Crisosto, C. H. (2009). Nutritional Quality of Fruits and Vegetables. In Postharvest Handling (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374112-7.00005-6Walker, C., & Thomas, M. G. (2019). The evolution of lactose digestion. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00001-5Wallace, T. C., & Giusti, M. M. (2008). Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. Journal of Food Science, 73(4). https://doi.org/10.1111/j.1750-3841.2008.00706.xYu, S., Zhou, C., Zhang, T., Jiang, B., & Mu, W. (2015). Short communication: 3-Phenyllactic acid production in milk by Pediococcus pentosaceus SK25 during laboratory fermentation process. Journal of Dairy Science, 98(2), 813–817. https://doi.org/10.3168/jds.2014-8645Yusuf, E., Wojdyło, A., Oszmiański, J., & Nowicka, P. (2021). Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods, 10(4). https://doi.org/10.3390/foods10040808Ammar, E.-T. M. A., Ismail, M. M., Khalil, A. E.-W. E., & Eid, M. Z. (2015). Impact of fortification with honey on some properties of bio-yoghurt. Journal of Microbiology, Biotechnology and Food Sciences, 04(06), 503–508. https://doi.org/10.15414/jmbfs.2015.4.6.503-508Arena, M. P., Caggianiello, G., Russo, P., Albenzio, M., Massa, S., Fiocco, D., Capozzi, V., & Spano, G. (2015). Functional starters for functional yogurt. Foods, 4(1), 15–33. https://doi.org/10.3390/foods4010015Badarinath, A. V, Rao, K. M., Madhu, C., Chetty, S., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A Review on In-vitro Antioxidant Methods: Comparisions, Correlations and Considerations. International Journal of PharmTech Research, 2(2), 1276–1285.Behare, P., Kumar, H., & Mandal, S. (2015). Yogurt: Yogurt Based Products. In Encyclopedia of Food and Health (1st ed., pp. 625–631). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00767-4Bernal, L. (2012). Evaluación de las Propiedades Bioactivas de Mora (Rubus glaucus) y Agraz (Vaccinium meridionale Swartz), en Fresco y Durante Procesos de Transformación. Universidad Nacional de Colombia.Bosma, E. F., Forster, J., & Nielsen, A. T. (2017). Lactobacilli and pediococci as versatile cell factories – Evaluation of strain properties and genetic tools. Biotechnology Advances, 35(4), 419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002Bove, C. G., De Angelis, M., Gatti, M., Calasso, M., Neviani, E., & Gobbetti, M. (2012). Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics, 12(21), 3206–3218. https://doi.org/10.1002/pmic.201200157Bultosa, G. (2015). Functional Foods: Dietary Fibers, Prebiotics, Probiotics, and Synbiotics. In Encyclopedia of Food Grains: Second Edition (2nd ed., Vols. 2–4). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-394437-5.00245-XCorrieu, G., & Béal, C. (2015). Yogurt: The Product and its Manufacture. Encyclopedia of Food and Health, 617–624. https://doi.org/10.1016/B978-0-12-384947-2.00766-2Daneshi, M., Ehsani, M. R., Razavi, S. H., & Labbafi, M. (2013). Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Electronic Journal of Biotechnology, 16(5). https://doi.org/10.2225/vol16-issue5-fulltext-2Datta, S. (2017). Chapter 10 - Sourcing, supply chain, and manufacturing of nutraceutical and functional foods. In Developing New Functional Food and Nutraceutical Products. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802780-6/00010-9do Espírito Santo, A. P., Perego, P., Converti, A., & Oliveira, M. N. (2012). Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Science and Technology, 47(2), 393–399. https://doi.org/10.1016/j.lwt.2012.01.038Dubey, N., Mishra, V., & Thakur, D. (2018). Plant-Based Antimicrobial Formulations. In Postharvest Disinfection of Fruits and Vegetables. Elsevier Inc. https://doi.org/10.1016/b978-0-12-812698-1.00011-xFan, L., & Cliff, M. (2017). Carrot juice yogurts: Composition, microbiology, and sensory acceptance. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00012-2Fazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(April), 387–399. https://doi.org/10.1016/j.jff.2018.07.039Figueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318Flach, J., Waal, M. B. Van Der, Nieuwboer, M. Van Den, Claassen, E., & Larsen, O. F. A. (2017). The underexposed role of food matrices in probiotic products : Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2017.1334624G. Zaini, R., Brandt, K., R. Clench, M., & L. Le Maitre, C. (2012). Effects of Bioactive Compounds from Carrots (Daucus carota L.), Polyacetylenes, Beta-Carotene and Lutein on Human Lymphoid Leukaemia Cells. Anti-Cancer Agents in Medicinal Chemistry, 12(6), 640–652. https://doi.org/10.2174/187152012800617704Galvis-Sánchez, A. C., & Vinholes, J. (2017). Fruit Juices (Apple, Peach, and Pear) and Changes in the Carotenoid Profile. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 59–74). https://doi.org/10.1016/B978-0-12-802230-6.00005-9Gardana, C., Del, C., Quicazán, M. C., Ruby, A., & Simonetti, P. (2018). Journal of Food Composition and Analysis Nutrients , phytochemicals and botanical origin of commercial bee pollen from di ff erent geographical areas. Journal of Food Composition and Analysis, 73(June), 29–38. https://doi.org/10.1016/j.jfca.2018.07.009Gasaly, N., Riveros, K., & Gotteland, M. (2020). Fitoquímicos: una nueva clase de prebióticos. Revista Chilena de Nutrición, 47(2), 317–327. https://doi.org/10.4067/s0717-75182020000200317Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017a). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75Gies, M., Descalzo, A. M., Servent, A., & Dhuique-Mayer, C. (2019). Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. Lwt, 111(February), 105–110. https://doi.org/10.1016/j.lwt.2019.04.103Hagi, T., Kobayashi, M., & Nomura, M. (2014). Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiology Letters, 350(2), 223–230. https://doi.org/10.1111/1574-6968.12341Hashemi Gahruie, H., Eskandari, M. H., Mesbahi, G., & Hanifpour, M. A. (2015). Scientific and technical aspects of yogurt fortification: A review. Food Science and Human Wellness, 4(1), 1–8. https://doi.org/10.1016/j.fshw.2015.03.002Huebner, J., Wehling, R. L., & Hutkins, R. W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17(7), 770–775. https://doi.org/10.1016/j.idairyj.2006.10.006Januário, J. G. B., da Silva, I. C. F., de Oliveira, A. S., de Oliveira, J. F., Dionísio, J. N., Klososki, S. J., & Pimentel, T. C. (2017). Probiotic yoghurt flavored with organic beet with carrot, cassava, sweet potato or corn juice. International Food Research Journal, 24(1), 359–366. http://www.ifrj.upm.edu.myJones, R. M. (2016). The Use of Lactobacillus casei and Lactobacillus paracasei in Clinical Trials for the Improvement of Human Health. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804024-9.00009-4Kiros, E., Seifu, E., Bultosa, G., & Solomon, W. K. (2016a). Effect of carrot juice and stabilizer on the physicochemical and microbiological properties of yoghurt. LWT - Food Science and Technology, 69, 191–196. https://doi.org/10.1016/j.lwt.2016.01.026Koutinas, A. A. (2017). Fermented Dairy Products. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00001-7Kun, S., Rezessy-Szabó, J. M., Nguyen, Q. D., & Hoschke, Á. (2008). Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry, 43(8), 816–821. https://doi.org/10.1016/j.procbio.2008.03.008Luciano, W. A., Matte, T. C., Portela, I. A., de Medeiros, L. L., dos Santos Lima, M., Maciel, J. F., de Souza, E. L., Garcia, E. F., & Magnani, M. (2018). Effects of Lactobacillus acidophilus LA-3 on physicochemical and sensory parameters of açaí and mango based smoothies and its survival following simulated gastrointestinal conditions. Food Research International, 114, 159–168. https://doi.org/10.1016/j.foodres.2018.08.005Machado, T. A. D. G., de Oliveira, M. E. G., Campos, M. I. F., de Assis, P. O. A., de Souza, E. L., Madruga, M. S., Pacheco, M. T. B., Pintado, M. M. E., & Queiroga, R. de C. R. do E. (2017). Impact of honey on quality characteristics of goat yogurt containing probiotic Lactobacillus acidophilus. LWT - Food Science and Technology, 80, 221–229. https://doi.org/10.1016/j.lwt.2017.02.013Malakar, S., Paul, S. K., & Pou, K. R. J. (2020). Biotechnological Interventions in Beverage Production. In Biotechnological Progress and Beverage Consumption. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816678-9.00001-1Mančušková, T., Medved’ová, A., & Valík, Ľ. (2015). Viability of Lactobacillus acidophilus NCFM Howaru Dophilus during storage at refrigeration temperatures. Acta Chimica Slovaca, 8(1), 17–21. https://doi.org/10.1515/acs-2015-0004Mohanty, D., Misra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008Mousavi, M., Heshmati, A., Garmakhany, A. D., Vahidinia, A., & Taheri, M. (2019). Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. Lwt, 102(September 2018), 80–88. https://doi.org/10.1016/j.lwt.2018.12.023Nates-parra, G., Sc, M., Montoya, P. M., Sc, M., Chamorro, F. J., & Biología, L. (n.d.-a). Apis mellifera ( APIDAE ) EN CUATRO DEPARTAMENTOS DE COLOMBIA Geographical and Botanical Origin of Apis mellifera ( APIDAE ) Honey in four Colombian Departments. 18(3), 427–437.Pandey, P., Grover, K., Dhillon, T. S., Kaur, A., & Javed, M. (2021). Evaluation of polyphenols enriched dairy products developed by incorporating black carrot (Daucus carota L.) concentrate. Heliyon, 7(5), e06880. https://doi.org/10.1016/j.heliyon.2021.e06880Perricone, M., Corbo, M. R., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2014). Viability of Lactobacillus reuteri in fruit juices. Journal of Functional Foods, 10, 421–426. https://doi.org/10.1016/j.jff.2014.07.020Pop, C. R., Topan, C., Rotar, A. M., Semeniuc, C., & Salanţă, L. (2015). Evaluation the Sensory and Probiotics Properties of the Yogurt Supplemented with Carrot Juice. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 72(2), 5–6. https://doi.org/10.15835/buasvmcn-fst:11533Rabiu, B., Jay, A., Gibson, G., & Rastall, R. A. (2001). Synthesis and fermentation properties of novel galacto-oligosaccharides by beta-galactosidases from Bifidobacterium species. Applied and Environmental Microbiology, 67, 2526–2530. https://doi.org/10.1017/S002211207300042XŠeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., Tomić, A., Čanadanović-Brunet, J., Vulić, J., Šaponjac, V. T., & Ćetković, G. (2021). New concept of fortified yogurt formulation with encapsulated carrot waste extract. Lwt, 138(December 2020). https://doi.org/10.1016/j.lwt.2020.110732Sharma, K. D., Karki, S., Thakur, N. S., & Attri, S. (2012). Chemical composition, functional properties and processing of carrot-A review. Journal of Food Science and Technology, 49(1), 22–32. https://doi.org/10.1007/s13197-011-0310-7Shewale, R. N., Sawale, P. D., Khedkar, C. D., & Singh, A. (2014). Selection criteria for probiotics: A review Department of Dairy Microbiology College of Dairy Technology , Pusad , India ; International Journal of Probiotics and Prebiotics, 9(1), 2014.Sivieri, K., Freire, F. C., Lopes, N. P., Shiraishi, C. T. D., Pires, A. C. M. S., Lima, A. C. D., Zavarizi, A. C. M., Sgarbosa, L., & Bianchi, F. (2017). Synbiotic yogurts and the elderly. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00014-6Soria, A. C., Sanz, M. L., & Villamiel, M. (2009). Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chemistry, 114(2), 758–762. https://doi.org/10.1016/j.foodchem.2008.10.060Sudheer Kumar, Y., Varakumar, S., & Reddy, O. V. S. (2012). Evaluation of antioxidant and sensory properties of mango (Mangifera indica L.) wine. CYTA - Journal of Food, 10(1), 12–20. https://doi.org/10.1080/19476337.2010.530693Tan, J., McKenzie, C., Vuillermin, P. J., Goverse, G., Vinuesa, C. G., Mebius, R. E., Macia, L., & Mackay, C. R. (2016). Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Reports, 15(12), 2809–2824. https://doi.org/10.1016/j.celrep.2016.05.047Tesfaye, W., Suarez-Lepe, J. A., Loira, I., Palomero, F., & Morata, A. (2019). Dairy and Nondairy-Based Beverages as a Vehicle for Probiotics, Prebiotics, and Symbiotics: Alternatives to Health Versus Disease Binomial Approach Through Food. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00014-1Theis, S. (2018). Authorised EU health claim for chicory inulin. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims (Vol. 3). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100922-2.00010-3Tripuraneni, S. (2011). Effect of nutrient supplements on cucumber fermentation by lactic acid bacteria. 104. http://gradworks.umi.com/15/01/1501161.htmlVidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5(1), 235–243. https://doi.org/10.1016/j.jff.2012.10.012Vinderola, G., Burns, P., & Reinheimer, J. (2017). Probiotics in Nondairy Products. In Vegetarian and Plant-Based Diets in Health and Disease Prevention (Issue 3). Elsevier. https://doi.org/10.1016/B978-0-12-803968-7.00044-7Yusuf, E., Wojdyło, A., Oszmiański, J., & Nowicka, P. (2021). Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods, 10(4). https://doi.org/10.3390/foods10040808Akalin, A. S., Unal, G., Dinkci, N., & Hayaloglu, A. A. (2012). Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate. Journal of Dairy Science, 95(7), 3617–3628. https://doi.org/10.3168/jds.2011-5297Allgeyer, L. C., Miller, M. J., & Lee, S. Y. (2010). Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics. Journal of Dairy Science, 93(10), 4471–4479. https://doi.org/10.3168/jds.2009-2582Ammar, E.-T. M. A., Ismail, M. M., Khalil, A. E.-W. E., & Eid, M. Z. (2015). Impact of fortification with honey on some properties of bio-yoghurt. Journal of Microbiology, Biotechnology and Food Sciences, 04(06), 503–508. https://doi.org/10.15414/jmbfs.2015.4.6.503-508Arena, M. P., Caggianiello, G., Russo, P., Albenzio, M., Massa, S., Fiocco, D., Capozzi, V., & Spano, G. (2015). Functional starters for functional yogurt. Foods, 4(1), 15–33. https://doi.org/10.3390/foods4010015Arora, S., Siddiqui, S., & Gehlot, R. (2019). Physicochemical and Bioactive Compounds in Carrot and Beetroot Juice. Asian Journal of Dairy and Food Research, 38(03). https://doi.org/10.18805/ajdfr.dr-1363Ashraf, R., & Shah, N. P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt - A review. International Journal of Food Microbiology, 149(3), 194–208. https://doi.org/10.1016/j.ijfoodmicro.2011.07.008Authority, E. F. S. (2010). Guidance on the risk assessment of genetically modified microorganisms and their food and feed products. EFSA Journal, January, 1–67. https://doi.org/10.2903/j.efsa.20YY.NNNN.AvailableBadarinath, A. V, Rao, K. M., Madhu, C., Chetty, S., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A Review on In-vitro Antioxidant Methods: Comparisions, Correlations and Considerations. International Journal of PharmTech Research, 2(2), 1276–1285Behare, P., Kumar, H., & Mandal, S. (2015). Yogurt: Yogurt Based Products. In Encyclopedia of Food and Health (1st ed., pp. 625–631). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00767-4Bohn, T., Desmarchelier, C., Dragsted, L. O., Nielsen, C. S., Stahl, W., Rühl, R., Keijer, J., & Borel, P. (2017). Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Molecular Nutrition and Food Research, 61(6), 1–37. https://doi.org/10.1002/mnfr.201600685Bosma, E. F., Forster, J., & Nielsen, A. T. (2017). Lactobacilli and pediococci as versatile cell factories – Evaluation of strain properties and genetic tools. Biotechnology Advances, 35(4), 419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002ove, C. G., De Angelis, M., Gatti, M., Calasso, M., Neviani, E., & Gobbetti, M. (2012). Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics, 12(21), 3206–3218. https://doi.org/10.1002/pmic.201200157Bultosa, G. (2015). Functional Foods: Dietary Fibers, Prebiotics, Probiotics, and Synbiotics. In Encyclopedia of Food Grains: Second Edition (2nd ed., Vols. 2–4). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-394437-5.00245-XButel, M. J. (2014). Probiotics, gut microbiota and health. Medecine et Maladies Infectieuses, 44(1), 1–8. https://doi.org/10.1016/j.medmal.2013.10.002Caldeira, L. A., Alves, É. E., Ribeiro, A. de M. F., Rocha Júnior, V. R., Antunes, A. B., dos Reis, A. F., Gomes, J. da C., de Carvalho, M. H. R., & Martinez, R. I. E. (2018). Viability of probiotic bacteria in bioyogurt with the addition of honey from Jataí and Africanized bees. Pesquisa Agropecuaria Brasileira, 53(2), 206–211. https://doi.org/10.1590/S0100-204X2018000200009Chanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic Chemistry, 77, 176–189. https://doi.org/10.1016/j.bioorg.2018.01.006Chung, H. J., Lee, H., Na, G., Jung, H., Kim, D. G., Shin, S. I., Jung, S. E., Choi, I. D., Lee, J. H., Sim, J. H., & Choi, H. K. (2020). Metabolic and lipidomic profiling of vegetable juices fermented with various probiotics. Biomolecules, 10(5), 1–17. https://doi.org/10.3390/biom10050725Corbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1192–1206. https://doi.org/10.1111/1541-4337.12109Cunningham, M., Azcarate-Peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H. D., Hunter, K., Manurung, S., Obis, D., Petrova, M. I., Steinert, R. E., Swanson, K. S., van Sinderen, D., Vulevic, J., & Gibson, G. R. (2021). Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 29(8), 667–685. https://doi.org/10.1016/j.tim.2021.01.003Daneshi, M., Ehsani, M. R., Razavi, S. H., & Labbafi, M. (2013). Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Electronic Journal of Biotechnology, 16(5). https://doi.org/10.2225/vol16-issue5-fulltext-2Datta, S. (2017). Chapter 10 - Sourcing, supply chain, and manufacturing of nutraceutical and functional foods. In Developing New Functional Food and Nutraceutical Products. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802780-6/00010-9De Bellis, P., Sisto, A., & Lavermicocca, P. (2021). Probiotic bacteria and plant-based matrices: An association with improved health-promoting features. Journal of Functional Foods, 87(July), 104821. https://doi.org/10.1016/j.jff.2021.104821de Oliveira, P. M., Leite Júnior, B. R. de C., Martins, E. M. F., Martins, M. L., Vieira, É. N. R., de Barros, F. A. R., Cristianini, M., de Almeida Costa, N., & Ramos, A. M. (2021). Mango and carrot mixed juice: a new matrix for the vehicle of probiotic lactobacilli. Journal of Food Science and Technology, 58(1), 98–109. https://doi.org/10.1007/s13197-020-04518-yDevaki, C. S., & Premavalli, K. S. (2019). Fermented Vegetable Beverages. In Fermented Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815271-3.00008-7do Espírito Santo, A. P., Perego, P., Converti, A., & Oliveira, M. N. (2012). Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Science and Technology, 47(2), 393–399. https://doi.org/10.1016/j.lwt.2012.01.038Do Espírito Santo, Ana Paula, Cartolano, N. S., Silva, T. F., Soares, F. A. S. M., Gioielli, L. A., Perego, P., Converti, A., & Oliveira, M. N. (2012). Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts. International Journal of Food Microbiology, 154(3), 135–144. https://doi.org/10.1016/j.ijfoodmicro.2011.12.025Dubey, N., Mishra, V., & Thakur, D. (2018). Plant-Based Antimicrobial Formulations. In Postharvest Disinfection of Fruits and Vegetables. Elsevier Inc. https://doi.org/10.1016/b978-0-12-812698-1.00011-xEscamilla-Hurtado, M. L., Valdés-Martínez, S. E., Soriano-Santos, J., Gómez-Pliego, R., Verde-Calvo, J. R., Reyes-Dorantes, A., & Tomasini-Campocosio, A. (2005). Effect of culture conditions on production of butter flavor compounds by Pediococcus pentosaceus and Lactobacillus acidophilus in semisolid maize-based cultures. International Journal of Food Microbiology, 105(3), 305–316. https://doi.org/10.1016/j.ijfoodmicro.2005.04.014Esmaeilnejad Moghadam, B., Keivaninahr, F., Nazemi, A., Fouladi, M., Rezaei Mokarram, R., & Zoroufchi Benis, K. (2019). Optimization of conjugated linoleic acid production by Bifidobacterium animalis subsp. Lactis and its application in fermented milk. Lwt, 108(March), 344–352. https://doi.org/10.1016/j.lwt.2019.03.071Fan, L., & Cliff, M. (2017). Carrot juice yogurts: Composition, microbiology, and sensory acceptance. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00012-2Fazilah, N. F., Ariff, A. B., Khayat, M. E., Rios-Solis, L., & Halim, M. (2018a). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48(July), 387–399. https://doi.org/10.1016/j.jff.2018.07.039Figueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318Fijan, S. (2016). Antimicrobial Effect of Probiotics against Common Pathogens. Probiotics and Prebiotics in Human Nutrition and Health. https://doi.org/10.5772/63141Flach, J., Waal, M. B. Van Der, Nieuwboer, M. Van Den, Claassen, E., & Larsen, O. F. A. (2017). The underexposed role of food matrices in probiotic products : Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2017.1334624Florence, A. C. R., Oliveira, R. P. S., Silva, R. C., Soares, F. A. S. M., Gioielli, L. A., & Oliveira, M. N. (2012). Organic milk improves Bifidobacterium lactis counts and bioactive fatty acids contents in fermented milk. LWT - Food Science and Technology, 49(1), 89–95. https://doi.org/10.1016/j.lwt.2012.04.023G. Zaini, R., Brandt, K., R. Clench, M., & L. Le Maitre, C. (2012). Effects of Bioactive Compounds from Carrots (Daucus carota L.), Polyacetylenes, Beta-Carotene and Lutein on Human Lymphoid Leukaemia Cells. Anti-Cancer Agents in Medicinal Chemistry, 12(6), 640–652. https://doi.org/10.2174/187152012800617704Galvis-Sánchez, A. C., & Vinholes, J. (2017). Fruit Juices (Apple, Peach, and Pear) and Changes in the Carotenoid Profile. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 59–74). https://doi.org/10.1016/B978-0-12-802230-6.00005-9Gardana, C., Del, C., Quicazán, M. C., Ruby, A., & Simonetti, P. (2018). Journal of Food Composition and Analysis Nutrients, phytochemicals and botanical origin of commercial bee pollen from di fferent geographical areas. Journal of Food Composition and Analysis, 73(June), 29–38. https://doi.org/10.1016/j.jfca.2018.07.009Gasaly, N., Riveros, K., & Gotteland, M. (2020). Fitoquímicos: una nueva clase de prebióticos. Revista Chilena de Nutrición, 47(2), 317–327. https://doi.org/10.4067/s0717-75182020000200317Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017a). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75Gies, M., Descalzo, A. M., Servent, A., & Dhuique-Mayer, C. (2019). Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. Lwt, 111(February), 105–110. https://doi.org/10.1016/j.lwt.2019.04.103Gil-Rodríguez, A. M., & Beresford, T. P. (2019). Lipase inhibitory activity of skim milk fermented with different strains of lactic acid bacteria. Journal of Functional Foods, 60(May), 103413. https://doi.org/10.1016/j.jff.2019.06.015Govender, M., Choonara, Y. E., Kumar, P., Du Toit, L. C., Van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. Non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, 15(1), 29–43. https://doi.org/10.1208/s12249-013-0027-1Guneser, O., Isleten Hosoglu, M., Aydeniz Guneser, B., & Karagul Yuceer, Y. (2019). Engineering of Milk-Based Beverages: Current Status, Developments, and Consumer Trends. In Milk-Based Beverages (Vol. 2015). Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00001-3Gutiérrez-Cortés, C., Suarez, H., Buitrago, G., Nero, L. A., & Todorov, S. D. (2018). Characterization of bacteriocins produced by strains of Pediococcus pentosaceus isolated from Minas cheese. Annals of Microbiology, 68(6), 383–398. https://doi.org/10.1007/s13213-018-1345-zHagi, T., Kobayashi, M., & Nomura, M. (2014). Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiology Letters, 350(2), 223–230. https://doi.org/10.1111/1574-6968.12341Han, D., Yan, Q., Liu, J., Jiang, Z., & Yang, S. (2021). Transcriptomic Analysis of Pediococcus pentosaceus Reveals Carbohydrate Metabolic Dynamics Under Lactic Acid Stress. Frontiers in Microbiology, 12(September), 1–12. https://doi.org/10.3389/fmicb.2021.736411Hashemi Gahruie, H., Eskandari, M. H., Mesbahi, G., & Hanifpour, M. A. (2015). Scientific and technical aspects of yogurt fortification: A review. Food Science and Human Wellness, 4(1), 1–8. https://doi.org/10.1016/j.fshw.2015.03.002He, M., Tan, C. P., Liu, Y., & Xu, Y. J. (2021). Foodomics: a new perspective on gut probiotics nutrition and health research. Current Opinion in Food Science, 41, 146–151. https://doi.org/10.1016/j.cofs.2021.04.004Hickson, M. (2014). Probiotics and the gastrointestinal microbiota. Advanced Nutrition and Dietetics in Gastroenterology, 81–86. https://doi.org/10.1002/9781118872796.ch2.3Hill, D., Ross, R. P., Arendt, E., & Stanton, C. (2017). Microbiology of yogurt and bio-yogurts containing probiotics and prebiotics. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00004-3Huebner, J., Wehling, R. L., & Hutkins, R. W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17(7), 770–775. https://doi.org/10.1016/j.idairyj.2006.10.006Huppertz, T. (2016). Heat stability of milk. Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects: Fourth Edition, 57(2), 179–196. https://doi.org/10.1007/978-1-4939-2800-2_7Januário, J. G. B., da Silva, I. C. F., de Oliveira, A. S., de Oliveira, J. F., Dionísio, J. N., Klososki, S. J., & Pimentel, T. C. (2017). Probiotic yoghurt flavored with organic beet with carrot, cassava, sweet potato or corn juice. International Food Research Journal, 24(1), 359–366. http://www.ifrj.upm.edu.myJia, R., Chen, H., Chen, H., & Ding, W. (2016). Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt. Journal of Dairy Science, 99(1), 221–227. https://doi.org/10.3168/jds.2015-10114Jiang, S., Cai, L., Lv, L., & Li, L. (2021). Pediococcus pentosaceus, a future additive or probiotic candidate. Microbial Cell Factories, 20(1), 1–14. https://doi.org/10.1186/s12934-021-01537-yJones, R. M. (2016). The Use of Lactobacillus casei and Lactobacillus paracasei in Clinical Trials for the Improvement of Human Health. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804024-9.00009-4Kandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63. https://doi.org/10.1016/j.cofs.2015.11.012Karaman, S., & Ozcan, T. (2021). Determination of gelation properties and bio-therapeutic potential of black carrot fibre-enriched functional yoghurt produced using pectin and gum arabic as prebiotic. International Journal of Dairy Technology, 1–13. https://doi.org/10.1111/1471-0307.12776Kasapoğlu, K. N., Daşkaya-Dikmen, C., Yavuz-Düzgün, M., Karaça, A. C., & Özçelik, B. (2019). Enrichment of Beverages With Health Beneficial Ingredients. In Value-Added Ingredients and Enrichments of Beverages. https://doi.org/10.1016/b978-0-12-816687-1.00003-5Kaškonienė, V., Adaškevičiūtė, V., Kaškonas, P., Mickienė, R., & Maruška, A. (2020). Antimicrobial and antioxidant activities of natural and fermented bee pollen. Food Bioscience, 34(December 2018). https://doi.org/10.1016/j.fbio.2020.100532Khan, R. S., Grigor, J., Winger, R., & Win, A. (2013). Functional food product development - Opportunities and challenges for food manufacturers. Trends in Food Science and Technology, 30(1), 27–37. https://doi.org/10.1016/j.tifs.2012.11.004Kolaček, S., Hojsak, I., Berni Canani, R., Guarino, A., Indrio, F., Orel, R., Pot, B., Shamir, R., Szajewska, H., Vandenplas, Y., Van Goudoever, J., & Weizman, Z. (2017). Commercial Probiotic Products: A Call for Improved Quality Control. A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. Journal of Pediatric Gastroenterology and Nutrition, 65(1), 117–124. https://doi.org/10.1097/MPG.0000000000001603Koutinas, A. A. (2017). Fermented Dairy Products. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00001-7Kun, S., Rezessy-Szabó, J. M., Nguyen, Q. D., & Hoschke, Á. (2008). Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry, 43(8), 816–821. https://doi.org/10.1016/j.procbio.2008.03.008Lillo-Pérez, S., Guerra-Valle, M., Orellana-Palma, P., & Petzold, G. (2021). Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. Lwt, 151(July). https://doi.org/10.1016/j.lwt.2021.112106Lu, M., & Wang, N. S. (2016). Spoilage of Milk and Dairy Products. In The Microbiological Quality of Food: Foodborne Spoilers. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100502-6.00010-8Luciano, W. A., Matte, T. C., Portela, I. A., de Medeiros, L. L., dos Santos Lima, M., Maciel, J. F., de Souza, E. L., Garcia, E. F., & Magnani, M. (2018). Effects of Lactobacillus acidophilus LA-3 on physicochemical and sensory parameters of açaí and mango based smoothies and its survival following simulated gastrointestinal conditions. Food Research International, 114, 159–168. https://doi.org/10.1016/j.foodres.2018.08.005Machado, T. A. D. G., de Oliveira, M. E. G., Campos, M. I. F., de Assis, P. O. A., de Souza, E. L., Madruga, M. S., Pacheco, M. T. B., Pintado, M. M. E., & Queiroga, R. de C. R. do E. (2017). Impact of honey on quality characteristics of goat yogurt containing probiotic Lactobacillus acidophilus. LWT - Food Science and Technology, 80, 221–229. https://doi.org/10.1016/j.lwt.2017.02.013Malakar, S., Paul, S. K., & Pou, K. R. J. (2020). Biotechnological Interventions in Beverage Production. In Biotechnological Progress and Beverage Consumption. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816678-9.00001-1Mančušková, T., Medved’ová, A., & Valík, Ľ. (2015). Viability of Lactobacillus acidophilus NCFM Howaru Dophilus during storage at refrigeration temperatures. Acta Chimica Slovaca, 8(1), 17–21. https://doi.org/10.1515/acs-2015-0004Mapelli-Brahm, P., Barba, F. J., Remize, F., Garcia, C., Fessard, A., Mousavi Khaneghah, A., Sant’Ana, A. S., Lorenzo, J. M., Montesano, D., & Meléndez-Martínez, A. J. (2020). The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science and Technology, 99(December 2019), 389–401. https://doi.org/10.1016/j.tifs.2020.03.013Marsh, A. J., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science and Technology, 38(2), 113–124. https://doi.org/10.1016/j.tifs.2014.05.002Mehriz Abou El Samh, M., Abou Dawood Sherein, A., & Hebeishy Essam, H. (2013). Properties and antioxident activity of propiotic yoghurt flavored with black carrot, pumpkin and strawberry. International Journal of Dairy Science, 8(2), 48–57. https://doi.org/10.3923/ijds.2013.48.57Mgaya-Kilima, B., Remberg, S. F., Chove, B. E., & Wicklund, T. (2015). Physiochemical and antioxidant properties of roselle-mango juice blends; Effects of packaging material, storage temperature and time. Food Science and Nutrition, 3(2), 100–109. https://doi.org/10.1002/fsn3.174Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as Potential Antioxidants: A Systematic Review. Journal of Agricultural and Food Chemistry, 63(14), 3615–3626. https://doi.org/10.1021/jf506326tMohanty, D., Misra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008Morifuji, M., Ichikawa, S., Kitade, M., Fukasawa, T., Asami, Y., Manabe, Y., & Sugawara, T. (2020). Exopolysaccharides from milk fermented by lactic acid bacteria enhance dietary carotenoid bioavailability in humans in a randomized crossover trial and in rats. American Journal of Clinical Nutrition, 111(4), 903–914. https://doi.org/10.1093/ajcn/nqaa020Mousavi, M., Heshmati, A., Garmakhany, A. D., Vahidinia, A., & Taheri, M. (2019). Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. Lwt, 102(September 2018), 80–88. https://doi.org/10.1016/j.lwt.2018.12.023Muhialdin, B. J., Zawawi, N., Abdull Razis, A. F., Bakar, J., & Zarei, M. (2021). Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control, 127(March), 108140. https://doi.org/10.1016/j.foodcont.2021.108140Oliveira, R. P. de S., Perego, P., de Oliveira, M. N., & Converti, A. (2012). Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect. Food Research International, 48(1), 21–27. https://doi.org/10.1016/j.foodres.2012.02.012Olson, D., & Aryana, K. J. (2017). Omega-3 polyunsaturated fatty acids added to yogurt. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00007-9Pandey, P., Grover, K., Dhillon, T. S., Kaur, A., & Javed, M. (2021). Evaluation of polyphenols enriched dairy products developed by incorporating black carrot (Daucus carota L.) concentrate. Heliyon, 7(5), e06880. https://doi.org/10.1016/j.heliyon.2021.e06880Panse, M. L., & Phalke, S. D. (2019). Omega-3 Beverages. In Value-Added Ingredients and Enrichments of Beverages (Issue 2005). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816687-1.00011-4Pathania, S., & Kaur, N. (2022). Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioactive Carbohydrates and Dietary Fibre, 27(November 2021), 100295. https://doi.org/10.1016/j.bcdf.2021.100295Pereira, A. P., Oliveira, J. M., Mendes-Ferreira, A., Estevinho, L. M., & Mendes-Faia, A. (2016). Mead and Other Fermented Beverages. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63666-9.00014-5Perricone, M., Corbo, M. R., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2014). Viability of Lactobacillus reuteri in fruit juices. Journal of Functional Foods, 10, 421–426. https://doi.org/10.1016/j.jff.2014.07.020Pokusaeva, K., Fitzgerald, G. F., & Van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 6(3), 285–306. https://doi.org/10.1007/s12263-010-0206-6Pop, C. R., Topan, C., Rotar, A. M., Semeniuc, C., & Salanţă, L. (2015). Evaluation the Sensory and Probiotics Properties of the Yogurt Supplemented with Carrot Juice. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 72(2), 5–6. https://doi.org/10.15835/buasvmcn-fst:11533Porto, M. C. W., Kuniyoshi, T. M., Azevedo, P. O. S., Vitolo, M., & Oliveira, R. P. S. (2017). Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnology Advances, 35(3), 361–374. https://doi.org/10.1016/j.biotechadv.2017.03.004Prabhurajeshwar, C., & Chandrakanth, R. K. (2017). Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomedical Journal, 40(5), 270–283. https://doi.org/10.1016/j.bj.2017.06.008Pushpadass, H. A., Emerald, F. M. E., Balasubramanyam, B. V., & Patel, S. S. (2019). Rheological Properties of Milk-Based Beverages. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00011-6Quigley, E. M. M. (2019). Prebiotics and Probiotics in Digestive Health. Clinical Gastroenterology and Hepatology, 17(2), 333–344. https://doi.org/10.1016/j.cgh.2018.09.028Rabiu, B., Jay, A., Gibson, G., & Rastall, R. A. (2001). Synthesis and fermentation properties of novel galacto-oligosaccharides by beta-galactosidases from Bifidobacterium species. Applied and Environmental Microbiology, 67, 2526–2530. https://doi.org/10.1017/S002211207300042XRaccach, M. (2014). Pediococcus. Encyclopedia of Food Microbiology: Second Edition, 3, 1–5. https://doi.org/10.1016/B978-0-12-384730-0.00247-0Riaz Rajoka, M. S., Shi, J., Mehwish, H. M., Zhu, J., Li, Q., Shao, D., Huang, Q., & Yang, H. (2017). Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 6(3), 121–130. https://doi.org/10.1016/j.fshw.2017.07.003Salehi, F. (2021). Rheological and physicochemical properties of vegetable juices and concentrates: A review. Journal of Food Processing and Preservation, 45(4), 1–13. https://doi.org/10.1111/jfpp.15326Samoggia, A. (2016). Healthy Food: Determinants of Price Knowledge of Functional Dairy Products. Journal of Food Products Marketing, 22(8), 905–929. https://doi.org/10.1080/10454446.2015.1072867Šeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., Tomić, A., Čanadanović-Brunet, J., Vulić, J., Šaponjac, V. T., & Ćetković, G. (2021). New concept of fortified yogurt formulation with encapsulated carrot waste extract. Lwt, 138(December 2020). https://doi.org/10.1016/j.lwt.2020.110732Sharma, K. D., Karki, S., Thakur, N. S., & Attri, S. (2012). Chemical composition, functional properties and processing of carrot-A review. Journal of Food Science and Technology, 49(1), 22–32. https://doi.org/10.1007/s13197-011-0310-7Shewale, R. N., Sawale, P. D., Khedkar, C. D., & Singh, A. (2014). Selection criteria for probiotics: A review Department of Dairy Microbiology College of Dairy Technology , Pusad , India ; International Journal of Probiotics and Prebiotics, 9(1), 2014.Sims, I. M., Ryan, J. L. J., & Kim, S. H. (2014). Invitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp. Anaerobe, 25, 11–17. https://doi.org/10.1016/j.anaerobe.2013.11.001Sivieri, K., Freire, F. C., Lopes, N. P., Shiraishi, C. T. D., Pires, A. C. M. S., Lima, A. C. D., Zavarizi, A. C. M., Sgarbosa, L., & Bianchi, F. (2017). Synbiotic yogurts and the elderly. In Yogurt in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805134-4.00014-6Sogi, D. S., Siddiq, M., Greiby, I., & Dolan, K. D. (2013). Total phenolics, antioxidant activity, and functional properties of “Tommy Atkins” mango peel and kernel as affected by drying methods. Food Chemistry, 141(3), 2649–2655. https://doi.org/10.1016/j.foodchem.2013.05.053Soria, A. C., Sanz, M. L., & Villamiel, M. (2009). Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chemistry, 114(2), 758–762. https://doi.org/10.1016/j.foodchem.2008.10.060Sudheer Kumar, Y., Varakumar, S., & Reddy, O. V. S. (2012). Evaluation of antioxidant and sensory properties of mango (Mangifera indica L.) wine. CYTA - Journal of Food, 10(1), 12–20. https://doi.org/10.1080/19476337.2010.530693Sudibyo, A. (2018). Designing Functional Beverages Process : Highlighting Lessons Learned From Research and Development. Jurnal Industri Hasil Perkebunan, 13(1), 19–36. https://doi.org/10.33104/jihp.v13i1.3698Tan, J., McKenzie, C., Vuillermin, P. J., Goverse, G., Vinuesa, C. G., Mebius, R. E., Macia, L., & Mackay, C. R. (2016). Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Reports, 15(12), 2809–2824. https://doi.org/10.1016/j.celrep.2016.05.047Tarrega, A., Marcano, J., & Fiszman, S. (2016). Yogurt viscosity and fruit pieces affect satiating capacity expectations. Food Research International, 89, 574–581. https://doi.org/10.1016/j.foodres.2016.09.011Tesfaye, W., Suarez-Lepe, J. A., Loira, I., Palomero, F., & Morata, A. (2019). Dairy and Nondairy-Based Beverages as a Vehicle for Probiotics, Prebiotics, and Symbiotics: Alternatives to Health Versus Disease Binomial Approach Through Food. In Milk-Based Beverages. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815504-2.00014-1Theis, S. (2018). Authorised EU health claim for chicory inulin. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims (Vol. 3). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100922-2.00010-3Turkmen, N., Akal, C., & Özer, B. (2019). Probiotic dairy-based beverages: A review. Journal of Functional Foods, 53(August 2018), 62–75. https://doi.org/10.1016/j.jff.2018.12.004Vénica, C. I., Spotti, M. J., Pavón, Y. L., Molli, J. S., & Perotti, M. C. (2020). Influence of carrot fibre powder addition on rheological, microstructure and sensory characteristics of stirred-type yogurt. International Journal of Food Science and Technology, 55(5), 1916–1923. https://doi.org/10.1111/ijfs.14415Vidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5(1), 235–243. https://doi.org/10.1016/j.jff.2012.10.012Vinderola, G., Burns, P., & Reinheimer, J. (2017). Probiotics in Nondairy Products. In Vegetarian and Plant-Based Diets in Health and Disease Prevention (Issue 3). Elsevier. https://doi.org/10.1016/B978-0-12-803968-7.00044-7Walker, C., & Thomas, M. G. (2019). The evolution of lactose digestion. In Lactose. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811720-0.00001-5Wallace, T. C., & Giusti, M. M. (2008). Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. Journal of Food Science, 73(4). https://doi.org/10.1111/j.1750-3841.2008.00706.xYu, S., Zhou, C., Zhang, T., Jiang, B., & Mu, W. (2015). Short communication: 3-Phenyllactic acid production in milk by Pediococcus pentosaceus SK25 during laboratory fermentation process. Journal of Dairy Science, 98(2), 813–817. https://doi.org/10.3168/jds.2014-8645Yusuf, E., Wojdyło, A., Oszmiański, J., & Nowicka, P. (2021). Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods, 10(4). https://doi.org/10.3390/foods10040808Zuluaga-Domínguez, C. M., Nieto-Veloza, A., & Quicazán-de-Cuenca, M. (2017). Classification of Colombian honeys by electronic nose and physical-chemical parameters, using neural networks and genetic algorithms. Journal of Apicultural Research, 57(1), 145–152. https://doi.org/10.1080/00218839.2017.1339521Convocatoria nacional para el fomento de alianzas interdisciplinarias que articulen investigación, creación, extensión y formación en la Universidad Nacional de Colombia 2019-2021Dirección de Investigación, Sede Bogotá–Universidad Nacional de ColombiaEstudiantesGrupos comunitariosInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83538/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1022398004.2022.pdf1022398004.2022.pdfTesis de Maestria en Ciencia y Tecnología de Alimentosapplication/pdf4999770https://repositorio.unal.edu.co/bitstream/unal/83538/2/1022398004.2022.pdf7ebba7ed8b11b503060a5fb54e7660d4MD52THUMBNAIL1022398004.2022.pdf.jpg1022398004.2022.pdf.jpgGenerated Thumbnailimage/jpeg4721https://repositorio.unal.edu.co/bitstream/unal/83538/3/1022398004.2022.pdf.jpg42637642b0c627be03641fc21c5cdf3aMD53unal/83538oai:repositorio.unal.edu.co:unal/835382023-08-16 23:04:28.932Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=