Bacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomate
ilustraciones, fotografías, gráficas, tablas
- Autores:
-
Vargas Baquero, Christian David
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/78371
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Bacterias entomógenas
Enfermedades de las plantas
Fusarium oxysporum
Ralstonia solanacearum
fusariosis del tomate
entomogenous bacteria
Fusarium oxysporum
Ralstonia solanacearum
Fusarium wilt of tomato
Ralstonia solanacearum
Fusarium oxysporum
Bacterias acido lácticas
Coinfección
Control biológico
Fusarium oxysporum
Fusarium oxysporum f. sp. lycopersici
Ralstonia solanacearum
Biological control
Lactic acid bacteria
Coinfection
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_b3d8e63fc89a8cfcd2a846a974fa5731 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/78371 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Bacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomate |
title |
Bacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomate |
spellingShingle |
Bacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomate 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales Bacterias entomógenas Enfermedades de las plantas Fusarium oxysporum Ralstonia solanacearum fusariosis del tomate entomogenous bacteria Fusarium oxysporum Ralstonia solanacearum Fusarium wilt of tomato Ralstonia solanacearum Fusarium oxysporum Bacterias acido lácticas Coinfección Control biológico Fusarium oxysporum Fusarium oxysporum f. sp. lycopersici Ralstonia solanacearum Biological control Lactic acid bacteria Coinfection |
title_short |
Bacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomate |
title_full |
Bacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomate |
title_fullStr |
Bacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomate |
title_full_unstemmed |
Bacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomate |
title_sort |
Bacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomate |
dc.creator.fl_str_mv |
Vargas Baquero, Christian David |
dc.contributor.advisor.spa.fl_str_mv |
Gonzalez Almario, Carolina Gonzalez Almario, Adriana |
dc.contributor.author.spa.fl_str_mv |
Vargas Baquero, Christian David |
dc.contributor.corporatename.spa.fl_str_mv |
Agrosavia |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales |
topic |
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales Bacterias entomógenas Enfermedades de las plantas Fusarium oxysporum Ralstonia solanacearum fusariosis del tomate entomogenous bacteria Fusarium oxysporum Ralstonia solanacearum Fusarium wilt of tomato Ralstonia solanacearum Fusarium oxysporum Bacterias acido lácticas Coinfección Control biológico Fusarium oxysporum Fusarium oxysporum f. sp. lycopersici Ralstonia solanacearum Biological control Lactic acid bacteria Coinfection |
dc.subject.agrovoc.spa.fl_str_mv |
Bacterias entomógenas Enfermedades de las plantas Fusarium oxysporum Ralstonia solanacearum fusariosis del tomate |
dc.subject.agrovoc.eng.fl_str_mv |
entomogenous bacteria Fusarium oxysporum Ralstonia solanacearum Fusarium wilt of tomato |
dc.subject.proposal.spa.fl_str_mv |
Ralstonia solanacearum Fusarium oxysporum Bacterias acido lácticas Coinfección Control biológico |
dc.subject.proposal.eng.fl_str_mv |
Fusarium oxysporum Fusarium oxysporum f. sp. lycopersici Ralstonia solanacearum Biological control Lactic acid bacteria Coinfection |
description |
ilustraciones, fotografías, gráficas, tablas |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-09-03T16:22:14Z |
dc.date.available.spa.fl_str_mv |
2020-09-03T16:22:14Z |
dc.date.issued.spa.fl_str_mv |
2020-03-14 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/78371 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/78371 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M (2019) Streptomyces Strains Induce Resistance to Fusarium oxysporum f. sp. lycopersici Race 3 in Tomato Through Different Molecular Mechanisms 10 doi:10.3389/fmicb.2019.01505 Abbott WS (1925) A method of computing the effectiveness of an insecticide Economic Entomology 18:265-267 Abdullah AS, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A (2017) Host-Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants Frontiers in plant science 8:1806-1806 doi:10.3389/fpls.2017.01806 Agrios GN (2005) Plant pathology. Academic press Ahn K, Lee K-B, Kim Y-J, Koo Y-M (2014) Quantitative analysis of the three main genera in effective microorganisms using qPCR Korean Journal of Chemical Engineering 31:849-854 doi:10.1007/s11814-013-0274-6 Aimé S, Alabouvette C, Steinberg C, Olivain C (2013) The Endophytic Strain Fusarium oxysporum Fo47: A Good Candidate for Priming the Defense Responses in Tomato Roots Molecular Plant-Microbe Interactions 26:918-926 doi:10.1094/MPMI-12-12-0290-R Allen C, Prior P, Hayward AC (2005) Bacterial wilt disease and the Ralstonia solanacearum species complex. American Phytopathological Society (APS Press), St. Paul Araújo Pena MA, Noda H, Machado FM, Paiva MSDS (2010) Adaptabilidade e estabilidade de genótipos de tomateiro sob cultivo em solos de terra firme e várzea da Amazônia infestados por Ralstonia solanacearum Bragantia 69:27-37 Ariyapitipun T, Mustapha A, Clarke AD (1999) Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions Journal of food protection 62:913-920 Asha B, Nayaka Chandr S, Shankar Udaya A, Srinivas C, Niranjana S (2011) Selection of effective bio- antagonistic bacteria for biological control of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici Bioscan 6:239-244 Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field Journal of Experimental Botany 63:3523-3543 doi:10.1093/jxb/ers100 Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, Wright AV, Ouwehand A (eds) Lactic acid bacteria; Microbiology and functional aspects, vol 139. 3rd edition edn. Taylor & Francis, Madison Avenue, New York, USA., pp 1-66 Bannihatti R, Suryawanshi A (2019) Integrated management of bacterial wilt of tomato caused by Ralstonia solanacearum International Journal of Communication Systems 7:1599-1603 Barrett LG, Kniskern JM, Bodenhausen N, Zhang W, Bergelson J (2009) Continua of specificity and virulence in plant host–pathogen interactions: causes and consequences New Phytologist 183:513-529 doi:10.1111/j.1469-8137.2009.02927.x Bartholomew JW, Mittwer T (1952) The Gram stain Bacteriological reviews 16:1-29 Bauer T et al. (2018) First Insights Into Within Host Translocation of the Bacillus cereus Toxin Cereulide Using a Porcine Model Frontiers in microbiology 9:2652-2652 doi:10.3389/fmicb.2018.02652 Bertoldo C, Gilardi G, Spadaro D, Gullino ML, Garibaldi A (2015) Genetic diversity and virulence of Italian strains of Fusarium oxysporum isolated from Eustoma grandiflorum European Journal of Plant Pathology 141:83-97 doi:10.1007/s10658-014-0526-2 Bhuvanendra KH, Udaya SA, Nayaka C, Kini SR, Shetty HS, Prakash H (2010) Biochemical characterization of Fusarium oxysporum f. sp. cubense isolates from India African Journal of Biotechnology 9 Bidellaoui B, Segarra G, Hakkou A, Isabel Trillas M (2019) Beneficial effects of Rhizophagus irregularis and Trichoderma asperellum strain T34 on growth and fusarium wilt in tomato plants Journal of Plant Pathology 101:121-127 doi:10.1007/s42161-018-0159-y Blainski JML, da Rocha Neto AC, Luiz C, Rossi MJ, Di Piero RM (2017) Lactobacillus plantarum exopolysaccharides induce resistance against tomato bacterial spot Journal of Agricultural Science 9:162 Blank SC (2014) The Economics of American Agriculture: Evolution and Global Development: Evolution and Global Development. Borel B (2017) When the pesticides run out Nature 543:302-304 Bozzini E (2017) Pesticide Policy and Politics in the European Union: regulatory assessment, implementation and enforcement. Brilli F et al. (2019) Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress Journal of Plant Physiology 232:82-93 doi:10.1016/j.jplph.2018.10.029 Burdon J, Laine A (2019) Coevolutionary Dynamics in a Metapopulation Context. In: Burdon JJ (ed) Evolutionary Dynamics of Plant-Pathogen Interactions. Cambridge University Press, Cambridge, pp 168-218. doi:10.1017/9781108625517.007 Burdon JJ, Chilvers GA (1982) Host Density as a Factor in Plant Disease Ecology Annual Review of Phytopathology 20:143-166 doi:10.1146/annurev.py.20.090182.001043 Caldwell D, Kim B-S, Iyer-Pascuzzi AS (2017) Ralstonia solanacearum Differentially Colonizes Roots of Resistant and Susceptible Tomato Plants Phytopathology 107:528-536 doi:10.1094/PHYTO-09-16-0353-R Carmona Gutiérrez SL (2019) Identificación de un aislamiento de Fusarium oxysporum f. sp. lycopersici y respuesta fisiológica en tomate durante la infección frente a dos elicitores fúngicos. Universidad Nacional de Colombia Castilho NPA, Colombo M, Oliveira LLd, Todorov SD, Nero LA (2019) Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes BMC Microbiology 19:63 doi:10.1186/s12866-019-1436-4 Cha J-Y et al. (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil The ISME Journal 10:119-129 doi:10.1038/ismej.2015.95 Chanclud E, Morel J-B (2016) Plant hormones: a fungal point of view Molecular Plant Pathology 17:1289-1297 doi:10.1111/mpp.12393 Chang IS, Kim BH, Shin PK (1997) Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation Applied and Environmental Microbiology 63:1 Chant SR, Gbaja IS (1986) Effect of Co-infection by Fusarium oxysporum and Cowpea Mosaic Virus on the Growth and Colonization of Cowpea Seedlings (Vigna unguiculata [L.] Walp.) Journal of Phytopathology 116:81-87 doi:10.1111/j.1439-0434.1986.tb00897.x Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants Plant Signal Behav 4:493-496 doi:10.4161/psb.4.6.8392 Chiang KS, Liu HI, Tsai JW, Tsai JR, Bock CH (2017) A discussion on disease severity index values. Part II: using the disease severity index for null hypothesis testing Annals of Applied Biology 171:490-505 doi:10.1111/aab.12396 Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant–pathogen interactions Trends in Plant Science 7:210-216 doi:10.1016/S1360-1385(02)02244-6 Corsetti A, Gobbetti M, Rossi J, Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1 Applied microbiology and biotechnology 50:253-256 Cotes AM (2018) Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 vol 1. Agrosavia, Bogota Colombia Curutiu C, Lazar V, Chifiriuc MC (2017) 10 - Pesticides and antimicrobial resistance: from environmental compartments to animal and human infections. In: Grumezescu AM (ed) New Pesticides and Soil Sensors. Academic Press, pp 373-392. doi:10.1016/B978-0-12-804299-1.00011-4 a Silva MP, Tylka GL, Munkvold GP (2016) Seed Treatment Effects on Maize Seedlings Coinfected with Fusarium spp. and Pratylenchus penetrans American Phytopathological Society 100:431-437 doi:10.1094/pdis-03-15-0364-re De Vleesschauwer D, Höfte M (2009) Rhizobacteria-Induced Systemic Resistance Advances in Botanical Research 51:223-281 doi:10.1016/S0065-2296(09)51006-3 Deberdt P, Quénéhervé P, Darrasse A, Prior P (1999) Increased susceptibility to bacterial wilt in tomatoes by nematode galling and the role of Mi gene in resistance to nematode and bacterial wilt Plant Pathology 48:408-414 Deslandes L, Genin S (2014) Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms Current Opinion in Plant Biology 20:110-117 doi:10.1016/j.pbi.2014.05.002 Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus Molecular Plant Pathology 4:315-325 doi:10.1046/j.1364-3703.2003.00180.x Di X, Gomila J, Takken FLW (2017) Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum Molecular Plant Pathology 18:1024-1035 doi:10.1111/mpp.12559 Diniz I et al. (2017) A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae PLOS ONE 12:e0178159 doi:10.1371/journal.pone.0178159 Donley N (2019) The USA lags behind other agricultural nations in banning harmful pesticides Environmental Health 18:44 doi:10.1186/s12940-019-0488-0 Dromph KM (2001) Dispersal of entomopathogenic fungi by collembolans Soil Biology and Biochemistry 33:2047-2051 doi:10.1016/S0038-0717(01)00130-4 El-Mabrok A, Hassan Z, Mokhtar A, Hussain K, Kahar F (2012) Screening of Lactic Acid Bacteria as Biocontrol Against (Collectotrichum capsici) on Chilli Bangi Research Journal of Applied Sciences 7:446-473 Elanchezhiyan K, Keerthana U, Nagendran K, Prabhukarthikeyan SR, Prabakar K, Raguchander T, Karthikeyan G (2018) Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici Physiological and Molecular Plant Pathology 103:92-101 doi:10.1016/j.pmpp.2018.05.008 Elmer WH (2002) Influence of Inoculum Density of Fusarium oxysporum f. sp. cyclaminis and Sodium Chloride on Cyclamen and the Development of Fusarium Wilt Plant Disease 86:389-393 doi:10.1094/PDIS.2002.86.4.389 Elphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Piror P. , Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS press, Minnesota USA, pp 9-28 Elphinstone JG, Hennessy J, Wilson JK, Stead DE (1996) Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts EPPO Bulletin 26:663-678 doi:10.1111/j.1365-2338.1996.tb01511.x Elshahawy IE, Saied NM, Abd-El-Kareem F, Morsy AA (2018) Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora Journal of Plant Pathology 100:493-503 doi:10.1007/s42161-018-0113-z FAO (2019) FAOSTAT, Food and agriculture data. http://www.fao.org/faostat/en/#data. Fegan M, Prior P (2005) How complex is the Ralstonia solanacearum species complex? . In: Allen C, Prior P, Hayward A (eds) Bacterial Wilt: The Disease and the Ralstonia solanacearum Species Complex. American Phytopathological Society, St. Paul, Minnesota, pp 449-461 Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR Biotechnology Letters 28:1601-1613 doi:10.1007/s10529-006-9127-2 Fox J et al. (2012) Package ‘car’ Vienna: R Foundation for Statistical Computing Gajbhiye MH, Kapadnis BP (2016) Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants Biocontrol Science and Technology 26:1451-1470 doi:10.1080/09583157.2016.1213793 García Valderrama DS (2018) Control del marchitamiento vascular de la uchuva basado en mezclas de microorganismos rizosféricos provenientes de suelos potencialmente supresivos. Universidad Nacional de Colombia Gbaja IS, Chant SR (1985) The Effects of Co-Infection by Sunn-Hemp Mosaic Virus (SHMV) and Fusarium oxysporum on the Growth of French Bean Journal of Phytopathology 113:252-259 doi:10.1111/j.1439-0434.1985.tb00083.x Gfeller A, Dubugnon L, Liechti R, Farmer EE (2010) Jasmonate Biochemical Pathway Science Signaling 3:cm3 doi:10.1126/scisignal.3109cm3 Gog JR, Grenfell BT (2002) Dynamics and selection of many-strain pathogens Proceedings of the National Academy of Sciences 99:17209 doi:10.1073/pnas.252512799 Gómez Marroquín MR (2019) Evaluación de sustancias bioactivas como alternativa para el manejo de la marchitez vascular causada por Fusarium oxysporum f. sp. lycopersici. Universidad Nacional de Colombia González A, Plener L, Restrepo S, Boucher C, Genin S (2011) Detection and functional characterization of a large genomic deletion resulting in decreased pathogenicity in Ralstonia solanacearum race 3 biovar 2 strains Environmental Microbiology 13:3172-3185 doi:10.1111/j.1462-2920.2011.02636.x Grimault V, Prior P (1993) Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum Plant Pathology 42:589-594 doi:10.1111/j.1365-3059.1993.tb01539.x Hamed HA, Moustafa YA, Abdel-Aziz SM (2011) In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant Life Science Journal 8:462-468 Hammerschmidt R (2009) Systemic Acquired Resistance. In: Loon LCV (ed) Advances in Botanical Research, vol 51. Academic Press, pp 173-222. doi:10.1016/S0065-2296(09)51005-1 Helander IM, von Wright A, Mattila-Sandholm TM (1997) Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria Trends in Food Science & Technology 8:146-150 doi:10.1016/S0924-2244(97)01030-3 Hoffman MD, Zucker LI, Brown PJB, Kysela DT, Brun YV, Jacobson SC (2015) Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells Analytical Chemistry 87:12032-12039 doi:10.1021/acs.analchem.5b02087 Huang Q, Allen C (2000) Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants Physiological and Molecular Plant Pathology 57:77-83 doi:10.1006/pmpp.2000.0283 Jangir M, Pathak R, Sharma S, Sharma S (2018b) Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici Biological Control 123:60-70 doi:10.1016/j.biocontrol.2018.04.018 Jiang C-J et al. (2010) Abscisic Acid Interacts Antagonistically with Salicylic Acid Signaling Pathway in Rice–Magnaporthe grisea Interaction Molecular Plant-Microbe Interactions 23:791-798 doi:10.1094/MPMI-23-6-0791 Kalpage M, De Costa D (2015) Isolation of bacteriophages and determination of their efficiency in controlling Ralstonia solanacearum causing bacterial wilt of tomato Tropical Agricultural Research 26 Kanugala S et al. (2019) Chumacin-1 and Chumacin-2 from Pseudomonas aeruginosa strain CGK-KS-1 as novel quorum sensing signaling inhibitors for biocontrol of bacterial blight of rice Microbiological Research 228:126301 doi:10.1016/j.micres.2019.126301 Laitila A, Alakomi HL, Raaska L, Mattila-Sandholm T, Haikara A (2002) Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley Journal of Applied Microbiology 93:566-576 doi:10.1046/j.1365-2672.2002.01731.x Lamichhane JR, Dachbrodt-Saaydeh S, Kudsk P, Messéan A (2016) Toward a Reduced Reliance on Conventional Pesticides in European Agriculture Plant Disease 100:10-24 doi:10.1094/PDIS-05-15-0574-FE LeBlanc N, Essarioui A, Kinkel L, Kistler HC (2017) Phylogeny, Plant Species, and Plant Diversity Influence Carbon Use Phenotypes Among Fusarium Populations in the Rhizosphere Microbiome Phytobiomes Journal 1:150-157 doi:10.1094/PBIOMES-06-17-0028-R Lemos Blainski JM, da Rocha Neto AC, Schimidt EC, Voltolini JA, Rossi MJ, Di Piero RM (2018) Exopolysaccharides from Lactobacillus plantarum induce biochemical and physiological alterations in tomato plant against bacterial spot Applied microbiology and biotechnology 102:4741-4753 doi:10.1007/s00253-018-8946-0 Lobna H, Aymen EM, Hajer R, Naima MH-B, Najet H-R (2017) Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica European Journal of Plant Pathology 148:463-472 doi:10.1007/s10658-016-1104-6 Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA, Brock T (2016) Book Review: Brock Biology of Microorganisms – 14th edition vol 99. Science Progress, vol 3. SAGE Publications Ltd. doi:10.3184/003685016X14721564318450c McGovern RJ (2015) Management of tomato diseases caused by Fusarium oxysporum Crop Protection 73:78-92 doi:10.1016/j.cropro.2015.02.021 Moreno Velandia CA (2017) Interactions between Bacillus amyloliquefaciens Bs006, Fusarium oxysporum Map5 and Cape gooseberry (Physalis peruviana). National University of Colombia Mousa WK et al. (2015) An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products Frontiers in Microbiology 6 doi:10.3389/fmicb.2015.01157 Nirmaladevi D et al. (2016) Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici Scientific Reports 6:21367 doi:10.1038/srep21367 Zhang Y, Bo C, Wang L (2019) Novel Crosstalks between Circadian Clock and Jasmonic Acid Pathway Finely Coordinate the Tradeoff among Plant Growth, Senescence and Defense International Journal of Molecular Sciences 20 doi:10.3390/ijms20215254 Zheng X, Zhu Y, Liu B, Lin N, Zheng D (2017) Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots Microbial Pathogenesis 113:144-151 doi:10.1016/j.micpath.2017.10.046 Zuluaga AP et al. (2015) Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii BMC Genomics 16:246 doi:10.1186/s12864-015-1460-1 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Acceso abierto http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 100 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Agronomía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/78371/1/Tesis%20Christian%20BALs%20tomate.pdf https://repositorio.unal.edu.co/bitstream/unal/78371/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/78371/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/78371/4/Tesis%20Christian%20BALs%20tomate.pdf.jpg |
bitstream.checksum.fl_str_mv |
dd7d653e351ac10d8615369dc08db04b e2f63a891b6ceb28c3078128251851bf 42fd4ad1e89814f5e4a476b409eb708c ab9deb2e805781cd3d4228caac97da29 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089668314005504 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gonzalez Almario, Carolinaf06877ff58416902d2f339b35f7f627eGonzalez Almario, Adriana2095714a2ee0a49a87d2319bc2e287b4Vargas Baquero, Christian David545f6439cfc22e107778dc86cacea908Agrosavia2020-09-03T16:22:14Z2020-09-03T16:22:14Z2020-03-14https://repositorio.unal.edu.co/handle/unal/78371Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasLa marchitez vascular en tomate ocasionada tanto por Fusarium oxysporum f. sp. lycopersici (Fol) como por Ralstonia solanacearum (Rs) llegan a ocasionar pérdidas superiores al 80% solo con uno de estos patógenos. Además, sumado al hecho, que ambos microorganismos ocasionan síntomas similares que lleva a la dificultad del diagnóstico del agente causal, también se ignora, la posibilidad de una posible coinfección por parte de los dos microorganismos, lo cual conlleva a malas implementaciones de estrategias de manejo. Por lo tanto, el objetivo de este trabajo fue evaluar la actividad antagónica y respuesta de defensa inducida por efecto de bacterias acidolácticas (BAL) en plantas de tomate frente a los patógenos vasculares de origen fúngico (Fol) y bacteriano (Rs) en modelos monopatogénicos y en un modelo de coinfección. Por consiguiente, en el primer capítulo, se estandarizó el primer modelo de coinfección entre los dos patógenos en tomate variedad Santa Cruz Kada a partir de dos cepas previamente caracterizadas a nivel molecular y por su vilurencia en plantas de tomate. Se seleccionó un modelo sincrónico a las concentraciones más altas evaluadas, lo cual permitió la expresión más temprana de los síntomas. Por otro lado, en el segundo capítulo, mediante el modelo establecido previamente, se evaluó la eficacia de biocontrol y la expresión diferencial de genes asociados a rutas de señalización de resistencia sistémica de una cepa de BAL seleccionada previamente por su alta eficacia a nivel in planta y su alto grado de inhibición in vitro contra los dos patógenos. Los resultados demostraron que la aplicación en semilla de la cepa AC40 es un potencial insumo para el manejo de estas problemáticas ya que registró rangos de 52,3% de eficiencia para el control de Fol, 68,6% para el control de Rs y 55,95% para el control de la mezcla de los dos patógenos. (Texto tomado de la fuente).Vascular wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici (Fol) or by Ralstonia solanacearum (Rs) causes losses of more than 80% with only one of these pathogens. In addition, added to the fact that both microorganisms cause similar symptoms leading difficulties in the diagnosis of the causal agent, the possibility of a possible coinfection by the two microorganisms is ignored, which leads to poor implementation of management strategies. Therefore, the objective of this work was to evaluate the antagonistic activity and defense response induced by the effect of acidolactic bacteria (BAL) in tomato plants against vascular pathogens of fungal (Fol) and bacterial (Rs) origin in monopathogenic models and in a coinfection model. Therefore, in the first chapter the first coinfection model between the two pathogens in tomato variety Santa Cruz Kada was standardized from two strains previously characterized at molecular and virulent level. A synchronous model was selected at the highest concentrations evaluated, which allowed the earliest expression of symptoms. On the other hand, in the second chapter, by means of the previously established model, the efficacy of biocontrol and the differential expression of genes associated to signaling routes of systemic resistance of a BAL strain previously selected for its high efficacy at in planta assay and its high degree of in vitro inhibition against the two pathogens were evaluated. The results showed how the application in seed of AC40 strain is a potential input for the management of these problems since it registered ranges of 52.3% of efficiency for the control of Fol, 68.6% for Rs and 55.95% for coinfection model.MaestríaMagíster en Ciencias AgrariasFitopatologíaCiencias Agronómicasxvi, 100 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasDepartamento de AgronomíaFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesBacterias entomógenasEnfermedades de las plantasFusarium oxysporumRalstonia solanacearumfusariosis del tomateentomogenous bacteriaFusarium oxysporumRalstonia solanacearumFusarium wilt of tomatoRalstonia solanacearumFusarium oxysporumBacterias acido lácticasCoinfecciónControl biológicoFusarium oxysporumFusarium oxysporum f. sp. lycopersiciRalstonia solanacearumBiological controlLactic acid bacteriaCoinfectionBacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomateTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbasi S, Safaie N, Sadeghi A, Shamsbakhsh M (2019) Streptomyces Strains Induce Resistance to Fusarium oxysporum f. sp. lycopersici Race 3 in Tomato Through Different Molecular Mechanisms 10 doi:10.3389/fmicb.2019.01505Abbott WS (1925) A method of computing the effectiveness of an insecticide Economic Entomology 18:265-267Abdullah AS, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A (2017) Host-Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants Frontiers in plant science 8:1806-1806 doi:10.3389/fpls.2017.01806Agrios GN (2005) Plant pathology. Academic pressAhn K, Lee K-B, Kim Y-J, Koo Y-M (2014) Quantitative analysis of the three main genera in effective microorganisms using qPCR Korean Journal of Chemical Engineering 31:849-854 doi:10.1007/s11814-013-0274-6Aimé S, Alabouvette C, Steinberg C, Olivain C (2013) The Endophytic Strain Fusarium oxysporum Fo47: A Good Candidate for Priming the Defense Responses in Tomato Roots Molecular Plant-Microbe Interactions 26:918-926 doi:10.1094/MPMI-12-12-0290-RAllen C, Prior P, Hayward AC (2005) Bacterial wilt disease and the Ralstonia solanacearum species complex. American Phytopathological Society (APS Press), St. PaulAraújo Pena MA, Noda H, Machado FM, Paiva MSDS (2010) Adaptabilidade e estabilidade de genótipos de tomateiro sob cultivo em solos de terra firme e várzea da Amazônia infestados por Ralstonia solanacearum Bragantia 69:27-37Ariyapitipun T, Mustapha A, Clarke AD (1999) Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions Journal of food protection 62:913-920Asha B, Nayaka Chandr S, Shankar Udaya A, Srinivas C, Niranjana S (2011) Selection of effective bio- antagonistic bacteria for biological control of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici Bioscan 6:239-244Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field Journal of Experimental Botany 63:3523-3543 doi:10.1093/jxb/ers100Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, Wright AV, Ouwehand A (eds) Lactic acid bacteria; Microbiology and functional aspects, vol 139. 3rd edition edn. Taylor & Francis, Madison Avenue, New York, USA., pp 1-66Bannihatti R, Suryawanshi A (2019) Integrated management of bacterial wilt of tomato caused by Ralstonia solanacearum International Journal of Communication Systems 7:1599-1603Barrett LG, Kniskern JM, Bodenhausen N, Zhang W, Bergelson J (2009) Continua of specificity and virulence in plant host–pathogen interactions: causes and consequences New Phytologist 183:513-529 doi:10.1111/j.1469-8137.2009.02927.xBartholomew JW, Mittwer T (1952) The Gram stain Bacteriological reviews 16:1-29Bauer T et al. (2018) First Insights Into Within Host Translocation of the Bacillus cereus Toxin Cereulide Using a Porcine Model Frontiers in microbiology 9:2652-2652 doi:10.3389/fmicb.2018.02652Bertoldo C, Gilardi G, Spadaro D, Gullino ML, Garibaldi A (2015) Genetic diversity and virulence of Italian strains of Fusarium oxysporum isolated from Eustoma grandiflorum European Journal of Plant Pathology 141:83-97 doi:10.1007/s10658-014-0526-2Bhuvanendra KH, Udaya SA, Nayaka C, Kini SR, Shetty HS, Prakash H (2010) Biochemical characterization of Fusarium oxysporum f. sp. cubense isolates from India African Journal of Biotechnology 9Bidellaoui B, Segarra G, Hakkou A, Isabel Trillas M (2019) Beneficial effects of Rhizophagus irregularis and Trichoderma asperellum strain T34 on growth and fusarium wilt in tomato plants Journal of Plant Pathology 101:121-127 doi:10.1007/s42161-018-0159-yBlainski JML, da Rocha Neto AC, Luiz C, Rossi MJ, Di Piero RM (2017) Lactobacillus plantarum exopolysaccharides induce resistance against tomato bacterial spot Journal of Agricultural Science 9:162Blank SC (2014) The Economics of American Agriculture: Evolution and Global Development: Evolution and Global Development.Borel B (2017) When the pesticides run out Nature 543:302-304Bozzini E (2017) Pesticide Policy and Politics in the European Union: regulatory assessment, implementation and enforcement.Brilli F et al. (2019) Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress Journal of Plant Physiology 232:82-93 doi:10.1016/j.jplph.2018.10.029Burdon J, Laine A (2019) Coevolutionary Dynamics in a Metapopulation Context. In: Burdon JJ (ed) Evolutionary Dynamics of Plant-Pathogen Interactions. Cambridge University Press, Cambridge, pp 168-218. doi:10.1017/9781108625517.007Burdon JJ, Chilvers GA (1982) Host Density as a Factor in Plant Disease Ecology Annual Review of Phytopathology 20:143-166 doi:10.1146/annurev.py.20.090182.001043Caldwell D, Kim B-S, Iyer-Pascuzzi AS (2017) Ralstonia solanacearum Differentially Colonizes Roots of Resistant and Susceptible Tomato Plants Phytopathology 107:528-536 doi:10.1094/PHYTO-09-16-0353-RCarmona Gutiérrez SL (2019) Identificación de un aislamiento de Fusarium oxysporum f. sp. lycopersici y respuesta fisiológica en tomate durante la infección frente a dos elicitores fúngicos. Universidad Nacional de ColombiaCastilho NPA, Colombo M, Oliveira LLd, Todorov SD, Nero LA (2019) Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes BMC Microbiology 19:63 doi:10.1186/s12866-019-1436-4Cha J-Y et al. (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil The ISME Journal 10:119-129 doi:10.1038/ismej.2015.95Chanclud E, Morel J-B (2016) Plant hormones: a fungal point of view Molecular Plant Pathology 17:1289-1297 doi:10.1111/mpp.12393Chang IS, Kim BH, Shin PK (1997) Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation Applied and Environmental Microbiology 63:1Chant SR, Gbaja IS (1986) Effect of Co-infection by Fusarium oxysporum and Cowpea Mosaic Virus on the Growth and Colonization of Cowpea Seedlings (Vigna unguiculata [L.] Walp.) Journal of Phytopathology 116:81-87 doi:10.1111/j.1439-0434.1986.tb00897.xChen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants Plant Signal Behav 4:493-496 doi:10.4161/psb.4.6.8392Chiang KS, Liu HI, Tsai JW, Tsai JR, Bock CH (2017) A discussion on disease severity index values. Part II: using the disease severity index for null hypothesis testing Annals of Applied Biology 171:490-505 doi:10.1111/aab.12396Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant–pathogen interactions Trends in Plant Science 7:210-216 doi:10.1016/S1360-1385(02)02244-6Corsetti A, Gobbetti M, Rossi J, Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1 Applied microbiology and biotechnology 50:253-256Cotes AM (2018) Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 vol 1. Agrosavia, Bogota ColombiaCurutiu C, Lazar V, Chifiriuc MC (2017) 10 - Pesticides and antimicrobial resistance: from environmental compartments to animal and human infections. In: Grumezescu AM (ed) New Pesticides and Soil Sensors. Academic Press, pp 373-392. doi:10.1016/B978-0-12-804299-1.00011-4a Silva MP, Tylka GL, Munkvold GP (2016) Seed Treatment Effects on Maize Seedlings Coinfected with Fusarium spp. and Pratylenchus penetrans American Phytopathological Society 100:431-437 doi:10.1094/pdis-03-15-0364-reDe Vleesschauwer D, Höfte M (2009) Rhizobacteria-Induced Systemic Resistance Advances in Botanical Research 51:223-281 doi:10.1016/S0065-2296(09)51006-3Deberdt P, Quénéhervé P, Darrasse A, Prior P (1999) Increased susceptibility to bacterial wilt in tomatoes by nematode galling and the role of Mi gene in resistance to nematode and bacterial wilt Plant Pathology 48:408-414Deslandes L, Genin S (2014) Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms Current Opinion in Plant Biology 20:110-117 doi:10.1016/j.pbi.2014.05.002Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus Molecular Plant Pathology 4:315-325 doi:10.1046/j.1364-3703.2003.00180.xDi X, Gomila J, Takken FLW (2017) Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum Molecular Plant Pathology 18:1024-1035 doi:10.1111/mpp.12559Diniz I et al. (2017) A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae PLOS ONE 12:e0178159 doi:10.1371/journal.pone.0178159Donley N (2019) The USA lags behind other agricultural nations in banning harmful pesticides Environmental Health 18:44 doi:10.1186/s12940-019-0488-0Dromph KM (2001) Dispersal of entomopathogenic fungi by collembolans Soil Biology and Biochemistry 33:2047-2051 doi:10.1016/S0038-0717(01)00130-4El-Mabrok A, Hassan Z, Mokhtar A, Hussain K, Kahar F (2012) Screening of Lactic Acid Bacteria as Biocontrol Against (Collectotrichum capsici) on Chilli Bangi Research Journal of Applied Sciences 7:446-473Elanchezhiyan K, Keerthana U, Nagendran K, Prabhukarthikeyan SR, Prabakar K, Raguchander T, Karthikeyan G (2018) Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici Physiological and Molecular Plant Pathology 103:92-101 doi:10.1016/j.pmpp.2018.05.008Elmer WH (2002) Influence of Inoculum Density of Fusarium oxysporum f. sp. cyclaminis and Sodium Chloride on Cyclamen and the Development of Fusarium Wilt Plant Disease 86:389-393 doi:10.1094/PDIS.2002.86.4.389Elphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Piror P. , Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS press, Minnesota USA, pp 9-28Elphinstone JG, Hennessy J, Wilson JK, Stead DE (1996) Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts EPPO Bulletin 26:663-678 doi:10.1111/j.1365-2338.1996.tb01511.xElshahawy IE, Saied NM, Abd-El-Kareem F, Morsy AA (2018) Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora Journal of Plant Pathology 100:493-503 doi:10.1007/s42161-018-0113-zFAO (2019) FAOSTAT, Food and agriculture data. http://www.fao.org/faostat/en/#data.Fegan M, Prior P (2005) How complex is the Ralstonia solanacearum species complex? . In: Allen C, Prior P, Hayward A (eds) Bacterial Wilt: The Disease and the Ralstonia solanacearum Species Complex. American Phytopathological Society, St. Paul, Minnesota, pp 449-461Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR Biotechnology Letters 28:1601-1613 doi:10.1007/s10529-006-9127-2Fox J et al. (2012) Package ‘car’ Vienna: R Foundation for Statistical ComputingGajbhiye MH, Kapadnis BP (2016) Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants Biocontrol Science and Technology 26:1451-1470 doi:10.1080/09583157.2016.1213793García Valderrama DS (2018) Control del marchitamiento vascular de la uchuva basado en mezclas de microorganismos rizosféricos provenientes de suelos potencialmente supresivos. Universidad Nacional de ColombiaGbaja IS, Chant SR (1985) The Effects of Co-Infection by Sunn-Hemp Mosaic Virus (SHMV) and Fusarium oxysporum on the Growth of French Bean Journal of Phytopathology 113:252-259 doi:10.1111/j.1439-0434.1985.tb00083.xGfeller A, Dubugnon L, Liechti R, Farmer EE (2010) Jasmonate Biochemical Pathway Science Signaling 3:cm3 doi:10.1126/scisignal.3109cm3Gog JR, Grenfell BT (2002) Dynamics and selection of many-strain pathogens Proceedings of the National Academy of Sciences 99:17209 doi:10.1073/pnas.252512799Gómez Marroquín MR (2019) Evaluación de sustancias bioactivas como alternativa para el manejo de la marchitez vascular causada por Fusarium oxysporum f. sp. lycopersici. Universidad Nacional de ColombiaGonzález A, Plener L, Restrepo S, Boucher C, Genin S (2011) Detection and functional characterization of a large genomic deletion resulting in decreased pathogenicity in Ralstonia solanacearum race 3 biovar 2 strains Environmental Microbiology 13:3172-3185 doi:10.1111/j.1462-2920.2011.02636.xGrimault V, Prior P (1993) Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum Plant Pathology 42:589-594 doi:10.1111/j.1365-3059.1993.tb01539.xHamed HA, Moustafa YA, Abdel-Aziz SM (2011) In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant Life Science Journal 8:462-468Hammerschmidt R (2009) Systemic Acquired Resistance. In: Loon LCV (ed) Advances in Botanical Research, vol 51. Academic Press, pp 173-222. doi:10.1016/S0065-2296(09)51005-1Helander IM, von Wright A, Mattila-Sandholm TM (1997) Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria Trends in Food Science & Technology 8:146-150 doi:10.1016/S0924-2244(97)01030-3Hoffman MD, Zucker LI, Brown PJB, Kysela DT, Brun YV, Jacobson SC (2015) Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells Analytical Chemistry 87:12032-12039 doi:10.1021/acs.analchem.5b02087Huang Q, Allen C (2000) Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants Physiological and Molecular Plant Pathology 57:77-83 doi:10.1006/pmpp.2000.0283Jangir M, Pathak R, Sharma S, Sharma S (2018b) Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici Biological Control 123:60-70 doi:10.1016/j.biocontrol.2018.04.018Jiang C-J et al. (2010) Abscisic Acid Interacts Antagonistically with Salicylic Acid Signaling Pathway in Rice–Magnaporthe grisea Interaction Molecular Plant-Microbe Interactions 23:791-798 doi:10.1094/MPMI-23-6-0791Kalpage M, De Costa D (2015) Isolation of bacteriophages and determination of their efficiency in controlling Ralstonia solanacearum causing bacterial wilt of tomato Tropical Agricultural Research 26Kanugala S et al. (2019) Chumacin-1 and Chumacin-2 from Pseudomonas aeruginosa strain CGK-KS-1 as novel quorum sensing signaling inhibitors for biocontrol of bacterial blight of rice Microbiological Research 228:126301 doi:10.1016/j.micres.2019.126301Laitila A, Alakomi HL, Raaska L, Mattila-Sandholm T, Haikara A (2002) Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley Journal of Applied Microbiology 93:566-576 doi:10.1046/j.1365-2672.2002.01731.xLamichhane JR, Dachbrodt-Saaydeh S, Kudsk P, Messéan A (2016) Toward a Reduced Reliance on Conventional Pesticides in European Agriculture Plant Disease 100:10-24 doi:10.1094/PDIS-05-15-0574-FELeBlanc N, Essarioui A, Kinkel L, Kistler HC (2017) Phylogeny, Plant Species, and Plant Diversity Influence Carbon Use Phenotypes Among Fusarium Populations in the Rhizosphere Microbiome Phytobiomes Journal 1:150-157 doi:10.1094/PBIOMES-06-17-0028-RLemos Blainski JM, da Rocha Neto AC, Schimidt EC, Voltolini JA, Rossi MJ, Di Piero RM (2018) Exopolysaccharides from Lactobacillus plantarum induce biochemical and physiological alterations in tomato plant against bacterial spot Applied microbiology and biotechnology 102:4741-4753 doi:10.1007/s00253-018-8946-0Lobna H, Aymen EM, Hajer R, Naima MH-B, Najet H-R (2017) Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica European Journal of Plant Pathology 148:463-472 doi:10.1007/s10658-016-1104-6Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA, Brock T (2016) Book Review: Brock Biology of Microorganisms – 14th edition vol 99. Science Progress, vol 3. SAGE Publications Ltd. doi:10.3184/003685016X14721564318450cMcGovern RJ (2015) Management of tomato diseases caused by Fusarium oxysporum Crop Protection 73:78-92 doi:10.1016/j.cropro.2015.02.021Moreno Velandia CA (2017) Interactions between Bacillus amyloliquefaciens Bs006, Fusarium oxysporum Map5 and Cape gooseberry (Physalis peruviana). National University of ColombiaMousa WK et al. (2015) An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products Frontiers in Microbiology 6 doi:10.3389/fmicb.2015.01157Nirmaladevi D et al. (2016) Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici Scientific Reports 6:21367 doi:10.1038/srep21367Zhang Y, Bo C, Wang L (2019) Novel Crosstalks between Circadian Clock and Jasmonic Acid Pathway Finely Coordinate the Tradeoff among Plant Growth, Senescence and Defense International Journal of Molecular Sciences 20 doi:10.3390/ijms20215254Zheng X, Zhu Y, Liu B, Lin N, Zheng D (2017) Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots Microbial Pathogenesis 113:144-151 doi:10.1016/j.micpath.2017.10.046Zuluaga AP et al. (2015) Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii BMC Genomics 16:246 doi:10.1186/s12864-015-1460-1EstudiantesInvestigadoresPúblico generalORIGINALTesis Christian BALs tomate.pdfTesis Christian BALs tomate.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf3282793https://repositorio.unal.edu.co/bitstream/unal/78371/1/Tesis%20Christian%20BALs%20tomate.pdfdd7d653e351ac10d8615369dc08db04bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/78371/2/license.txte2f63a891b6ceb28c3078128251851bfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/78371/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53THUMBNAILTesis Christian BALs tomate.pdf.jpgTesis Christian BALs tomate.pdf.jpgGenerated Thumbnailimage/jpeg4352https://repositorio.unal.edu.co/bitstream/unal/78371/4/Tesis%20Christian%20BALs%20tomate.pdf.jpgab9deb2e805781cd3d4228caac97da29MD54unal/78371oai:repositorio.unal.edu.co:unal/783712023-07-24 23:04:09.518Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |