Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)

ilustraciones, gráficas, tablas

Autores:
Aguilar Pérez, Santiago
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81667
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81667
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Programmable controllers
Nonlinear systems
Automatic control
Controladores programables
Sistemas no lineales
Control automático
Differential flatness
Planitud diferencial
Sistemas no lineales
Control por rechazo activo de perturbaciones
Control predictivo basado en modelo
Active disturbance rejection control
Model predictive control
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b2c3755e794820c79f89f672eb878842
oai_identifier_str oai:repositorio.unal.edu.co:unal/81667
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)
dc.title.translated.eng.fl_str_mv Optimal control methodology for differentially flat nonlinear systems, based on Active Disturbance Rejection Control (ADRC) and Model Predictive Control (MPC)
title Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)
spellingShingle Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Programmable controllers
Nonlinear systems
Automatic control
Controladores programables
Sistemas no lineales
Control automático
Differential flatness
Planitud diferencial
Sistemas no lineales
Control por rechazo activo de perturbaciones
Control predictivo basado en modelo
Active disturbance rejection control
Model predictive control
title_short Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)
title_full Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)
title_fullStr Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)
title_full_unstemmed Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)
title_sort Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)
dc.creator.fl_str_mv Aguilar Pérez, Santiago
dc.contributor.advisor.spa.fl_str_mv Cortés Romero, John Alexander
Dorado Rojas, Sergio
dc.contributor.author.spa.fl_str_mv Aguilar Pérez, Santiago
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Programmable controllers
Nonlinear systems
Automatic control
Controladores programables
Sistemas no lineales
Control automático
Differential flatness
Planitud diferencial
Sistemas no lineales
Control por rechazo activo de perturbaciones
Control predictivo basado en modelo
Active disturbance rejection control
Model predictive control
dc.subject.lemb.eng.fl_str_mv Programmable controllers
Nonlinear systems
Automatic control
dc.subject.lemb.spa.fl_str_mv Controladores programables
Sistemas no lineales
Control automático
dc.subject.proposal.eng.fl_str_mv Differential flatness
dc.subject.proposal.spa.fl_str_mv Planitud diferencial
Sistemas no lineales
Control por rechazo activo de perturbaciones
Control predictivo basado en modelo
Active disturbance rejection control
Model predictive control
description ilustraciones, gráficas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-29T18:30:04Z
dc.date.available.none.fl_str_mv 2022-06-29T18:30:04Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81667
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81667
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aboelhassan, A., Diab, A. M., Galea, M., y Bozhko, S. (2020, 11). Investigating electrical drive performance employing model predictive control and active disturbance rejection control algorithms. 2020 23rd International Conference on Electrical Machines and Systems (ICEMS). doi: 10.23919/ICEMS50442.2020.9291218
Ahmad, S., Deo, B., y Ali, A. (2019, 12). Modified active disturbance rejection control for improved performance. 2019 Sixth Indian Control Conference (ICC), 496-501. doi: 10.1109/ICC47138.2019.9123202
Ang, K. H., Chong, G., y Li, Y. (2005, 7). Pid control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13, 559-576. doi: 10.1109/TCST .2005.847331
Bakarac, P., Klauco, M., y Fikar, M. (2018). Comparison of inverted pendulum stabilization with pid, lq, and mpc control. Proceedings of the 29th International Conference on Cybernetics and Informatics, K and I 2018, 2018-Janua, 1-6. doi: 10.1109/CYBERI .2018.8337540
Baquero-Suáarez, M., Cortés-Romero, J., Arcos-Legarda, J., y Coral-Enriquez, H. (2019, 1). A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle. Multibody System Dynamics, 45, 7-35. doi: 10.1007/s11044-018-9614-y
Berber, R., y Kravaris, C. (Eds.). (1998). Nonlinear model based process control. Springer Netherlands. doi: 10.1007/978-94-011-5094-1
Borase, R. P., Maghade, D. K., Sondkar, S. Y., y Pawar, S. N. (2020). A review of pid control, tuning methods and applications. International Journal of Dynamics and Control. doi: 10.1007/s40435-020-00665-4
Borrelli, F., Falcone, P., Keviczky, T., Asgari, J., y Hrovat, D. (2005). Mpc-based approach to active steering for autonomous vehicle systems. International Journal of Vehicle Autonomous Systems, 3, 265. doi: 10.1504/IJVAS.2005.008237
Chen, C.-T. (1995). Analog and digital control system design: Transfer-function, state-space, and algebraic methods (1.a ed.). Oxford University Press, Inc
Chen, K. (1964, 5). Quasi-linearization design of nonlinear feedback control systems. IEEE Transactions on Applications and Industry, 83, 189-195. doi: 10.1109/TAI.1964 .5407789
Cheng, D., Hu, X., y Shen, T. (2010). Linearization of nonlinear systems. En (p. 279-313). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-11550-9 10
Coral-Enriquez, H., Cortés-Romero, J., y Ramos, G. A. (2013). Robust active disturbance rejection control approach to maximize energy capture in variable-speed wind turbines. Mathematical Problems in Engineering, 2013, 1-12. doi: 10.1155/2013/396740
Cortes-Romero, J. A., Luviano-Juarez, A., y Sira-Ramirez, H. (2009). Robust gpi controller for trajectory tracking for induction motors. 2009 IEEE International Conference on Mechatronics, 1-6. doi: 10.1109/ICMECH.2009.4957221
Cortés-Romero, J., Jimenez-Triana, A., Coral-Enriquez, H., y Sira-Ram´ırez, H. (2017, 4). Algebraic estimation and active disturbance rejection in the control of flat systems. Control Engineering Practice, 61. doi: 10.1016/j.conengprac.2017.02.009
da xue (1993), D., kuang ye da xue., Z., Chapter., I. S. S. I. E., y Society., I. C. S. (2010). 2010 chinese control and decision conference : New century grand hotel, xuzhou, china, 26-28 may 2010. IEEE Industrial Electronics (IE) Chapter.
Dorado-Rojas, S. A. (2018). Decentralized Load Frequency Control for a Power System with High Penetration of Wind and Solar Photovoltaic Generation (Tesis Doctoral no publicada). Universidad Nacional de Colombia.
Dorado-Rojas, S. A., Cortes-Romero, J., Rivera, S., y Mojica-Nava, E. (2019). ADRC for Decentralized Load Frequency Control with Renewable Energy Generation. 2019 IEEE Milan PowerTech. doi: 10.1109/PTC.2019.8810873
Du, H. (2006). Application of smartplant pid software in petrochemical projects. Petroleum Refinery Engineering, 36, 50-52.
Elgazzar, M., y Shamekh, A. (2020). Performance comparison of mpc and pid in cstr process control. ACM International Conference Proceeding Series. doi: 10.1145/ 3410352.3410764
Fajardo, D. F. (2010). Dynamic systems simulation states space discretization. SIGMA, 1-9.
Fliess, M., L`evine, J., Martin, P., y Rouchon, P. (1995, 6). Flatness and defect of nonlinear systems: introductory theory and examples. International Journal of Control, 61, 1327-1361. doi: 10.1080/00207179508921959
Friedland, B. (1986). Control system design an introduction to state-space methods. McGrawHill.
Galuppini, G., Magni, L., y Raimondo, D. M. (2018, 9). Model predictive control of systems with deadzone and saturation. Control Engineering Practice, 78, 56-64. doi: 10.1016/ j.conengprac.2018.06.010
Gao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. Proceedings of the 2003 American Control Conference., 4989-4996. doi: 10.1109/ACC.2003 .1242516
Gao, Z. (2006). Active disturbance rejection control: a paradigm shift in feedback control system design. 2006 American Control Conference, 7 pp. doi: 10.1109/ACC.2006 .1656579
Gao, Z., y Zhao, S. (2010, 9). Active disturbance rejection control for non-minimum phase systems. Proceedings of the 29th Chinese Control Conference
García, C. E., Prett, D. M., y Morari, M. (1989, 5). Model predictive control: Theory and practice|a survey. Automatica, 25. doi: 10.1016/0005-1098(89)90002-2
Garriga, J. L., y Soroush, M. (2010, 4). Model predictive control tuning methods: A review. Industrial & Engineering Chemistry Research, 49, 3505-3515. doi: 10.1021/ie900323c
Garzon, C. L., Cortes, J. A., y Tello, E. (2017, 4). Active disturbance rejection control for growth of microalgae in a batch culture. IEEE Latin America Transactions, 15, 588-594. doi: 10.1109/TLA.2017.7896342
Gasparetto, A., Boscariol, P., Lanzutti, A., y Vidoni, R. (2015). Path planning and trajectory planning algorithms: A general overview. En (p. 3-27). doi: 10.1007/978-3-319-14705 -5 1
Ghoumari, M. E., Tantau, H.-J., y Serrano, J. (2005, 12). Non-linear constrained mpc: Realtime implementation of greenhouse air temperature control. Computers and Electronics in Agriculture, 49. doi: 10.1016/j.compag.2005.08.005
Guo, H., Wang, F., Chen, H., y Guo, D. (2012, 7). Stability control of vehicle with tire blowout using differential flatness based mpc method. Proceedings of the 10th World Congress on Intelligent Control and Automation. doi: 10.1109/WCICA.2012.6358216
Han, J. (2009, 3). From pid to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56, 900-906. Descargado de http://ieeexplore.ieee.org/ document/4796887/ doi: 10.1109/TIE.2008.2011621
Hanema, J., Toth, R., y Lazar, M. (2017, 12). Stabilizing non-linear mpc using linear parameter-varying representations. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). doi: 10.1109/CDC.2017.8264185
Hedengren, J. (2022). Temperature control lab. Descargado de http://apmonitor.com/ pdc/index.php/Main/ArduinoTemperatureControl
Huang, Y., y Xue, W. (2014, 7). Active disturbance rejection control: Methodology and theoretical analysis. ISA Transactions, 53, 963-976. doi: 10.1016/j.isatra.2014.03.003
Huang, Z., Liu, Y., Zheng, H., Wang, S., Ma, J., y Liu, Y. (2018, 7). A self-searching optimal adrc for the pitch angle control of an underwater thermal glider in the vertical plane motion. Ocean Engineering, 159, 98-111. doi: 10.1016/j.oceaneng.2018.04.010
Jiang, J., Zhen, X., Li, Q., Wang, W., Jin, Q., y Pan, L. (2006). The applications of model pid or imc-pid advanced process control to refinery and petrochemical plants. WMSCI 2006 - The 10th World Multi-Conference on Systemics, Cybernetics and Informatics, Jointly with the 12th International Conference on Information Systems Analysis and Synthesis, ISAS 2006 - Proc., 7, 449-461.
Jiang, L., Kong, X., Yang, Q., y Shao, F. (2010, 5). Application of compound pid controller in the boiler. 2010 Chinese Control and Decision Conference, 2725-2728. Descargado de http://ieeexplore.ieee.org/document/5498718/ doi: 10.1109/ CCDC.2010.5498718
Jiang, Y., y Jiang, Z.-P. (2012, 10). Computational adaptive optimal control for continuoustime linear systems with completely unknown dynamics. Automatica, 48, 2699-2704. doi: 10.1016/j.automatica.2012.06.096
Jichkar, C., y Sondkar, S. (2017). Comparative study of real time implementation of labview based mpc controller and pid controller for flow control loop. 2017 2nd International Conference for Convergence in Technology, I2CT 2017, 2017-Janua, 464-470. doi: 10.1109/I2CT.2017.8226172
Kang, C., Wang, S., Ren, W., Lu, Y., y Wang, B. (2019). Optimization design and application of active disturbance rejection controller based on intelligent algorithm. IEEE Access, 7 , 59862-59870. doi: 10.1109/ACCESS.2019.2909087
Kirk, D. E. (1998). Optimal control theory. Dover Publications, Inc.
Kouvaritakis, B., y Cannon, M. (2016). Mpc with no model uncertainty. En (p. 13-64). doi: 10.1007/978-3-319-24853-0 2
Kumar, A. S., y Ahmad, Z. (2012, 4). Model predictive control (mpc) and its current issues in chemical engineering. Chemical Engineering Communications, 199 , 472-511. doi: 10.1080/00986445.2011.592446
Lakshmi, K., Rajesh, T., Anusuya, D., Prowince, P. G., y Pranesh, B. (2019). Design and implementation of multivariable quadruple tank system with different pid tuning control techniques. Proceedings of the 2019 International Conference on Advances in Computing and Communication Engineering, ICACCE 2019 . doi: 10.1109/ ICACCE46606.2019.9079983
Li, S., Yang, J., Chen, W.-H., y Chen, X. (2012, 12). Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics, 59 . doi: 10.1109/TIE.2011.2182011
Li, Z., Ma, X., Li, Y., Meng, Q., y Li, J. (2019, 12). Adrc-esmpc active heave compensation control strategy for offshore cranes. Ships and Offshore Structures. doi: 10.1080/ 17445302.2019.1703388
Liu, G., Shi, P., Han, J., Rees, D., y Xia, Y. (2007, 1). Active disturbance rejection control for uncertain multivariable systems with time-delay. IET Control Theory & Applications, 1 , 75-81. doi: 10.1049/iet-cta:20050138
Luenberger, D. (1971, 12). An introduction to observers. IEEE Transactions on Automatic Control, 16 . doi: 10.1109/TAC.1971.1099826
Luenberger, D. G. (1964). Observing the state of a linear system. IEEE Transactions on Military Electronics, 8 . doi: 10.1109/TME.1964.4323124
Luenberger, D. G. (1979). Introduction to dynamic systems - theory, models, and applications. John Wiley & Sons, Inc.
Lv, T., Yang, Y., y Chai, L. (2019, 7). Extended state observer based mpc for a quadrotor helicopter subject to wind disturbances. 2019 Chinese Control Conference (CCC), 8206-8211. doi: 10.23919/ChiCC.2019.8865370
L´evine, J. (2011, 1). On necessary and sufficient conditions for differential flatness. Applicable Algebra in Engineering, Communication and Computing, 22 , 47-90. doi: 10.1007/ s00200-010-0137-x
Magni, L., Raimondo, D. M., y Allg¨ower, F. (Eds.). (2009). Nonlinear model predictive control (Vol. 384). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-01094-1
Magni, L., y Scattolini, R. (2005, 6). On the solution of the tracking problem for nonlinear systems with mpc. International Journal of Systems Science, 36 . doi: 10.1080/ 00207720500139666
Mata, S., Zubizarreta, A., Nieva, I., Cabanes, I., y Pinto, C. (2020, 8). Control mpc basado en un modelo ltv para seguimiento de trayectoria con estabilidad garantizada. XXXVIII Jornadas de Autom´atica: Gij´on, 6, 7, y 8 de septiembre de 2017, 122-129. doi: 10 .17979/spudc.9788497497749.0122
Mayne, D., Rawlings, J., Rao, C., y Scokaert, P. (2000, 6). Constrained model predictive control: Stability and optimality. Automatica, 36. doi: 10.1016/S0005-1098(99)00214 -9
Mayne, D. Q. (1995). Optimization in model predictive control. En (p. 367-396). Springer Netherlands. doi: 10.1007/978-94-011-0135-6 15
Michalek, M. M. (2016, 7). Robust trajectory following without availability of the reference time-derivatives in the control scheme with active disturbance rejection. 2016 American Control Conference (ACC), 1536-1541. doi: 10.1109/ACC.2016.7525134
Nieuwstadt, M. V., Rathinam, M., y Murray, R. (1994). Differential flatness and absolute equivalence. Proceedings of 1994 33rd IEEE Conference on Decision and Control, 326-332. doi: 10.1109/CDC.1994.410908
Ogata, K. (2010). Modern control engineering (5th ed.). Pearson
Pan, W., Xiao, H., y Wang, C. (2010, 10). Design of ship course controller based on optimal active disturbance rejection technique. 2010 International Conference on Intelligent System Design and Engineering Application, 582-585. doi: 10.1109/ISDEA.2010.294
Paraskevopoulos, P. (2002). Modern control engineering. CRC Press
Parastiwi, A., y Ekojono. (2016, 7). Design of spray dryer process control by maintaining outlet air temperature of spray dryer chamber. 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 619-622. doi: 10.1109/ ISITIA.2016.7828731
Park, J., Martin, R. A., Kelly, J. D., y Hedengren, J. D. (2020, 4). Benchmark temperature microcontroller for process dynamics and control. Computers and Chemical Engineering, 135. doi: 10.1016/J.COMPCHEMENG.2020.106736
Petersen, L. N., Poulsen, N. K., Niemann, H. H., Utzen, C., y Jorgensen, J. B. (2014a, 10). Application of constrained linear mpc to a spray dryer. 2014 IEEE Conference on Control Applications (CCA), 2120-2126. doi: 10.1109/CCA.2014.6981616
Petersen, L. N., Poulsen, N. K., Niemann, H. H., Utzen, C., y Jorgensen, J. B. (2014b, 12). Economic optimization of spray dryer operation using nonlinear model predictive control. 53rd IEEE Conference on Decision and Control, 6794-6800. doi: 10.1109/ CDC.2014.7040456
Qing, W., Nannan, S., Jaqing, W., y Jing, Y. (2008). On the application of optimal adrc in main steam temperature control system. Proceedings of the 27th Chinese Control Conference, CCC , 763-767. doi: 10.1109/CHICC.2008.4605731
Rossiter, J. (2005). Model-based predictive control (J. Rossiter, Ed.). CRC Press. doi: 10.1201/9781315272610
Shengyong, L. (2019). Optimal control of spraying and drying temperature in production line based on active disturbance rejection control technique. International Journal of Performability Engineering, 15 . doi: 10.23940/ijpe.19.10.p20.27352743
Shi, H.-J., y Nie, X.-C. (2021, 4). Composite control for disturbed direct-driven surfacemounted permanent magnet synchronous generator with model prediction strategy. Measurement and Control. doi: 10.1177/00202940211010829
Sira-Ramirez, H., Luviano-Ju´arez, A., y Cort´es-Romero, J. (2011, 1). Control lineal robusto de sistemas no lineales. Revista iberoamericana de autom´atica e inform´atica industrial, 8 , 14-28. doi: 10.4995/RIAI.2011.01.04
Sira-Ram´ırez, H. (2004). Differentially flat systems. CRC Press. doi: 10.1201/ 9781482276640
Sira-Ram´ırez, H. (2018, 11). From flatness, gpi observers, gpi control and flat filters to observer-based adrc. Control Theory and Technology, 16 . doi: 10.1007/s11768-018 -8134-x
Sira-Ram´ırez, H., Luviano-Ju´arez, A., y Cort´es-Romero, J. (2012, 5). Flatness-based linear output feedback control for disturbance rejection and tracking tasks on a chua’s circuit. International Journal of Control, 85 , 594-602. doi: 10.1080/00207179.2012.660196
Sira-ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neira, M., y Zurita-Bustamente, W. (2017). Differential flatness. En (p. 285-297). Elsevier. doi: 10.1016/B978-0-12-849868-2.00015 -0
Sira-Ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neria, M., y Zurita-Bustamante, E. W. (2017a). Generalities of adrc. En (p. 13-50). Elsevier. doi: 10.1016/B978-0-12-849868 -2.00002-2
Sira-Ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neria, M., y Zurita-Bustamante, E. W. (2017b). Merging flatness, gpi observation, and gpi control with adrc. En (p. 51-107). Elsevier. doi: 10.1016/B978-0-12-849868-2.00003-4
Slotine, J.-J. E., y Weiping, L. (1991). Applied nonlinear control. Prentice Hall
Suhail, S. A., Bazaz, M. A., y Hussain, S. (2021, 10). Mpc based active disturbance rejection control for automated steering control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235 . doi: 10.1177/09544070211004506
Sun, L., Hua, Q., Shen, J., Xue, Y., Li, D., y Lee, K. (2017, 8). A combined voltage control strategy for fuel cell. Sustainability, 9 . doi: 10.3390/su9091517
Tian, G., y Gao, Z. (2007, 10). Frequency response analysis of active disturbance rejection based control system. 2007 IEEE International Conference on Control Applications, 1595-1599. doi: 10.1109/CCA.2007.4389465
Varghese, E. S., Vincent, A. K., y Bagyaveereswaran, V. (2017, 11). Optimal control of inverted pendulum system using pid controller, lqr and mpc. IOP Conference Series: Materials Science and Engineering, 263 , 052007. doi: 10.1088/1757-899X/263/5/052007
Velasco, F. H., Candelo-Becerra, J., y Santamar´ıa, A. R. (2018, 12). Dynamic analysis of a permanent magnet dc motor using a buck converter controlled by zad-fpic. Energies,11, 3388. doi: 10.3390/en11123388
Warren, A., y Marlin, T. (2004). Constrained mpc under closed-loop uncertainty. Proceedings of the 2004 American Control Conference, 4607-4612 vol.5. doi: 10.23919/ACC.2004 .1384037
Wenjie, W., Zhen, H., Rui, C., Feiteng, J., y Huiming, S. (2018, 8). Trajectory tracking control design for uav based on mpc and active disturbance rejection. 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC). doi: 10.1109/GNCC42960 .2018.9019022
Wu, H., Zhang, L., Yang, J., y Li, S. (2017, 7). Model predictive control for dc-dc buck power converter-dc motor system with uncertainties using a gpi observer. 2017 36th Chinese Control Conference (CCC). doi: 10.23919/ChiCC.2017.8028129
Yamamoto, T., Kawada, K., Kugemoto, H., y Kutsuwa, Y. (2009). Design and industrial applications of a control performance assessment based pid controller. IFAC Proceedings Volumes (IFAC-PapersOnline), 15, 729-734. doi: 10.3182/20090706-3-FR-2004.0162
Yan, Y., Yang, J., Sun, Z., Li, S., y Yu, H. (2020, 1). Non-linear-disturbance-observerenhanced mpc for motion control systems with multiple disturbances. IET Control Theory & Applications, 14. doi: 10.1049/iet-cta.2018.5821
Yang, H., Guo, M., Xia, Y., y Sun, Z. (2020, 1). Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control. International Journal of Robust and Nonlinear Control, 30. doi: 10.1002/rnc.4750
Yang, J., Cui, H., Li, S., y Zolotas, A. (2018a, 2). Optimized active disturbance rejection control for dc-dc buck converters with uncertainties using a reduced-order gpi observer. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 832-841. doi: 10.1109/TCSI.2017.2725386
Yang, J., Cui, H., Li, S., y Zolotas, A. (2018b, 2). Optimized active disturbance rejection control for dc-dc buck converters with uncertainties using a reduced-order gpi observer. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 832-841. doi: 10.1109/TCSI.2017.2725386
Yang, J., Wu, H., Hu, L., y Li, S. (2019, 10). Robust predictive speed regulation of converterdriven dc motors via a discrete-time reduced-order gpio. IEEE Transactions on Industrial Electronics, 66, 7893-7903. doi: 10.1109/TIE.2018.2878119
Yang, Z., Wang, Z., y Yan, M. (2021, 5). An optimization design of adaptive cruise control system based on mpc and adrc. Actuators, 10, 110. doi: 10.3390/act10060110
Yoo, D., Yau, S. S.-T., y Gao, Z. (2007, 1). Optimal fast tracking observer bandwidth of the linear extended state observer. International Journal of Control, 80, 102-111. doi: 10.1080/00207170600936555
Yu, G.-R., y Hwang, R.-C. (2004). Optimal pid speed control of brush less dc motors using lqr approach. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 1, 473-478. doi: 10.1109/ICSMC.2004.1398343
Zeilinger, M. N., Jones, C. N., y Morari, M. (2010, 12). Robust stability properties of soft constrained mpc. 49th IEEE Conference on Decision and Control (CDC), 5276-5282. doi: 10.1109/CDC.2010.5717488
Zhang, Z., Cheng, J., y Guo, Y. (2021, 7). Pd-based optimal adrc with improved linear extended state observer. Entropy, 23 . doi: 10.3390/e23070888
Zhao, Y., y Huang, Y. (2021, 7). Frequency properties of adrc. 2021 40th Chinese Control Conference (CCC), 6628-6633. doi: 10.23919/CCC52363.2021.9549514
Zhou, W., Shao, S. S. L., y Gao, Z. (2009). A stability study of the active disturbance rejection control problem by a singular perturbation approach. Applied Mathematical Sciences, 3 , 491-508.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 94 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81667/4/1032489050.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81667/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81667/6/1032489050.2022.pdf.jpg
bitstream.checksum.fl_str_mv c5887f75f71298a4ea43ff7e56974849
8153f7789df02f0a4c9e079953658ab2
b2bd9f97b013c5075eff3d6e52da8793
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090034641371136
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Romero, John Alexanderd4c4ad5497c404645297a4b48010bf01Dorado Rojas, Sergio0e84918fa8f0b2807502f3f65f44d9f9Aguilar Pérez, Santiago1435005e6365bd37fb3bb817370d37e72022-06-29T18:30:04Z2022-06-29T18:30:04Z2022https://repositorio.unal.edu.co/handle/unal/81667Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLas metodologías para diseño de controladores basadas en modelo requieren un alto nivel de conocimiento del sistema dinámico para poder diseñar una ley de control, en contraste de las metodologías basadas en error; estos enfoques pueden limitar la aplicación de metodologías de control óptimo, dado que para ciertas situaciones puede ser difícil establecer un modelo que describa al sistema dinámico adecuadamente, así mismo, para modelos muy rigurosos existen dificultadas asociadas a resolver el problema de optimización y para metodologías basadas en error el desempeño no siempre es el deseado. Como alternativa, este trabajo propone una metodología de control óptimo para sistemas diferencialmente planos no lineales, basado en control por rechazo activo de perturbaciones (ADRC - por sus siglas en inglés active disturbance rejection control), el cual es usado para estimar y rechazar las incertidumbres y perturbaciones (internas y externas) a partir de un modelo simplificado que permite plantear un problema de optimización. Luego, se sintetiza el controlador empleando la metodología de control predictivo basado en modelo (MPC - por sus siglas en inglés model predictive control). A través de distintos casos de estudio, se validan y evalúan algunas características de las estructuras asociadas a la metodología de control propuesta. Finalmente se logra establecer una metodología de control que otorga al sistema dinámico un comportamiento estable y robusto, mientras minimiza una función de costo de desempeño. (Texto tomado de la fuente).Methodologies for model-based controller design require a high level of knowledge of the dynamic system in order to design a control law, as opposed to error-based methodologies; these approaches may limit the application of optimal control methodologies, as for certain situations it may be difficult to establish a model that describes the dynamic system properly, also, for very rigorous models there are difficulties associated with solving the optimization problem and for error-based methodologies performance is not always desired. As an alternative, this paper proposes an optimal control methodology for differentially flat non-linear systems, based on active disturbance rejection control (ADRC), which is used to estimate and reject uncertainties and disturbances (internal and external) from a simplified model that allows to pose an optimization problem for design. The controller is then synthesized using model predictive control (MPC). Through different case studies, some characteristics of the structures associated with the proposed control methodology are validated and evaluated. Finally, it is possible to establish a control methodology that gives the dynamic system a stable and robust behavior, while minimizing a performance cost function.MaestríaMagíster en Ingeniería - Automatización IndustrialTeoría y aplicación de controlxiv, 94 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Automatización IndustrialDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaProgrammable controllersNonlinear systemsAutomatic controlControladores programablesSistemas no linealesControl automáticoDifferential flatnessPlanitud diferencialSistemas no linealesControl por rechazo activo de perturbacionesControl predictivo basado en modeloActive disturbance rejection controlModel predictive controlMetodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)Optimal control methodology for differentially flat nonlinear systems, based on Active Disturbance Rejection Control (ADRC) and Model Predictive Control (MPC)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAboelhassan, A., Diab, A. M., Galea, M., y Bozhko, S. (2020, 11). Investigating electrical drive performance employing model predictive control and active disturbance rejection control algorithms. 2020 23rd International Conference on Electrical Machines and Systems (ICEMS). doi: 10.23919/ICEMS50442.2020.9291218Ahmad, S., Deo, B., y Ali, A. (2019, 12). Modified active disturbance rejection control for improved performance. 2019 Sixth Indian Control Conference (ICC), 496-501. doi: 10.1109/ICC47138.2019.9123202Ang, K. H., Chong, G., y Li, Y. (2005, 7). Pid control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13, 559-576. doi: 10.1109/TCST .2005.847331Bakarac, P., Klauco, M., y Fikar, M. (2018). Comparison of inverted pendulum stabilization with pid, lq, and mpc control. Proceedings of the 29th International Conference on Cybernetics and Informatics, K and I 2018, 2018-Janua, 1-6. doi: 10.1109/CYBERI .2018.8337540Baquero-Suáarez, M., Cortés-Romero, J., Arcos-Legarda, J., y Coral-Enriquez, H. (2019, 1). A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle. Multibody System Dynamics, 45, 7-35. doi: 10.1007/s11044-018-9614-yBerber, R., y Kravaris, C. (Eds.). (1998). Nonlinear model based process control. Springer Netherlands. doi: 10.1007/978-94-011-5094-1Borase, R. P., Maghade, D. K., Sondkar, S. Y., y Pawar, S. N. (2020). A review of pid control, tuning methods and applications. International Journal of Dynamics and Control. doi: 10.1007/s40435-020-00665-4Borrelli, F., Falcone, P., Keviczky, T., Asgari, J., y Hrovat, D. (2005). Mpc-based approach to active steering for autonomous vehicle systems. International Journal of Vehicle Autonomous Systems, 3, 265. doi: 10.1504/IJVAS.2005.008237Chen, C.-T. (1995). Analog and digital control system design: Transfer-function, state-space, and algebraic methods (1.a ed.). Oxford University Press, IncChen, K. (1964, 5). Quasi-linearization design of nonlinear feedback control systems. IEEE Transactions on Applications and Industry, 83, 189-195. doi: 10.1109/TAI.1964 .5407789Cheng, D., Hu, X., y Shen, T. (2010). Linearization of nonlinear systems. En (p. 279-313). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-11550-9 10Coral-Enriquez, H., Cortés-Romero, J., y Ramos, G. A. (2013). Robust active disturbance rejection control approach to maximize energy capture in variable-speed wind turbines. Mathematical Problems in Engineering, 2013, 1-12. doi: 10.1155/2013/396740Cortes-Romero, J. A., Luviano-Juarez, A., y Sira-Ramirez, H. (2009). Robust gpi controller for trajectory tracking for induction motors. 2009 IEEE International Conference on Mechatronics, 1-6. doi: 10.1109/ICMECH.2009.4957221Cortés-Romero, J., Jimenez-Triana, A., Coral-Enriquez, H., y Sira-Ram´ırez, H. (2017, 4). Algebraic estimation and active disturbance rejection in the control of flat systems. Control Engineering Practice, 61. doi: 10.1016/j.conengprac.2017.02.009da xue (1993), D., kuang ye da xue., Z., Chapter., I. S. S. I. E., y Society., I. C. S. (2010). 2010 chinese control and decision conference : New century grand hotel, xuzhou, china, 26-28 may 2010. IEEE Industrial Electronics (IE) Chapter.Dorado-Rojas, S. A. (2018). Decentralized Load Frequency Control for a Power System with High Penetration of Wind and Solar Photovoltaic Generation (Tesis Doctoral no publicada). Universidad Nacional de Colombia.Dorado-Rojas, S. A., Cortes-Romero, J., Rivera, S., y Mojica-Nava, E. (2019). ADRC for Decentralized Load Frequency Control with Renewable Energy Generation. 2019 IEEE Milan PowerTech. doi: 10.1109/PTC.2019.8810873Du, H. (2006). Application of smartplant pid software in petrochemical projects. Petroleum Refinery Engineering, 36, 50-52.Elgazzar, M., y Shamekh, A. (2020). Performance comparison of mpc and pid in cstr process control. ACM International Conference Proceeding Series. doi: 10.1145/ 3410352.3410764Fajardo, D. F. (2010). Dynamic systems simulation states space discretization. SIGMA, 1-9.Fliess, M., L`evine, J., Martin, P., y Rouchon, P. (1995, 6). Flatness and defect of nonlinear systems: introductory theory and examples. International Journal of Control, 61, 1327-1361. doi: 10.1080/00207179508921959Friedland, B. (1986). Control system design an introduction to state-space methods. McGrawHill.Galuppini, G., Magni, L., y Raimondo, D. M. (2018, 9). Model predictive control of systems with deadzone and saturation. Control Engineering Practice, 78, 56-64. doi: 10.1016/ j.conengprac.2018.06.010Gao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. Proceedings of the 2003 American Control Conference., 4989-4996. doi: 10.1109/ACC.2003 .1242516Gao, Z. (2006). Active disturbance rejection control: a paradigm shift in feedback control system design. 2006 American Control Conference, 7 pp. doi: 10.1109/ACC.2006 .1656579Gao, Z., y Zhao, S. (2010, 9). Active disturbance rejection control for non-minimum phase systems. Proceedings of the 29th Chinese Control ConferenceGarcía, C. E., Prett, D. M., y Morari, M. (1989, 5). Model predictive control: Theory and practice|a survey. Automatica, 25. doi: 10.1016/0005-1098(89)90002-2Garriga, J. L., y Soroush, M. (2010, 4). Model predictive control tuning methods: A review. Industrial & Engineering Chemistry Research, 49, 3505-3515. doi: 10.1021/ie900323cGarzon, C. L., Cortes, J. A., y Tello, E. (2017, 4). Active disturbance rejection control for growth of microalgae in a batch culture. IEEE Latin America Transactions, 15, 588-594. doi: 10.1109/TLA.2017.7896342Gasparetto, A., Boscariol, P., Lanzutti, A., y Vidoni, R. (2015). Path planning and trajectory planning algorithms: A general overview. En (p. 3-27). doi: 10.1007/978-3-319-14705 -5 1Ghoumari, M. E., Tantau, H.-J., y Serrano, J. (2005, 12). Non-linear constrained mpc: Realtime implementation of greenhouse air temperature control. Computers and Electronics in Agriculture, 49. doi: 10.1016/j.compag.2005.08.005Guo, H., Wang, F., Chen, H., y Guo, D. (2012, 7). Stability control of vehicle with tire blowout using differential flatness based mpc method. Proceedings of the 10th World Congress on Intelligent Control and Automation. doi: 10.1109/WCICA.2012.6358216Han, J. (2009, 3). From pid to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56, 900-906. Descargado de http://ieeexplore.ieee.org/ document/4796887/ doi: 10.1109/TIE.2008.2011621Hanema, J., Toth, R., y Lazar, M. (2017, 12). Stabilizing non-linear mpc using linear parameter-varying representations. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). doi: 10.1109/CDC.2017.8264185Hedengren, J. (2022). Temperature control lab. Descargado de http://apmonitor.com/ pdc/index.php/Main/ArduinoTemperatureControlHuang, Y., y Xue, W. (2014, 7). Active disturbance rejection control: Methodology and theoretical analysis. ISA Transactions, 53, 963-976. doi: 10.1016/j.isatra.2014.03.003Huang, Z., Liu, Y., Zheng, H., Wang, S., Ma, J., y Liu, Y. (2018, 7). A self-searching optimal adrc for the pitch angle control of an underwater thermal glider in the vertical plane motion. Ocean Engineering, 159, 98-111. doi: 10.1016/j.oceaneng.2018.04.010Jiang, J., Zhen, X., Li, Q., Wang, W., Jin, Q., y Pan, L. (2006). The applications of model pid or imc-pid advanced process control to refinery and petrochemical plants. WMSCI 2006 - The 10th World Multi-Conference on Systemics, Cybernetics and Informatics, Jointly with the 12th International Conference on Information Systems Analysis and Synthesis, ISAS 2006 - Proc., 7, 449-461.Jiang, L., Kong, X., Yang, Q., y Shao, F. (2010, 5). Application of compound pid controller in the boiler. 2010 Chinese Control and Decision Conference, 2725-2728. Descargado de http://ieeexplore.ieee.org/document/5498718/ doi: 10.1109/ CCDC.2010.5498718Jiang, Y., y Jiang, Z.-P. (2012, 10). Computational adaptive optimal control for continuoustime linear systems with completely unknown dynamics. Automatica, 48, 2699-2704. doi: 10.1016/j.automatica.2012.06.096Jichkar, C., y Sondkar, S. (2017). Comparative study of real time implementation of labview based mpc controller and pid controller for flow control loop. 2017 2nd International Conference for Convergence in Technology, I2CT 2017, 2017-Janua, 464-470. doi: 10.1109/I2CT.2017.8226172Kang, C., Wang, S., Ren, W., Lu, Y., y Wang, B. (2019). Optimization design and application of active disturbance rejection controller based on intelligent algorithm. IEEE Access, 7 , 59862-59870. doi: 10.1109/ACCESS.2019.2909087Kirk, D. E. (1998). Optimal control theory. Dover Publications, Inc.Kouvaritakis, B., y Cannon, M. (2016). Mpc with no model uncertainty. En (p. 13-64). doi: 10.1007/978-3-319-24853-0 2Kumar, A. S., y Ahmad, Z. (2012, 4). Model predictive control (mpc) and its current issues in chemical engineering. Chemical Engineering Communications, 199 , 472-511. doi: 10.1080/00986445.2011.592446Lakshmi, K., Rajesh, T., Anusuya, D., Prowince, P. G., y Pranesh, B. (2019). Design and implementation of multivariable quadruple tank system with different pid tuning control techniques. Proceedings of the 2019 International Conference on Advances in Computing and Communication Engineering, ICACCE 2019 . doi: 10.1109/ ICACCE46606.2019.9079983Li, S., Yang, J., Chen, W.-H., y Chen, X. (2012, 12). Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics, 59 . doi: 10.1109/TIE.2011.2182011Li, Z., Ma, X., Li, Y., Meng, Q., y Li, J. (2019, 12). Adrc-esmpc active heave compensation control strategy for offshore cranes. Ships and Offshore Structures. doi: 10.1080/ 17445302.2019.1703388Liu, G., Shi, P., Han, J., Rees, D., y Xia, Y. (2007, 1). Active disturbance rejection control for uncertain multivariable systems with time-delay. IET Control Theory & Applications, 1 , 75-81. doi: 10.1049/iet-cta:20050138Luenberger, D. (1971, 12). An introduction to observers. IEEE Transactions on Automatic Control, 16 . doi: 10.1109/TAC.1971.1099826Luenberger, D. G. (1964). Observing the state of a linear system. IEEE Transactions on Military Electronics, 8 . doi: 10.1109/TME.1964.4323124Luenberger, D. G. (1979). Introduction to dynamic systems - theory, models, and applications. John Wiley & Sons, Inc.Lv, T., Yang, Y., y Chai, L. (2019, 7). Extended state observer based mpc for a quadrotor helicopter subject to wind disturbances. 2019 Chinese Control Conference (CCC), 8206-8211. doi: 10.23919/ChiCC.2019.8865370L´evine, J. (2011, 1). On necessary and sufficient conditions for differential flatness. Applicable Algebra in Engineering, Communication and Computing, 22 , 47-90. doi: 10.1007/ s00200-010-0137-xMagni, L., Raimondo, D. M., y Allg¨ower, F. (Eds.). (2009). Nonlinear model predictive control (Vol. 384). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-01094-1Magni, L., y Scattolini, R. (2005, 6). On the solution of the tracking problem for nonlinear systems with mpc. International Journal of Systems Science, 36 . doi: 10.1080/ 00207720500139666Mata, S., Zubizarreta, A., Nieva, I., Cabanes, I., y Pinto, C. (2020, 8). Control mpc basado en un modelo ltv para seguimiento de trayectoria con estabilidad garantizada. XXXVIII Jornadas de Autom´atica: Gij´on, 6, 7, y 8 de septiembre de 2017, 122-129. doi: 10 .17979/spudc.9788497497749.0122Mayne, D., Rawlings, J., Rao, C., y Scokaert, P. (2000, 6). Constrained model predictive control: Stability and optimality. Automatica, 36. doi: 10.1016/S0005-1098(99)00214 -9Mayne, D. Q. (1995). Optimization in model predictive control. En (p. 367-396). Springer Netherlands. doi: 10.1007/978-94-011-0135-6 15Michalek, M. M. (2016, 7). Robust trajectory following without availability of the reference time-derivatives in the control scheme with active disturbance rejection. 2016 American Control Conference (ACC), 1536-1541. doi: 10.1109/ACC.2016.7525134Nieuwstadt, M. V., Rathinam, M., y Murray, R. (1994). Differential flatness and absolute equivalence. Proceedings of 1994 33rd IEEE Conference on Decision and Control, 326-332. doi: 10.1109/CDC.1994.410908Ogata, K. (2010). Modern control engineering (5th ed.). PearsonPan, W., Xiao, H., y Wang, C. (2010, 10). Design of ship course controller based on optimal active disturbance rejection technique. 2010 International Conference on Intelligent System Design and Engineering Application, 582-585. doi: 10.1109/ISDEA.2010.294Paraskevopoulos, P. (2002). Modern control engineering. CRC PressParastiwi, A., y Ekojono. (2016, 7). Design of spray dryer process control by maintaining outlet air temperature of spray dryer chamber. 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 619-622. doi: 10.1109/ ISITIA.2016.7828731Park, J., Martin, R. A., Kelly, J. D., y Hedengren, J. D. (2020, 4). Benchmark temperature microcontroller for process dynamics and control. Computers and Chemical Engineering, 135. doi: 10.1016/J.COMPCHEMENG.2020.106736Petersen, L. N., Poulsen, N. K., Niemann, H. H., Utzen, C., y Jorgensen, J. B. (2014a, 10). Application of constrained linear mpc to a spray dryer. 2014 IEEE Conference on Control Applications (CCA), 2120-2126. doi: 10.1109/CCA.2014.6981616Petersen, L. N., Poulsen, N. K., Niemann, H. H., Utzen, C., y Jorgensen, J. B. (2014b, 12). Economic optimization of spray dryer operation using nonlinear model predictive control. 53rd IEEE Conference on Decision and Control, 6794-6800. doi: 10.1109/ CDC.2014.7040456Qing, W., Nannan, S., Jaqing, W., y Jing, Y. (2008). On the application of optimal adrc in main steam temperature control system. Proceedings of the 27th Chinese Control Conference, CCC , 763-767. doi: 10.1109/CHICC.2008.4605731Rossiter, J. (2005). Model-based predictive control (J. Rossiter, Ed.). CRC Press. doi: 10.1201/9781315272610Shengyong, L. (2019). Optimal control of spraying and drying temperature in production line based on active disturbance rejection control technique. International Journal of Performability Engineering, 15 . doi: 10.23940/ijpe.19.10.p20.27352743Shi, H.-J., y Nie, X.-C. (2021, 4). Composite control for disturbed direct-driven surfacemounted permanent magnet synchronous generator with model prediction strategy. Measurement and Control. doi: 10.1177/00202940211010829Sira-Ramirez, H., Luviano-Ju´arez, A., y Cort´es-Romero, J. (2011, 1). Control lineal robusto de sistemas no lineales. Revista iberoamericana de autom´atica e inform´atica industrial, 8 , 14-28. doi: 10.4995/RIAI.2011.01.04Sira-Ram´ırez, H. (2004). Differentially flat systems. CRC Press. doi: 10.1201/ 9781482276640Sira-Ram´ırez, H. (2018, 11). From flatness, gpi observers, gpi control and flat filters to observer-based adrc. Control Theory and Technology, 16 . doi: 10.1007/s11768-018 -8134-xSira-Ram´ırez, H., Luviano-Ju´arez, A., y Cort´es-Romero, J. (2012, 5). Flatness-based linear output feedback control for disturbance rejection and tracking tasks on a chua’s circuit. International Journal of Control, 85 , 594-602. doi: 10.1080/00207179.2012.660196Sira-ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neira, M., y Zurita-Bustamente, W. (2017). Differential flatness. En (p. 285-297). Elsevier. doi: 10.1016/B978-0-12-849868-2.00015 -0Sira-Ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neria, M., y Zurita-Bustamante, E. W. (2017a). Generalities of adrc. En (p. 13-50). Elsevier. doi: 10.1016/B978-0-12-849868 -2.00002-2Sira-Ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neria, M., y Zurita-Bustamante, E. W. (2017b). Merging flatness, gpi observation, and gpi control with adrc. En (p. 51-107). Elsevier. doi: 10.1016/B978-0-12-849868-2.00003-4Slotine, J.-J. E., y Weiping, L. (1991). Applied nonlinear control. Prentice HallSuhail, S. A., Bazaz, M. A., y Hussain, S. (2021, 10). Mpc based active disturbance rejection control for automated steering control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235 . doi: 10.1177/09544070211004506Sun, L., Hua, Q., Shen, J., Xue, Y., Li, D., y Lee, K. (2017, 8). A combined voltage control strategy for fuel cell. Sustainability, 9 . doi: 10.3390/su9091517Tian, G., y Gao, Z. (2007, 10). Frequency response analysis of active disturbance rejection based control system. 2007 IEEE International Conference on Control Applications, 1595-1599. doi: 10.1109/CCA.2007.4389465Varghese, E. S., Vincent, A. K., y Bagyaveereswaran, V. (2017, 11). Optimal control of inverted pendulum system using pid controller, lqr and mpc. IOP Conference Series: Materials Science and Engineering, 263 , 052007. doi: 10.1088/1757-899X/263/5/052007Velasco, F. H., Candelo-Becerra, J., y Santamar´ıa, A. R. (2018, 12). Dynamic analysis of a permanent magnet dc motor using a buck converter controlled by zad-fpic. Energies,11, 3388. doi: 10.3390/en11123388Warren, A., y Marlin, T. (2004). Constrained mpc under closed-loop uncertainty. Proceedings of the 2004 American Control Conference, 4607-4612 vol.5. doi: 10.23919/ACC.2004 .1384037Wenjie, W., Zhen, H., Rui, C., Feiteng, J., y Huiming, S. (2018, 8). Trajectory tracking control design for uav based on mpc and active disturbance rejection. 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC). doi: 10.1109/GNCC42960 .2018.9019022Wu, H., Zhang, L., Yang, J., y Li, S. (2017, 7). Model predictive control for dc-dc buck power converter-dc motor system with uncertainties using a gpi observer. 2017 36th Chinese Control Conference (CCC). doi: 10.23919/ChiCC.2017.8028129Yamamoto, T., Kawada, K., Kugemoto, H., y Kutsuwa, Y. (2009). Design and industrial applications of a control performance assessment based pid controller. IFAC Proceedings Volumes (IFAC-PapersOnline), 15, 729-734. doi: 10.3182/20090706-3-FR-2004.0162Yan, Y., Yang, J., Sun, Z., Li, S., y Yu, H. (2020, 1). Non-linear-disturbance-observerenhanced mpc for motion control systems with multiple disturbances. IET Control Theory & Applications, 14. doi: 10.1049/iet-cta.2018.5821Yang, H., Guo, M., Xia, Y., y Sun, Z. (2020, 1). Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control. International Journal of Robust and Nonlinear Control, 30. doi: 10.1002/rnc.4750Yang, J., Cui, H., Li, S., y Zolotas, A. (2018a, 2). Optimized active disturbance rejection control for dc-dc buck converters with uncertainties using a reduced-order gpi observer. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 832-841. doi: 10.1109/TCSI.2017.2725386Yang, J., Cui, H., Li, S., y Zolotas, A. (2018b, 2). Optimized active disturbance rejection control for dc-dc buck converters with uncertainties using a reduced-order gpi observer. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 832-841. doi: 10.1109/TCSI.2017.2725386Yang, J., Wu, H., Hu, L., y Li, S. (2019, 10). Robust predictive speed regulation of converterdriven dc motors via a discrete-time reduced-order gpio. IEEE Transactions on Industrial Electronics, 66, 7893-7903. doi: 10.1109/TIE.2018.2878119Yang, Z., Wang, Z., y Yan, M. (2021, 5). An optimization design of adaptive cruise control system based on mpc and adrc. Actuators, 10, 110. doi: 10.3390/act10060110Yoo, D., Yau, S. S.-T., y Gao, Z. (2007, 1). Optimal fast tracking observer bandwidth of the linear extended state observer. International Journal of Control, 80, 102-111. doi: 10.1080/00207170600936555Yu, G.-R., y Hwang, R.-C. (2004). Optimal pid speed control of brush less dc motors using lqr approach. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 1, 473-478. doi: 10.1109/ICSMC.2004.1398343Zeilinger, M. N., Jones, C. N., y Morari, M. (2010, 12). Robust stability properties of soft constrained mpc. 49th IEEE Conference on Decision and Control (CDC), 5276-5282. doi: 10.1109/CDC.2010.5717488Zhang, Z., Cheng, J., y Guo, Y. (2021, 7). Pd-based optimal adrc with improved linear extended state observer. Entropy, 23 . doi: 10.3390/e23070888Zhao, Y., y Huang, Y. (2021, 7). Frequency properties of adrc. 2021 40th Chinese Control Conference (CCC), 6628-6633. doi: 10.23919/CCC52363.2021.9549514Zhou, W., Shao, S. S. L., y Gao, Z. (2009). A stability study of the active disturbance rejection control problem by a singular perturbation approach. Applied Mathematical Sciences, 3 , 491-508.EstudiantesInvestigadoresPúblico generalORIGINAL1032489050.2022.pdf1032489050.2022.pdfTesis de Maestría en Ingeniería - Automatización industrialapplication/pdf4545564https://repositorio.unal.edu.co/bitstream/unal/81667/4/1032489050.2022.pdfc5887f75f71298a4ea43ff7e56974849MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81667/5/license.txt8153f7789df02f0a4c9e079953658ab2MD55THUMBNAIL1032489050.2022.pdf.jpg1032489050.2022.pdf.jpgGenerated Thumbnailimage/jpeg5622https://repositorio.unal.edu.co/bitstream/unal/81667/6/1032489050.2022.pdf.jpgb2bd9f97b013c5075eff3d6e52da8793MD56unal/81667oai:repositorio.unal.edu.co:unal/816672023-08-05 23:04:06.348Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK