A machine learning framework for EEG-based BCI-MI skill prediction with preserved explainability
graficas, tablas
- Autores:
-
Caicedo Acosta, Julian Camilo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86900
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
BCI-illiteracy
EEG
Brain computer interface
Motor imagery
Neurophysiological indicators
MI performance prediction
MI classification
Improvement BCI-illiterate subjects
Interfaz Cerebro-Computadora
Imaginación motora
Indicadores neurofisiológicos
Predicción de rendimiento en MI
Clasificación en MI
Mejoramiento de los sujetos BCIilliterate
Neurociencia computacional
Interfaces cerebro-computadora
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_ad8912c7013644141e3673c21c8757c7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86900 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A machine learning framework for EEG-based BCI-MI skill prediction with preserved explainability |
dc.title.translated.spa.fl_str_mv |
Un marco de aprendizaje automático para la predicción de habilidades BCI-MI basadas en EEG con interpretabilidad preservada |
title |
A machine learning framework for EEG-based BCI-MI skill prediction with preserved explainability |
spellingShingle |
A machine learning framework for EEG-based BCI-MI skill prediction with preserved explainability 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación BCI-illiteracy EEG Brain computer interface Motor imagery Neurophysiological indicators MI performance prediction MI classification Improvement BCI-illiterate subjects Interfaz Cerebro-Computadora Imaginación motora Indicadores neurofisiológicos Predicción de rendimiento en MI Clasificación en MI Mejoramiento de los sujetos BCIilliterate Neurociencia computacional Interfaces cerebro-computadora |
title_short |
A machine learning framework for EEG-based BCI-MI skill prediction with preserved explainability |
title_full |
A machine learning framework for EEG-based BCI-MI skill prediction with preserved explainability |
title_fullStr |
A machine learning framework for EEG-based BCI-MI skill prediction with preserved explainability |
title_full_unstemmed |
A machine learning framework for EEG-based BCI-MI skill prediction with preserved explainability |
title_sort |
A machine learning framework for EEG-based BCI-MI skill prediction with preserved explainability |
dc.creator.fl_str_mv |
Caicedo Acosta, Julian Camilo |
dc.contributor.advisor.none.fl_str_mv |
Castellanos Dominguez, Cesar German Alvarez Meza, Andres Marino |
dc.contributor.author.none.fl_str_mv |
Caicedo Acosta, Julian Camilo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Control y Procesamiento Digital de Señales |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación |
topic |
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación BCI-illiteracy EEG Brain computer interface Motor imagery Neurophysiological indicators MI performance prediction MI classification Improvement BCI-illiterate subjects Interfaz Cerebro-Computadora Imaginación motora Indicadores neurofisiológicos Predicción de rendimiento en MI Clasificación en MI Mejoramiento de los sujetos BCIilliterate Neurociencia computacional Interfaces cerebro-computadora |
dc.subject.proposal.eng.fl_str_mv |
BCI-illiteracy EEG Brain computer interface Motor imagery Neurophysiological indicators MI performance prediction MI classification Improvement BCI-illiterate subjects |
dc.subject.proposal.spa.fl_str_mv |
Interfaz Cerebro-Computadora Imaginación motora Indicadores neurofisiológicos Predicción de rendimiento en MI Clasificación en MI Mejoramiento de los sujetos BCIilliterate |
dc.subject.unesco.none.fl_str_mv |
Neurociencia computacional Interfaces cerebro-computadora |
description |
graficas, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-07T14:07:48Z |
dc.date.available.none.fl_str_mv |
2024-10-07T14:07:48Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86900 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86900 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Abdulkader, S. N.; Atia, A. & Mostafa, M.-S. M.: , 2015; Brain computer interfacing: Applications and challenges; Egyptian Informatics Journal; 16 (2): 213–230. Abdulkarim, H.& Al-Faiz, M. Z.: , 2021; Online multiclass EEG feature extraction and recognition using modified convolutional neural network method; International Journal of Electrical and Computer Engineering (IJECE); 11 (5): 4016–4026. Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.: , 2016; Chapter 3 - technical aspects of brain rhythms and speech parameters; en Introduction to EEG- and Speech-Based Emotion Recognition (Editado por Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.); Academic Press; ISBN 978-0-12-804490-2; págs. 51–79; doi:https://doi.org/10.1016/ B978-0-12-804490-2.00003-8; URL https://www.sciencedirect.com/science/article/pii/B9780128044902000038. Abiri, R.; Borhani, S.; Sellers, E. W.; Jiang, Y. & Zhao, X.: , 2019; A comprehensive review of eeg-based brain–computer interface paradigms; Journal of neural engineering; 16 (1): 011001. Acqualagna, L.; Botrel, L.; Vidaurre, C.; Kübler, A.& Blankertz, B.: , 2016; Large-scale assessment of a fully automatic co-adaptive motor imagery-based brain computer interface; PloS one; 11 (2): e0148886. Aggarwal, S. & Chugh, N.: , 2019; Signal processing techniques for motor imagery brain computer interface: A review; Array; 1: 100003. Ahani, A.; Wahbeh, H.; Nezamfar, H.; Miller, M.; Erdogmus, D. & Oken, B.: , 2014; Quantitative change of EEG and respiration signals during mindfulness meditation; Journal of neuroengineering and rehabilitation; 11 (1): 1–11. Ahirwal, M. K.; Kumar, A. & Singh, G. K.: , 2014; Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm; Digital Signal Processing; 25: 164–172. Ahn, M. & Jun, S. C.: , 2015; Performance variation in motor imagery brain–computer interface: a brief review; Journal of neuroscience methods; 243: 103–110. Ahn, M.; Cho, H.; Ahn, S. & Jun, S. C.: , 2013; High theta and low alpha powers may be indicative of bci-illiteracy in motor imagery; PloS one; 8 (11): e80886. Ahn, M.; Lee, M.; Choi, J. & Jun, S. C.: , 2014; A review of brain-computer interface games and an opinion survey from researchers, developers and users; Sensors; 14 (8): 14601–14633. Ai, Q.; Chen, A.; Chen, K.; Liu, Q.; Zhou, T.; Xin, S. & Ji, Z.: , 2019; Feature extraction of four-class motor imagery EEG signals based on functional brain network; Journal of Neural Engineering; 16 (2): 026032. Akella, A.; Singh, A. K.; Leong, D.; Lal, S.; Newton, P.; Clifton-Bligh, R.; Mclachlan, C. S.; Gustin, S. M.; Maharaj, S.; Lees, T. et al.: , 2021; Classifying multi-level stress responses from brain cortical EEG in nurses and non-health professionals using machine learning auto encoder; IEEE Journal of Translational Engineering in Health and Medicine; 9: 1–9. Al-Fahad, R.; Yeasin, M. & Bidelman, G. M.: , 2020; Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions; Journal of Neural Engineering; 17(1): 016045. Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y. & Al-Wabil, A.: , 2017; Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review; Applied Sciences; 7 (12): 1239. Al Nazi, Z.; Hossain, A. A. & Islam, M. M.: , 2021; Motor imagery EEG classification using random subspace ensemble network with variable length features; International Journal Bioautomation; 25 (1): 13. Al-Saegh, A.; Dawwd, S. A.& Abdul-Jabbar, J. M.: , 2021; Deep learning for motor imagery EEG-based classification: A review; Biomedical Signal Processing and Control; 63: 102172. Al-Shargie, F. M.; Hassanin, O.; Tariq, U. & Al-Nashash, H.: , 2020; EEG-based semantic vigilance level classification using directed connectivity patterns and graph theory analysis; IEEE Access; 8: 115941–115956. Aldayel, M.; Ykhlef, M. & Al-Nafjan, A.: , 2020; Deep learning for EEG-based preference classification in neuromarketing; Applied Sciences; 10 (4): 1525. Ali, H. T.; Kammoun, A.& Couillet, R.: , 2018; Random matrix-improved kernels for large dimensional spectral clustering; en 2018 IEEE Statistical Signal Processing Workshop (SSP); IEEE; págs. 453–457. Allison, B.; Luth, T.; Valbuena, D.; Teymourian, A.; Volosyak, I. & Graser, A.: , 2010; Bci demographics: How many (and what kinds of) people can use an ssvep bci?; IEEE transactions on neural systems and rehabilitation engineering; 18 (2): 107–116. Allison, B. Z. & Neuper, C.: , 2010; Could anyone use a bci?; Brain-computer interfaces: Applying our minds to human-computer interaction: 35–54. Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S. U.; Altuwaijri, G. A.; Abdul, W.; Bencherif, M. A. & Faisal, M.: , 2023; Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: A review; Neural Computing and Applications; 35 (20): 14681–14722. Álvarez-Meza, A.; Cárdenas-Peña, D. & Castellanos-Dominguez, G.: , 2014a; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342. Alvarez-Meza, A.; Orozco-Gutierrez, A. & Castellanos-Dominguez, G.: , 2017; Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns; Frontiers in neuroscience; 11: 550. Álvarez-Meza, A. M.; Cárdenas-Pena, D. & Castellanos-Dominguez, G.: , 2014b; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342. Alvi, A. M.; Siuly, S. & Wang, H.: , 2022; A long short-term memory based framework for early detection of mild cognitive impairment from eeg signals; IEEE Transactions on Emerging Topics in Computational Intelligence; 7 (2): 375–388. Alzahab, N. A.; Apollonio, L.; Di Iorio, A.; Alshalak, M.; Iarlori, S.; Ferracuti, F.; Monteriù, A. & Porcaro, C.: , 2021; Hybrid deep learning (hdl)-based brain-computer interface (bci) systems: a systematic review; Brain sciences; 11 (1): 75. Amir, J.; Amir, R.; Ednaldo Birgante, P. & Md Kafiul, I.: , 2020; Classification of emotions induced by horror and relaxing movies using single-channel EEG recordings. Ang, K. K.; Chin, Z. Y.; Zhang, H. & Guan, C.: , 2008; Filter bank common spatial pattern (fbcsp) in brain- computer interface; en 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence); IEEE; págs. 2390–2397. Ang, K. K.; Chin, Z. Y.; Wang, C.; Guan, C. & Zhang, H.: , 2012; Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b; Frontiers in neuroscience; 6: 39. Anowar, F.; Sadaoui, S. & Selim, B.: , 2021; Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE); Computer Science Review; 40: 100378. Anupallavi, S. & MohanBabu, G.: , 2020; A novel approach based on BSPCI for quantifying functional connectivity pattern of the brain’s region for the classification of epileptic seizure; Journal of Ambient Intelligence and Humanized Computing: 1–11. Apicella, A.; Arpaia, P.; Frosolone, M. & Moccaldi, N.: , 2021; High-wearable EEG-based distraction detection in motor rehabilitation; Scientific Reports; 11 (1): 1–9. Arrieta, A. B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R. et al.: , 2020; Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai; Information fusion; 58: 82–115. Arvaneh, M.; Guan, C.; Ang, K.K.&Quek, C.: , 2011; Optimizingthechannelselectionandclassification accuracy in EEG-based BCI; IEEE Transactions on Biomedical Engineering; 58 (6): 1865–1873. Autthasan, P.; Chaisaen, R.; Sudhawiyangkul, T.; Rangpong, P.; Kiatthaveephong, S.; Dilok- thanakul, N.; Bhakdisongkhram, G.; Phan, H.; Guan, C. & Wilaiprasitporn, T.: , 2021; Min2net: End-to-end multi- task learning for subject-independent motor imagery eeg classification; IEEE Transactions on Biomedical Engineering; 69 (6): 2105–2118. Baig, M. Z.; Aslam, N. & Shum, H. P.: , 2020; Filtering techniques for channel selection in motor imagery eeg applications: a survey; Artificial intelligence review; 53: 1207–1232. Bakhshali, M.; Khademi, M.; Ebrahimi, A.& Moghimi, S.: , 2020; Eeg signal classification of imagined speech based on riemannian distance of correntropy spectral density; Biomedical Signal Processing and Control; 59: 101899. Bamdad, M.; Zarshenas, H. & Auais, M. A.: , 2015; Application of bci systems in neurorehabilitation: a scoping review; Disability and Rehabilitation: Assistive Technology; 10 (5): 355–364. Bamdadian, A.; Guan, C.; Ang, K. K. & Xu, J.: , 2014; The predictive role of pre-cue eeg rhythms on mi-based bci classification performance; Journal of neuroscience methods; 235: 138–144. Bang, J.-S. & Lee, S.-W.: , 2022; Interpretable convolutional neural networks for subject-independent motor imagery classification; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5. Baniqued, P.D.E.; Stanyer, E.C.; Awais, M.; Alazmani, A.; Jackson, A.E.; Mon-Williams, M.A.; Mushtaq, F.& Holt, R. J.: , 2021; Brain–computer interface robotics for hand rehabilitation after stroke: a systematic review; Journal of NeuroEngineering and Rehabilitation; 18 (1): 1–25. Bao, G.; Zhuang, N.; Tong, L.; Yan, B.; Shu, J.; Wang, L.; Zeng, Y. & Shen, Z.: , 2021; Two-level domain adaptation neural network for eeg-based emotion recognition; Frontiers in Human Neuroscience; 14: 605246. Barabási, D. L.; Bianconi, G.; Bullmore, E.; Burgess, M.; Chung, S.; Eliassi-Rad, T.; George, D.; Kovács, I. A.; Makse, H.; Nichols, T. E. et al.: , 2023; Neuroscience needs network science; Journal of Neuroscience; 43 (34): 5989–5995. Barachant, A.; Bonnet, S.; Congedo, M. & Jutten, C.: , 2013; Classification of covariance matrices using a riemannian-based kernel for BCI applications; Neurocomputing; 112: 172–178. Bastos, A. M. & Schoffelen, J.-M.: , 2016; A tutorial review of functional connectivity analysis methods and their interpretational pitfalls; Frontiers in systems neuroscience; 9: 175. Battaglia, D. & Brovelli, A.: , 2020; Functional connectivity and neuronal dynamics: insights from computational methods; The Cognitive Neurosciences. Benzy, V.; Vinod, A.; Subasree, R.; Alladi, S.& Raghavendra, K.: , 2020; Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (12): 3051–3062. Betzel, R. F.; Bertolero, M. A.; Gordon, E. M.; Gratton, C.; Dosenbach, N. U. & Bassett, D. S.: , 2019; The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability; Neuroimage; 202: 115990. Bhadra, K.; Giraud, A. L. & Marchesotti, S.: , 2023; Learning to operate an imagined speech brain- computer interface involves the spatial and frequency tuning of neural activity; bioRxiv: 2023–09. Bishop, C. M.: , 2006; Pattern recognition and machine learning; springer. Blankertz, B.; Sanelli, C.; Halder, S.; Hammer, E.; Kübler, A.; Müller, K.-R.; Curio, G. & Dickhaus, T.: , 2009; Predicting bci performance to study bci illiteracy; BMC Neurosci; 10 (Suppl 1): P84. Blankertz, B.; Sannelli, C.; Halder, S.; Hammer, E. M.; Kübler, A.; Müller, K.-R.; Curio, G. & Dickhaus, T.: , 2010; Neurophysiological predictor of smr-based bci performance; Neuroimage; 51 (4): 1303–1309. Bochner, S.: , 2020; Harmonic analysis and the theory of probability; University of California press. Bonci, A.; Fiori, S.; Higashi, H.; Tanaka, T. & Verdini, F.: , 2021; An introductory tutorial on brain– computer interfaces and their applications; Electronics; 10 (5): 560. Borgheai, S. B.; Zisk, A. H.; McLinden, J.; Mcintyre, J.; Sadjadi, R. & Shahriari, Y.: , 2024; Multimodal pre-screening can predict bci performance variability: A novel subject-specific experimental scheme; Computers in Biology and Medicine; 168: 107658. Borra, D.; Fantozzi, S. & Magosso, E.: , 2020; Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination; Neural Networks; 129: 55–74. Braga-Neto, U. M. & Dougherty, E. R.: , 2004; Is cross-validation valid for small-sample microarray classification?; Bioinformatics; 20 (3): 374–380. Brigato, L. & Iocchi, L.: , 2021; A close look at deep learning with small data; en 2020 25th International Conference on Pattern Recognition (ICPR); IEEE; págs. 2490–2497. Brockmeier, A.; Choi, J.; Kriminger, E.; Francis, J. & Principe, J.: , 2014; Neural decoding with kernel-based metric learning; Neural computation; 26 (6): 1080–1107. Bromiley, P.; Thacker, N. & Bouhova-Thacker, E.: , 2004; Shannon entropy, renyi entropy, and infor- mation; statistics and inf; Series (2004-004). Brunner, C.; Birbaumer, N.; Blankertz, B.; Guger, C.; Kübler, A.; Mattia, D.; Millán, J. d. R.; Miralles, F.; Nijholt, A.; Opisso, E. et al.: , 2015; Bnci horizon 2020: towards a roadmap for the bci community; Brain- computer interfaces; 2 (1): 1–10. Bruns, A.: , 2004; Fourier-, hilbert-and wavelet-based signal analysis: are they really different approaches?; Journal of neuroscience methods; 137 (2): 321–332. Buchanan, D. M.; Ros, T. & Nahas, R.: , 2021; Elevated and slowed EEG oscillations in patients with post-concussive syndrome and chronic pain following a motor vehicle collision; Brain Sciences; 11 (5): 537. Burde, W.& Blankertz, B.: , 2006; Is the locus of control of reinforcement a predictor of brain-computer interface performance? Cai, Q.; Gong, W.; Deng, Y. & Wang, H.: , 2021; Single-trial EEG classification via common spatial patterns with mixed lp-and lq-norms; Mathematical Problems in Engineering; 2021. Cai, Y.; She, Q.; Ji, J.; Ma, Y.; Zhang, J. & Zhang, Y.: , 2022; Motor imagery eeg decoding using manifold embedded transfer learning; Journal of Neuroscience Methods; 370: 109489. Caicedo-Acosta, J.; Castaño, G. A.; Acosta-Medina, C.; Alvarez-Meza, A. & Castellanos- Dominguez, G.: , 2021; Deep neural regression prediction of motor imagery skills using eeg functional connectivity indicators; Sensors; 21 (6): 1932. Calesella, F.; Testolin, A.; De Filippo De Grazia, M. & Zorzi, M.: , 2020; A systematic assessment of feature extraction methods for robust prediction of neuropsychological scores from functional connectivity data; en International conference on brain informatics; Springer; págs. 29–40. Cárdenas-Peña, D.; Collazos-Huertas, D.& Castellanos-Dominguez, G.: , 2017; Enhanced data representation by kernel metric learning for dementia diagnosis; Frontiers in neuroscience; 11: 413. Chaddad, A.; Peng, J.; Xu, J. & Bouridane, A.: , 2023a; Survey of explainable ai techniques in health- care; Sensors; 23 (2): 634. Chaddad, A.; Wu, Y.; Kateb, R. & Bouridane, A.: , 2023b; Electroencephalography signal processing: A comprehensive review and analysis of methods and techniques; Sensors; 23 (14): 6434. Chakraborty, S.; Tomsett, R.; Raghavendra, R.; Harborne, D.; Alzantot, M.; Cerutti, F.; Sri- vastava, M.; Preece, A.; Julier, S.; Rao, R. M.et al.: , 2017; Interpretability of deep learning models: A survey of results; en 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communi- cations, cloud & big data computing, Internet of people and smart city innovation (smartworld/SCALCOM/UIC/ATC/CB- Dcom/IOP/SCI); IEEE; págs. 1–6. Chamola, V.; Vineet, A.; Nayyar, A. & Hossain, E.: , 2020; Brain-computer interface-based humanoid control: A review; Sensors; 20 (13): 3620. Chao, H. & Liu, Y.: , 2020; Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework; IEEE Access; 8: 33002–33012. Chen, X.; Li, C.; Liu, A.; McKeown, M. J.; Qian, R. & Wang, Z. J.: , 2022; Toward open-world electroen- cephalogram decoding via deep learning: A comprehensive survey; IEEE Signal Processing Magazine; 39 (2): 117–134. Chen, Y.; Meng, L. & Zhang, J.: , 2019a; Graph neural lasso for dynamic network regression; arXiv preprint arXiv:1907.11114. Chen, Y.; Hang, W.; Liang, S.; Liu, X.; Li, G.; Wang, Q.; Qin, J. & Choi, K.-S.: , 2020; A novel transfer support matrix machine for motor imagery-based brain computer interface; Frontiers in Neuroscience; 14. Chen, Z.; Ji, J. & Liang, Y.: , 2019b; Convolutional neural network with an element-wise filter to classify dynamic functional connectivity; en 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 643–646. Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M. et al.: , 2016; Wide & deep learning for recommender systems; en Proceedings of the 1st workshop on deep learning for recommender systems; págs. 7–10. Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L. & Mesin, L.: , 2023; Connectivity analysis in eeg data: A tutorial review of the state of the art and emerging trends; Bioengineering; 10 (3): 372. Cho, H.; Ahn, M.; Ahn, S.; Kwon, M. & Jun, S. C.: , 2017; Eeg datasets for motor imagery brain–computer interface; GigaScience; 6 (7): gix034. Cinel, C.; Valeriani, D. & Poli, R.: , 2019; Neurotechnologies for human cognitive augmentation: current state of the art and future prospects; Frontiers in human neuroscience; 13: 13. Clark, S. V.; King, T. Z.& Turner, J. A.: , 2020; Cerebellar contributions to proactive and reactive control in the stop signal task: A systematic review and meta-analysis of functional magnetic resonance imaging studies; Neuropsychology review: 1–24. Coelho, G. P.; Barbante, C. C.; Boccato, L.; Attux, R. R.; Oliveira, J. R. & Von Zuben, F. J.: , 2012; Automatic feature selection for BCI: an analysis using the davies-bouldin index and extreme learning machines; en The 2012 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8. Cohen, L.: , 1998; The generalization of the wiener-khinchin theorem; en Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), tomo 3; IEEE; págs. 1577–1580. Collazos-Huertas, D.; Álvarez-Meza, A.; Acosta-Medina, C.; Castaño-Duque, G. & Castellanos-Dominguez, G.: , 2020; CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification; Brain Informatics; 7 (1): 1–13. Collazos-Huertas, D. F.; Velasquez-Martinez, L. F.; Perez-Nastar, H. D.; Alvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2021; Deep and wide transfer learning with kernel matching for pooling data from electroencephalography and psychological questionnaires; Sensors; 21 (15): 5105. Collazos-Huertas, D. F.; Álvarez-Meza, A. M.; Cárdenas-Peña, D. A.; Castaño-Duque, G. A. & Castellanos-Domínguez, C. G.: , 2023; Posthoc interpretability of neural responses by grouping subject motor imagery skills using cnn-based connectivity; Sensors; 23 (5): 2750. Congedo, M.; Barachant, A.& Bhatia, R.: , 2017a; Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review; Brain-Computer Interfaces; 4 (3): 155–174. Congedo, M.; Barachant, A. & Koopaei, E. K.: , 2017b; Fixed point algorithms for estimating power means of positive definite matrices; IEEE Transactions on Signal Processing; 65 (9): 2211–2220. Congedo, M.; Rodrigues, P. L. C.; Bouchard, F.; Barachant, A. & Jutten, C.: , 2017c; A closed- form unsupervised geometry-aware dimensionality reduction method in the riemannian manifold of SPD matrices; en 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE; págs. 3198–3201. Craik, A.; He, Y. & Contreras-Vidal, J. L.: , 2019; Deep learning for electroencephalogram (EEG) classifi- cation tasks: a review; Journal of Neural Engineering; 16 (3): 031001. Cui, Y.; Xie, S.; Fu, Y. & Xie, X.: , 2023; Predicting motor imagery bci performance based on eeg microstate analysis; Brain Sciences; 13 (9): 1288. Dai, H.; Su, S.; Zhang, Y. & Jian, W.: , 2020; Effect of spatial filtering and channel selection on motor imagery BCI; en Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare; págs. 270–274. Daly, I.; Nasuto, S. J. & Warwick, K.: , 2012; Brain computer interface control via functional connectivity dynamics; Pattern recognition; 45 (6): 2123–2136. De La Pava Panche, I.; Alvarez-Meza, A. & Orozco-Gutierrez, A.: , 2019; A data-driven measure of effective connectivity based on renyi’s α-entropy; Frontiers in neuroscience; 13: 1277. Deng, Y.; Li, Z.; Wang, H.; Lu, X.& Fan, H.: , 2020; Local temporal joint recurrence common spatial patterns for MI-based BCI; en 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), tomo 1; IEEE; págs. 813–816. Dornhege, G.; Millán, J. d. R.; Hinterberger, T.; McFarland, D. J. & Müller, K.-R.: , 2007; An introduction to brain-computer interfacing. dos Santos, E. M.; Cassani, R.; Falk, T. H. & Fraga, F. J.: , 2020; Improved motor imagery brain- computer interface performance via adaptive modulation filtering and two-stage classification; Biomedical Signal Processing and Control; 57: 101812. Doshi-Velez, F. & Kim, B.: , 2017; Towards a rigorous science of interpretable machine learning; arXiv preprint arXiv:1702.08608. Douibi, K.; Le Bars, S.; Lemontey, A.; Nag, L.; Balp, R. & Breda, G.: , 2021; Toward eeg-based bci applications for industry 4.0: challenges and possible applications; Frontiers in Human Neuroscience; 15: 705064. Duan, L.; Zhong, H.; Miao, J.; Yang, Z.; Ma, W. & Zhang, X.: , 2014; A voting optimized strategy based on ELM for improving classification of motor imagery BCI data; Cognitive Computation; 6 (3): 477–483. Duan, L.; Duan, H.; Qiao, Y.; Sha, S.; Qi, S.; Zhang, X.; Huang, J.; Huang, X. & Wang, C.: , 2020; Machine learning approaches for MDD detection and emotion decoding using EEG signals; Frontiers in Human Neuroscience; 14. Duan, S.; Yu, S. & Príncipe, J. C.: , 2021; Modularizing deep learning via pairwise learning with kernels; IEEE Transactions on Neural Networks and Learning Systems. Duclos, C.; Maschke, C.; Mahdid, Y.; Berkun, K.; da Silva Castanheira, J.; Tarnal, V.; Picton, P.; Vanini, G.; Golmirzaie, G.; Janke, E. et al.: , 2021; Differential classification of states of consciousness using envelope-and phase-based functional connectivity; NeuroImage; 237: 118171. EPMoghaddam, D.; Sheth, S. A.; Haneef, Z.; Gavvala, J. & Aazhang, B.: , 2022; Epileptic seizure prediction using spectral width of the covariance matrix; Journal of Neural Engineering; 19 (2): 026029. Fahimi, F.; Zhang, Z.; Goh, W. B.; Lee, T.-S.; Ang, K. K. & Guan, C.: , 2019; Inter-subject transfer learning with an end-to-end deep convolutional neural network for eeg-based bci; Journal of neural engineering; 16(2): 026007. Fan, F.-L.; Xiong, J.; Li, M. & Wang, G.: , 2021; On interpretability of artificial neural networks: A survey; IEEE Transactions on Radiation and Plasma Medical Sciences; 5 (6): 741–760. Fauzi, H.; Azzam, M. A.; Shapiai, M. I.; Kyoso, M.; Khairuddin, U. & Komura, T.: , 2019; Energy extraction method for EEG channel selection; Telkomnika; 17 (5): 2561–2571. Feng, Z.; Qian, L.; Hu, H. & Sun, Y.: , 2020; Functional connectivity for motor imaginary recognition in brain-computer interface; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 3678–3682. Fine, S.& Scheinberg, K.: , 2001; Efficient SVM training using low-rank kernel representations; Journal of Machine Learning Research; 2 (Dec): 243–264. Fischer, M. H. F.; Zibrandtsen, I. C.; Høgh, P. & Musaeus, C. S.: , 2023; Systematic review of eeg coherence in alzheimer’s disease; Journal of Alzheimer’s Disease; (Preprint): 1–12. Fleury, M.; Figueiredo, P.; Vourvopoulos, A. & Lécuyer, A.: , 2023; Two is better? combining eeg and fmri for bci and neurofeedback: A systematic review. Fong, R. C. & Vedaldi, A.: , 2017; Interpretable explanations of black boxes by meaningful perturbation; en Proceedings of the IEEE international conference on computer vision; págs. 3429–3437. Friston, K. J.: , 2011; Functional and effective connectivity: a review; Brain connectivity; 1 (1): 13–36. Frolov, N.; Maksimenko, V.; Lüttjohann, A.; Koronovskii, A. & Hramov, A.: , 2019; Feed-forward artificial neural network provides data-driven inference of functional connectivity; Chaos: An Interdisciplinary Journal of Nonlinear Science; 29 (9): 091101. Fu, R.; Han, M.; Tian, Y. & Shi, P.: , 2020; Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833. Gao, Z.; Dang, W.; Wang, X.; Hong, X.; Hou, L.; Ma, K. & Perc, M.: , 2021; Complex networks and deep learning for EEG signal analysis; Cognitive Neurodynamics; 15 (3): 369–388. García-Murillo, D. G.; Alvarez-Meza, A. & Castellanos-Dominguez, G.: , 2021; Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks; Sensors; 21 (8): 2750. García-Murillo, D. G.; Álvarez-Meza, A. M. & Castellanos-Dominguez, C. G.: , 2023; Kcs-fcnet: Kernel cross-spectral functional connectivity network for eeg-based motor imagery classification; Diagnostics; 13 (6): 1122. García-Prieto, J.; Bajo, R. & Pereda, E.: , 2017; Efficient computation of functional brain networks: Toward real-time functional connectivity; Frontiers in neuroinformatics; 11: 8. Garg, D.; Verma, G. K. & Singh, A. K.: , 2023; A review of deep learning based methods for affect analysis using physiological signals; Multimedia Tools and Applications: 1–46. Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. & Wang, H.: , 2021a; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9. Gaur, P.; McCreadie, K.; Pachori, R. B.; Wang, H. & Prasad, G.: , 2021b; An automatic subject specific channelselectionmethodforenhancingmotorimageryclassificationinEEG-BCIusingcorrelation; Biomedical Signal Processing and Control; 68: 102574. Gaxiola-Tirado, J. A.; Salazar-Varas, R. & Gutiérrez, D.: , 2017; Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces; IEEE Transactions on Cognitive and Developmental Systems; 10 (3): 776–783. Georgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2019; Connectivity steered graph fourier transform for motor imagery bci decoding; Journal of neural engineering; 16 (5): 056021. Géron, A.: , 2022; Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow; " O’Reilly Media, Inc.". Ghane, P.& Hossain, G.: , 2020; Learning patterns in imaginary vowels for an intelligent brain computer interface (bci) design; arXiv preprint arXiv:2010.12066. Ghane, P.; Zarnaghinaghsh, N. & Braga-Neto, U.: , 2021; Comparison of classification algorithms towards subject-specific and subject-independent bci; en 2021 9th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–6. Goldberger, A. L.; Amaral, L. A.; Glass, L.; Hausdorff, J. M.; Ivanov, P. C.; Mark, R. G.; Mietus, J. E.; Moody, G. B.; Peng, C.-K. & Stanley, H. E.: , 2000; Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals; circulation; 101 (23): e215–e220. Golugula, A.; Lee, G. & Madabhushi, A.: , 2011; Evaluating feature selection strategies for high dimen- sional, small sample size datasets; en 2011 Annual International conference of the IEEE engineering in medicine and biology society; IEEE; págs. 949–952. Gonuguntla, V.; Wang, Y. & Veluvolu, K. C.: , 2016; Event-related functional network identification: application to EEG classification; IEEE journal of selected topics in signal processing; 10 (7): 1284–1294. Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2020; Network-based brain computer interfaces: principles and applications; Journal of Neural Engineering Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2021; Network-based brain–computer interfaces: principles and applications; Journal of neural engineering; 18 (1): 011001. Gramfort, A. & Clerc, M.: , 2007; Low dimensional representations of MEG/EEG data using laplacian eigenmaps; en 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging; IEEE; págs. 169–172. Grigorev, N. A.; Savosenkov, A. O.; Lukoyanov, M. V.; Udoratina, A.; Shusharina, N. N.; Kaplan, A. Y.; Hramov, A. E.; Kazantsev, V. B.& Gordleeva, S.: , 2021; A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1583–1592. Grilo, M.; Ribeiro, L.; Moraes, C.; Melo, C.; Fantinato, D.; Sampaio, L.; Neves, A.&Ramos, R.: , 2019; Artifact removal in EEG based emotional signals through linear and nonlinear methods; en 2019 E-Health and Bioengineering Conference (EHB); IEEE; págs. 1–4. Gu, J.; Wei, M.; Guo, Y. & Wang, H.: , 2021; Common spatial pattern with l21-norm; Neural Processing Letters: 1–20. Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020a; EEG-based classification of lower limb motor imagery with brain network analysis; Neuroscience; 436: 93–109. Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020b; Random matrix theory for analysing the brain functional network in lower limb motor imagery; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 506–509. Guger, C.; Allison, B. Z.; Großwindhager, B.; Prückl, R.; Hintermüller, C.; Kapeller, C.; Bruckner, M.; Krausz, G. & Edlinger, G.: , 2012; How many people could use an ssvep bci?; Frontiers in neuroscience; 6: 169. Guillot, A. & Debarnot, U.: , 2019; Benefits of motor imagery for human space flight: a brief review of current knowledge and future applications; Frontiers in Physiology; 10: 396. Gupta, A.; Agrawal, R. & Kaur, B.: , 2015; Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods; Soft Computing; 19 (10): 2799–2812. Haddad, A.; Shamsi, F.; Ghovanloo, M. & Najafizadeh, L.: , 2019; Early decoding of tongue-hand move- ment from EEG recordings using dynamic functional connectivity graphs; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 373–376. Hagedorn, L. J.; Leeuwis, N. & Alimardani, M.: , 2021; Prediction of inefficient bci users based on cognitive skills and personality traits; en International Conference on Neural Information Processing; Springer; págs. 81–89. Halder, S.; Agorastos, D.; Veit, R.; Hammer, E. M.; Lee, S.; Varkuti, B.; Bogdan, M.; Rosenstiel, W.; Birbaumer, N. & Kübler, A.: , 2011; Neural mechanisms of brain–computer interface control; Neuroimage; 55 (4): 1779–1790. Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R. & Birbaumer, N.: , 2013; Prediction of brain-computer interface aptitude from individual brain structure; Frontiers in human neuroscience; 7: 105. Hamedi, M.; Salleh, S.-H. & Noor, A. M.: , 2016; Electroencephalographic motor imagery brain connec- tivity analysis for BCI: a review; Neural computation; 28 (6): 999–1041. Hammer, E. M.; Halder, S.; Blankertz, B.; Sannelli, C.; Dickhaus, T.; Kleih, S.; Müller, K.-R. & Kübler, A.: , 2012; Psychological predictors of smr-bci performance; Biological psychology; 89 (1): 80–86. Hang, W.; Feng, W.; Liang, S.; Wang, Q.; Liu, X. & Choi, K.-S.: , 2020; Deep stacked support matrix machine based representation learning for motor imagery EEG classification; Computer methods and programs in biomedicine; 193: 105466. He, B.; Astolfi, L.; Valdés-Sosa, P. A.; Marinazzo, D.; Palva, S. O.; Bénar, C.-G.; Michel, C. M. & Koenig, T.: , 2019; Electrophysiological brain connectivity: theory and implementation; IEEE Transactions on Biomedical Engineering; 66 (7): 2115–2137. He, H. & Wu, D.: , 2019; Transfer learning for brain–computer interfaces: A euclidean space data alignment approach; IEEE Transactions on Biomedical Engineering; 67 (2): 399–410. He, L.; Hu, Y.; Li, Y. & Li, D.: , 2013; Channel selection by rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG; Neurocomputing; 121: 423–433. He, Y.; Lu, Z.; Wang, J.& Shi, J.: , 2022; A channel attention based mlp-mixer network for motor imagery decod- ing with eeg; en ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); IEEE; págs. 1291–1295. Herranz-Gómez, A.; Gaudiosi, C.; Angulo-Díaz-Parreño, S.; Suso-Martí, L.; La Touche, R. & Cuenca-Martínez, F.: , 2020; Effectiveness of motor imagery and action observation on functional variables: An umbrella and mapping review with meta-meta-analysis; Neuroscience & Biobehavioral Reviews. Herszage, J.; Dayan, E.; Sharon, H. & Censor, N.: , 2020; Explaining individual differences in motor behavior by intrinsic functional connectivity and corticospinal excitability; Frontiers in neuroscience; 14: 76. Ho, R. & Hung, K.: , 2020; A comparative investigation of mode mixing in eeg decomposition using emd, eemd and m-emd; en 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE); IEEE; págs. 203–210. Hochberg, L. R.; Bacher, D.; Jarosiewicz, B.; Masse, N. Y.; Simeral, J. D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S. S.; Van Der Smagt, P. et al.: , 2012; Reach and grasp by people with tetraplegia using a neurally controlled robotic arm; Nature; 485 (7398): 372–375. Hosseini, M.; Powell, M.; Collins, J.; Callahan-Flintoft, C.; Jones, W.; Bowman, H. & Wyble, B.: , 2020a; I tried a bunch of things: The dangers of unexpected overfitting in classification of brain data; Neuroscience & Biobehavioral Reviews. Hosseini, M.-P.; Hosseini, A.& Ahi, K.: , 2020b; A review on machine learning for EEG signal processing in bioengineering; IEEE reviews in biomedical engineering. Hrisca-Eva, O.-D. & Lazar, A. M.: , 2021; Multi-sessions outcome for EEG feature extraction and classification methods in a motor imagery task.; Traitement du Signal; 38 (2). Hsu, L. & Chen, Y.-J.: , 2020; Neuromarketing, subliminal advertising, and hotel selection: An EEG study; Australasian Marketing Journal (AMJ); 28 (4): 200–208. Huang, G.; Hu, Z.; Chen, W.; Zhang, S.; Liang, Z.; Li, L.; Zhang, L. & Zhang, Z.: , 2022; M3cv: A multi-subject, multi-session, and multi-task database for eeg-based biometrics challenge; NeuroImage; 264: 119666. Hurtado-Rincón, J. V.; Martínez-Vargas, J. D.; Rojas-Jaramillo, S.; Giraldo, E. & Castellanos-Dominguez, G.: , 2016; Identification of relevant inter-channel EEG connectivity patterns: a kernel-based super- vised approach; en International Conference on Brain Informatics; Springer; págs. 14–23. Idowu, O. P.; Ilesanmi, A. E.; Li, X.; Samuel, O. W.; Fang, P. & Li, G.: , 2021; An integrated deep learning model for motor intention recognition of multi-class EEG signals in upper limb amputees; Computer Methods and Programs in Biomedicine; 206: 106121. Ingolfsson, T. M.; Hersche, M.; Wang, X.; Kobayashi, N.; Cavigelli, L. & Benini, L.: , 2020; Eeg-tcnet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 2958–2965. Ioffe, S. & Szegedy, C.: , 2015; Batch normalization: Accelerating deep network training by reducing internal covariate shift; en International conference on machine learning; pmlr; págs. 448–456. Islam, M. K.& Rastegarnia, A.: , 2023; Recent advances in eeg (non-invasive) based bci applications; Frontiers in Computational Neuroscience; 17: 1151852. Islam, M. K.; Rastegarnia, A. & Yang, Z.: , 2016; Methods for artifact detection and removal from scalp eeg: A review; Neurophysiologie Clinique/Clinical Neurophysiology; 46 (4-5): 287–305. Ismail, L. E. & Karwowski, W.: , 2020; A graph theory-based modeling of functional brain connec- tivity based on EEG: A systematic review in the context of neuroergonomics; IEEE Access; 8: 155103–155135. Iturralde, P. A.; Patrone, M.; Lecumberry, F. & Fernández, A.: , 2012; Motor intention recognition in EEG: In pursuit of a relevant feature set; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 551–558. Jahromy, F. Z.; Bajoulvand, A. & Daliri, M. R.: , 2019; Statistical algorithms for emo- tion classification via functional connectivity.; Journal of Integrative Neuroscience; 18 (3): 293–297; doi:10.31083/j. jin.2019.03.601; URL https://app.dimensions.ai/details/publication/pub.1121421951andhttps://jin.imrpress.com/EN/article/ downloadArticleFile.do?attachType=PDF&id=1604. Jain, A. & Zongker, D.: , 1997; Feature selection: Evaluation, application, and small sample performance; IEEE transactions on pattern analysis and machine intelligence; 19 (2): 153–158. Jaipriya, D. & Sriharipriya, K.: , 2023; Brain computer interface-based signal processing tech- niques for feature extraction and classification of motor imagery using eeg: A literature review; Biomedical Materials & Devices: 1–13. Jamil, N.; Belkacem, A. N. & Lakas, A.: , 2023; On enhancing students’ cognitive abilities in online learning using brain activity and eye movements; Education and Information Technologies; 28 (4): 4363–4397. Janapati, R.; Dalal, V. & Sengupta, R.: , 2023; Advances in modern eeg-bci signal processing: A review; Materials Today: Proceedings; 80: 2563–2566. Jayaram, V.; Alamgir, M.; Altun, Y.; Scholkopf, B. & Grosse-Wentrup, M.: , 2016; Transfer learning in brain-computer interfaces; IEEE Computational Intelligence Magazine; 11 (1): 20–31. Jiang, Y.; Chen, W.; Li, M.; Zhang, T. & You, Y.: , 2021; Synchroextracting chirplet transform-based epileptic seizures detection using EEG; Biomedical Signal Processing and Control; 68: 102699. Jin, J.; Liu, C.; Daly, I.; Miao, Y.; Li, S.; Wang, X.&Cichocki, A.: , 2020; Bispectrum-basedchannelselection for motor imagery based brain-computer interfacing; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (10): 2153–2163. Jorajuría, T.; Nikulin, V. V.; Kapralov, N.; Gómez, M. & Vidaurre, C.: , 2023; Mean sp: How many channels are needed to predict the performance of a smr-based bci?; IEEE Transactions on Neural Systems and Rehabilitation Engineering. Kang, J.-H.; Kim, S.-H.; Youn, J. & Kim, J.: , 2020; Prediction of the following bci performance by means of spectral eeg characteristics in the prior resting state; KIPS Transactions on Computer and Communication Systems; 9 (11): 265–272. Kaper, M.; Meinicke, P.; Grossekathoefer, U.; Lingner, T. & Ritter, H.: , 2004; BCI competition 2003- data set IIb: support vector machines for the p300 speller paradigm; IEEE Transactions on biomedical Engineering; 51 (6): 1073–1076. Kawanabe, M.; Krauledat, M. & Blankertz, B.: , 2006; A bayesian approach for adaptive BCI classi- fication; Citeseer. Khan, D. M.; Yahya, N.; Kamel, N. & Faye, I.: , 2021; Effective connectivity in default mode network for alcoholism diagnosis; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 796–808. Khan, M. A.; Das, R.; Iversen, H. K. & Puthusserypady, S.: , 2020; Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application; Computers in Biology and Medicine: 103843. Khosla, A.; Khandnor, P.& Chand, T.: , 2020; A comparative analysis of signal processing and classification methods for different applications based on EEG signals; Biocybernetics and Biomedical Engineering; 40 (2): 649–690. Kim, S.-J.; Lee, D.-H. & Lee, S.-W.: , 2022; Rethinking cnn architecture for enhancing decoding performance of motor imagery-based eeg signals; IEEE Access; 10: 96984–96996. Kim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S. & Kim, D.: , 2019; Reduced burden of individual calibration process in brain-computer interface by clustering the subjects based on brain activation; en 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE; págs. 2139–2143. Kingma, D. P. & Ba, J.: , 2014; Adam: A method for stochastic optimization; arXiv preprint arXiv:1412.6980. Kingma, D. P.; Welling, M. et al.: , 2019; An introduction to variational autoencoders; Foundations and Trends® in Machine Learning; 12 (4): 307–392. Knapen, T.: , 2021; Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain; Proceedings of the National Academy of Sciences; 118 (2). Kondratyev, A.; Schwarz, C. & Horvath, B.: , 2020; Data anonymisation, outlier detection and fight- ing overfitting with restricted boltzmann machines; Outlier Detection and Fighting Overfitting with Restricted Boltzmann Machines (January 27, 2020). Kong, Q.; Wu, Y.; Yuan, C. & Wang, Y.: , 2021; Ct-cad: Context-aware transformers for end-to-end chest abnormality detection on x-rays; en 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 1385–1388. Kosmyna, N. & Lécuyer, A.: , 2019; A conceptual space for eeg-based brain-computer interfaces; PloS one; 14 (1): e0210145. Kübler, A.: , 2020; The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome; Neuroethics; 13 (2): 163–180. Kübler, A.; Neumann, N.; Kaiser, J.; Kotchoubey, B.; Hinterberger, T. & Birbaumer, N. P.: , 2001; Brain-computer communication: self-regulation of slow cortical potentials for verbal communication; Archives of physical medicine and rehabilitation; 82 (11): 1533–1539. Kübler, A.; Neumann, N.; Wilhelm, B.; Hinterberger, T. & Kulkarni, P. M.; Xiao, Z.; Robinson, E. J.; Jami, A. S.; Zhang, J.; Zhou, H.; Henin, S. E.; Liu, A. A.; Osorio, R. S.; Wang, J. et al.: , 2019; A deep learning approach for real-time detection of sleep spindles; Journal of neural engineering; 16 (3): 036004. Kulkarni, V. V.: , 2023; Brain computer interface using eeg signal. Kumar, S.; Reddy, T. & Behera, L.: , 2018; Eeg based motor imagery classification using instantaneous phase difference sequence; en 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 499–504. Kumar, S.; Sharma, A. & Tsunoda, T.: , 2019; Brain wave classification using long short-term memory network based OPTICAL predictor; Scientific reports; 9 (1): 1–13. Kwon, B.-H.; Jeong, J.-H. & Lee, S.-W.: , 2021; Visual motion imagery classification with deep neural network based on functional connectivity; arXiv preprint arXiv:2103.02851. Kwon, M.; Cho, H.; Won, K.; Ahn, M. & Jun, S. C.: , 2020; Use of both eyes-open and eyes-closed resting states may yield a more robust predictor of motor imagery bci performance; Electronics; 9 (4): 690. Kwon, O.-Y.; Lee, M.-H.; Guan, C. & Lee, S.-W.: , 2019; Subject-independent brain–computer interfaces based on deep convolutional neural networks; IEEE transactions on neural networks and learning systems; 31(10): 3839–3852. Ladda, A.M.; Lebon, F.&Lotze, M.: , 2021; Usingmotorimagerypracticeforimprovingmotorperformance– a review; Brain and cognition; 150: 105705. Lakshmi, M. R.; Prasad, T. & Prakash, D. V. C.: , 2014; Survey on EEG signal processing methods; International Journal of Advanced Research in Computer Science and Software Engineering; 4 (1). Lashley, K. S.: , 1929; Brain mechanisms and intelligence: A quantitative study of injuries to the brain. Lawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon, S. M.; Hung, C. P. & Lance, B. J.: , 2018; Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces; Journal of neural engineering; 15 (5): 056013. Lebedev, M. A. & Nicolelis, M. A.: , 2006; Brain–machine interfaces: past, present and future; TRENDS in Neurosciences; 29 (9): 536–546. Ledoit, O. & Wolf, M.: , 2004; A well-conditioned estimator for large-dimensional covariance matrices; Journal of multivariate analysis; 88 (2): 365–411. Lee, F.; Scherer, R.; Leeb, R.; Schlögl, A.; Bischof, H. & Pfurtscheller, G.: , 2004; Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface; Citeseer. Lee, M.; Yoon, J.-G. & Lee, S.-W.: , 2020; Predicting motor imagery performance from resting-state eeg using dynamic causal modeling; Frontiers in human neuroscience; 14: 321. Lee, M.-H.; Kwon, O.-Y.; Kim, Y.-J.; Kim, H.-K.; Lee, Y.-E.; Williamson, J.; Fazli, S. & Lee, S.-W.: , 2019; Eeg dataset and openbmi toolbox for three bci paradigms: An investigation into bci illiteracy; GigaScience; 8 (5): giz002. Leeuwis, N.; Yoon, S. & Alimardani, M.: , 2021; Functional connectivity analysis in motor-imagery brain computer interfaces; Frontiers in Human Neuroscience; 15: 732946. Li, H.; Chen, H.; Jia, Z.; Zhang, R. & Yin, F.: , 2023; A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification; Biomedical Signal Processing and Control; 79: 104066. Li, M. & Chen, W.: , 2021; FFT-based deep feature learning method for EEG classification; Biomedical Signal Processing and Control; 66: 102492. Li, M.; Luo, X.; Yang, J. & Sun, Y.: , 2016; Applying a locally linear embedding algorithm for feature extraction and visualization of MI-EEG; Journal of Sensors; 2016. Li, M.; Wang, J.et al.: , 2019a; An empirical comparison of multiple linear regression and artificial neural network for concrete dam deformation modelling; Mathematical Problems in Engineering; 2019. Li, S.; Xie, X.; Gu, Z.; Yu, Z. L. & Li, Y.: , 2019b; Motor imagery classification based on local isometric embedding of riemannian manifold; en 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); IEEE; págs. 2368–2372. Li, Y.; Kambara, H.; Koike, Y. & Sugiyama, M.: , 2010; Application of covariate shift adaptation techniques in brain–computer interfaces; IEEE Transactions on Biomedical Engineering; 57 (6): 1318–1324. Li, Y.; Zhang, X.-R.; Zhang, B.; Lei, M.-Y.; Cui, W.-G. & Guo, Y.-Z.: , 2019c; A channel-projection mixed- scale convolutional neural network for motor imagery EEG decoding; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 27 (6): 1170–1180. Li, Y.; Liu, Y.; Cui, W.-G.; Guo, Y.-Z.; Huang, H. & Hu, Z.-Y.: , 2020; Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 782–794. Li, Y.; Fu, B.; Li, F.; Shi, G. & Zheng, W.: , 2021; A novel transferability attention neural network model for EEG emotion recognition; Neurocomputing; 447: 92–101. Linderman, G. & Steinerberger, S.: , 2019; Clustering with t-sne, provably; SIAM Journal on Mathematics of Data Science; 1 (2): 313–332. Liu, R. & Gillies, D. F.: , 2016; Overfitting in linear feature extraction for classification of high-dimensional image data; Pattern Recognition; 53: 73–86. Liu, S.; Zhang, J.; Wang, A.; Wu, H.; Zhao, Q. & Long, J.: , 2022; Subject adaptation convolutional neural network for eeg-based motor imagery classification; Journal of Neural Engineering; 19 (6): 066003. Liu, W.; Guo, C. & Gao, C.: , 2024; A cross-session motor imagery classification method based on riemannian geometry and deep domain adaptation; Expert Systems with Applications; 237: 121612. Lopez, C. A. F.; Li, G. & Zhang, D.: , 2020; Beyond technologies of electroencephalography-based brain- computer interfaces: A systematic review from commercial and ethical aspects; Frontiers in Neuroscience; 14. Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A. & Yger, F.: , 2018; A review of classification algorithms for eeg-based brain–computer interfaces: a 10 year update; Journal of neural engineering; 15 (3): 031005. Lu, C.-F.; Teng, S.; Hung, C.-I.; Tseng, P.-J.; Lin, L.-T.; Lee, P.-L. & Wu, Y.-T.: , 2011; Reorganiza- tion of functional connectivity during the motor task using EEG time–frequency cross mutual information analysis; Clinical Neurophysiology; 122 (8): 1569–1579. Luo, Z.; Jin, R.; Shi, H. & Lu, X.: , 2021; Research on recognition of motor imagination based on connectivity features of brain functional network; Neural plasticity; 2021. Ma, B.-Q.; Li, H.; Zheng, W.-L. & Lu, B.-L.: , 2019; Reducing the subject variability of eeg signals with adversarial domain generalization; en Neural Information Processing: 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part I 26; Springer; págs. 30–42. Ma, X.; Qiu, S.; Zhang, Y.; Lian, X. & He, H.: , 2018; Predicting epileptic seizures from intracranial eeg using lstm-based multi-task learning; en Chinese Conference on Pattern Recognition and Computer Vision (PRCV); Springer; págs. 157–167. Maiseli, B.; Abdalla, A. T.; Massawe, L. V.; Mbise, M.; Mkocha, K.; Nassor, N. A.; Ismail, M.; Michael, J. & Kimambo, S.: , 2023; Brain–computer interface: trend, challenges, and threats; Brain Informatics; 10 (1): 20. Maksimenko, V. A.; Lüttjohann, A.; Makarov, V. V.; Goremyko, M. V.; Koronovskii, A. A.; Nedaivozov, V.; Runnova, A. E.; van Luijtelaar, G.; Hramov, A. E. & Boccaletti, S.: , 2017; Macroscopic and microscopic spectral properties of brain networks during local and global synchronization; Physical Review E; 96 (1): 012316. Matemba, E. D.; Li, G.; Gogan, I. C. W. & Maiseli, B. J.: , 2020; Technology acceptance model: recent developments, future directions, and proposal for hypothetical extensions; International Journal of Technology Intelligence and Planning; 12 (4): 315–348. McClelland, V. M.; Fischer, P.; Foddai, E.; Dall’Orso, S.; Burdet, E.; Brown, P. & Lin, J.-P.: , 2021; Eeg measures of sensorimotor processing and their development are abnormal in children with isolated dystonia and dystonic cerebral palsy; NeuroImage: Clinical; 30: 102569. McFarland, D. J. & Wolpaw, J. R.: , 2011; Brain-computer interfaces for communication and control; Communications of the ACM; 54 (5): 60–66. Meanti, G.; Carratino, L.; Rosasco, L. & Rudi, A.: , 2020; Kernel methods through the roof: handling billions of points efficiently; arXiv preprint arXiv:2006.10350. Meng, J. & He, B.: , 2019; Exploring training effect in 42 human subjects using a non-invasive sensorimotor rhythm based online bci; Frontiers in human neuroscience; 13: 128. Miao, M.; Wang, A. & Liu, F.: , 2017a; A spatial-frequency-temporal optimized feature sparse representation- based classification method for motor imagery eeg pattern recognition; Medical & biological engineering & computing; 55: 1589–1603. Miao, M.; Zeng, H.; Wang, A.; Zhao, C. & Liu, F.: , 2017b; Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery eeg: An sparse regression and weighted naïve bayesian classifier-based approach; Journal of neuroscience methods; 278: 13–24. Miao, Z. & Zhao, M.: , 2024; Time–space–frequency feature fusion for 3-channel motor imagery classification; Biomedical Signal Processing and Control; 90: 105867. Midha, S.; Maior, H. A.; Wilson, M. L. & Sharples, S.: , 2021; Measuring mental workload variations in office work tasks using fnirs; International Journal of Human-Computer Studies; 147: 102580. Miladinović, A.; Barbaro, A.; Valvason, E.; Ajčević, M.; Accardo, A.; Battaglini, P. P. & Jar- molowska, J.: , 2020; Combined and singular effects of action observation and motor imagery paradigms on resting-state sensorimotor rhythms; en XV Mediterranean Conference on Medical and Biological Engineering and Computing–MEDICON 2019: Proceedings of MEDICON 2019, September 26-28, 2019, Coimbra, Portugal; Springer; págs. 1129–1137. Miladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P. P. & Accardo, A.: , 2021; Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study; Computer Methods and Programs in Biomedicine; 198: 105808. Miljevic, A.; Bailey, N. W.; Vila-Rodriguez, F.; Herring, S. E. & Fitzgerald, P. B.: , 2022; Electroen- cephalographic connectivity: a fundamental guide and checklist for optimal study design and evaluation; Biological Psychiatry: Cognitive Neuroscience and Neuroimaging; 7 (6): 546–554. Millan, J. R. & Mouriño, J.: , 2003; Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project; IEEE transactions on neural systems and rehabilitation engineering; 11 (2): 159–161. Miotto, R.; Wang, F.; Wang, S.; Jiang, X. & Dudley, J. T.: , 2018; Deep learning for healthcare: review, opportunities and challenges; Briefings in bioinformatics; 19 (6): 1236–1246. Mirzaei, S. & Ghasemi, P.: , 2021; EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder; Biomedical Signal Processing and Control; 68: 102584. Modares-Haghighi, P.; Boostani, R.; Nami, M. & Sanei, S.: , 2021; Quantification of pain severity using EEG-based functional connectivity; Biomedical Signal Processing and Control; 69: 102840. Mohammadi, L.; Einalou, Z.; Hosseinzadeh, H. & Dadgostar, M.: , 2021; Cursor movement detec- tion in brain-computer-interface systems using the k-means clustering method and LSVM; Journal of Big Data; 8 (1): 1–15. Molina-Giraldo, S.; Carvajal-González, J.; Álvarez-Meza, A. M. & Castellanos-Domínguez, G.: , 2015; Video segmentation framework based on multi-kernel representations and feature relevance analysis for object classification; en Pattern recognition applications and methods; Springer; págs. 273–283. Morioka, H.; Kanemura, A.; Hirayama, J.-i.; Shikauchi, M.; Ogawa, T.; Ikeda, S.; Kawanabe, M. & Ishii, S.: , 2015; Learning a common dictionary for subject-transfer decoding with resting calibration; NeuroImage; 111: 167–178. Mormann, F.; Lehnertz, K.; David, P. & Elger, C. E.: , 2000; Mean phase coherence as a measure for phase synchronization and its application to the eeg of epilepsy patients; Physica D: Nonlinear Phenomena; 144 (3-4): 358–369. Mridha, M. F.; Das, S. C.; Kabir, M. M.; Lima, A. A.; Islam, M. R. & Watanobe, Y.: , 2021; Brain-computer interface: Advancement and challenges; Sensors; 21 (17): 5746. Mulert, C. & Lemieux, L.: , 2023; EEG-fMRI: physiological basis, technique, and applications; Springer Nature. Müller-Putz, G.; Scherer, R.; Brunner, C.; Leeb, R. & Pfurtscheller, G.: , 2008; Better than random: a closer look on bci results; International journal of bioelectromagnetism; 10 (ARTICLE): 52–55. Mumtaz, W.; Kamel, N.; Ali, S. S. A.; Malik, A. S. et al.: , 2018; An EEG-based functional connectivity measure for automatic detection of alcohol use disorder; Artificial intelligence in medicine; 84: 79–89. Musallam, Y. K.; AlFassam, N. I.; Muhammad, G.; Amin, S. U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M. A. & Algabri, M.: , 2021; Electroencephalography-based motor imagery classification using temporal convolutional network fusion; Biomedical Signal Processing and Control; 69: 102826. Nagabushanam, P.; Thomas George, S. & Radha, S.: , 2020; Eeg signal classification using lstm and improved neural network algorithms; Soft Computing; 24: 9981–10003. Nakra, A. & Duhan, M.: , 2020; Feature extraction and dimensionality reduction techniques with their advantages and disadvantages for eeg-based bci system: A review.; IUP Journal of Computer Sciences; 14 (1). Nicolini, C.; Forcellini, G.; Minati, L. & Bifone, A.: , 2020; Scale-resolved analysis of brain functional connectivity networks with spectral entropy; NeuroImage; 211: 116603. Nijboer, F.; Birbaumer, N. & Kübler, A.: , 2010; The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study; Frontiers in Neu- ropharmacology; 4: 55. Nisar, H.; Thee, K. W.; Lim, S. H.; Yap, V. V.; Teh, P. C.; Nor, N. M. & Chow, C. M.: , 2018; Brain functional connectivity analysis using single trial EEG for understanding individual mechanisms; en 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA); IEEE; págs. 209–214. Nkengfack, L. C. D.; Tchiotsop, D.; Atangana, R.; Louis-Door, V. & Wolf, D.: , 2020; EEG signals analysis for epileptic seizures detection using polynomial transforms, linear discriminant analysis and support vector machines; Biomedical Signal Processing and Control; 62: 102141. Noshadi, S.; Abootalebi, V.; Sadeghi, M. T. & Shahvazian, M. S.: , 2014; Selection of an efficient feature space for EEG-based mental task discrimination; Biocybernetics and Biomedical Engineering; 34 (3): 159–168. Omeiza, D.; Speakman, S.; Cintas, C.& Weldermariam, K.: , 2019; Smooth grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models; arXiv preprint arXiv:1908.01224. O’Reilly, J. A. & Chanmittakul, W.: , 2021; L1 regularization-based selection of EEG spec- tral power and ECG features for classification of cognitive state; en 2021 9th International Electrical Engineering Congress (iEECON); IEEE; págs. 365–368. Özdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2019a; Adversarial deep learning in EEG biometrics; IEEE signal processing letters; 26 (5): 710–714. Özdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2019b; Transfer learning in brain- computer interfaces with adversarial variational autoencoders; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 207–210. Özdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2020; Learning invariant representations from eeg via adversarial inference; IEEE access; 8: 27074–27085. Padilla-Buritica, J. I.; Hurtado, J. V. & Castellanos-Dominguez, G.: , 2019; Supervised piece- wise network connectivity analysis for enhanced confidence of auditory oddball tasks; Biomedical Signal Processing and Control; 52: 341–346. Pahuja, S.; Veer, K. et al.: , 2022; Recent approaches on classification and feature extraction of eeg signal: A review; Robotica; 40 (1): 77–101. Pandey, P.& Miyapuram, K. P.: , 2021; BRAIN2DEPTH: Lightweight CNN model for classification of cognitive states from EEG recordings; arXiv preprint arXiv:2106.06688. Parhi, M. & Tewfik, A. H.: , 2021; Classifying imaginary vowels from frontal lobe EEG via deep learning; en 2020 28th European Signal Processing Conference (EUSIPCO); IEEE; págs. 1195–1199. Park, H. & Jun, S. C.: , 2023; Exploring connectivity of resting-state eeg between bci-literate and-illiterate groups; bioRxiv: 2023–11. Park, S.-H.; Lee, D. & Lee, S.-G.: , 2017; Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 498–505. Pawar, D. & Dhage, S.: , 2020; Feature extraction methods for electroencephalography based brain- computer interface: A review.; IAENG International Journal of Computer Science; 47 (3). Paz-Linares, D.; Vega-Hernandez, M.; Rojas-Lopez, P. A.; Valdes-Hernandez, P. A.; Martinez- Montes, E. & Valdes-Sosa, P. A.: , 2017; Spatio temporal EEG source imaging with the hierarchical bayesian elastic net and elitist lasso models; Frontiers in neuroscience; 11: 635. Peksa, J. & Mamchur, D.: , 2023; State-of-the-art on brain-computer interface technology; Sensors; 23 (13): 6001. Peterson, V.; Wyser, D.; Lambercy, O.; Spies, R. & Gassert, R.: , 2019; A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG; Journal of Neural Engineering; 16 (1): 016019. Pfurtscheller, G. & Da Silva, F. L.: , 1999; Event-related eeg/meg synchronization and desyn- chronization: basic principles; Clinical neurophysiology; 110 (11): 1842–1857. Pope, P. E.; Kolouri, S.; Rostami, M.; Martin, C. E. & Hoffmann, H.: , 2019; Explainability methods for graph convolutional neural networks; en Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; págs. 10772–10781. Power, L.; Neyedli, H. F.; Boe, S. G. & Bardouille, T.: , 2020; Efficacy of low-cost wireless neurofeedback to modulate brain activity during motor imagery; Biomedical Physics & Engineering Express; 6 (3): 035024. Proakis, J. G.: , 2007; Digital signal processing: principles, algorithms, and applications, 4/E; Pearson Education India. Pulgarin-Giraldo, J.D.; Ruales-Torres, A.; Álvarez-Meza, A.M.&Castellanos-Dominguez, G.: , 2017; Relevant kinematic feature selection to support human action recognition in MoCap data; en International Work- Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 501–509. Qian, X.; Loo, B. R. Y.; Castellanos, F. X.; Liu, S.; Koh, H. L.; Poh, X. W. W.; Krishnan, R.; Fung, D.; Chee, M. W.; Guan, C.et al.: , 2018; Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder; Translational psychiatry; 8 (1): 149. Qiao, R.; Zhang, H. & Tian, Y.: , 2023; Eeg cortical network reveals the temporo-spatial mechanism of visual search; Brain Research Bulletin; 203: 110758. Raeisi, K.; Mohebbi, M.; Khazaei, M.; Seraji, M. & Yoonessi, A.: , 2020; Phase-synchrony evaluation of EEG signals for multiple sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task; Computers in biology and medicine; 117: 103596. Raghu, S.; Sriraam, N.; Temel, Y.; Rao, S. V. & Kubben, P. L.: , 2020; Eeg based multi-class seizure type classification using convolutional neural network and transfer learning; Neural Networks; 124: 202–212. Rahimi, A.; Recht, B. et al.: , 2007; Random features for large-scale kernel machines.; en NIPS, tomo 3; Citeseer; pág. 5. Rajabioun, M.: , 2020; Motor imagery classification by active source dynamics; Biomedical Signal Processing and Control; 61: 102028. Rajpura, P.; Cecotti, H. & Meena, Y. K.: , 2023; Explainable artificial intelligence approaches for brain- computer interfaces: a review and design space; arXiv preprint arXiv:2312.13033. Ramadan, R. A.; Refat, S.; Elshahed, M. A. & Ali, R. A.: , 2015; Basics of brain computer interface; en Brain-Computer Interfaces; Springer; págs. 31–50. Ras, G.; van Gerven, M.& Haselager, P.: , 2018; Explanation methods in deep learning: Users, values, concerns and challenges; Explainable and interpretable models in computer vision and machine learning: 19–36. Rasheed, M. A.; Chand, P.; Ahmed, S.; Sharif, H.; Hoodbhoy, Z.; Siddiqui, A. & Hasan, B. S.: , 2021; Use of artificial intelligence on electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in pakistan; Plos one; 16 (2): e0246236. Rashid, M.; Sulaiman, N.; PP Abdul Majeed, A.; Musa, R. M.; Ab Nasir, A. F.; Bari, B. S. & Khatun, S.: , 2020; Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review; Frontiers in neurorobotics: 25. Rathee, D.; Cecotti, H. & Prasad, G.: , 2017; Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks; Journal of neural engineering; 14 (5): 056005. Raza, H.; Prasad, G. & Li, Y.: , 2013; Ewma based two-stage dataset shift-detection in non-stationary envi- ronments; en Artificial Intelligence Applications and Innovations: 9th IFIP WG 12.5 International Conference, AIAI 2013, Paphos, Cyprus, September 30–October 2, 2013, Proceedings 9; Springer; págs. 625–635. Raza, H.; Cecotti, H.; Li, Y. & Prasad, G.: , 2015; Learning with covariate shift-detection and adaptation in non-stationary environments: Application to brain-computer interface; en 2015 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8. Raza, H.; Rathee, D.; Zhou, S.-M.; Cecotti, H. & Prasad, G.: , 2019; Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related eeg-based brain-computer interface; Neuro- computing; 343: 154–166. Rejer, I. & Lorenz, K.: , 2013; Genetic algorithm and forward method for feature selection in EEG feature space; Journal of Theoretical and Applied Computer Science; 7 (2): 72–82. Riahi, N.; Vakorin, V. A. & Menon, C.: , 2020; Estimating fugl-meyer upper extremity motor score from functional-connectivity measures; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 860–868. Rimbert, S.; Gayraud, N.; Bougrain, L.; Clerc, M. & Fleck, S.: , 2019; Can a subjective questionnaire be used as brain-computer interface performance predictor?; Frontiers in human neuroscience; 12: 529. Rodrigues, P.; Stefano, C.; Attux, R.; Castellano, G. & Soriano, D.: , 2019a; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725. Rodrigues, P. G.; Stefano Filho, C. A.; Attux, R.; Castellano, G. & Soriano, D. C.: , 2019b; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725. Rodriguez-Larios, J.; Faber, P.; Achermann, P.; Tei, S.&Alaerts, K.: , 2020; Fromthoughtless awareness to effortful cognition: alpha-theta cross-frequency dynamics in experienced meditators during meditation, rest and arithmetic; Scientific Reports; 10 (1): 5419. Rongrong, F.; Mengmeng, H.; Yongsheng, T. & Peiming, S.: , 2020; Improvement motor imagery eeg classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833. Roweis, S. & Ghahramani, Z.: , 1999; A unifying review of linear gaussian models; Neural computation; 11 (2): 305–345. Rubinov, M. & Sporns, O.: , 2010; Complex network measures of brain connectivity: uses and interpre- tations; Neuroimage; 52 (3): 1059–1069. Ruiz-Gómez, S.J.; Gómez, C.; Poza, J.; Revilla-Vallejo, M.; Gutiérrez-dePablo, V.; Rodríguez- González, V.; Maturana-Candelas, A. & Hornero, R.: , 2020; Volume conduction effects on connectivity metrics: Appli- cation of network parameters to characterize alzheimer’s disease continuum; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–33. Sadiq, M. T.; Yu, X.; Yuan, Z.; Fan, Z.; Rehman, A. U.; Li, G. & Xiao, G.: , 2019; Motor imagery eeg signals classification based on mode amplitude and frequency components using empirical wavelet transform; IEEE access; 7: 127678–127692. Saha, S. & Baumert, M.: , 2020; Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review; Frontiers in computational neuroscience; 13: 87. Saha, S.; Ahmed, K. I. U.; Mostafa, R.; Hadjileontiadis, L. & Khandoker, A.: , 2017; Evidence of variabilities in eeg dynamics during motor imagery-based multiclass brain–computer interface; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 371–382. Saha, S.; Mamun, K. A.; Ahmed, K. I. U.; Mostafa, R.; Naik, G. R.; Darvishi, S.; Khandoker, A. H. & Baumert, M.: , 2021; Progress in brain computer interface: Challenges and potentials; Frontiers in Systems Neuroscience; 15: 4. Saha, S.; Baumert, M. & McEwan, A.: , 2023; Can inter-subject associativity predict data-driven bci perfor- mance?; en 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 1–4. Saibene, A.; Caglioni, M.; Corchs, S. & Gasparini, F.: , 2023; Eeg-based bcis on motor imagery paradigm using wearable technologies: A systematic review; Sensors; 23 (5): 2798. Said, S.; Bombrun, L.; Berthoumieu, Y. & Manton, J. H.: , 2017; Riemannian gaussian distributions on the space of symmetric positive definite matrices; IEEE Transactions on Information Theory; 63 (4): 2153–2170. Sakhavi, S.; Guan, C. & Yan, S.: , 2015; Parallel convolutional-linear neural network for motor imagery classification; en 2015 23rd European Signal Processing Conference (EUSIPCO); IEEE; págs. 2736–2740. Sakkalis, V.: , 2011; Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG; Computers in biology and medicine; 41 (12): 1110–1117. Sannelli, C.; Braun, M.; Tangermann, M. & Müller, K.-R.: , 2008; Estimating noise and dimensionality in bci data sets: towards illiteracy comprehension. Sannelli, C.; Vidaurre, C.; Müller, K. & Blankertz, B.: , 2019a; A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity; PLoS One; 14 (1): e0207351. Sannelli, C.; Vidaurre, C.; Müller, K.-R. & Blankertz, B.: , 2019b; A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity; PloS one; 14 (1): e0207351. Sarin, M.; Verma, A.; Mehta, D. H.; Shukla, P. K. & Verma, S.: , 2020; Automated ocular artifacts identification and removal from EEG data using hybrid machine learning methods; en 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN); IEEE; págs. 1054–1059. Schalk, G.; McFarland, D. J.; Hinterberger, T.; Birbaumer, N. & Wolpaw, J. R.: , 2004; Bci2000: a general-purpose brain-computer interface (bci) system; IEEE Transactions on biomedical engineering; 51 (6): 1034–1043. Scherer, R. & Vidaurre, C.: , 2018; Motor imagery based brain–computer interfaces; en Smart wheelchairs and brain-computer interfaces; Elsevier; págs. 171–195. Schirrmeister, R. T.; Springenberg, J. T.; Fiederer, L. D. J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W. & Ball, T.: , 2017; Deep learning with convolutional neural networks for eeg decoding and visualization; Human brain mapping; 38 (11): 5391–5420. Schlögl, A.; Lee, F.; Bischof, H. & Pfurtscheller, G.: , 2005; Characterization of four-class motor imagery eeg data for the bci-competition 2005; Journal of neural engineering; 2 (4): L14. Seghier, M. L. & Price, C. J.: , 2018; Interpreting and utilising intersubject variability in brain function; Trends in cognitive sciences; 22 (6): 517–530. Selvaraju, R. R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D. & Batra, D.: , 2016; Grad-CAM: Why did you say that?; arXiv preprint arXiv:1611.07450. Shali, R. K. & Setarehdan, S. K.: , 2020; The impact of electrode reduction in the diagnosis of dyslexia; en 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME); IEEE; págs. 118–125. Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2020a; Early classification of motor tasks using dynamic functional connectivity graphs from eeg; Journal of Neural Engineering. Shamsi, F.; Haddad, A. et al.: , 2020b; Recognizing pain in motor imagery EEG recordings using dynamic functionalconnectivitygraphs; en2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 2869–2872. Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2021; Early classification of motor tasks using dynamic functional connectivity graphs from EEG; Journal of Neural Engineering; 18 (1): 016015. Shao, L.; Zhang, L.; Belkacem, A. N.; Zhang, Y.; Chen, X.; Li, J. & Liu, H.: , 2020; EEG-controlled wall-crawling cleaning robot using SSVEP-based brain-computer interface; Journal of healthcare engineering; 2020. Sharma, N.; Sharma, M.; Singhal, A.; Vyas, R.; Malik, H.; Afthanorhan, A. & Hossaini, M. A.: , 2023; Recent trends in eeg based motor imagery signal analysis and recognition: A comprehensive review.; IEEE Access. Shir, D.; Lazar, E. B.; Graff-Radford, J.; Aksamit, A. J.; Cutsforth-Gregory, J. K.; Jones, D. T.; Botha, H.; Ramanan, V. K.; Prusinski, C.; Porter, A. et al.: , 2022; Analysis of clinical features, diagnostic tests, and biomarkers in patients with suspected creutzfeldt-jakob disease, 2014-2021; JAMA Network Open; 5 (8): e2225098–e2225098. Shu, X.; Chen, S.; Yao, L.; Sheng, X.; Zhang, D.; Jiang, N.; Jia, J. & Zhu, X.: , 2018; Fast recognition of bci-inefficient users using physiological features from eeg signals: A screening study of stroke patients; Frontiers in neuroscience; 12: 93. Simon, N.; Friedman, J.; Hastie, T. & Tibshirani, R.: , 2013; A sparse-group lasso; Journal of computa- tional and graphical statistics; 22 (2): 231–245. Singh, A.; Hussain, A. A.; Lal, S. & Guesgen, H. W.: , 2021; A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface; Sensors; 21 (6): 2173. Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M. L.; Rana, M.; Oblak, E. et al.: , 2017; Closed-loop brain training: the science of neurofeedback; Nature Reviews Neuroscience; 18 (2): 86–100. Smith, S.; Duff, E.; Groves, A.; Nichols, T. E.; Jbabdi, S.; Westlye, L. T.; Tamnes, C. K.; Engvig, A.; Walhovd, K. B.; Fjell, A. M. et al.: , 2019; Structural variability in the human brain reflects fine-grained functional architecture at the population level; Journal of Neuroscience; 39 (31): 6136–6149. Smith, S. M.; Miller, K. L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C. F.; Nichols, T. E.; Ramsey, J. D. & Woolrich, M. W.: , 2011; Network modelling methods for fmri; Neuroimage; 54 (2): 875–891. Smola, A. J. & Schölkopf, B.: , 2000; Sparse greedy matrix approximation for machine learning. Smuha, N. A.: , 2019; The eu approach to ethics guidelines for trustworthy artificial intelligence; Computer Law Review International; 20 (4): 97–106. Song, Y.; Wang, D.; Yue, K.; Zheng, N. & Shen, Z.-J. M.: , 2019; Eeg-based motor imagery classification with deep multi-task learning; en 2019 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8. Souto, D. O.; Cruz, T. K. F.; Coutinho, K.; Julio-Costa, A.; Fontes, P. L. B. & Haase, V. G.: , 2020; Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy; NeuroRehabilitation; 46 (1): 53–63. Stefano Filho, C. A.; Attux, R. & Castellano, G.: , 2018; Can graph metrics be used for EEG-BCIs based on hand motor imagery?; Biomedical Signal Processing and Control; 40: 359–365. Stefano Filho, C. A.; Ignacio Serrano, J.; Attux, R.; Castellano, G.; Rocon, E. & del Castillo, M. D.: , 2021; Reorganization of resting-state EEG functional connectivity patterns in children with cerebral palsy following a motor imagery virtual-reality intervention; Applied Sciences; 11 (5): 2372. Stephan, K.; Friston, K. & Squire, L.: , 2009; Functional connectivity. Sturm, I.; Lapuschkin, S.; Samek, W. & Müller, K.-R.: , 2016; Interpretable deep neural networks for single-trial EEG classification; Journal of neuroscience methods; 274: 141–145. Subasi, A. & Gursoy, M. I.: , 2010; EEG signal classification using PCA, ICA, LDA and support vector machines; Expert systems with applications; 37 (12): 8659–8666. Subasi, A.; Tuncer, T.; Dogan, S.; Tanko, D. & Sakoglu, U.: , 2021; EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier; Biomedical Signal Processing and Control; 68: 102648. Sun, C.; Lin, K.; Huang, Y.-T.; Ching, E. S.; Lai, P.-Y.& Chan, C.: , 2020a; Directed effective connectivity and synaptic weights of in vitro neuronal cultures revealed from high-density multielectrode array recordings; bioRxiv. Sun, J.; Xie, J. & Zhou, H.: , 2021; Eeg classification with transformer-based models; en 2021 ieee 3rd global conference on life sciences and technologies (lifetech); IEEE; págs. 92–93. Sun, X.; Hu, B.; Zheng, X.; Yin, Y. & Ji, C.: , 2020b; Emotion classification based on brain functional connectivity network; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 2082–2089. Sun, Y.; Zhang, H. L.; Lu, Y. & Xue, Y.: , 2022; Eeg signal classification using shallow fbcsp convnet with a new cropping strategy; en International Conference on Brain Informatics; Springer; págs. 359–368. Suto, J. & Oniga, S.: , 2018; Music stimuli recognition in electroencephalogram signal; Elektronika ir Elek- trotechnika; 24 (4): 68–71. Šverko, Z.; Vrankić, M.; Vlahinić, S. & Rogelj, P.: , 2022; Complex pearson correlation coefficient for eeg connectivity analysis; Sensors; 22 (4): 1477. Tang, Q.; Wang, J. & Wang, H.: , 2014; L1-norm based discriminative spatial pattern for single-trial EEG classification; Biomedical Signal Processing and Control; 10: 313–321. Tang, X.; Li, W.; Li, X.; Ma, W. & Dang, X.: , 2020; Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network; Expert Systems with Applications; 149: 113285. Tang, X.; Shen, H.; Zhao, S.; Li, N.& Liu, J.: , 2023; Flexible brain–computer interfaces; Nature Electronics; 6 (2): 109–118. Tao, L.; Cao, T.; Wang, Q.; Liu, D.; Bai, O. & Sun, J.: , 2023; Application of self-adaptive multiple-kernel extreme learning machine to improve mi-bci performance of subjects with bci illiteracy; Biomedical Signal Processing and Control; 79: 104183. Taran, S. & Bajaj, V.: , 2019; Motor imagery tasks-based eeg signals classification using tunable-q wavelet transform; Neural Computing and Applications; 31: 6925–6932. Teo, W.-P. & Chew, E.: , 2014; Is motor-imagery brain-computer interface feasible in stroke rehabilitation?; PM&R; 6 (8): 723–728. Thakur, K. T.; Albanese, E.; Giannakopoulos, P.; Jette, N.; Linde, M.; Prince, M. J.; Steiner, T. J. & Dua, T.: , 2016; Neurological disorders. Tibrewal, N.; Leeuwis, N. & Alimardani, M.: , 2022; Classification of motor imagery eeg using deep learning increases performance in inefficient bci users; Plos one; 17 (7): e0268880. Tibshirani, R.: , 1996; Regression shrinkage and selection via the lasso; Journal of the Royal Statistical Society: Series B (Methodological); 58 (1): 267–288. Tjoa, E. & Guan, C.: , 2020; A survey on explainable artificial intelligence (xai): Toward medical xai; IEEE transactions on neural networks and learning systems; 32 (11): 4793–4813. Tortora, S.; Ghidoni, S.; Chisari, C.; Micera, S. & Artoni, F.: , 2020; Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network; Journal of Neural Engineering; 17 (4): 046011. Tuncer, T.; Dogan, S. & Acharya, U. R.: , 2021; Automated EEG signal classification using chaotic local binary pattern; Expert Systems with Applications; 182: 115175. Uribe, L.; Stefano, C.; deOliveira, V.; daSilva, T.; Rodrigues, P.; Soriano, D.; Boccato, L.; Castellano, G. & Attux, R.: , 2019; A correntropy-based classifier for motor imagery brain-computer interfaces; Biomedical Physics & Engineering Express; 5 (6): 065026 Vallabhaneni, R. B.; Sharma, P.; Kumar, V.; Kulshreshtha, V.; Reddy, K. J.; Kumar, S. S.; Kumar, V. S. & Bitra, S. K.: , 2021; Deep learning algorithms in eeg signal decoding application: a review; IEEE Access; 9: 125778–125786. Van der Maaten, L. & Hinton, G.: , 2008; Visualizing data using t-sne.; Journal of machine learning research; 9 (11). Van Der Maaten, L.; Postma, E. & Van den Herik, J.: , 2009; Dimensionality reduction: a comparative; J Mach Learn Res; 10 (66-71): 13. Värbu, K.; Muhammad, N. & Muhammad, Y.: , 2022; Past, present, and future of eeg-based bci applica- tions; Sensors; 22 (9): 3331. Varoquaux, G.: , 2018; Cross-validation failure: Small sample sizes lead to large error bars; Neuroimage; 180: 68–77. Varsehi, H. & Firoozabadi, S. M. P.: , 2021; An EEG channel selection method for motor imagery based brain–computer interface and neurofeedback using granger causality; Neural Networks; 133: 193–206. Vasilyev, A.; Liburkina, S.; Yakovlev, L.; Perepelkina, O. & Kaplan, A.: , 2017; Assessing motor imagery in brain-computer interface training: psychological and neurophysiological correlates; Neuropsychologia; 97: 56–65. Velasquez-Martinez, L.; Caicedo-Acosta, J. & Castellanos-Dominguez, G.: , 2020a; Entropy-basedestimationofevent-relatedde/synchronizationinmotorimageryusingvector-quantizedpatterns; Entropy; 22(6): 703. Velasquez-Martinez, L.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020b; Dy- namic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14: 714. Velásquez-Martínez, L. F.; Álvarez-Meza, A. M. & Castellanos-Domínguez, C. G.: , 2013; Motor imagery classification for BCI using common spatial patterns and feature relevance analysis; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 365–374. Velasquez-Martinez, L. F.; Zapata-Castaño, F.; Padilla-Buritica, J. I.; Ferrández Vi- cente, J. M. & Castellanos-Dominguez, G.: , 2019; Group differences in time-frequency relevant patterns for user- independent bci applications; en Understanding the Brain Function and Emotions: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part I 8; Springer; págs. 138–145. Velasquez-Martinez, L. F.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020c; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14. Verleysen, M. & François, D.: , 2005; The curse of dimensionality in data mining and time series prediction; en International work-conference on artificial neural networks; Springer; págs. 758–770. Vidaurre, C. & Blankertz, B.: , 2010; Towards a cure for bci illiteracy; Brain topography; 23: 194–198. Vidaurre, C.; Sander, T. H.; Schlögl, A. et al.: , 2011a; Biosig: the free and open source software library for biomedical signal processing; Computational intelligence and neuroscience; 2011. Vidaurre, C.; Sannelli, C.; Müller, K.-R. & Blankertz, B.: , 2011b; Machine-learning-based coadaptive calibration for brain-computer interfaces; Neural computation; 23 (3): 791–816. Vidaurre, C.; Murguialday, A. R.; Haufe, S.; Gómez, M.; Müller, K.-R. & Nikulin, V. V.: , 2019; Enhancing sensorimotor bci performance with assistive afferent activity: An online evaluation; NeuroImage; 199: 375–386. Vidaurre, C.; Haufe, S.; Jorajuría, T.; Müller, K.-R.& Nikulin, V. V.: , 2020; Sensorimotor functional connectivity: a neurophysiological factor related to BCI performance; Frontiers in Neuroscience; 14: 1278. Vilela, M.& Hochberg, L. R.: , 2020; Applications of brain-computer interfaces to the control of robotic and prosthetic arms; en Handbook of clinical neurology, tomo 168; Elsevier; págs. 87–99. Vinck, M.; Oostenveld, R.; Van Wingerden, M.; Battaglia, F. & Pennartz, C. M.: , 2011; An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias; Neuroimage; 55 (4): 1548–1565. Volosyak, I.; Rezeika, A.; Benda, M.; Gembler, F. & Stawicki, P.: , 2020; Towards solving of the illiteracy phenomenon for vep-based brain-computer interfaces; Biomedical Physics & Engineering Express; 6 (3): 035034. Vuckovic, A. & Osuagwu, B. A.: , 2013; Using a motor imagery questionnaire to estimate the performance of a brain–computer interface based on object oriented motor imagery; Clinical Neurophysiology; 124 (8): 1586– 1595. Wackernagel, H.: , 2003; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media. Wackernagel, H.: , 2013; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media. Waldert, S.: , 2016; Invasive vs. non-invasive neuronal signals for brain-machine interfaces: will one prevail?; Frontiers in neuroscience; 10: 295. Wan, Z.; Yang, R.; Huang, M.; Zeng, N. & Liu, X.: , 2021; A review on transfer learning in eeg signal analysis; Neurocomputing; 421: 1–14. Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P. & Hu, X.: , 2020a; Score- CAM: Score-weighted visual explanations for convolutional neural networks; en Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; págs. 24–25. Wang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A. & Li, J.: , 2020b; Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection; IEEE Access; 8: 155590–155601. Wang, J.; Feng, Z.; Ren, X.; Lu, N.; Luo, J. & Sun, L.: , 2020c; Feature subset and time segment selection for the classification of eeg data based motor imagery; Biomedical Signal Processing and Control; 61: 102026. Wang, J.-G.; Shao, H.-M.; Yao, Y.; Liu, J.-L. & Ma, S.-W.: , 2021a; A personalized feature extraction and classification method for motor imagery recognition; Mobile Networks and Applications: 1–13. Wang, K.; Xu, M.; Wang, Y.; Zhang, S.; Chen, L.&Ming, D.: , 2020d; Enhancedecodingofpre-movement EEG patterns for brain–computer interfaces; Journal of Neural Engineering; 17 (1): 016033. Wang, K.; Tian, F.; Xu, M.; Zhang, S.; Xu, L. & Ming, D.: , 2022; Resting-state eeg in alpha rhythm may be indicative of the performance of motor imagery-based brain–computer interface; Entropy; 24 (11): 1556. Wang, X.; Wang, A.; Zheng, S.; Lin, Y. & Yu, M.: , 2014; A multiple autocorrelation analysis method for motor imagery EEG feature extraction; en The 26th Chinese Control and Decision Conference (2014 CCDC); IEEE; págs. 3000–3004. Wang, Z.; Wang, F.; Liang, C. & Zhang, J.: , 2021b; A time-varying method for brain effective connectivity analysis of emotional EEG data; en 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA); IEEE; págs. 131–139. Warrens, M. J.: , 2015; Five ways to look at cohen’s kappa; Journal of Psychology & Psychotherapy; 5 (4): 1. Wei, C.-S.; Lin, Y.-P.; Wang, Y.-T.; Lin, C.-T. & Jung, T.-P.: , 2018; A subject-transfer framework for obviating inter-and intra-subject variability in eeg-based drowsiness detection; NeuroImage; 174: 407–419. Willett, F. R.; Avansino, D. T.; Hochberg, L. R.; Henderson, J. M. & Shenoy, K. V.: , 2021; High- performance brain-to-text communication via handwriting; Nature; 593 (7858): 249–254. Williams, C. & Seeger, M.: , 2001; Using the nyström method to speed up kernel machines; en Pro- ceedings of the 14th annual conference on neural information processing systems; CONF; págs. 682–688. Wolpaw, J. R.: , 2013; Brain–computer interfaces; en Handbook of clinical neurology, tomo 110; Elsevier; págs. 67–74. Wolpaw, J. R. & Wolpaw, E. W.: , 2012; Brain-computer interfaces: something new under the sun; Brain-computer interfaces: principles and practice; 14. Wriessnegger, S. C.; Müller-Putz, G. R.; Brunner, C. & Sburlea, A. I.: , 2020; Inter-and intra- individual variability in brain oscillations during sports motor imagery; Frontiers in human neuroscience; 14: 576241. Wu, H. G.; Miyamoto, Y. R.; Castro, L. N. G.; Ölveczky, B. P.& Smith, M. A.: , 2014; Temporal structure of motor variability is dynamically regulated and predicts motor learning ability; Nature neuroscience; 17 (2): 312–321. Wu, J.; Zhou, T. & Li, T.: , 2020a; Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting; Entropy; 22 (2): 140. Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2019; Identifying functional brain connectivity patterns for EEG-based emotion recognition; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 235–238. Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2020b; Investigating EEG-based functional connectivity patterns for multimodal emotion recognition; arXiv preprint arXiv:2004.01973. Xiao, C.; Choi, E. & Sun, J.: , 2018; Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review; Journal of the American Medical Informatics Association; 25 (10): 1419– 1428. Xie, J.; Liu, F.; Wang, K.& Huang, X.: , 2019; Deep kernel learning via random fourier features; arXiv preprint arXiv:1910.02660. Xie, X.; Yu, Z. L.; Gu, Z.; Zhang, J.; Cen, L. & Li, Y.: , 2018; Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (3): 698–708. Xie, Y. & Oniga, S.: , 2020; A review of processing methods and classification algorithm for EEG signal.; Carpathian Journal of Electronic & Computer Engineering; 12 (3). Xiong, X.; Yu, Z.; Ma, T.; Luo, N.; Wang, H.; Lu, X. & Fan, H.: , 2020; Weighted brain network metrics for decoding action intention understanding based on EEG; Frontiers in Human Neuroscience; 14: 232. Xu, X.; Nie, X.; Zhang, J. & Xu, T.: , 2023; Multi-level attention recognition of eeg based on feature selection; International Journal of Environmental Research and Public Health; 20 (4): 3487. Yao, L.; Jiang, N.; Mrachacz-Kersting, N.; Zhu, X.; Farina, D. & Wang, Y.: , 2022; Performance variation of a somatosensory bci based on imagined sensation: a large population study; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 2486–2493. Yao, Y.; Ding, Y.; Zhong, S. & Cui, Z.: , 2020; EEG-based epilepsy recognition via multiple kernel learning; Computational and Mathematical Methods in Medicine; 2020. Yeh, C.-H.; Jones, D.K.; Liang, X.; Descoteaux, M.& Connelly, A.: , 2021; Mapping structural connectivity using diffusion MRI: Challenges and opportunities; Journal of Magnetic Resonance Imaging; 53 (6): 1666–1682. Yeh, Y.-R.; Lin, T.-C.; Chung, Y.-Y. & Wang, Y.-C. F.: , 2012; A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection; IEEE Transactions on multimedia; 14 (3): 563–574. Yin, K.; Lim, E. Y. & Lee, S.-W.: , 2024; Gitgan: Generative inter-subject transfer for eeg motor imagery analysis; Pattern Recognition; 146: 110015. Yoganathan, K.; Malek, N.; Torzillo, E.; Paranathala, M. & Greene, J.: , 2023; Neurological update: structural and functional imaging in epilepsy surgery; Journal of Neurology; 270 (5): 2798–2808. Yoon, J.-G. & Lee, M.: , 2020; Effective correlates of motor imagery performance based on default mode network in resting-state; en 2020 8th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5. Yu, J. & Yu, Z. L.: , 2021; Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems; Journal of Neural Engineering. Yu, Z.; Ma, T.; Fang, N.; Wang, H.; Li, Z. & Fan, H.: , 2020; Local temporal common spatial patterns modulated with phase locking value; Biomedical Signal Processing and Control; 59: 101882. Yuksel, A. & Olmez, T.: , 2015; A neural network-based optimal spatial filter design method for motor imagery classification; PloS one; 10 (5): e0125039. Zeiler, M. D. & Fergus, R.: , 2014; Visualizing and understanding convolutional networks; en Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13; Springer; págs. 818–833. Zhang, A.; Lipton, Z. C.; Li, M. & Smola, A. J.: , 2021a; Dive into deep learning; arXiv preprint arXiv:2106.11342. Zhang, B.; Yan, G.; Yang, Z.; Su, Y.; Wang, J. & Lei, T.: , 2020a; Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 215–229. Zhang, L.; Chen, Y.; Tan, X.; He, C.& Zhang, L.: , 2017; An improved self-training algorithm for classifying motor imagery electroencephalography in brain-computer interface; Journal of Medical Imaging and Health Informatics; 7 (2): 330–337. Zhang, R.; Xu, P.; Chen, R.; Li, F.; Guo, L.; Li, P.; Zhang, T. & Yao, D.: , 2015a; Predicting inter- session performance of smr-based brain–computer interface using the spectral entropy of resting-state eeg; Brain topography; 28 (5): 680–690. Zhang, R.; Yao, D.; Valdés-Sosa, P. A.; Li, F.; Li, P.; Zhang, T.; Ma, T.; Li, Y. & Xu, P.: , 2015b; Efficient resting-state eeg network facilitates motor imagery performance; Journal of neural engineering; 12 (6): 066024. Zhang, R.; Xiao, X.; Liu, Z.; Jiang, W.; Li, J.; Cao, Y.; Ren, J.; Jiang, D. & Cui, L.: , 2018a; A new motor imagery EEG classification method FB-TRCSP+ RF based on CSP and random forest; IEEE Access; 6: 44944–44950. Zhang, R.; Li, X.; Wang, Y.; Liu, B.; Shi, L.; Chen, M.; Zhang, L. & Hu, Y.: , 2019a; Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject; IEEE Access; 7: 74490–74499. Zhang, R.; Li, F.; Zhang, T.; Yao, D. & Xu, P.: , 2020b; Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions; Brain Science Advances; 6 (3): 224–241. Zhang, T.; Han, Z.; Chen, X. & Chen, W.: , 2021b; Subbands and cumulative sum of subbands based nonlinear features enhance the performance of epileptic seizure detection; Biomedical Signal Processing and Control; 69: 102827. Zhang, W.; Tan, C.; Sun, F.; Wu, H. & Zhang, B.: , 2018b; A review of EEG-based brain-computer interface systems design; Brain Science Advances; 4 (2): 156–167. Zhang, W.; Wang, F.; Jiang, Y.; Xu, Z.; Wu, S. & Zhang, Y.: , 2019b; Cross-subject eeg-based emotion recognition with deep domain confusion; en Intelligent Robotics and Applications: 12th International Conference, ICIRA 2019, Shenyang, China, August 8–11, 2019, Proceedings, Part I 12; Springer; págs. 558–570. Zhang, X.; Yao, L.; Sheng, Q. Z.; Kanhere, S. S.; Gu, T.& Zhang, D.: , 2018c; Converting your thoughts to texts: Enabling brain typing via deep feature learning of eeg signals; en 2018 IEEE international conference on pervasive computing and communications (PerCom); IEEE; págs. 1–10. Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D. & Zhang, Y.: , 2019c; A survey on deep learning based brain computer interface: Recent advances and new frontiers; arXiv preprint arXiv:1905.04149; 66. Zhang, X.; Lu, D.; Shen, J.; Gao, J.; Huang, X. & Wu, M.: , 2020c; Spatial-temporal joint optimization network on covariance manifolds of electroencephalography for fatigue detection; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 893–900. Zhang, Y. & Yang, Q.: , 2018; An overview of multi-task learning; National Science Review; 5 (1): 30–43. Zhang, Y.; Xu, P.; Guo, D. & Yao, D.: , 2013; Prediction of ssvep-based bci performance by the resting-state eeg network; Journal of neural engineering; 10 (6): 066017. Zhang, Y.; Nam, C.; Zhou, G.; Jin, J.; Wang, X. & Cichocki, A.: , 2018d; Temporally constrained sparse group spatial patterns for motor imagery BCI; IEEE transactions on cybernetics; 49 (9): 3322–3332. Zhang, Y.; Li, P.; Cheng, L.; Li, M. & Li, H.: , 2023; Attention-based multiscale spatial-temporal convolu- tional network for motor imagery eeg decoding; IEEE Transactions on Consumer Electronics. Zhao, N.; Zhang, H.; Liu, T.; Liu, J.; Xiang, Y.; Shu, G.; Li, C.; Xie, J. & Chen, L.: , 2021a; Neuro- modulatory effect of sensorimotor network functional connectivity of temporal three-needle therapy for ischemic stroke patients with motor dysfunction: Study protocol for a randomized, patient-assessor blind, controlled, neuroimaging trial; Evidence-Based Complementary and Alternative Medicine; 2021. Zhao, Y.; Zhao, Y.; Durongbhan, P.; Chen, L.; Liu, J.; Billings, S.; Zis, P.; Unwin, Z. C.; De Marco, M.; Venneri, A. et al.: , 2019; Imaging of nonlinear and dynamic functional brain connectivity based on EEG recordings with the application on the diagnosis of alzheimer’s disease; IEEE transactions on medical imaging; 39 (5): 1571–1581. Zhao, Z.; Zhao, P.& Zhou, Q.: , 2020; A hierarchical stacking extreme learning machine for multi-classification; en 2020 Chinese Automation Congress (CAC); IEEE; págs. 4176–4181. Zhao, Z.; Li, J.; Niu, Y.; Wang, C.; Zhao, J.; Yuan, Q.; Ren, Q.; Xu, Y.& Yu, Y.: , 2021b; Classification of schizophrenia by combination of brain effective and functional connectivity; Frontiers in Neuroscience; 15: 552. Zhu, L.; Su, C.; Zhang, J.; Cui, G.; Cichocki, A.; Zhou, C. & Li, J.: , 2020; EEG-based approach for recognizing human social emotion perception; Advanced Engineering Informatics; 46: 101191. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H. & He, Q.: , 2020; A comprehensive survey on transfer learning; Proceedings of the IEEE; 109 (1): 43–76. Zuk, N. J.; Teoh, E. S. & Lalor, E. C.: , 2020; Eeg-based classification of natural sounds reveals specialized responses to speech and music; NeuroImage; 210: 116558. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 101 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86900/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86900/2/1053847443.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86900/3/1053847443.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 77e71e9434e2fe3fc228d5eed23d5a0b 08758d650b9a2ceb7b793c82bb1275b0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090188310183936 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castellanos Dominguez, Cesar German6d037451703825ac65848e0563c65fd2Alvarez Meza, Andres Marino5154abb266e67961a71f8dc28e883cbfCaicedo Acosta, Julian Camiloa41c9a88d8d0ddbc1448db4811350bd4600Grupo de Control y Procesamiento Digital de Señales2024-10-07T14:07:48Z2024-10-07T14:07:48Z2024https://repositorio.unal.edu.co/handle/unal/86900Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, tablasThe understanding of brain functioning, including its structure and the dynamic networks generated under different situations, has been one of the most challenging research topics in recent years. In this sense, brain- computer interfaces (BCI) have become the main systems to acquire and process brain signals, allowing the development of increasingly specialized techniques like machine learning and artificial intelligence methods in order to replace, restore, enhance, supply, and improve brain functionality. Thus, BCI systems may be a promissory tool for several fields, including health, rehabilitation, education, marketing, and gaming, among others. Besides, BCI development is a continuously growing field of study not only in research but also in the business context, with a market that projects more than four hundred million USD by 2029. However, despite advances in building BCI systems, around 30% of BCI users are unable to effectively manage the device due to multiple factors such as intra- and inter-subject variability, overfitting, and small datasets. This issue is known as the ‘BCI illiteracy phenomenon’. Since electroencephalography (EEG) is the most used acquisition method due to its high temporal resolution, portability, and low cost compared with the other techniques, in this work we study the causes of the illiteracy phenomenon by predicting the user performance during motor imagery (MI) tasks. In this sense, we developed a machine learning framework to improve the illiterate subject’s performance under a skill prediction scheme. First, we develop a data- driven deep learning model, termed DRN, based on extracting time-frequency neurophysiological indicators that allow coding the inter-subject variability by predicting MI-BCI performance. Besides, to address the overfitting issues in the presence of small datasets and high-dimensional representations, we also developed a functional connectivity-based Monte-Carlo dropout regularized approach by modifying the proposed DRN to extract relevant patterns from channel relationships. Last, to improve illiterate subjects’ performance, we develop a general-purpose end-to-end multi-task deep learning approach founded on an autoencoder- based regularization scheme that transfers learned knowledge from performance prediction tasks to MI classification tasks. The results obtained in this work are promising and outperform the baseline methods in both BCI-performance prediction and MI classification. Furthermore, the proposed prediction methods are able to find behavioral group patterns between subjects with similar degrees of variability, while the transfer learning techniques allow to improve the performance of illiterate subjects with information from other subjects, contributing to the generalization of BCI systems (Texto tomado de la fuente)La comprensión del funcionamiento del cerebro, incluida su estructura y las redes dinámicas generadas en diferentes situaciones, ha sido uno de los temas de investigación más difíciles de los últimos años. En este sentido, las interfaces cerebro-computador (BCI) se han convertido en los principales sistemas para adquirir y procesar señales cerebrales, permitiendo el desarrollo de técnicas cada vez más especializadas como el aprendizaje automático y los métodos de inteligencia artificial que permiten reemplazar, restaurar, mejorar, suministrar y mejorar la funcionalidad cerebral. Por lo tanto, los sistemas BCI pueden ser una herramienta prometedora para varios campos, incluyendo la salud, la rehabilitación, la educación, el marketing y el juego, entre otros. Además, el desarrollo de BCI es un campo de estudio en continuo crecimiento no sólo en investigación sino también en el contexto empresarial, con un mercado que proyecta más de cuatrocientos millones de dólares para 2029. Sin embargo, a pesar de los avances en la construcción de sistemas BCI, alrededor del 30% de los usuarios de BCI no son capaces de administrar eficazmente el dispositivo debido a múltiples factores como la variabilidad intra- e inter-sujeto, el sobreajuste y la presencia de pequeños conjuntos de datos para el entrenamiento. Este problema es conocido como el fenómeno del ‘analfabetismo del BCI’. Dado que la electroencefalografía (EEG) es el método de adquisición más utilizado debido a su alta resolución temporal, portabilidad y bajo costo en comparación con las otras técnicas, en este trabajo estudiamos las causas del fenómeno del analfabetismo previniendo el rendimiento del usuario durante las tareas de imagen motor (MI). En este sentido, hemos desarrollado un marco de aprendizaje automático para mejorar el rendimiento del sujeto analfabeto bajo un esquema de predicción de sus habilidades. En primer lugar, desarrollamos un modelo de aprendizaje profundo basado en los datos, llamado DRN, sobre la base de la extracción de indicadores neurofisiológicos de frecuencia temporal que permiten codificar la variabilidad intersubjetiva prediciendo el rendimiento del MI-BCI. Además, para abordar los problemas de sobreajuste en la presencia de pequeños conjuntos de datos y representaciones de alta dimensión, también desarrol- lamos un enfoque regularizado de Monte-Carlo dropout basado en la conectividad funcional modificando el DRN propuesto para extraer patrones relevantes de las relaciones de canales. Por último, para mejorar el rendimiento de los sujetos analfabetos, desarrollamos un enfoque de aprendizaje profundo multi-tareas de propósito general basado en un esquema de regularización usando una arquitectura de autoencoder, que transfiere los conocimientos aprendidos de las tareas de predicción de rendimiento a las tasas de clasificación de imaginación motora. Los resultados obtenidos en este trabajo son prometedores y superan los méto- dos base tanto en la predicción del desempeño del BCI como en la clasificación de la imaginación motora. Además, los métodos de predicción propuestos son capaces de encontrar patrones de comportamiento grupal entre sujetos con grados similares de variabilidad, mientras que las técnicas de transferencia de aprendizaje permiten mejorar el rendimiento de sujetos analfabetos con información de otros sujetos, contribuyendo a la generalización de los sistemas BCI.(Code 111091991908 , Hermes Code 56118 ) funded by MINCIENCIAS(Hermes Code 57414 ), funded by Universidad Nacional de ColombiaDoctoradoDoctor en IngenieríaApplied machine learningEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesxv, 101 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónBCI-illiteracyEEGBrain computer interfaceMotor imageryNeurophysiological indicatorsMI performance predictionMI classificationImprovement BCI-illiterate subjectsInterfaz Cerebro-ComputadoraImaginación motoraIndicadores neurofisiológicosPredicción de rendimiento en MIClasificación en MIMejoramiento de los sujetos BCIilliterateNeurociencia computacionalInterfaces cerebro-computadoraA machine learning framework for EEG-based BCI-MI skill prediction with preserved explainabilityUn marco de aprendizaje automático para la predicción de habilidades BCI-MI basadas en EEG con interpretabilidad preservadaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextAbdulkader, S. N.; Atia, A. & Mostafa, M.-S. M.: , 2015; Brain computer interfacing: Applications and challenges; Egyptian Informatics Journal; 16 (2): 213–230.Abdulkarim, H.& Al-Faiz, M. Z.: , 2021; Online multiclass EEG feature extraction and recognition using modified convolutional neural network method; International Journal of Electrical and Computer Engineering (IJECE); 11 (5): 4016–4026.Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.: , 2016; Chapter 3 - technical aspects of brain rhythms and speech parameters; en Introduction to EEG- and Speech-Based Emotion Recognition (Editado por Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.); Academic Press; ISBN 978-0-12-804490-2; págs. 51–79; doi:https://doi.org/10.1016/ B978-0-12-804490-2.00003-8; URL https://www.sciencedirect.com/science/article/pii/B9780128044902000038.Abiri, R.; Borhani, S.; Sellers, E. W.; Jiang, Y. & Zhao, X.: , 2019; A comprehensive review of eeg-based brain–computer interface paradigms; Journal of neural engineering; 16 (1): 011001.Acqualagna, L.; Botrel, L.; Vidaurre, C.; Kübler, A.& Blankertz, B.: , 2016; Large-scale assessment of a fully automatic co-adaptive motor imagery-based brain computer interface; PloS one; 11 (2): e0148886.Aggarwal, S. & Chugh, N.: , 2019; Signal processing techniques for motor imagery brain computer interface: A review; Array; 1: 100003.Ahani, A.; Wahbeh, H.; Nezamfar, H.; Miller, M.; Erdogmus, D. & Oken, B.: , 2014; Quantitative change of EEG and respiration signals during mindfulness meditation; Journal of neuroengineering and rehabilitation; 11 (1): 1–11.Ahirwal, M. K.; Kumar, A. & Singh, G. K.: , 2014; Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm; Digital Signal Processing; 25: 164–172.Ahn, M. & Jun, S. C.: , 2015; Performance variation in motor imagery brain–computer interface: a brief review; Journal of neuroscience methods; 243: 103–110.Ahn, M.; Cho, H.; Ahn, S. & Jun, S. C.: , 2013; High theta and low alpha powers may be indicative of bci-illiteracy in motor imagery; PloS one; 8 (11): e80886.Ahn, M.; Lee, M.; Choi, J. & Jun, S. C.: , 2014; A review of brain-computer interface games and an opinion survey from researchers, developers and users; Sensors; 14 (8): 14601–14633.Ai, Q.; Chen, A.; Chen, K.; Liu, Q.; Zhou, T.; Xin, S. & Ji, Z.: , 2019; Feature extraction of four-class motor imagery EEG signals based on functional brain network; Journal of Neural Engineering; 16 (2): 026032.Akella, A.; Singh, A. K.; Leong, D.; Lal, S.; Newton, P.; Clifton-Bligh, R.; Mclachlan, C. S.; Gustin, S. M.; Maharaj, S.; Lees, T. et al.: , 2021; Classifying multi-level stress responses from brain cortical EEG in nurses and non-health professionals using machine learning auto encoder; IEEE Journal of Translational Engineering in Health and Medicine; 9: 1–9.Al-Fahad, R.; Yeasin, M. & Bidelman, G. M.: , 2020; Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions; Journal of Neural Engineering; 17(1): 016045.Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y. & Al-Wabil, A.: , 2017; Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review; Applied Sciences; 7 (12): 1239.Al Nazi, Z.; Hossain, A. A. & Islam, M. M.: , 2021; Motor imagery EEG classification using random subspace ensemble network with variable length features; International Journal Bioautomation; 25 (1): 13.Al-Saegh, A.; Dawwd, S. A.& Abdul-Jabbar, J. M.: , 2021; Deep learning for motor imagery EEG-based classification: A review; Biomedical Signal Processing and Control; 63: 102172.Al-Shargie, F. M.; Hassanin, O.; Tariq, U. & Al-Nashash, H.: , 2020; EEG-based semantic vigilance level classification using directed connectivity patterns and graph theory analysis; IEEE Access; 8: 115941–115956.Aldayel, M.; Ykhlef, M. & Al-Nafjan, A.: , 2020; Deep learning for EEG-based preference classification in neuromarketing; Applied Sciences; 10 (4): 1525.Ali, H. T.; Kammoun, A.& Couillet, R.: , 2018; Random matrix-improved kernels for large dimensional spectral clustering; en 2018 IEEE Statistical Signal Processing Workshop (SSP); IEEE; págs. 453–457.Allison, B.; Luth, T.; Valbuena, D.; Teymourian, A.; Volosyak, I. & Graser, A.: , 2010; Bci demographics: How many (and what kinds of) people can use an ssvep bci?; IEEE transactions on neural systems and rehabilitation engineering; 18 (2): 107–116.Allison, B. Z. & Neuper, C.: , 2010; Could anyone use a bci?; Brain-computer interfaces: Applying our minds to human-computer interaction: 35–54.Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S. U.; Altuwaijri, G. A.; Abdul, W.; Bencherif, M. A. & Faisal, M.: , 2023; Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: A review; Neural Computing and Applications; 35 (20): 14681–14722.Álvarez-Meza, A.; Cárdenas-Peña, D. & Castellanos-Dominguez, G.: , 2014a; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342.Alvarez-Meza, A.; Orozco-Gutierrez, A. & Castellanos-Dominguez, G.: , 2017; Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns; Frontiers in neuroscience; 11: 550.Álvarez-Meza, A. M.; Cárdenas-Pena, D. & Castellanos-Dominguez, G.: , 2014b; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342.Alvi, A. M.; Siuly, S. & Wang, H.: , 2022; A long short-term memory based framework for early detection of mild cognitive impairment from eeg signals; IEEE Transactions on Emerging Topics in Computational Intelligence; 7 (2): 375–388.Alzahab, N. A.; Apollonio, L.; Di Iorio, A.; Alshalak, M.; Iarlori, S.; Ferracuti, F.; Monteriù, A. & Porcaro, C.: , 2021; Hybrid deep learning (hdl)-based brain-computer interface (bci) systems: a systematic review; Brain sciences; 11 (1): 75.Amir, J.; Amir, R.; Ednaldo Birgante, P. & Md Kafiul, I.: , 2020; Classification of emotions induced by horror and relaxing movies using single-channel EEG recordings.Ang, K. K.; Chin, Z. Y.; Zhang, H. & Guan, C.: , 2008; Filter bank common spatial pattern (fbcsp) in brain- computer interface; en 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence); IEEE; págs. 2390–2397.Ang, K. K.; Chin, Z. Y.; Wang, C.; Guan, C. & Zhang, H.: , 2012; Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b; Frontiers in neuroscience; 6: 39.Anowar, F.; Sadaoui, S. & Selim, B.: , 2021; Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE); Computer Science Review; 40: 100378.Anupallavi, S. & MohanBabu, G.: , 2020; A novel approach based on BSPCI for quantifying functional connectivity pattern of the brain’s region for the classification of epileptic seizure; Journal of Ambient Intelligence and Humanized Computing: 1–11.Apicella, A.; Arpaia, P.; Frosolone, M. & Moccaldi, N.: , 2021; High-wearable EEG-based distraction detection in motor rehabilitation; Scientific Reports; 11 (1): 1–9.Arrieta, A. B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R. et al.: , 2020; Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai; Information fusion; 58: 82–115.Arvaneh, M.; Guan, C.; Ang, K.K.&Quek, C.: , 2011; Optimizingthechannelselectionandclassification accuracy in EEG-based BCI; IEEE Transactions on Biomedical Engineering; 58 (6): 1865–1873.Autthasan, P.; Chaisaen, R.; Sudhawiyangkul, T.; Rangpong, P.; Kiatthaveephong, S.; Dilok- thanakul, N.; Bhakdisongkhram, G.; Phan, H.; Guan, C. & Wilaiprasitporn, T.: , 2021; Min2net: End-to-end multi- task learning for subject-independent motor imagery eeg classification; IEEE Transactions on Biomedical Engineering; 69 (6): 2105–2118.Baig, M. Z.; Aslam, N. & Shum, H. P.: , 2020; Filtering techniques for channel selection in motor imagery eeg applications: a survey; Artificial intelligence review; 53: 1207–1232.Bakhshali, M.; Khademi, M.; Ebrahimi, A.& Moghimi, S.: , 2020; Eeg signal classification of imagined speech based on riemannian distance of correntropy spectral density; Biomedical Signal Processing and Control; 59: 101899.Bamdad, M.; Zarshenas, H. & Auais, M. A.: , 2015; Application of bci systems in neurorehabilitation: a scoping review; Disability and Rehabilitation: Assistive Technology; 10 (5): 355–364.Bamdadian, A.; Guan, C.; Ang, K. K. & Xu, J.: , 2014; The predictive role of pre-cue eeg rhythms on mi-based bci classification performance; Journal of neuroscience methods; 235: 138–144.Bang, J.-S. & Lee, S.-W.: , 2022; Interpretable convolutional neural networks for subject-independent motor imagery classification; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5.Baniqued, P.D.E.; Stanyer, E.C.; Awais, M.; Alazmani, A.; Jackson, A.E.; Mon-Williams, M.A.; Mushtaq, F.& Holt, R. J.: , 2021; Brain–computer interface robotics for hand rehabilitation after stroke: a systematic review; Journal of NeuroEngineering and Rehabilitation; 18 (1): 1–25.Bao, G.; Zhuang, N.; Tong, L.; Yan, B.; Shu, J.; Wang, L.; Zeng, Y. & Shen, Z.: , 2021; Two-level domain adaptation neural network for eeg-based emotion recognition; Frontiers in Human Neuroscience; 14: 605246.Barabási, D. L.; Bianconi, G.; Bullmore, E.; Burgess, M.; Chung, S.; Eliassi-Rad, T.; George, D.; Kovács, I. A.; Makse, H.; Nichols, T. E. et al.: , 2023; Neuroscience needs network science; Journal of Neuroscience; 43 (34): 5989–5995.Barachant, A.; Bonnet, S.; Congedo, M. & Jutten, C.: , 2013; Classification of covariance matrices using a riemannian-based kernel for BCI applications; Neurocomputing; 112: 172–178.Bastos, A. M. & Schoffelen, J.-M.: , 2016; A tutorial review of functional connectivity analysis methods and their interpretational pitfalls; Frontiers in systems neuroscience; 9: 175.Battaglia, D. & Brovelli, A.: , 2020; Functional connectivity and neuronal dynamics: insights from computational methods; The Cognitive Neurosciences.Benzy, V.; Vinod, A.; Subasree, R.; Alladi, S.& Raghavendra, K.: , 2020; Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (12): 3051–3062.Betzel, R. F.; Bertolero, M. A.; Gordon, E. M.; Gratton, C.; Dosenbach, N. U. & Bassett, D. S.: , 2019; The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability; Neuroimage; 202: 115990.Bhadra, K.; Giraud, A. L. & Marchesotti, S.: , 2023; Learning to operate an imagined speech brain- computer interface involves the spatial and frequency tuning of neural activity; bioRxiv: 2023–09.Bishop, C. M.: , 2006; Pattern recognition and machine learning; springer.Blankertz, B.; Sanelli, C.; Halder, S.; Hammer, E.; Kübler, A.; Müller, K.-R.; Curio, G. & Dickhaus, T.: , 2009; Predicting bci performance to study bci illiteracy; BMC Neurosci; 10 (Suppl 1): P84.Blankertz, B.; Sannelli, C.; Halder, S.; Hammer, E. M.; Kübler, A.; Müller, K.-R.; Curio, G. & Dickhaus, T.: , 2010; Neurophysiological predictor of smr-based bci performance; Neuroimage; 51 (4): 1303–1309.Bochner, S.: , 2020; Harmonic analysis and the theory of probability; University of California press.Bonci, A.; Fiori, S.; Higashi, H.; Tanaka, T. & Verdini, F.: , 2021; An introductory tutorial on brain– computer interfaces and their applications; Electronics; 10 (5): 560.Borgheai, S. B.; Zisk, A. H.; McLinden, J.; Mcintyre, J.; Sadjadi, R. & Shahriari, Y.: , 2024; Multimodal pre-screening can predict bci performance variability: A novel subject-specific experimental scheme; Computers in Biology and Medicine; 168: 107658.Borra, D.; Fantozzi, S. & Magosso, E.: , 2020; Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination; Neural Networks; 129: 55–74.Braga-Neto, U. M. & Dougherty, E. R.: , 2004; Is cross-validation valid for small-sample microarray classification?; Bioinformatics; 20 (3): 374–380.Brigato, L. & Iocchi, L.: , 2021; A close look at deep learning with small data; en 2020 25th International Conference on Pattern Recognition (ICPR); IEEE; págs. 2490–2497.Brockmeier, A.; Choi, J.; Kriminger, E.; Francis, J. & Principe, J.: , 2014; Neural decoding with kernel-based metric learning; Neural computation; 26 (6): 1080–1107.Bromiley, P.; Thacker, N. & Bouhova-Thacker, E.: , 2004; Shannon entropy, renyi entropy, and infor- mation; statistics and inf; Series (2004-004).Brunner, C.; Birbaumer, N.; Blankertz, B.; Guger, C.; Kübler, A.; Mattia, D.; Millán, J. d. R.; Miralles, F.; Nijholt, A.; Opisso, E. et al.: , 2015; Bnci horizon 2020: towards a roadmap for the bci community; Brain- computer interfaces; 2 (1): 1–10.Bruns, A.: , 2004; Fourier-, hilbert-and wavelet-based signal analysis: are they really different approaches?; Journal of neuroscience methods; 137 (2): 321–332.Buchanan, D. M.; Ros, T. & Nahas, R.: , 2021; Elevated and slowed EEG oscillations in patients with post-concussive syndrome and chronic pain following a motor vehicle collision; Brain Sciences; 11 (5): 537.Burde, W.& Blankertz, B.: , 2006; Is the locus of control of reinforcement a predictor of brain-computer interface performance?Cai, Q.; Gong, W.; Deng, Y. & Wang, H.: , 2021; Single-trial EEG classification via common spatial patterns with mixed lp-and lq-norms; Mathematical Problems in Engineering; 2021.Cai, Y.; She, Q.; Ji, J.; Ma, Y.; Zhang, J. & Zhang, Y.: , 2022; Motor imagery eeg decoding using manifold embedded transfer learning; Journal of Neuroscience Methods; 370: 109489.Caicedo-Acosta, J.; Castaño, G. A.; Acosta-Medina, C.; Alvarez-Meza, A. & Castellanos- Dominguez, G.: , 2021; Deep neural regression prediction of motor imagery skills using eeg functional connectivity indicators; Sensors; 21 (6): 1932.Calesella, F.; Testolin, A.; De Filippo De Grazia, M. & Zorzi, M.: , 2020; A systematic assessment of feature extraction methods for robust prediction of neuropsychological scores from functional connectivity data; en International conference on brain informatics; Springer; págs. 29–40.Cárdenas-Peña, D.; Collazos-Huertas, D.& Castellanos-Dominguez, G.: , 2017; Enhanced data representation by kernel metric learning for dementia diagnosis; Frontiers in neuroscience; 11: 413.Chaddad, A.; Peng, J.; Xu, J. & Bouridane, A.: , 2023a; Survey of explainable ai techniques in health- care; Sensors; 23 (2): 634.Chaddad, A.; Wu, Y.; Kateb, R. & Bouridane, A.: , 2023b; Electroencephalography signal processing: A comprehensive review and analysis of methods and techniques; Sensors; 23 (14): 6434.Chakraborty, S.; Tomsett, R.; Raghavendra, R.; Harborne, D.; Alzantot, M.; Cerutti, F.; Sri- vastava, M.; Preece, A.; Julier, S.; Rao, R. M.et al.: , 2017; Interpretability of deep learning models: A survey of results; en 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communi- cations, cloud & big data computing, Internet of people and smart city innovation (smartworld/SCALCOM/UIC/ATC/CB- Dcom/IOP/SCI); IEEE; págs. 1–6.Chamola, V.; Vineet, A.; Nayyar, A. & Hossain, E.: , 2020; Brain-computer interface-based humanoid control: A review; Sensors; 20 (13): 3620.Chao, H. & Liu, Y.: , 2020; Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework; IEEE Access; 8: 33002–33012.Chen, X.; Li, C.; Liu, A.; McKeown, M. J.; Qian, R. & Wang, Z. J.: , 2022; Toward open-world electroen- cephalogram decoding via deep learning: A comprehensive survey; IEEE Signal Processing Magazine; 39 (2): 117–134.Chen, Y.; Meng, L. & Zhang, J.: , 2019a; Graph neural lasso for dynamic network regression; arXiv preprint arXiv:1907.11114.Chen, Y.; Hang, W.; Liang, S.; Liu, X.; Li, G.; Wang, Q.; Qin, J. & Choi, K.-S.: , 2020; A novel transfer support matrix machine for motor imagery-based brain computer interface; Frontiers in Neuroscience; 14.Chen, Z.; Ji, J. & Liang, Y.: , 2019b; Convolutional neural network with an element-wise filter to classify dynamic functional connectivity; en 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 643–646.Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M. et al.: , 2016; Wide & deep learning for recommender systems; en Proceedings of the 1st workshop on deep learning for recommender systems; págs. 7–10.Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L. & Mesin, L.: , 2023; Connectivity analysis in eeg data: A tutorial review of the state of the art and emerging trends; Bioengineering; 10 (3): 372.Cho, H.; Ahn, M.; Ahn, S.; Kwon, M. & Jun, S. C.: , 2017; Eeg datasets for motor imagery brain–computer interface; GigaScience; 6 (7): gix034.Cinel, C.; Valeriani, D. & Poli, R.: , 2019; Neurotechnologies for human cognitive augmentation: current state of the art and future prospects; Frontiers in human neuroscience; 13: 13.Clark, S. V.; King, T. Z.& Turner, J. A.: , 2020; Cerebellar contributions to proactive and reactive control in the stop signal task: A systematic review and meta-analysis of functional magnetic resonance imaging studies; Neuropsychology review: 1–24.Coelho, G. P.; Barbante, C. C.; Boccato, L.; Attux, R. R.; Oliveira, J. R. & Von Zuben, F. J.: , 2012; Automatic feature selection for BCI: an analysis using the davies-bouldin index and extreme learning machines; en The 2012 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8.Cohen, L.: , 1998; The generalization of the wiener-khinchin theorem; en Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), tomo 3; IEEE; págs. 1577–1580.Collazos-Huertas, D.; Álvarez-Meza, A.; Acosta-Medina, C.; Castaño-Duque, G. & Castellanos-Dominguez, G.: , 2020; CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification; Brain Informatics; 7 (1): 1–13.Collazos-Huertas, D. F.; Velasquez-Martinez, L. F.; Perez-Nastar, H. D.; Alvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2021; Deep and wide transfer learning with kernel matching for pooling data from electroencephalography and psychological questionnaires; Sensors; 21 (15): 5105.Collazos-Huertas, D. F.; Álvarez-Meza, A. M.; Cárdenas-Peña, D. A.; Castaño-Duque, G. A. & Castellanos-Domínguez, C. G.: , 2023; Posthoc interpretability of neural responses by grouping subject motor imagery skills using cnn-based connectivity; Sensors; 23 (5): 2750.Congedo, M.; Barachant, A.& Bhatia, R.: , 2017a; Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review; Brain-Computer Interfaces; 4 (3): 155–174.Congedo, M.; Barachant, A. & Koopaei, E. K.: , 2017b; Fixed point algorithms for estimating power means of positive definite matrices; IEEE Transactions on Signal Processing; 65 (9): 2211–2220.Congedo, M.; Rodrigues, P. L. C.; Bouchard, F.; Barachant, A. & Jutten, C.: , 2017c; A closed- form unsupervised geometry-aware dimensionality reduction method in the riemannian manifold of SPD matrices; en 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE; págs. 3198–3201.Craik, A.; He, Y. & Contreras-Vidal, J. L.: , 2019; Deep learning for electroencephalogram (EEG) classifi- cation tasks: a review; Journal of Neural Engineering; 16 (3): 031001.Cui, Y.; Xie, S.; Fu, Y. & Xie, X.: , 2023; Predicting motor imagery bci performance based on eeg microstate analysis; Brain Sciences; 13 (9): 1288.Dai, H.; Su, S.; Zhang, Y. & Jian, W.: , 2020; Effect of spatial filtering and channel selection on motor imagery BCI; en Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare; págs. 270–274.Daly, I.; Nasuto, S. J. & Warwick, K.: , 2012; Brain computer interface control via functional connectivity dynamics; Pattern recognition; 45 (6): 2123–2136.De La Pava Panche, I.; Alvarez-Meza, A. & Orozco-Gutierrez, A.: , 2019; A data-driven measure of effective connectivity based on renyi’s α-entropy; Frontiers in neuroscience; 13: 1277.Deng, Y.; Li, Z.; Wang, H.; Lu, X.& Fan, H.: , 2020; Local temporal joint recurrence common spatial patterns for MI-based BCI; en 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), tomo 1; IEEE; págs. 813–816.Dornhege, G.; Millán, J. d. R.; Hinterberger, T.; McFarland, D. J. & Müller, K.-R.: , 2007; An introduction to brain-computer interfacing.dos Santos, E. M.; Cassani, R.; Falk, T. H. & Fraga, F. J.: , 2020; Improved motor imagery brain- computer interface performance via adaptive modulation filtering and two-stage classification; Biomedical Signal Processing and Control; 57: 101812.Doshi-Velez, F. & Kim, B.: , 2017; Towards a rigorous science of interpretable machine learning; arXiv preprint arXiv:1702.08608.Douibi, K.; Le Bars, S.; Lemontey, A.; Nag, L.; Balp, R. & Breda, G.: , 2021; Toward eeg-based bci applications for industry 4.0: challenges and possible applications; Frontiers in Human Neuroscience; 15: 705064.Duan, L.; Zhong, H.; Miao, J.; Yang, Z.; Ma, W. & Zhang, X.: , 2014; A voting optimized strategy based on ELM for improving classification of motor imagery BCI data; Cognitive Computation; 6 (3): 477–483.Duan, L.; Duan, H.; Qiao, Y.; Sha, S.; Qi, S.; Zhang, X.; Huang, J.; Huang, X. & Wang, C.: , 2020; Machine learning approaches for MDD detection and emotion decoding using EEG signals; Frontiers in Human Neuroscience; 14.Duan, S.; Yu, S. & Príncipe, J. C.: , 2021; Modularizing deep learning via pairwise learning with kernels; IEEE Transactions on Neural Networks and Learning Systems.Duclos, C.; Maschke, C.; Mahdid, Y.; Berkun, K.; da Silva Castanheira, J.; Tarnal, V.; Picton, P.; Vanini, G.; Golmirzaie, G.; Janke, E. et al.: , 2021; Differential classification of states of consciousness using envelope-and phase-based functional connectivity; NeuroImage; 237: 118171.EPMoghaddam, D.; Sheth, S. A.; Haneef, Z.; Gavvala, J. & Aazhang, B.: , 2022; Epileptic seizure prediction using spectral width of the covariance matrix; Journal of Neural Engineering; 19 (2): 026029.Fahimi, F.; Zhang, Z.; Goh, W. B.; Lee, T.-S.; Ang, K. K. & Guan, C.: , 2019; Inter-subject transfer learning with an end-to-end deep convolutional neural network for eeg-based bci; Journal of neural engineering; 16(2): 026007.Fan, F.-L.; Xiong, J.; Li, M. & Wang, G.: , 2021; On interpretability of artificial neural networks: A survey; IEEE Transactions on Radiation and Plasma Medical Sciences; 5 (6): 741–760.Fauzi, H.; Azzam, M. A.; Shapiai, M. I.; Kyoso, M.; Khairuddin, U. & Komura, T.: , 2019; Energy extraction method for EEG channel selection; Telkomnika; 17 (5): 2561–2571.Feng, Z.; Qian, L.; Hu, H. & Sun, Y.: , 2020; Functional connectivity for motor imaginary recognition in brain-computer interface; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 3678–3682.Fine, S.& Scheinberg, K.: , 2001; Efficient SVM training using low-rank kernel representations; Journal of Machine Learning Research; 2 (Dec): 243–264.Fischer, M. H. F.; Zibrandtsen, I. C.; Høgh, P. & Musaeus, C. S.: , 2023; Systematic review of eeg coherence in alzheimer’s disease; Journal of Alzheimer’s Disease; (Preprint): 1–12.Fleury, M.; Figueiredo, P.; Vourvopoulos, A. & Lécuyer, A.: , 2023; Two is better? combining eeg and fmri for bci and neurofeedback: A systematic review.Fong, R. C. & Vedaldi, A.: , 2017; Interpretable explanations of black boxes by meaningful perturbation; en Proceedings of the IEEE international conference on computer vision; págs. 3429–3437.Friston, K. J.: , 2011; Functional and effective connectivity: a review; Brain connectivity; 1 (1): 13–36.Frolov, N.; Maksimenko, V.; Lüttjohann, A.; Koronovskii, A. & Hramov, A.: , 2019; Feed-forward artificial neural network provides data-driven inference of functional connectivity; Chaos: An Interdisciplinary Journal of Nonlinear Science; 29 (9): 091101.Fu, R.; Han, M.; Tian, Y. & Shi, P.: , 2020; Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833.Gao, Z.; Dang, W.; Wang, X.; Hong, X.; Hou, L.; Ma, K. & Perc, M.: , 2021; Complex networks and deep learning for EEG signal analysis; Cognitive Neurodynamics; 15 (3): 369–388.García-Murillo, D. G.; Alvarez-Meza, A. & Castellanos-Dominguez, G.: , 2021; Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks; Sensors; 21 (8): 2750.García-Murillo, D. G.; Álvarez-Meza, A. M. & Castellanos-Dominguez, C. G.: , 2023; Kcs-fcnet: Kernel cross-spectral functional connectivity network for eeg-based motor imagery classification; Diagnostics; 13 (6): 1122.García-Prieto, J.; Bajo, R. & Pereda, E.: , 2017; Efficient computation of functional brain networks: Toward real-time functional connectivity; Frontiers in neuroinformatics; 11: 8.Garg, D.; Verma, G. K. & Singh, A. K.: , 2023; A review of deep learning based methods for affect analysis using physiological signals; Multimedia Tools and Applications: 1–46.Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. & Wang, H.: , 2021a; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9.Gaur, P.; McCreadie, K.; Pachori, R. B.; Wang, H. & Prasad, G.: , 2021b; An automatic subject specific channelselectionmethodforenhancingmotorimageryclassificationinEEG-BCIusingcorrelation; Biomedical Signal Processing and Control; 68: 102574.Gaxiola-Tirado, J. A.; Salazar-Varas, R. & Gutiérrez, D.: , 2017; Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces; IEEE Transactions on Cognitive and Developmental Systems; 10 (3): 776–783.Georgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2019; Connectivity steered graph fourier transform for motor imagery bci decoding; Journal of neural engineering; 16 (5): 056021.Géron, A.: , 2022; Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow; " O’Reilly Media, Inc.".Ghane, P.& Hossain, G.: , 2020; Learning patterns in imaginary vowels for an intelligent brain computer interface (bci) design; arXiv preprint arXiv:2010.12066.Ghane, P.; Zarnaghinaghsh, N. & Braga-Neto, U.: , 2021; Comparison of classification algorithms towards subject-specific and subject-independent bci; en 2021 9th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–6.Goldberger, A. L.; Amaral, L. A.; Glass, L.; Hausdorff, J. M.; Ivanov, P. C.; Mark, R. G.; Mietus, J. E.; Moody, G. B.; Peng, C.-K. & Stanley, H. E.: , 2000; Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals; circulation; 101 (23): e215–e220.Golugula, A.; Lee, G. & Madabhushi, A.: , 2011; Evaluating feature selection strategies for high dimen- sional, small sample size datasets; en 2011 Annual International conference of the IEEE engineering in medicine and biology society; IEEE; págs. 949–952.Gonuguntla, V.; Wang, Y. & Veluvolu, K. C.: , 2016; Event-related functional network identification: application to EEG classification; IEEE journal of selected topics in signal processing; 10 (7): 1284–1294.Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2020; Network-based brain computer interfaces: principles and applications; Journal of Neural EngineeringGonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2021; Network-based brain–computer interfaces: principles and applications; Journal of neural engineering; 18 (1): 011001.Gramfort, A. & Clerc, M.: , 2007; Low dimensional representations of MEG/EEG data using laplacian eigenmaps; en 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging; IEEE; págs. 169–172.Grigorev, N. A.; Savosenkov, A. O.; Lukoyanov, M. V.; Udoratina, A.; Shusharina, N. N.; Kaplan, A. Y.; Hramov, A. E.; Kazantsev, V. B.& Gordleeva, S.: , 2021; A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1583–1592.Grilo, M.; Ribeiro, L.; Moraes, C.; Melo, C.; Fantinato, D.; Sampaio, L.; Neves, A.&Ramos, R.: , 2019; Artifact removal in EEG based emotional signals through linear and nonlinear methods; en 2019 E-Health and Bioengineering Conference (EHB); IEEE; págs. 1–4.Gu, J.; Wei, M.; Guo, Y. & Wang, H.: , 2021; Common spatial pattern with l21-norm; Neural Processing Letters: 1–20.Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020a; EEG-based classification of lower limb motor imagery with brain network analysis; Neuroscience; 436: 93–109.Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020b; Random matrix theory for analysing the brain functional network in lower limb motor imagery; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 506–509.Guger, C.; Allison, B. Z.; Großwindhager, B.; Prückl, R.; Hintermüller, C.; Kapeller, C.; Bruckner, M.; Krausz, G. & Edlinger, G.: , 2012; How many people could use an ssvep bci?; Frontiers in neuroscience; 6: 169.Guillot, A. & Debarnot, U.: , 2019; Benefits of motor imagery for human space flight: a brief review of current knowledge and future applications; Frontiers in Physiology; 10: 396.Gupta, A.; Agrawal, R. & Kaur, B.: , 2015; Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods; Soft Computing; 19 (10): 2799–2812.Haddad, A.; Shamsi, F.; Ghovanloo, M. & Najafizadeh, L.: , 2019; Early decoding of tongue-hand move- ment from EEG recordings using dynamic functional connectivity graphs; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 373–376.Hagedorn, L. J.; Leeuwis, N. & Alimardani, M.: , 2021; Prediction of inefficient bci users based on cognitive skills and personality traits; en International Conference on Neural Information Processing; Springer; págs. 81–89.Halder, S.; Agorastos, D.; Veit, R.; Hammer, E. M.; Lee, S.; Varkuti, B.; Bogdan, M.; Rosenstiel, W.; Birbaumer, N. & Kübler, A.: , 2011; Neural mechanisms of brain–computer interface control; Neuroimage; 55 (4): 1779–1790.Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R. & Birbaumer, N.: , 2013; Prediction of brain-computer interface aptitude from individual brain structure; Frontiers in human neuroscience; 7: 105.Hamedi, M.; Salleh, S.-H. & Noor, A. M.: , 2016; Electroencephalographic motor imagery brain connec- tivity analysis for BCI: a review; Neural computation; 28 (6): 999–1041.Hammer, E. M.; Halder, S.; Blankertz, B.; Sannelli, C.; Dickhaus, T.; Kleih, S.; Müller, K.-R. & Kübler, A.: , 2012; Psychological predictors of smr-bci performance; Biological psychology; 89 (1): 80–86.Hang, W.; Feng, W.; Liang, S.; Wang, Q.; Liu, X. & Choi, K.-S.: , 2020; Deep stacked support matrix machine based representation learning for motor imagery EEG classification; Computer methods and programs in biomedicine; 193: 105466.He, B.; Astolfi, L.; Valdés-Sosa, P. A.; Marinazzo, D.; Palva, S. O.; Bénar, C.-G.; Michel, C. M. & Koenig, T.: , 2019; Electrophysiological brain connectivity: theory and implementation; IEEE Transactions on Biomedical Engineering; 66 (7): 2115–2137.He, H. & Wu, D.: , 2019; Transfer learning for brain–computer interfaces: A euclidean space data alignment approach; IEEE Transactions on Biomedical Engineering; 67 (2): 399–410.He, L.; Hu, Y.; Li, Y. & Li, D.: , 2013; Channel selection by rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG; Neurocomputing; 121: 423–433.He, Y.; Lu, Z.; Wang, J.& Shi, J.: , 2022; A channel attention based mlp-mixer network for motor imagery decod- ing with eeg; en ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); IEEE; págs. 1291–1295.Herranz-Gómez, A.; Gaudiosi, C.; Angulo-Díaz-Parreño, S.; Suso-Martí, L.; La Touche, R. & Cuenca-Martínez, F.: , 2020; Effectiveness of motor imagery and action observation on functional variables: An umbrella and mapping review with meta-meta-analysis; Neuroscience & Biobehavioral Reviews.Herszage, J.; Dayan, E.; Sharon, H. & Censor, N.: , 2020; Explaining individual differences in motor behavior by intrinsic functional connectivity and corticospinal excitability; Frontiers in neuroscience; 14: 76.Ho, R. & Hung, K.: , 2020; A comparative investigation of mode mixing in eeg decomposition using emd, eemd and m-emd; en 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE); IEEE; págs. 203–210.Hochberg, L. R.; Bacher, D.; Jarosiewicz, B.; Masse, N. Y.; Simeral, J. D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S. S.; Van Der Smagt, P. et al.: , 2012; Reach and grasp by people with tetraplegia using a neurally controlled robotic arm; Nature; 485 (7398): 372–375.Hosseini, M.; Powell, M.; Collins, J.; Callahan-Flintoft, C.; Jones, W.; Bowman, H. & Wyble, B.: , 2020a; I tried a bunch of things: The dangers of unexpected overfitting in classification of brain data; Neuroscience & Biobehavioral Reviews.Hosseini, M.-P.; Hosseini, A.& Ahi, K.: , 2020b; A review on machine learning for EEG signal processing in bioengineering; IEEE reviews in biomedical engineering.Hrisca-Eva, O.-D. & Lazar, A. M.: , 2021; Multi-sessions outcome for EEG feature extraction and classification methods in a motor imagery task.; Traitement du Signal; 38 (2).Hsu, L. & Chen, Y.-J.: , 2020; Neuromarketing, subliminal advertising, and hotel selection: An EEG study; Australasian Marketing Journal (AMJ); 28 (4): 200–208.Huang, G.; Hu, Z.; Chen, W.; Zhang, S.; Liang, Z.; Li, L.; Zhang, L. & Zhang, Z.: , 2022; M3cv: A multi-subject, multi-session, and multi-task database for eeg-based biometrics challenge; NeuroImage; 264: 119666.Hurtado-Rincón, J. V.; Martínez-Vargas, J. D.; Rojas-Jaramillo, S.; Giraldo, E. & Castellanos-Dominguez, G.: , 2016; Identification of relevant inter-channel EEG connectivity patterns: a kernel-based super- vised approach; en International Conference on Brain Informatics; Springer; págs. 14–23.Idowu, O. P.; Ilesanmi, A. E.; Li, X.; Samuel, O. W.; Fang, P. & Li, G.: , 2021; An integrated deep learning model for motor intention recognition of multi-class EEG signals in upper limb amputees; Computer Methods and Programs in Biomedicine; 206: 106121.Ingolfsson, T. M.; Hersche, M.; Wang, X.; Kobayashi, N.; Cavigelli, L. & Benini, L.: , 2020; Eeg-tcnet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 2958–2965.Ioffe, S. & Szegedy, C.: , 2015; Batch normalization: Accelerating deep network training by reducing internal covariate shift; en International conference on machine learning; pmlr; págs. 448–456.Islam, M. K.& Rastegarnia, A.: , 2023; Recent advances in eeg (non-invasive) based bci applications; Frontiers in Computational Neuroscience; 17: 1151852.Islam, M. K.; Rastegarnia, A. & Yang, Z.: , 2016; Methods for artifact detection and removal from scalp eeg: A review; Neurophysiologie Clinique/Clinical Neurophysiology; 46 (4-5): 287–305.Ismail, L. E. & Karwowski, W.: , 2020; A graph theory-based modeling of functional brain connec- tivity based on EEG: A systematic review in the context of neuroergonomics; IEEE Access; 8: 155103–155135.Iturralde, P. A.; Patrone, M.; Lecumberry, F. & Fernández, A.: , 2012; Motor intention recognition in EEG: In pursuit of a relevant feature set; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 551–558.Jahromy, F. Z.; Bajoulvand, A. & Daliri, M. R.: , 2019; Statistical algorithms for emo- tion classification via functional connectivity.; Journal of Integrative Neuroscience; 18 (3): 293–297; doi:10.31083/j. jin.2019.03.601; URL https://app.dimensions.ai/details/publication/pub.1121421951andhttps://jin.imrpress.com/EN/article/ downloadArticleFile.do?attachType=PDF&id=1604.Jain, A. & Zongker, D.: , 1997; Feature selection: Evaluation, application, and small sample performance; IEEE transactions on pattern analysis and machine intelligence; 19 (2): 153–158.Jaipriya, D. & Sriharipriya, K.: , 2023; Brain computer interface-based signal processing tech- niques for feature extraction and classification of motor imagery using eeg: A literature review; Biomedical Materials & Devices: 1–13.Jamil, N.; Belkacem, A. N. & Lakas, A.: , 2023; On enhancing students’ cognitive abilities in online learning using brain activity and eye movements; Education and Information Technologies; 28 (4): 4363–4397.Janapati, R.; Dalal, V. & Sengupta, R.: , 2023; Advances in modern eeg-bci signal processing: A review; Materials Today: Proceedings; 80: 2563–2566.Jayaram, V.; Alamgir, M.; Altun, Y.; Scholkopf, B. & Grosse-Wentrup, M.: , 2016; Transfer learning in brain-computer interfaces; IEEE Computational Intelligence Magazine; 11 (1): 20–31.Jiang, Y.; Chen, W.; Li, M.; Zhang, T. & You, Y.: , 2021; Synchroextracting chirplet transform-based epileptic seizures detection using EEG; Biomedical Signal Processing and Control; 68: 102699.Jin, J.; Liu, C.; Daly, I.; Miao, Y.; Li, S.; Wang, X.&Cichocki, A.: , 2020; Bispectrum-basedchannelselection for motor imagery based brain-computer interfacing; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (10): 2153–2163.Jorajuría, T.; Nikulin, V. V.; Kapralov, N.; Gómez, M. & Vidaurre, C.: , 2023; Mean sp: How many channels are needed to predict the performance of a smr-based bci?; IEEE Transactions on Neural Systems and Rehabilitation Engineering.Kang, J.-H.; Kim, S.-H.; Youn, J. & Kim, J.: , 2020; Prediction of the following bci performance by means of spectral eeg characteristics in the prior resting state; KIPS Transactions on Computer and Communication Systems; 9 (11): 265–272.Kaper, M.; Meinicke, P.; Grossekathoefer, U.; Lingner, T. & Ritter, H.: , 2004; BCI competition 2003- data set IIb: support vector machines for the p300 speller paradigm; IEEE Transactions on biomedical Engineering; 51 (6): 1073–1076.Kawanabe, M.; Krauledat, M. & Blankertz, B.: , 2006; A bayesian approach for adaptive BCI classi- fication; Citeseer.Khan, D. M.; Yahya, N.; Kamel, N. & Faye, I.: , 2021; Effective connectivity in default mode network for alcoholism diagnosis; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 796–808.Khan, M. A.; Das, R.; Iversen, H. K. & Puthusserypady, S.: , 2020; Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application; Computers in Biology and Medicine: 103843.Khosla, A.; Khandnor, P.& Chand, T.: , 2020; A comparative analysis of signal processing and classification methods for different applications based on EEG signals; Biocybernetics and Biomedical Engineering; 40 (2): 649–690.Kim, S.-J.; Lee, D.-H. & Lee, S.-W.: , 2022; Rethinking cnn architecture for enhancing decoding performance of motor imagery-based eeg signals; IEEE Access; 10: 96984–96996.Kim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S. & Kim, D.: , 2019; Reduced burden of individual calibration process in brain-computer interface by clustering the subjects based on brain activation; en 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE; págs. 2139–2143.Kingma, D. P. & Ba, J.: , 2014; Adam: A method for stochastic optimization; arXiv preprint arXiv:1412.6980.Kingma, D. P.; Welling, M. et al.: , 2019; An introduction to variational autoencoders; Foundations and Trends® in Machine Learning; 12 (4): 307–392.Knapen, T.: , 2021; Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain; Proceedings of the National Academy of Sciences; 118 (2).Kondratyev, A.; Schwarz, C. & Horvath, B.: , 2020; Data anonymisation, outlier detection and fight- ing overfitting with restricted boltzmann machines; Outlier Detection and Fighting Overfitting with Restricted Boltzmann Machines (January 27, 2020).Kong, Q.; Wu, Y.; Yuan, C. & Wang, Y.: , 2021; Ct-cad: Context-aware transformers for end-to-end chest abnormality detection on x-rays; en 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 1385–1388.Kosmyna, N. & Lécuyer, A.: , 2019; A conceptual space for eeg-based brain-computer interfaces; PloS one; 14 (1): e0210145.Kübler, A.: , 2020; The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome; Neuroethics; 13 (2): 163–180.Kübler, A.; Neumann, N.; Kaiser, J.; Kotchoubey, B.; Hinterberger, T. & Birbaumer, N. P.: , 2001; Brain-computer communication: self-regulation of slow cortical potentials for verbal communication; Archives of physical medicine and rehabilitation; 82 (11): 1533–1539.Kübler, A.; Neumann, N.; Wilhelm, B.; Hinterberger, T. &Kulkarni, P. M.; Xiao, Z.; Robinson, E. J.; Jami, A. S.; Zhang, J.; Zhou, H.; Henin, S. E.; Liu, A. A.; Osorio, R. S.; Wang, J. et al.: , 2019; A deep learning approach for real-time detection of sleep spindles; Journal of neural engineering; 16 (3): 036004.Kulkarni, V. V.: , 2023; Brain computer interface using eeg signal.Kumar, S.; Reddy, T. & Behera, L.: , 2018; Eeg based motor imagery classification using instantaneous phase difference sequence; en 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 499–504.Kumar, S.; Sharma, A. & Tsunoda, T.: , 2019; Brain wave classification using long short-term memory network based OPTICAL predictor; Scientific reports; 9 (1): 1–13.Kwon, B.-H.; Jeong, J.-H. & Lee, S.-W.: , 2021; Visual motion imagery classification with deep neural network based on functional connectivity; arXiv preprint arXiv:2103.02851.Kwon, M.; Cho, H.; Won, K.; Ahn, M. & Jun, S. C.: , 2020; Use of both eyes-open and eyes-closed resting states may yield a more robust predictor of motor imagery bci performance; Electronics; 9 (4): 690.Kwon, O.-Y.; Lee, M.-H.; Guan, C. & Lee, S.-W.: , 2019; Subject-independent brain–computer interfaces based on deep convolutional neural networks; IEEE transactions on neural networks and learning systems; 31(10): 3839–3852.Ladda, A.M.; Lebon, F.&Lotze, M.: , 2021; Usingmotorimagerypracticeforimprovingmotorperformance– a review; Brain and cognition; 150: 105705.Lakshmi, M. R.; Prasad, T. & Prakash, D. V. C.: , 2014; Survey on EEG signal processing methods; International Journal of Advanced Research in Computer Science and Software Engineering; 4 (1).Lashley, K. S.: , 1929; Brain mechanisms and intelligence: A quantitative study of injuries to the brain.Lawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon, S. M.; Hung, C. P. & Lance, B. J.: , 2018; Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces; Journal of neural engineering; 15 (5): 056013.Lebedev, M. A. & Nicolelis, M. A.: , 2006; Brain–machine interfaces: past, present and future; TRENDS in Neurosciences; 29 (9): 536–546.Ledoit, O. & Wolf, M.: , 2004; A well-conditioned estimator for large-dimensional covariance matrices; Journal of multivariate analysis; 88 (2): 365–411.Lee, F.; Scherer, R.; Leeb, R.; Schlögl, A.; Bischof, H. & Pfurtscheller, G.: , 2004; Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface; Citeseer.Lee, M.; Yoon, J.-G. & Lee, S.-W.: , 2020; Predicting motor imagery performance from resting-state eeg using dynamic causal modeling; Frontiers in human neuroscience; 14: 321.Lee, M.-H.; Kwon, O.-Y.; Kim, Y.-J.; Kim, H.-K.; Lee, Y.-E.; Williamson, J.; Fazli, S. & Lee, S.-W.: , 2019; Eeg dataset and openbmi toolbox for three bci paradigms: An investigation into bci illiteracy; GigaScience; 8 (5): giz002.Leeuwis, N.; Yoon, S. & Alimardani, M.: , 2021; Functional connectivity analysis in motor-imagery brain computer interfaces; Frontiers in Human Neuroscience; 15: 732946.Li, H.; Chen, H.; Jia, Z.; Zhang, R. & Yin, F.: , 2023; A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification; Biomedical Signal Processing and Control; 79: 104066.Li, M. & Chen, W.: , 2021; FFT-based deep feature learning method for EEG classification; Biomedical Signal Processing and Control; 66: 102492.Li, M.; Luo, X.; Yang, J. & Sun, Y.: , 2016; Applying a locally linear embedding algorithm for feature extraction and visualization of MI-EEG; Journal of Sensors; 2016.Li, M.; Wang, J.et al.: , 2019a; An empirical comparison of multiple linear regression and artificial neural network for concrete dam deformation modelling; Mathematical Problems in Engineering; 2019.Li, S.; Xie, X.; Gu, Z.; Yu, Z. L. & Li, Y.: , 2019b; Motor imagery classification based on local isometric embedding of riemannian manifold; en 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); IEEE; págs. 2368–2372.Li, Y.; Kambara, H.; Koike, Y. & Sugiyama, M.: , 2010; Application of covariate shift adaptation techniques in brain–computer interfaces; IEEE Transactions on Biomedical Engineering; 57 (6): 1318–1324.Li, Y.; Zhang, X.-R.; Zhang, B.; Lei, M.-Y.; Cui, W.-G. & Guo, Y.-Z.: , 2019c; A channel-projection mixed- scale convolutional neural network for motor imagery EEG decoding; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 27 (6): 1170–1180.Li, Y.; Liu, Y.; Cui, W.-G.; Guo, Y.-Z.; Huang, H. & Hu, Z.-Y.: , 2020; Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 782–794.Li, Y.; Fu, B.; Li, F.; Shi, G. & Zheng, W.: , 2021; A novel transferability attention neural network model for EEG emotion recognition; Neurocomputing; 447: 92–101.Linderman, G. & Steinerberger, S.: , 2019; Clustering with t-sne, provably; SIAM Journal on Mathematics of Data Science; 1 (2): 313–332.Liu, R. & Gillies, D. F.: , 2016; Overfitting in linear feature extraction for classification of high-dimensional image data; Pattern Recognition; 53: 73–86.Liu, S.; Zhang, J.; Wang, A.; Wu, H.; Zhao, Q. & Long, J.: , 2022; Subject adaptation convolutional neural network for eeg-based motor imagery classification; Journal of Neural Engineering; 19 (6): 066003.Liu, W.; Guo, C. & Gao, C.: , 2024; A cross-session motor imagery classification method based on riemannian geometry and deep domain adaptation; Expert Systems with Applications; 237: 121612.Lopez, C. A. F.; Li, G. & Zhang, D.: , 2020; Beyond technologies of electroencephalography-based brain- computer interfaces: A systematic review from commercial and ethical aspects; Frontiers in Neuroscience; 14.Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A. & Yger, F.: , 2018; A review of classification algorithms for eeg-based brain–computer interfaces: a 10 year update; Journal of neural engineering; 15 (3): 031005.Lu, C.-F.; Teng, S.; Hung, C.-I.; Tseng, P.-J.; Lin, L.-T.; Lee, P.-L. & Wu, Y.-T.: , 2011; Reorganiza- tion of functional connectivity during the motor task using EEG time–frequency cross mutual information analysis; Clinical Neurophysiology; 122 (8): 1569–1579.Luo, Z.; Jin, R.; Shi, H. & Lu, X.: , 2021; Research on recognition of motor imagination based on connectivity features of brain functional network; Neural plasticity; 2021.Ma, B.-Q.; Li, H.; Zheng, W.-L. & Lu, B.-L.: , 2019; Reducing the subject variability of eeg signals with adversarial domain generalization; en Neural Information Processing: 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part I 26; Springer; págs. 30–42.Ma, X.; Qiu, S.; Zhang, Y.; Lian, X. & He, H.: , 2018; Predicting epileptic seizures from intracranial eeg using lstm-based multi-task learning; en Chinese Conference on Pattern Recognition and Computer Vision (PRCV); Springer; págs. 157–167.Maiseli, B.; Abdalla, A. T.; Massawe, L. V.; Mbise, M.; Mkocha, K.; Nassor, N. A.; Ismail, M.; Michael, J. & Kimambo, S.: , 2023; Brain–computer interface: trend, challenges, and threats; Brain Informatics; 10 (1): 20.Maksimenko, V. A.; Lüttjohann, A.; Makarov, V. V.; Goremyko, M. V.; Koronovskii, A. A.; Nedaivozov, V.; Runnova, A. E.; van Luijtelaar, G.; Hramov, A. E. & Boccaletti, S.: , 2017; Macroscopic and microscopic spectral properties of brain networks during local and global synchronization; Physical Review E; 96 (1): 012316.Matemba, E. D.; Li, G.; Gogan, I. C. W. & Maiseli, B. J.: , 2020; Technology acceptance model: recent developments, future directions, and proposal for hypothetical extensions; International Journal of Technology Intelligence and Planning; 12 (4): 315–348.McClelland, V. M.; Fischer, P.; Foddai, E.; Dall’Orso, S.; Burdet, E.; Brown, P. & Lin, J.-P.: , 2021; Eeg measures of sensorimotor processing and their development are abnormal in children with isolated dystonia and dystonic cerebral palsy; NeuroImage: Clinical; 30: 102569.McFarland, D. J. & Wolpaw, J. R.: , 2011; Brain-computer interfaces for communication and control; Communications of the ACM; 54 (5): 60–66.Meanti, G.; Carratino, L.; Rosasco, L. & Rudi, A.: , 2020; Kernel methods through the roof: handling billions of points efficiently; arXiv preprint arXiv:2006.10350.Meng, J. & He, B.: , 2019; Exploring training effect in 42 human subjects using a non-invasive sensorimotor rhythm based online bci; Frontiers in human neuroscience; 13: 128.Miao, M.; Wang, A. & Liu, F.: , 2017a; A spatial-frequency-temporal optimized feature sparse representation- based classification method for motor imagery eeg pattern recognition; Medical & biological engineering & computing; 55: 1589–1603.Miao, M.; Zeng, H.; Wang, A.; Zhao, C. & Liu, F.: , 2017b; Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery eeg: An sparse regression and weighted naïve bayesian classifier-based approach; Journal of neuroscience methods; 278: 13–24.Miao, Z. & Zhao, M.: , 2024; Time–space–frequency feature fusion for 3-channel motor imagery classification; Biomedical Signal Processing and Control; 90: 105867.Midha, S.; Maior, H. A.; Wilson, M. L. & Sharples, S.: , 2021; Measuring mental workload variations in office work tasks using fnirs; International Journal of Human-Computer Studies; 147: 102580.Miladinović, A.; Barbaro, A.; Valvason, E.; Ajčević, M.; Accardo, A.; Battaglini, P. P. & Jar- molowska, J.: , 2020; Combined and singular effects of action observation and motor imagery paradigms on resting-state sensorimotor rhythms; en XV Mediterranean Conference on Medical and Biological Engineering and Computing–MEDICON 2019: Proceedings of MEDICON 2019, September 26-28, 2019, Coimbra, Portugal; Springer; págs. 1129–1137.Miladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P. P. & Accardo, A.: , 2021; Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study; Computer Methods and Programs in Biomedicine; 198: 105808.Miljevic, A.; Bailey, N. W.; Vila-Rodriguez, F.; Herring, S. E. & Fitzgerald, P. B.: , 2022; Electroen- cephalographic connectivity: a fundamental guide and checklist for optimal study design and evaluation; Biological Psychiatry: Cognitive Neuroscience and Neuroimaging; 7 (6): 546–554.Millan, J. R. & Mouriño, J.: , 2003; Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project; IEEE transactions on neural systems and rehabilitation engineering; 11 (2): 159–161.Miotto, R.; Wang, F.; Wang, S.; Jiang, X. & Dudley, J. T.: , 2018; Deep learning for healthcare: review, opportunities and challenges; Briefings in bioinformatics; 19 (6): 1236–1246.Mirzaei, S. & Ghasemi, P.: , 2021; EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder; Biomedical Signal Processing and Control; 68: 102584.Modares-Haghighi, P.; Boostani, R.; Nami, M. & Sanei, S.: , 2021; Quantification of pain severity using EEG-based functional connectivity; Biomedical Signal Processing and Control; 69: 102840.Mohammadi, L.; Einalou, Z.; Hosseinzadeh, H. & Dadgostar, M.: , 2021; Cursor movement detec- tion in brain-computer-interface systems using the k-means clustering method and LSVM; Journal of Big Data; 8 (1): 1–15.Molina-Giraldo, S.; Carvajal-González, J.; Álvarez-Meza, A. M. & Castellanos-Domínguez, G.: , 2015; Video segmentation framework based on multi-kernel representations and feature relevance analysis for object classification; en Pattern recognition applications and methods; Springer; págs. 273–283.Morioka, H.; Kanemura, A.; Hirayama, J.-i.; Shikauchi, M.; Ogawa, T.; Ikeda, S.; Kawanabe, M. & Ishii, S.: , 2015; Learning a common dictionary for subject-transfer decoding with resting calibration; NeuroImage; 111: 167–178.Mormann, F.; Lehnertz, K.; David, P. & Elger, C. E.: , 2000; Mean phase coherence as a measure for phase synchronization and its application to the eeg of epilepsy patients; Physica D: Nonlinear Phenomena; 144 (3-4): 358–369.Mridha, M. F.; Das, S. C.; Kabir, M. M.; Lima, A. A.; Islam, M. R. & Watanobe, Y.: , 2021; Brain-computer interface: Advancement and challenges; Sensors; 21 (17): 5746.Mulert, C. & Lemieux, L.: , 2023; EEG-fMRI: physiological basis, technique, and applications; Springer Nature.Müller-Putz, G.; Scherer, R.; Brunner, C.; Leeb, R. & Pfurtscheller, G.: , 2008; Better than random: a closer look on bci results; International journal of bioelectromagnetism; 10 (ARTICLE): 52–55.Mumtaz, W.; Kamel, N.; Ali, S. S. A.; Malik, A. S. et al.: , 2018; An EEG-based functional connectivity measure for automatic detection of alcohol use disorder; Artificial intelligence in medicine; 84: 79–89.Musallam, Y. K.; AlFassam, N. I.; Muhammad, G.; Amin, S. U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M. A. & Algabri, M.: , 2021; Electroencephalography-based motor imagery classification using temporal convolutional network fusion; Biomedical Signal Processing and Control; 69: 102826.Nagabushanam, P.; Thomas George, S. & Radha, S.: , 2020; Eeg signal classification using lstm and improved neural network algorithms; Soft Computing; 24: 9981–10003.Nakra, A. & Duhan, M.: , 2020; Feature extraction and dimensionality reduction techniques with their advantages and disadvantages for eeg-based bci system: A review.; IUP Journal of Computer Sciences; 14 (1).Nicolini, C.; Forcellini, G.; Minati, L. & Bifone, A.: , 2020; Scale-resolved analysis of brain functional connectivity networks with spectral entropy; NeuroImage; 211: 116603.Nijboer, F.; Birbaumer, N. & Kübler, A.: , 2010; The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study; Frontiers in Neu- ropharmacology; 4: 55.Nisar, H.; Thee, K. W.; Lim, S. H.; Yap, V. V.; Teh, P. C.; Nor, N. M. & Chow, C. M.: , 2018; Brain functional connectivity analysis using single trial EEG for understanding individual mechanisms; en 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA); IEEE; págs. 209–214.Nkengfack, L. C. D.; Tchiotsop, D.; Atangana, R.; Louis-Door, V. & Wolf, D.: , 2020; EEG signals analysis for epileptic seizures detection using polynomial transforms, linear discriminant analysis and support vector machines; Biomedical Signal Processing and Control; 62: 102141.Noshadi, S.; Abootalebi, V.; Sadeghi, M. T. & Shahvazian, M. S.: , 2014; Selection of an efficient feature space for EEG-based mental task discrimination; Biocybernetics and Biomedical Engineering; 34 (3): 159–168.Omeiza, D.; Speakman, S.; Cintas, C.& Weldermariam, K.: , 2019; Smooth grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models; arXiv preprint arXiv:1908.01224.O’Reilly, J. A. & Chanmittakul, W.: , 2021; L1 regularization-based selection of EEG spec- tral power and ECG features for classification of cognitive state; en 2021 9th International Electrical Engineering Congress (iEECON); IEEE; págs. 365–368.Özdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2019a; Adversarial deep learning in EEG biometrics; IEEE signal processing letters; 26 (5): 710–714.Özdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2019b; Transfer learning in brain- computer interfaces with adversarial variational autoencoders; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 207–210.Özdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2020; Learning invariant representations from eeg via adversarial inference; IEEE access; 8: 27074–27085.Padilla-Buritica, J. I.; Hurtado, J. V. & Castellanos-Dominguez, G.: , 2019; Supervised piece- wise network connectivity analysis for enhanced confidence of auditory oddball tasks; Biomedical Signal Processing and Control; 52: 341–346.Pahuja, S.; Veer, K. et al.: , 2022; Recent approaches on classification and feature extraction of eeg signal: A review; Robotica; 40 (1): 77–101.Pandey, P.& Miyapuram, K. P.: , 2021; BRAIN2DEPTH: Lightweight CNN model for classification of cognitive states from EEG recordings; arXiv preprint arXiv:2106.06688.Parhi, M. & Tewfik, A. H.: , 2021; Classifying imaginary vowels from frontal lobe EEG via deep learning; en 2020 28th European Signal Processing Conference (EUSIPCO); IEEE; págs. 1195–1199.Park, H. & Jun, S. C.: , 2023; Exploring connectivity of resting-state eeg between bci-literate and-illiterate groups; bioRxiv: 2023–11.Park, S.-H.; Lee, D. & Lee, S.-G.: , 2017; Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 498–505.Pawar, D. & Dhage, S.: , 2020; Feature extraction methods for electroencephalography based brain- computer interface: A review.; IAENG International Journal of Computer Science; 47 (3).Paz-Linares, D.; Vega-Hernandez, M.; Rojas-Lopez, P. A.; Valdes-Hernandez, P. A.; Martinez- Montes, E. & Valdes-Sosa, P. A.: , 2017; Spatio temporal EEG source imaging with the hierarchical bayesian elastic net and elitist lasso models; Frontiers in neuroscience; 11: 635.Peksa, J. & Mamchur, D.: , 2023; State-of-the-art on brain-computer interface technology; Sensors; 23 (13): 6001.Peterson, V.; Wyser, D.; Lambercy, O.; Spies, R. & Gassert, R.: , 2019; A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG; Journal of Neural Engineering; 16 (1): 016019.Pfurtscheller, G. & Da Silva, F. L.: , 1999; Event-related eeg/meg synchronization and desyn- chronization: basic principles; Clinical neurophysiology; 110 (11): 1842–1857.Pope, P. E.; Kolouri, S.; Rostami, M.; Martin, C. E. & Hoffmann, H.: , 2019; Explainability methods for graph convolutional neural networks; en Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; págs. 10772–10781.Power, L.; Neyedli, H. F.; Boe, S. G. & Bardouille, T.: , 2020; Efficacy of low-cost wireless neurofeedback to modulate brain activity during motor imagery; Biomedical Physics & Engineering Express; 6 (3): 035024.Proakis, J. G.: , 2007; Digital signal processing: principles, algorithms, and applications, 4/E; Pearson Education India.Pulgarin-Giraldo, J.D.; Ruales-Torres, A.; Álvarez-Meza, A.M.&Castellanos-Dominguez, G.: , 2017; Relevant kinematic feature selection to support human action recognition in MoCap data; en International Work- Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 501–509.Qian, X.; Loo, B. R. Y.; Castellanos, F. X.; Liu, S.; Koh, H. L.; Poh, X. W. W.; Krishnan, R.; Fung, D.; Chee, M. W.; Guan, C.et al.: , 2018; Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder; Translational psychiatry; 8 (1): 149.Qiao, R.; Zhang, H. & Tian, Y.: , 2023; Eeg cortical network reveals the temporo-spatial mechanism of visual search; Brain Research Bulletin; 203: 110758.Raeisi, K.; Mohebbi, M.; Khazaei, M.; Seraji, M. & Yoonessi, A.: , 2020; Phase-synchrony evaluation of EEG signals for multiple sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task; Computers in biology and medicine; 117: 103596.Raghu, S.; Sriraam, N.; Temel, Y.; Rao, S. V. & Kubben, P. L.: , 2020; Eeg based multi-class seizure type classification using convolutional neural network and transfer learning; Neural Networks; 124: 202–212.Rahimi, A.; Recht, B. et al.: , 2007; Random features for large-scale kernel machines.; en NIPS, tomo 3; Citeseer; pág. 5.Rajabioun, M.: , 2020; Motor imagery classification by active source dynamics; Biomedical Signal Processing and Control; 61: 102028.Rajpura, P.; Cecotti, H. & Meena, Y. K.: , 2023; Explainable artificial intelligence approaches for brain- computer interfaces: a review and design space; arXiv preprint arXiv:2312.13033.Ramadan, R. A.; Refat, S.; Elshahed, M. A. & Ali, R. A.: , 2015; Basics of brain computer interface; en Brain-Computer Interfaces; Springer; págs. 31–50.Ras, G.; van Gerven, M.& Haselager, P.: , 2018; Explanation methods in deep learning: Users, values, concerns and challenges; Explainable and interpretable models in computer vision and machine learning: 19–36.Rasheed, M. A.; Chand, P.; Ahmed, S.; Sharif, H.; Hoodbhoy, Z.; Siddiqui, A. & Hasan, B. S.: , 2021; Use of artificial intelligence on electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in pakistan; Plos one; 16 (2): e0246236.Rashid, M.; Sulaiman, N.; PP Abdul Majeed, A.; Musa, R. M.; Ab Nasir, A. F.; Bari, B. S. & Khatun, S.: , 2020; Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review; Frontiers in neurorobotics: 25.Rathee, D.; Cecotti, H. & Prasad, G.: , 2017; Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks; Journal of neural engineering; 14 (5): 056005.Raza, H.; Prasad, G. & Li, Y.: , 2013; Ewma based two-stage dataset shift-detection in non-stationary envi- ronments; en Artificial Intelligence Applications and Innovations: 9th IFIP WG 12.5 International Conference, AIAI 2013, Paphos, Cyprus, September 30–October 2, 2013, Proceedings 9; Springer; págs. 625–635.Raza, H.; Cecotti, H.; Li, Y. & Prasad, G.: , 2015; Learning with covariate shift-detection and adaptation in non-stationary environments: Application to brain-computer interface; en 2015 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8.Raza, H.; Rathee, D.; Zhou, S.-M.; Cecotti, H. & Prasad, G.: , 2019; Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related eeg-based brain-computer interface; Neuro- computing; 343: 154–166.Rejer, I. & Lorenz, K.: , 2013; Genetic algorithm and forward method for feature selection in EEG feature space; Journal of Theoretical and Applied Computer Science; 7 (2): 72–82.Riahi, N.; Vakorin, V. A. & Menon, C.: , 2020; Estimating fugl-meyer upper extremity motor score from functional-connectivity measures; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 860–868.Rimbert, S.; Gayraud, N.; Bougrain, L.; Clerc, M. & Fleck, S.: , 2019; Can a subjective questionnaire be used as brain-computer interface performance predictor?; Frontiers in human neuroscience; 12: 529.Rodrigues, P.; Stefano, C.; Attux, R.; Castellano, G. & Soriano, D.: , 2019a; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725.Rodrigues, P. G.; Stefano Filho, C. A.; Attux, R.; Castellano, G. & Soriano, D. C.: , 2019b; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725.Rodriguez-Larios, J.; Faber, P.; Achermann, P.; Tei, S.&Alaerts, K.: , 2020; Fromthoughtless awareness to effortful cognition: alpha-theta cross-frequency dynamics in experienced meditators during meditation, rest and arithmetic; Scientific Reports; 10 (1): 5419.Rongrong, F.; Mengmeng, H.; Yongsheng, T. & Peiming, S.: , 2020; Improvement motor imagery eeg classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833.Roweis, S. & Ghahramani, Z.: , 1999; A unifying review of linear gaussian models; Neural computation; 11 (2): 305–345.Rubinov, M. & Sporns, O.: , 2010; Complex network measures of brain connectivity: uses and interpre- tations; Neuroimage; 52 (3): 1059–1069.Ruiz-Gómez, S.J.; Gómez, C.; Poza, J.; Revilla-Vallejo, M.; Gutiérrez-dePablo, V.; Rodríguez- González, V.; Maturana-Candelas, A. & Hornero, R.: , 2020; Volume conduction effects on connectivity metrics: Appli- cation of network parameters to characterize alzheimer’s disease continuum; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–33.Sadiq, M. T.; Yu, X.; Yuan, Z.; Fan, Z.; Rehman, A. U.; Li, G. & Xiao, G.: , 2019; Motor imagery eeg signals classification based on mode amplitude and frequency components using empirical wavelet transform; IEEE access; 7: 127678–127692.Saha, S. & Baumert, M.: , 2020; Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review; Frontiers in computational neuroscience; 13: 87.Saha, S.; Ahmed, K. I. U.; Mostafa, R.; Hadjileontiadis, L. & Khandoker, A.: , 2017; Evidence of variabilities in eeg dynamics during motor imagery-based multiclass brain–computer interface; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 371–382.Saha, S.; Mamun, K. A.; Ahmed, K. I. U.; Mostafa, R.; Naik, G. R.; Darvishi, S.; Khandoker, A. H. & Baumert, M.: , 2021; Progress in brain computer interface: Challenges and potentials; Frontiers in Systems Neuroscience; 15: 4.Saha, S.; Baumert, M. & McEwan, A.: , 2023; Can inter-subject associativity predict data-driven bci perfor- mance?; en 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 1–4.Saibene, A.; Caglioni, M.; Corchs, S. & Gasparini, F.: , 2023; Eeg-based bcis on motor imagery paradigm using wearable technologies: A systematic review; Sensors; 23 (5): 2798.Said, S.; Bombrun, L.; Berthoumieu, Y. & Manton, J. H.: , 2017; Riemannian gaussian distributions on the space of symmetric positive definite matrices; IEEE Transactions on Information Theory; 63 (4): 2153–2170.Sakhavi, S.; Guan, C. & Yan, S.: , 2015; Parallel convolutional-linear neural network for motor imagery classification; en 2015 23rd European Signal Processing Conference (EUSIPCO); IEEE; págs. 2736–2740.Sakkalis, V.: , 2011; Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG; Computers in biology and medicine; 41 (12): 1110–1117.Sannelli, C.; Braun, M.; Tangermann, M. & Müller, K.-R.: , 2008; Estimating noise and dimensionality in bci data sets: towards illiteracy comprehension.Sannelli, C.; Vidaurre, C.; Müller, K. & Blankertz, B.: , 2019a; A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity; PLoS One; 14 (1): e0207351.Sannelli, C.; Vidaurre, C.; Müller, K.-R. & Blankertz, B.: , 2019b; A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity; PloS one; 14 (1): e0207351.Sarin, M.; Verma, A.; Mehta, D. H.; Shukla, P. K. & Verma, S.: , 2020; Automated ocular artifacts identification and removal from EEG data using hybrid machine learning methods; en 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN); IEEE; págs. 1054–1059.Schalk, G.; McFarland, D. J.; Hinterberger, T.; Birbaumer, N. & Wolpaw, J. R.: , 2004; Bci2000: a general-purpose brain-computer interface (bci) system; IEEE Transactions on biomedical engineering; 51 (6): 1034–1043.Scherer, R. & Vidaurre, C.: , 2018; Motor imagery based brain–computer interfaces; en Smart wheelchairs and brain-computer interfaces; Elsevier; págs. 171–195.Schirrmeister, R. T.; Springenberg, J. T.; Fiederer, L. D. J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W. & Ball, T.: , 2017; Deep learning with convolutional neural networks for eeg decoding and visualization; Human brain mapping; 38 (11): 5391–5420.Schlögl, A.; Lee, F.; Bischof, H. & Pfurtscheller, G.: , 2005; Characterization of four-class motor imagery eeg data for the bci-competition 2005; Journal of neural engineering; 2 (4): L14.Seghier, M. L. & Price, C. J.: , 2018; Interpreting and utilising intersubject variability in brain function; Trends in cognitive sciences; 22 (6): 517–530.Selvaraju, R. R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D. & Batra, D.: , 2016; Grad-CAM: Why did you say that?; arXiv preprint arXiv:1611.07450.Shali, R. K. & Setarehdan, S. K.: , 2020; The impact of electrode reduction in the diagnosis of dyslexia; en 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME); IEEE; págs. 118–125.Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2020a; Early classification of motor tasks using dynamic functional connectivity graphs from eeg; Journal of Neural Engineering.Shamsi, F.; Haddad, A. et al.: , 2020b; Recognizing pain in motor imagery EEG recordings using dynamic functionalconnectivitygraphs; en2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 2869–2872.Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2021; Early classification of motor tasks using dynamic functional connectivity graphs from EEG; Journal of Neural Engineering; 18 (1): 016015.Shao, L.; Zhang, L.; Belkacem, A. N.; Zhang, Y.; Chen, X.; Li, J. & Liu, H.: , 2020; EEG-controlled wall-crawling cleaning robot using SSVEP-based brain-computer interface; Journal of healthcare engineering; 2020.Sharma, N.; Sharma, M.; Singhal, A.; Vyas, R.; Malik, H.; Afthanorhan, A. & Hossaini, M. A.: , 2023; Recent trends in eeg based motor imagery signal analysis and recognition: A comprehensive review.; IEEE Access.Shir, D.; Lazar, E. B.; Graff-Radford, J.; Aksamit, A. J.; Cutsforth-Gregory, J. K.; Jones, D. T.; Botha, H.; Ramanan, V. K.; Prusinski, C.; Porter, A. et al.: , 2022; Analysis of clinical features, diagnostic tests, and biomarkers in patients with suspected creutzfeldt-jakob disease, 2014-2021; JAMA Network Open; 5 (8): e2225098–e2225098.Shu, X.; Chen, S.; Yao, L.; Sheng, X.; Zhang, D.; Jiang, N.; Jia, J. & Zhu, X.: , 2018; Fast recognition of bci-inefficient users using physiological features from eeg signals: A screening study of stroke patients; Frontiers in neuroscience; 12: 93.Simon, N.; Friedman, J.; Hastie, T. & Tibshirani, R.: , 2013; A sparse-group lasso; Journal of computa- tional and graphical statistics; 22 (2): 231–245.Singh, A.; Hussain, A. A.; Lal, S. & Guesgen, H. W.: , 2021; A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface; Sensors; 21 (6): 2173.Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M. L.; Rana, M.; Oblak, E. et al.: , 2017; Closed-loop brain training: the science of neurofeedback; Nature Reviews Neuroscience; 18 (2): 86–100.Smith, S.; Duff, E.; Groves, A.; Nichols, T. E.; Jbabdi, S.; Westlye, L. T.; Tamnes, C. K.; Engvig, A.; Walhovd, K. B.; Fjell, A. M. et al.: , 2019; Structural variability in the human brain reflects fine-grained functional architecture at the population level; Journal of Neuroscience; 39 (31): 6136–6149.Smith, S. M.; Miller, K. L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C. F.; Nichols, T. E.; Ramsey, J. D. & Woolrich, M. W.: , 2011; Network modelling methods for fmri; Neuroimage; 54 (2): 875–891.Smola, A. J. & Schölkopf, B.: , 2000; Sparse greedy matrix approximation for machine learning.Smuha, N. A.: , 2019; The eu approach to ethics guidelines for trustworthy artificial intelligence; Computer Law Review International; 20 (4): 97–106.Song, Y.; Wang, D.; Yue, K.; Zheng, N. & Shen, Z.-J. M.: , 2019; Eeg-based motor imagery classification with deep multi-task learning; en 2019 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8.Souto, D. O.; Cruz, T. K. F.; Coutinho, K.; Julio-Costa, A.; Fontes, P. L. B. & Haase, V. G.: , 2020; Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy; NeuroRehabilitation; 46 (1): 53–63.Stefano Filho, C. A.; Attux, R. & Castellano, G.: , 2018; Can graph metrics be used for EEG-BCIs based on hand motor imagery?; Biomedical Signal Processing and Control; 40: 359–365.Stefano Filho, C. A.; Ignacio Serrano, J.; Attux, R.; Castellano, G.; Rocon, E. & del Castillo, M. D.: , 2021; Reorganization of resting-state EEG functional connectivity patterns in children with cerebral palsy following a motor imagery virtual-reality intervention; Applied Sciences; 11 (5): 2372.Stephan, K.; Friston, K. & Squire, L.: , 2009; Functional connectivity.Sturm, I.; Lapuschkin, S.; Samek, W. & Müller, K.-R.: , 2016; Interpretable deep neural networks for single-trial EEG classification; Journal of neuroscience methods; 274: 141–145.Subasi, A. & Gursoy, M. I.: , 2010; EEG signal classification using PCA, ICA, LDA and support vector machines; Expert systems with applications; 37 (12): 8659–8666.Subasi, A.; Tuncer, T.; Dogan, S.; Tanko, D. & Sakoglu, U.: , 2021; EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier; Biomedical Signal Processing and Control; 68: 102648.Sun, C.; Lin, K.; Huang, Y.-T.; Ching, E. S.; Lai, P.-Y.& Chan, C.: , 2020a; Directed effective connectivity and synaptic weights of in vitro neuronal cultures revealed from high-density multielectrode array recordings; bioRxiv.Sun, J.; Xie, J. & Zhou, H.: , 2021; Eeg classification with transformer-based models; en 2021 ieee 3rd global conference on life sciences and technologies (lifetech); IEEE; págs. 92–93.Sun, X.; Hu, B.; Zheng, X.; Yin, Y. & Ji, C.: , 2020b; Emotion classification based on brain functional connectivity network; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 2082–2089.Sun, Y.; Zhang, H. L.; Lu, Y. & Xue, Y.: , 2022; Eeg signal classification using shallow fbcsp convnet with a new cropping strategy; en International Conference on Brain Informatics; Springer; págs. 359–368.Suto, J. & Oniga, S.: , 2018; Music stimuli recognition in electroencephalogram signal; Elektronika ir Elek- trotechnika; 24 (4): 68–71.Šverko, Z.; Vrankić, M.; Vlahinić, S. & Rogelj, P.: , 2022; Complex pearson correlation coefficient for eeg connectivity analysis; Sensors; 22 (4): 1477.Tang, Q.; Wang, J. & Wang, H.: , 2014; L1-norm based discriminative spatial pattern for single-trial EEG classification; Biomedical Signal Processing and Control; 10: 313–321.Tang, X.; Li, W.; Li, X.; Ma, W. & Dang, X.: , 2020; Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network; Expert Systems with Applications; 149: 113285.Tang, X.; Shen, H.; Zhao, S.; Li, N.& Liu, J.: , 2023; Flexible brain–computer interfaces; Nature Electronics; 6 (2): 109–118.Tao, L.; Cao, T.; Wang, Q.; Liu, D.; Bai, O. & Sun, J.: , 2023; Application of self-adaptive multiple-kernel extreme learning machine to improve mi-bci performance of subjects with bci illiteracy; Biomedical Signal Processing and Control; 79: 104183.Taran, S. & Bajaj, V.: , 2019; Motor imagery tasks-based eeg signals classification using tunable-q wavelet transform; Neural Computing and Applications; 31: 6925–6932.Teo, W.-P. & Chew, E.: , 2014; Is motor-imagery brain-computer interface feasible in stroke rehabilitation?; PM&R; 6 (8): 723–728.Thakur, K. T.; Albanese, E.; Giannakopoulos, P.; Jette, N.; Linde, M.; Prince, M. J.; Steiner, T. J. & Dua, T.: , 2016; Neurological disorders.Tibrewal, N.; Leeuwis, N. & Alimardani, M.: , 2022; Classification of motor imagery eeg using deep learning increases performance in inefficient bci users; Plos one; 17 (7): e0268880.Tibshirani, R.: , 1996; Regression shrinkage and selection via the lasso; Journal of the Royal Statistical Society: Series B (Methodological); 58 (1): 267–288.Tjoa, E. & Guan, C.: , 2020; A survey on explainable artificial intelligence (xai): Toward medical xai; IEEE transactions on neural networks and learning systems; 32 (11): 4793–4813.Tortora, S.; Ghidoni, S.; Chisari, C.; Micera, S. & Artoni, F.: , 2020; Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network; Journal of Neural Engineering; 17 (4): 046011.Tuncer, T.; Dogan, S. & Acharya, U. R.: , 2021; Automated EEG signal classification using chaotic local binary pattern; Expert Systems with Applications; 182: 115175.Uribe, L.; Stefano, C.; deOliveira, V.; daSilva, T.; Rodrigues, P.; Soriano, D.; Boccato, L.; Castellano, G. & Attux, R.: , 2019; A correntropy-based classifier for motor imagery brain-computer interfaces; Biomedical Physics & Engineering Express; 5 (6): 065026Vallabhaneni, R. B.; Sharma, P.; Kumar, V.; Kulshreshtha, V.; Reddy, K. J.; Kumar, S. S.; Kumar, V. S. & Bitra, S. K.: , 2021; Deep learning algorithms in eeg signal decoding application: a review; IEEE Access; 9: 125778–125786.Van der Maaten, L. & Hinton, G.: , 2008; Visualizing data using t-sne.; Journal of machine learning research; 9 (11).Van Der Maaten, L.; Postma, E. & Van den Herik, J.: , 2009; Dimensionality reduction: a comparative; J Mach Learn Res; 10 (66-71): 13.Värbu, K.; Muhammad, N. & Muhammad, Y.: , 2022; Past, present, and future of eeg-based bci applica- tions; Sensors; 22 (9): 3331.Varoquaux, G.: , 2018; Cross-validation failure: Small sample sizes lead to large error bars; Neuroimage; 180: 68–77.Varsehi, H. & Firoozabadi, S. M. P.: , 2021; An EEG channel selection method for motor imagery based brain–computer interface and neurofeedback using granger causality; Neural Networks; 133: 193–206.Vasilyev, A.; Liburkina, S.; Yakovlev, L.; Perepelkina, O. & Kaplan, A.: , 2017; Assessing motor imagery in brain-computer interface training: psychological and neurophysiological correlates; Neuropsychologia; 97: 56–65.Velasquez-Martinez, L.; Caicedo-Acosta, J. & Castellanos-Dominguez, G.: , 2020a; Entropy-basedestimationofevent-relatedde/synchronizationinmotorimageryusingvector-quantizedpatterns; Entropy; 22(6): 703.Velasquez-Martinez, L.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020b; Dy- namic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14: 714.Velásquez-Martínez, L. F.; Álvarez-Meza, A. M. & Castellanos-Domínguez, C. G.: , 2013; Motor imagery classification for BCI using common spatial patterns and feature relevance analysis; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 365–374.Velasquez-Martinez, L. F.; Zapata-Castaño, F.; Padilla-Buritica, J. I.; Ferrández Vi- cente, J. M. & Castellanos-Dominguez, G.: , 2019; Group differences in time-frequency relevant patterns for user- independent bci applications; en Understanding the Brain Function and Emotions: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part I 8; Springer; págs. 138–145.Velasquez-Martinez, L. F.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020c; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14.Verleysen, M. & François, D.: , 2005; The curse of dimensionality in data mining and time series prediction; en International work-conference on artificial neural networks; Springer; págs. 758–770.Vidaurre, C. & Blankertz, B.: , 2010; Towards a cure for bci illiteracy; Brain topography; 23: 194–198.Vidaurre, C.; Sander, T. H.; Schlögl, A. et al.: , 2011a; Biosig: the free and open source software library for biomedical signal processing; Computational intelligence and neuroscience; 2011.Vidaurre, C.; Sannelli, C.; Müller, K.-R. & Blankertz, B.: , 2011b; Machine-learning-based coadaptive calibration for brain-computer interfaces; Neural computation; 23 (3): 791–816.Vidaurre, C.; Murguialday, A. R.; Haufe, S.; Gómez, M.; Müller, K.-R. & Nikulin, V. V.: , 2019; Enhancing sensorimotor bci performance with assistive afferent activity: An online evaluation; NeuroImage; 199: 375–386.Vidaurre, C.; Haufe, S.; Jorajuría, T.; Müller, K.-R.& Nikulin, V. V.: , 2020; Sensorimotor functional connectivity: a neurophysiological factor related to BCI performance; Frontiers in Neuroscience; 14: 1278.Vilela, M.& Hochberg, L. R.: , 2020; Applications of brain-computer interfaces to the control of robotic and prosthetic arms; en Handbook of clinical neurology, tomo 168; Elsevier; págs. 87–99.Vinck, M.; Oostenveld, R.; Van Wingerden, M.; Battaglia, F. & Pennartz, C. M.: , 2011; An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias; Neuroimage; 55 (4): 1548–1565.Volosyak, I.; Rezeika, A.; Benda, M.; Gembler, F. & Stawicki, P.: , 2020; Towards solving of the illiteracy phenomenon for vep-based brain-computer interfaces; Biomedical Physics & Engineering Express; 6 (3): 035034.Vuckovic, A. & Osuagwu, B. A.: , 2013; Using a motor imagery questionnaire to estimate the performance of a brain–computer interface based on object oriented motor imagery; Clinical Neurophysiology; 124 (8): 1586– 1595.Wackernagel, H.: , 2003; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media.Wackernagel, H.: , 2013; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media.Waldert, S.: , 2016; Invasive vs. non-invasive neuronal signals for brain-machine interfaces: will one prevail?; Frontiers in neuroscience; 10: 295.Wan, Z.; Yang, R.; Huang, M.; Zeng, N. & Liu, X.: , 2021; A review on transfer learning in eeg signal analysis; Neurocomputing; 421: 1–14.Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P. & Hu, X.: , 2020a; Score- CAM: Score-weighted visual explanations for convolutional neural networks; en Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; págs. 24–25.Wang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A. & Li, J.: , 2020b; Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection; IEEE Access; 8: 155590–155601.Wang, J.; Feng, Z.; Ren, X.; Lu, N.; Luo, J. & Sun, L.: , 2020c; Feature subset and time segment selection for the classification of eeg data based motor imagery; Biomedical Signal Processing and Control; 61: 102026.Wang, J.-G.; Shao, H.-M.; Yao, Y.; Liu, J.-L. & Ma, S.-W.: , 2021a; A personalized feature extraction and classification method for motor imagery recognition; Mobile Networks and Applications: 1–13.Wang, K.; Xu, M.; Wang, Y.; Zhang, S.; Chen, L.&Ming, D.: , 2020d; Enhancedecodingofpre-movement EEG patterns for brain–computer interfaces; Journal of Neural Engineering; 17 (1): 016033.Wang, K.; Tian, F.; Xu, M.; Zhang, S.; Xu, L. & Ming, D.: , 2022; Resting-state eeg in alpha rhythm may be indicative of the performance of motor imagery-based brain–computer interface; Entropy; 24 (11): 1556.Wang, X.; Wang, A.; Zheng, S.; Lin, Y. & Yu, M.: , 2014; A multiple autocorrelation analysis method for motor imagery EEG feature extraction; en The 26th Chinese Control and Decision Conference (2014 CCDC); IEEE; págs. 3000–3004.Wang, Z.; Wang, F.; Liang, C. & Zhang, J.: , 2021b; A time-varying method for brain effective connectivity analysis of emotional EEG data; en 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA); IEEE; págs. 131–139.Warrens, M. J.: , 2015; Five ways to look at cohen’s kappa; Journal of Psychology & Psychotherapy; 5 (4): 1.Wei, C.-S.; Lin, Y.-P.; Wang, Y.-T.; Lin, C.-T. & Jung, T.-P.: , 2018; A subject-transfer framework for obviating inter-and intra-subject variability in eeg-based drowsiness detection; NeuroImage; 174: 407–419.Willett, F. R.; Avansino, D. T.; Hochberg, L. R.; Henderson, J. M. & Shenoy, K. V.: , 2021; High- performance brain-to-text communication via handwriting; Nature; 593 (7858): 249–254.Williams, C. & Seeger, M.: , 2001; Using the nyström method to speed up kernel machines; en Pro- ceedings of the 14th annual conference on neural information processing systems; CONF; págs. 682–688.Wolpaw, J. R.: , 2013; Brain–computer interfaces; en Handbook of clinical neurology, tomo 110; Elsevier; págs. 67–74.Wolpaw, J. R. & Wolpaw, E. W.: , 2012; Brain-computer interfaces: something new under the sun; Brain-computer interfaces: principles and practice; 14.Wriessnegger, S. C.; Müller-Putz, G. R.; Brunner, C. & Sburlea, A. I.: , 2020; Inter-and intra- individual variability in brain oscillations during sports motor imagery; Frontiers in human neuroscience; 14: 576241.Wu, H. G.; Miyamoto, Y. R.; Castro, L. N. G.; Ölveczky, B. P.& Smith, M. A.: , 2014; Temporal structure of motor variability is dynamically regulated and predicts motor learning ability; Nature neuroscience; 17 (2): 312–321.Wu, J.; Zhou, T. & Li, T.: , 2020a; Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting; Entropy; 22 (2): 140.Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2019; Identifying functional brain connectivity patterns for EEG-based emotion recognition; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 235–238.Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2020b; Investigating EEG-based functional connectivity patterns for multimodal emotion recognition; arXiv preprint arXiv:2004.01973.Xiao, C.; Choi, E. & Sun, J.: , 2018; Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review; Journal of the American Medical Informatics Association; 25 (10): 1419– 1428.Xie, J.; Liu, F.; Wang, K.& Huang, X.: , 2019; Deep kernel learning via random fourier features; arXiv preprint arXiv:1910.02660.Xie, X.; Yu, Z. L.; Gu, Z.; Zhang, J.; Cen, L. & Li, Y.: , 2018; Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (3): 698–708.Xie, Y. & Oniga, S.: , 2020; A review of processing methods and classification algorithm for EEG signal.; Carpathian Journal of Electronic & Computer Engineering; 12 (3).Xiong, X.; Yu, Z.; Ma, T.; Luo, N.; Wang, H.; Lu, X. & Fan, H.: , 2020; Weighted brain network metrics for decoding action intention understanding based on EEG; Frontiers in Human Neuroscience; 14: 232.Xu, X.; Nie, X.; Zhang, J. & Xu, T.: , 2023; Multi-level attention recognition of eeg based on feature selection; International Journal of Environmental Research and Public Health; 20 (4): 3487.Yao, L.; Jiang, N.; Mrachacz-Kersting, N.; Zhu, X.; Farina, D. & Wang, Y.: , 2022; Performance variation of a somatosensory bci based on imagined sensation: a large population study; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 2486–2493.Yao, Y.; Ding, Y.; Zhong, S. & Cui, Z.: , 2020; EEG-based epilepsy recognition via multiple kernel learning; Computational and Mathematical Methods in Medicine; 2020.Yeh, C.-H.; Jones, D.K.; Liang, X.; Descoteaux, M.& Connelly, A.: , 2021; Mapping structural connectivity using diffusion MRI: Challenges and opportunities; Journal of Magnetic Resonance Imaging; 53 (6): 1666–1682.Yeh, Y.-R.; Lin, T.-C.; Chung, Y.-Y. & Wang, Y.-C. F.: , 2012; A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection; IEEE Transactions on multimedia; 14 (3): 563–574.Yin, K.; Lim, E. Y. & Lee, S.-W.: , 2024; Gitgan: Generative inter-subject transfer for eeg motor imagery analysis; Pattern Recognition; 146: 110015.Yoganathan, K.; Malek, N.; Torzillo, E.; Paranathala, M. & Greene, J.: , 2023; Neurological update: structural and functional imaging in epilepsy surgery; Journal of Neurology; 270 (5): 2798–2808.Yoon, J.-G. & Lee, M.: , 2020; Effective correlates of motor imagery performance based on default mode network in resting-state; en 2020 8th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5.Yu, J. & Yu, Z. L.: , 2021; Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems; Journal of Neural Engineering.Yu, Z.; Ma, T.; Fang, N.; Wang, H.; Li, Z. & Fan, H.: , 2020; Local temporal common spatial patterns modulated with phase locking value; Biomedical Signal Processing and Control; 59: 101882.Yuksel, A. & Olmez, T.: , 2015; A neural network-based optimal spatial filter design method for motor imagery classification; PloS one; 10 (5): e0125039.Zeiler, M. D. & Fergus, R.: , 2014; Visualizing and understanding convolutional networks; en Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13; Springer; págs. 818–833.Zhang, A.; Lipton, Z. C.; Li, M. & Smola, A. J.: , 2021a; Dive into deep learning; arXiv preprint arXiv:2106.11342.Zhang, B.; Yan, G.; Yang, Z.; Su, Y.; Wang, J. & Lei, T.: , 2020a; Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 215–229.Zhang, L.; Chen, Y.; Tan, X.; He, C.& Zhang, L.: , 2017; An improved self-training algorithm for classifying motor imagery electroencephalography in brain-computer interface; Journal of Medical Imaging and Health Informatics; 7 (2): 330–337.Zhang, R.; Xu, P.; Chen, R.; Li, F.; Guo, L.; Li, P.; Zhang, T. & Yao, D.: , 2015a; Predicting inter- session performance of smr-based brain–computer interface using the spectral entropy of resting-state eeg; Brain topography; 28 (5): 680–690.Zhang, R.; Yao, D.; Valdés-Sosa, P. A.; Li, F.; Li, P.; Zhang, T.; Ma, T.; Li, Y. & Xu, P.: , 2015b; Efficient resting-state eeg network facilitates motor imagery performance; Journal of neural engineering; 12 (6): 066024.Zhang, R.; Xiao, X.; Liu, Z.; Jiang, W.; Li, J.; Cao, Y.; Ren, J.; Jiang, D. & Cui, L.: , 2018a; A new motor imagery EEG classification method FB-TRCSP+ RF based on CSP and random forest; IEEE Access; 6: 44944–44950.Zhang, R.; Li, X.; Wang, Y.; Liu, B.; Shi, L.; Chen, M.; Zhang, L. & Hu, Y.: , 2019a; Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject; IEEE Access; 7: 74490–74499.Zhang, R.; Li, F.; Zhang, T.; Yao, D. & Xu, P.: , 2020b; Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions; Brain Science Advances; 6 (3): 224–241.Zhang, T.; Han, Z.; Chen, X. & Chen, W.: , 2021b; Subbands and cumulative sum of subbands based nonlinear features enhance the performance of epileptic seizure detection; Biomedical Signal Processing and Control; 69: 102827.Zhang, W.; Tan, C.; Sun, F.; Wu, H. & Zhang, B.: , 2018b; A review of EEG-based brain-computer interface systems design; Brain Science Advances; 4 (2): 156–167.Zhang, W.; Wang, F.; Jiang, Y.; Xu, Z.; Wu, S. & Zhang, Y.: , 2019b; Cross-subject eeg-based emotion recognition with deep domain confusion; en Intelligent Robotics and Applications: 12th International Conference, ICIRA 2019, Shenyang, China, August 8–11, 2019, Proceedings, Part I 12; Springer; págs. 558–570.Zhang, X.; Yao, L.; Sheng, Q. Z.; Kanhere, S. S.; Gu, T.& Zhang, D.: , 2018c; Converting your thoughts to texts: Enabling brain typing via deep feature learning of eeg signals; en 2018 IEEE international conference on pervasive computing and communications (PerCom); IEEE; págs. 1–10.Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D. & Zhang, Y.: , 2019c; A survey on deep learning based brain computer interface: Recent advances and new frontiers; arXiv preprint arXiv:1905.04149; 66.Zhang, X.; Lu, D.; Shen, J.; Gao, J.; Huang, X. & Wu, M.: , 2020c; Spatial-temporal joint optimization network on covariance manifolds of electroencephalography for fatigue detection; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 893–900.Zhang, Y. & Yang, Q.: , 2018; An overview of multi-task learning; National Science Review; 5 (1): 30–43.Zhang, Y.; Xu, P.; Guo, D. & Yao, D.: , 2013; Prediction of ssvep-based bci performance by the resting-state eeg network; Journal of neural engineering; 10 (6): 066017.Zhang, Y.; Nam, C.; Zhou, G.; Jin, J.; Wang, X. & Cichocki, A.: , 2018d; Temporally constrained sparse group spatial patterns for motor imagery BCI; IEEE transactions on cybernetics; 49 (9): 3322–3332.Zhang, Y.; Li, P.; Cheng, L.; Li, M. & Li, H.: , 2023; Attention-based multiscale spatial-temporal convolu- tional network for motor imagery eeg decoding; IEEE Transactions on Consumer Electronics.Zhao, N.; Zhang, H.; Liu, T.; Liu, J.; Xiang, Y.; Shu, G.; Li, C.; Xie, J. & Chen, L.: , 2021a; Neuro- modulatory effect of sensorimotor network functional connectivity of temporal three-needle therapy for ischemic stroke patients with motor dysfunction: Study protocol for a randomized, patient-assessor blind, controlled, neuroimaging trial; Evidence-Based Complementary and Alternative Medicine; 2021.Zhao, Y.; Zhao, Y.; Durongbhan, P.; Chen, L.; Liu, J.; Billings, S.; Zis, P.; Unwin, Z. C.; De Marco, M.; Venneri, A. et al.: , 2019; Imaging of nonlinear and dynamic functional brain connectivity based on EEG recordings with the application on the diagnosis of alzheimer’s disease; IEEE transactions on medical imaging; 39 (5): 1571–1581.Zhao, Z.; Zhao, P.& Zhou, Q.: , 2020; A hierarchical stacking extreme learning machine for multi-classification; en 2020 Chinese Automation Congress (CAC); IEEE; págs. 4176–4181.Zhao, Z.; Li, J.; Niu, Y.; Wang, C.; Zhao, J.; Yuan, Q.; Ren, Q.; Xu, Y.& Yu, Y.: , 2021b; Classification of schizophrenia by combination of brain effective and functional connectivity; Frontiers in Neuroscience; 15: 552.Zhu, L.; Su, C.; Zhang, J.; Cui, G.; Cichocki, A.; Zhou, C. & Li, J.: , 2020; EEG-based approach for recognizing human social emotion perception; Advanced Engineering Informatics; 46: 101191.Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H. & He, Q.: , 2020; A comprehensive survey on transfer learning; Proceedings of the IEEE; 109 (1): 43–76.Zuk, N. J.; Teoh, E. S. & Lalor, E. C.: , 2020; Eeg-based classification of natural sounds reveals specialized responses to speech and music; NeuroImage; 210: 116558.Alianzacientíficaconenfoquecomunitarioparamitigarbrechasdeatenciónymanejodetrastornos mentales y epilepsia en Colombia (ACEMATE).Sistema de integración de EEG, ECG y SpO2 para seguimiento de neonatos en unidad de cuidados intensivos del Hospital Universitario de Caldas - SES HUC.MINCIENCIASUniversidad Nacional de ColombiaBibliotecariosEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86900/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1053847443.2024.pdf1053847443.2024.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf12166376https://repositorio.unal.edu.co/bitstream/unal/86900/2/1053847443.2024.pdf77e71e9434e2fe3fc228d5eed23d5a0bMD52THUMBNAIL1053847443.2024.pdf.jpg1053847443.2024.pdf.jpgGenerated Thumbnailimage/jpeg5941https://repositorio.unal.edu.co/bitstream/unal/86900/3/1053847443.2024.pdf.jpg08758d650b9a2ceb7b793c82bb1275b0MD53unal/86900oai:repositorio.unal.edu.co:unal/869002024-10-08 00:36:35.668Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |