Predicción de demanda de energía en colombia mediante un sistema de inferencia difuso neuronal.

En este trabajo se utilizan dos técnicas de inteligencia artificial para pronosticar la demanda mensual de energía eléctrica en Colombia con el objetivo de determinar el error de la predicción y puedan ser comparados posteriormente con otros modelos tradicionales pronóstico de series de tiempo. Una...

Full description

Autores:
Medina Hurtado, Santiago
García Aguado, Josefina
Tipo de recurso:
Article of journal
Fecha de publicación:
2005
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/36336
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/36336
http://bdigital.unal.edu.co/26420/
Palabra clave:
Demanda de energía
Redes neuronales
Redes neurodifusas
ANFIS.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:En este trabajo se utilizan dos técnicas de inteligencia artificial para pronosticar la demanda mensual de energía eléctrica en Colombia con el objetivo de determinar el error de la predicción y puedan ser comparados posteriormente con otros modelos tradicionales pronóstico de series de tiempo. Una disminución importante en los errores de predicción, traería beneficios económicos para todos los agentes que operan en el sector eléctrico. Las redes neurales Artificiales (RNA) y los sistemas de inferencia Borroso Adaptativo – ANFIS son actualmente ampliamente utilizados en problemas de pronóstico en muchos campos de la ciencia y la tecnología con buen desempeño, para nuestro caso estos modelos fueron alimentados con variables explicativas de la demanda. Se utilizo una RNA completamente interconectada con propagación hacia delante de tres capas y se probaron dos algoritmos de aprendizaje para la red encontrándose resultados significativamente diferentes en el error de predicción así como en el tiempo de entrenamiento. El modelo ANFIS utilizado fue de tipo Takawi-Sugeno de orden cero y fue alimentado con las componentes principales de las variables de entrada definidas. Los resultados fueron comparados mediante la función error Raíz del error Medio Cuadrático (RMSE) y el porcentaje de error absoluto medio (MAPE) encontrándose un mejor desempeño de la RNA.