Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación
ilustraciones, diagramas, fotografías a color
- Autores:
-
Garcia Quiroga, Laura Camila
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84539
- Palabra clave:
- 660 - Ingeniería química::664 - Tecnología de alimentos
Industria de la panela
Industrias alimenticias
Panela - Industry
Food industry and trade
Compactación
Estabilidad
Temperatura
Tamaño de partícula
Modelo Predictivo
Caking
Predictive Model
Particle size
Temperature
Stability
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_9fe3cadeaad04bb9fb0b0cc61f726703 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84539 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación |
dc.title.translated.eng.fl_str_mv |
Evaluation of the stability of a powdered food made with panela from its caking degree |
title |
Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación |
spellingShingle |
Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación 660 - Ingeniería química::664 - Tecnología de alimentos Industria de la panela Industrias alimenticias Panela - Industry Food industry and trade Compactación Estabilidad Temperatura Tamaño de partícula Modelo Predictivo Caking Predictive Model Particle size Temperature Stability |
title_short |
Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación |
title_full |
Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación |
title_fullStr |
Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación |
title_full_unstemmed |
Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación |
title_sort |
Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación |
dc.creator.fl_str_mv |
Garcia Quiroga, Laura Camila |
dc.contributor.advisor.none.fl_str_mv |
Zuluaga Domínguez, Carlos Mario |
dc.contributor.author.none.fl_str_mv |
Garcia Quiroga, Laura Camila |
dc.contributor.orcid.spa.fl_str_mv |
García Quiroga, Laura Camila |
dc.contributor.cvlac.spa.fl_str_mv |
García Quiroga, Laura Camila |
dc.contributor.scopus.spa.fl_str_mv |
García Quiroga, Laura Camila |
dc.contributor.researchgate.spa.fl_str_mv |
García Quiroga, Laura Camila |
dc.contributor.googlescholar.spa.fl_str_mv |
García Quiroga, Laura Camila |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::664 - Tecnología de alimentos |
topic |
660 - Ingeniería química::664 - Tecnología de alimentos Industria de la panela Industrias alimenticias Panela - Industry Food industry and trade Compactación Estabilidad Temperatura Tamaño de partícula Modelo Predictivo Caking Predictive Model Particle size Temperature Stability |
dc.subject.lemb.spa.fl_str_mv |
Industria de la panela Industrias alimenticias |
dc.subject.lemb.eng.fl_str_mv |
Panela - Industry Food industry and trade |
dc.subject.proposal.spa.fl_str_mv |
Compactación Estabilidad Temperatura Tamaño de partícula Modelo Predictivo |
dc.subject.proposal.eng.fl_str_mv |
Caking Predictive Model Particle size Temperature Stability |
description |
ilustraciones, diagramas, fotografías a color |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-11T20:17:54Z |
dc.date.available.none.fl_str_mv |
2023-08-11T20:17:54Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84539 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84539 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Addo, K. A., Bi, J., Chen, Q., Wu, X., Zhou, M., Lyu, J., & Song, J. (2019). Understanding the caking behavior of amorphous jujube powder by powder rheometer. Lwt, 101(June 2018), 483–490. https://doi.org/10.1016/j.lwt.2018.11.059 Aguilera, J. M., Valle, J. M., & Ka, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science & Technology, 6(5), 149–155. Alarcón, A. L., Palacios, L. M., Osorio, C., César Narváez, P., Heredia, F. J., Orjuela, A., & Hernanz, D. (2021). Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, 340(August 2020). https://doi.org/10.1016/j.foodchem.2020.128183 Asikin, Y., Kamiya, A., Mizu, M., Takara, K., Tamaki, H., & Wada, K. (2014). Changes in the physicochemical characteristics, including flavour components and Maillard reaction products, of non-centrifugal cane brown sugar during storage. Food Chemistry, 149, 170–177. https://doi.org/10.1016/j.foodchem.2013.10.089 Carpin, M., Bertelsen, H., Dalberg, A., Bech, J. K., Risbo, J., Schuck, P., & Jeantet, R. (2017). How does particle size influence caking in lactose powder? Journal of Food Engineering, 209, 61–67. https://doi.org/10.1016/j.jfoodeng.2017.04.006 Cookson, M. D., & Stirk, P. M. R. (2019). Handbook of food powders. Doğan, M., Aslan, D., Gürmeriç, V., Özgür, A., & Göksel Saraç, M. (2019). Powder caking and cohesion behaviours of coffee powders as affected by roasting and particle sizes: Principal component analyses (PCA) for flow and bioactive properties. Powder Technology, 344, 222–232. https://doi.org/10.1016/j.powtec.2018.12.030 Ermiş, E. (2015). Food Powders: Properties and Characterization. In Gida / the Journal of Food. https://doi.org/10.15237/gida.gd14072 Fitzpatrick, J. J., Descamps, N., O’Meara, K., Jones, C., Walsh, D., & Spitere, M. (2010). Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt. Powder Technology, 204(1), 131–137. https://doi.org/10.1016/j.powtec.2010.07.029 Fitzpatrick, J. J., O’Callaghan, E., & O’Flynn, J. (2008). Application of a novel cake strength tester for investigating caking of skim milk powder. Food and Bioproducts Processing, 86(3), 198–203. https://doi.org/10.1016/j.fbp.2007.10.009 Gooch, J. W. (2015). Sieve Analysis. In Retsch GmbH Haan. https://doi.org/10.1007/978-1-4419-6247-8_10621 Hartmann, M., & Palzer, S. (2011). Caking of amorphous powders - Material aspects, modelling and applications. Powder Technology, 206(1–2), 112–121. https://doi.org/10.1016/j.powtec.2010.04.014 Jena, S., & Das, H. (2012). Shelf life prediction of aluminum foil laminated polyethylene packed vacuum dried coconut milk powder. Journal of Food Engineering, 108(1), 135–142. https://doi.org/10.1016/j.jfoodeng.2011.06.036 Jiang, Y., Yang, X., Jin, H., Feng, X., Tian, F., Song, Y., Ren, Y., Man, C., & Zhang, W. (2021). Shelf-life prediction and chemical characteristics analysis of milk formula during storage. Lwt, 144(March). https://doi.org/10.1016/j.lwt.2021.111268 Kouhestani, S., & Honarvar, M. (2021). An Overview on Panela. Journal of Food Biosciences and Technology, 11(1), 35–42. https://jfbt.srbiau.ac.ir/article_16846.html Manzocco, L., Calligaris, S., & Nicoli, M. C. (2010). Methods for food shelf life determination and prediction. Oxidation in Foods and Beverages and Antioxidant Applications: Understanding Mechanisms of Oxidation and Antioxidant Activity, 196–222. https://doi.org/10.1533/9780857090447.1.196 Marsh, K., & Bugusu, B. (2007). Food packaging - Roles, materials, and environmental issues: Scientific status summary. Journal of Food Science, 72(3). https://doi.org/10.1111/j.1750-3841.2007.00301 Mendoza-Rivera, H. (2021). Diseño Experimental. Universidad Nacional de Colombia. http://red.unal.edu.co/cursos/ciencias/2000352/html/un3/cont_315-58.html Resolución 779, (2006) Minitab. (2021). Soporte de Minitab(R) 20. https://support.minitab.com/es-mx/minitab/20/ Mizrahi, S. (2011). Accelerated shelf life testing of foods. In Food and Beverage Stability and Shelf Life. https://doi.org/10.1016/B978-1-84569-701-3.50015-3 Mosquera, L., Arias, S., Jimenez, D., Lopez, D., & Osorio, A. (2015). Transición vítrea en alimentos: sistemas binarios agua-carbohidratos. Revista Vector, 9(2014), 24. http://vector.ucaldas.edu.co/downloads/Vector9_4.pdf Paterson, A. H. J., & Bröckel, U. (2015). Caking development in lemon juice powder. Procedia Engineering, 102, 142–149. https://doi.org/10.1016/j.proeng.2015.01.117 Rasane, P., Jha, A., & Sharma, N. (2015). Predictive modelling for shelf life determination of nutricereal based fermented baby food. Journal of Food Science and Technology, 52(8), 5003–5011. https://doi.org/10.1007/s13197-014-1545-x Retsch. (2022). Retsch. https://www.retsch.com/ Ruiz-Cabrera, M. A., & Schmidt, S. J. (2015). Determination of glass transition temperatures during cooling and heating of low-moisture amorphous sugar mixtures. Journal of Food Engineering, 146, 36–43. https://doi.org/10.1016/j.jfoodeng.2014.08.023 Salehi, H., Berry, R., Deng, T., Larsson, S. H., Farnish, R., & Bradley, M. (2019). Development and application of a novel cake strength tester. Powder Technology, 350, 36–42. https://doi.org/10.1016/j.powtec.2019.03.024 Salish, K., & Ambrose, R. P. K. (2021). Predicting powder caking using cohesion energy density. Powder Technology, 393, 312–322. https://doi.org/10.1016/j.powtec.2021.07.079 Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodríguez, J. (2019). Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(March), 32–40. https://doi.org/10.1016/j.jfoodeng.2019.03.009 Verma, P., Shah, N. G., & Mahajani, S. M. (2019). Why jaggery powder is more stable than solid jaggery blocks. Lwt, 110(December 2018), 299–306. https://doi.org/10.1016/j.lwt.2019.04.093 Zafar, U., Vivacqua, V., Calvert, G., Ghadiri, M., & Cleaver, J. A. S. (2017). A review of bulk powder caking. Powder Technology, 313, 389–401. https://doi.org/10.1016/j.powtec.2017.02.024 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
131 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84539/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84539/2/1072659060.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84539/3/1072659060.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a c70cc2c203c763cb36b5e1723fe582c6 f0ed9a33299840128d560b46574c5edf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090149039964160 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zuluaga Domínguez, Carlos Marioe62c6eaefb21c224237f001387877fd5Garcia Quiroga, Laura Camila057b1f5d20ccdc29739cf9ab685204acGarcía Quiroga, Laura CamilaGarcía Quiroga, Laura CamilaGarcía Quiroga, Laura CamilaGarcía Quiroga, Laura CamilaGarcía Quiroga, Laura Camila2023-08-11T20:17:54Z2023-08-11T20:17:54Z2023https://repositorio.unal.edu.co/handle/unal/84539Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías a colorLa compactación es uno de los mayores y más comunes problemas en el manejo de alimentos en polvo durante su almacenamiento y vida útil; en el mejor conocimiento del autor, a la fecha, no se conocen modelos matemáticos que permitan predecir la estabilidad de un alimento de acuerdo con su grado de compactación. Por ello, en el presente trabajo, se evaluaron tres técnicas para medir compactación en un alimento en polvo con incorporación de panela sometido a ciclos de alta temperatura y congelación. El método del diámetro medio de partícula calculado a partir de tamizaje, mostró una mejor tendencia y menor variabilidad que el método visual y el método de compresión uniaxial, por lo que fue seleccionado para medir el fenómeno de compactación. Posteriormente, el alimento se sometió a tres temperaturas (20°C, 37°C y 50°C) durante seis semanas, con evaluaciones semanales del nivel de compactación por el método de diámetro medio de partícula. Los resultados mostraron que a 37°C y 50°C el alimento sufre cambios significativos en cuanto a su nivel de compactación, mientras que a 20°C el producto se mantiene estable durante el tiempo de evaluación, y se comprobó que estadísticamente el tiempo no tiene un impacto en la compactación. Con los datos obtenidos, se determinó el orden del modelo para cada temperatura, encontrando que el modelo de orden cero representa los datos adecuadamente con un R2 superior a 90% para las temperaturas de 37°C y 50°C. Finalmente, se modeló la dependencia de la constante de aglomeración como función de la temperatura utilizando la ecuación de Arrhenius. Sin embargo, se encontró que este modelo no representa adecuadamente los datos experimentales obtenidos, posiblemente por los cambios de fase que pueden ocurrir alrededor de la temperatura de transición vítrea de la panela. Estos resultados demuestran que es viable modelar el comportamiento de la compactación de un alimento en polvo en función del tiempo, aunque se requiere realizar ajustes en las temperaturas y frecuencias de medición para obtener un ajuste adecuado de los datos experimentales. Los hallazgos de este estudio resultan útiles para simplificar los estudios de estabilidad de alimentos en polvo no perecederos. (Texto tomado de la fuente)Caking is one of the most common and biggest problems in the handling of food powders during their storage and shelf life; to the best of the author’s knowledge, to date, there are not known mathematical models that allow to predict the stability of food powders based on their caking degree. Therefore, in the present work, three techniques were evaluated to measure the caking degree in a powdered food with panela, which was subjected to high temperature and freezing cycles. The mean particle diameter method calculated from sieving test showed a better trend and less variability than the visual method and the uniaxial compression test, so it was selected to measure the caking phenomena. Subsequently, the food was subjected to three different temperatures (20°C, 37°C and 50°C) for six weeks with weekly evaluations of the caking degree by the mean particle diameter method. Results showed that the food undergoes significant changes in terms of caking at 37°C and 50°C, while the product remains stable during the evaluation period at 20°C, and it was verified that statically the times does not have an impact on the caking behavior. With the data obtained, the order of the model was determined for each temperature, finding that zero order model adequately represents the data with an R2 higher than 90% at 37°C and 50°C. Finally, the dependency of the agglomeration constant k as a function of the temperature was modeled using the Arrhenius equation. However, it was found that this model does not represent properly the experimental data, possibly due to the phase changes that might occur around the glass transition temperature of the panela. These results show that modelling the caking behavior of a food powder as a function of time is feasible, even when adjustments on the temperatures and measuring frequencies must be done to get a better fit on the experimental data. The results of this work are useful to simplify the stability studies of non-perishable food powders.MaestríaMagíster en Ciencia y Tecnología de Alimentos131 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::664 - Tecnología de alimentosIndustria de la panelaIndustrias alimenticiasPanela - IndustryFood industry and tradeCompactaciónEstabilidadTemperaturaTamaño de partículaModelo PredictivoCakingPredictive ModelParticle sizeTemperatureStabilityEvaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactaciónEvaluation of the stability of a powdered food made with panela from its caking degreeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAddo, K. A., Bi, J., Chen, Q., Wu, X., Zhou, M., Lyu, J., & Song, J. (2019). Understanding the caking behavior of amorphous jujube powder by powder rheometer. Lwt, 101(June 2018), 483–490. https://doi.org/10.1016/j.lwt.2018.11.059Aguilera, J. M., Valle, J. M., & Ka, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science & Technology, 6(5), 149–155.Alarcón, A. L., Palacios, L. M., Osorio, C., César Narváez, P., Heredia, F. J., Orjuela, A., & Hernanz, D. (2021). Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, 340(August 2020). https://doi.org/10.1016/j.foodchem.2020.128183Asikin, Y., Kamiya, A., Mizu, M., Takara, K., Tamaki, H., & Wada, K. (2014). Changes in the physicochemical characteristics, including flavour components and Maillard reaction products, of non-centrifugal cane brown sugar during storage. Food Chemistry, 149, 170–177. https://doi.org/10.1016/j.foodchem.2013.10.089Carpin, M., Bertelsen, H., Dalberg, A., Bech, J. K., Risbo, J., Schuck, P., & Jeantet, R. (2017). How does particle size influence caking in lactose powder? Journal of Food Engineering, 209, 61–67. https://doi.org/10.1016/j.jfoodeng.2017.04.006Cookson, M. D., & Stirk, P. M. R. (2019). Handbook of food powders.Doğan, M., Aslan, D., Gürmeriç, V., Özgür, A., & Göksel Saraç, M. (2019). Powder caking and cohesion behaviours of coffee powders as affected by roasting and particle sizes: Principal component analyses (PCA) for flow and bioactive properties. Powder Technology, 344, 222–232. https://doi.org/10.1016/j.powtec.2018.12.030Ermiş, E. (2015). Food Powders: Properties and Characterization. In Gida / the Journal of Food. https://doi.org/10.15237/gida.gd14072Fitzpatrick, J. J., Descamps, N., O’Meara, K., Jones, C., Walsh, D., & Spitere, M. (2010). Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt. Powder Technology, 204(1), 131–137. https://doi.org/10.1016/j.powtec.2010.07.029Fitzpatrick, J. J., O’Callaghan, E., & O’Flynn, J. (2008). Application of a novel cake strength tester for investigating caking of skim milk powder. Food and Bioproducts Processing, 86(3), 198–203. https://doi.org/10.1016/j.fbp.2007.10.009Gooch, J. W. (2015). Sieve Analysis. In Retsch GmbH Haan. https://doi.org/10.1007/978-1-4419-6247-8_10621Hartmann, M., & Palzer, S. (2011). Caking of amorphous powders - Material aspects, modelling and applications. Powder Technology, 206(1–2), 112–121. https://doi.org/10.1016/j.powtec.2010.04.014Jena, S., & Das, H. (2012). Shelf life prediction of aluminum foil laminated polyethylene packed vacuum dried coconut milk powder. Journal of Food Engineering, 108(1), 135–142. https://doi.org/10.1016/j.jfoodeng.2011.06.036Jiang, Y., Yang, X., Jin, H., Feng, X., Tian, F., Song, Y., Ren, Y., Man, C., & Zhang, W. (2021). Shelf-life prediction and chemical characteristics analysis of milk formula during storage. Lwt, 144(March). https://doi.org/10.1016/j.lwt.2021.111268Kouhestani, S., & Honarvar, M. (2021). An Overview on Panela. Journal of Food Biosciences and Technology, 11(1), 35–42. https://jfbt.srbiau.ac.ir/article_16846.htmlManzocco, L., Calligaris, S., & Nicoli, M. C. (2010). Methods for food shelf life determination and prediction. Oxidation in Foods and Beverages and Antioxidant Applications: Understanding Mechanisms of Oxidation and Antioxidant Activity, 196–222. https://doi.org/10.1533/9780857090447.1.196Marsh, K., & Bugusu, B. (2007). Food packaging - Roles, materials, and environmental issues: Scientific status summary. Journal of Food Science, 72(3). https://doi.org/10.1111/j.1750-3841.2007.00301Mendoza-Rivera, H. (2021). Diseño Experimental. Universidad Nacional de Colombia. http://red.unal.edu.co/cursos/ciencias/2000352/html/un3/cont_315-58.htmlResolución 779, (2006)Minitab. (2021). Soporte de Minitab(R) 20. https://support.minitab.com/es-mx/minitab/20/Mizrahi, S. (2011). Accelerated shelf life testing of foods. In Food and Beverage Stability and Shelf Life. https://doi.org/10.1016/B978-1-84569-701-3.50015-3Mosquera, L., Arias, S., Jimenez, D., Lopez, D., & Osorio, A. (2015). Transición vítrea en alimentos: sistemas binarios agua-carbohidratos. Revista Vector, 9(2014), 24. http://vector.ucaldas.edu.co/downloads/Vector9_4.pdfPaterson, A. H. J., & Bröckel, U. (2015). Caking development in lemon juice powder. Procedia Engineering, 102, 142–149. https://doi.org/10.1016/j.proeng.2015.01.117Rasane, P., Jha, A., & Sharma, N. (2015). Predictive modelling for shelf life determination of nutricereal based fermented baby food. Journal of Food Science and Technology, 52(8), 5003–5011. https://doi.org/10.1007/s13197-014-1545-xRetsch. (2022). Retsch. https://www.retsch.com/Ruiz-Cabrera, M. A., & Schmidt, S. J. (2015). Determination of glass transition temperatures during cooling and heating of low-moisture amorphous sugar mixtures. Journal of Food Engineering, 146, 36–43. https://doi.org/10.1016/j.jfoodeng.2014.08.023Salehi, H., Berry, R., Deng, T., Larsson, S. H., Farnish, R., & Bradley, M. (2019). Development and application of a novel cake strength tester. Powder Technology, 350, 36–42. https://doi.org/10.1016/j.powtec.2019.03.024Salish, K., & Ambrose, R. P. K. (2021). Predicting powder caking using cohesion energy density. Powder Technology, 393, 312–322. https://doi.org/10.1016/j.powtec.2021.07.079Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodríguez, J. (2019). Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(March), 32–40. https://doi.org/10.1016/j.jfoodeng.2019.03.009Verma, P., Shah, N. G., & Mahajani, S. M. (2019). Why jaggery powder is more stable than solid jaggery blocks. Lwt, 110(December 2018), 299–306. https://doi.org/10.1016/j.lwt.2019.04.093Zafar, U., Vivacqua, V., Calvert, G., Ghadiri, M., & Cleaver, J. A. S. (2017). A review of bulk powder caking. Powder Technology, 313, 389–401. https://doi.org/10.1016/j.powtec.2017.02.024EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84539/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1072659060.2023.pdf1072659060.2023.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf2559292https://repositorio.unal.edu.co/bitstream/unal/84539/2/1072659060.2023.pdfc70cc2c203c763cb36b5e1723fe582c6MD52THUMBNAIL1072659060.2023.pdf.jpg1072659060.2023.pdf.jpgGenerated Thumbnailimage/jpeg4918https://repositorio.unal.edu.co/bitstream/unal/84539/3/1072659060.2023.pdf.jpgf0ed9a33299840128d560b46574c5edfMD53unal/84539oai:repositorio.unal.edu.co:unal/845392024-08-18 23:13:01.301Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |