Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación

ilustraciones, diagramas, fotografías a color

Autores:
Garcia Quiroga, Laura Camila
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84539
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84539
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::664 - Tecnología de alimentos
Industria de la panela
Industrias alimenticias
Panela - Industry
Food industry and trade
Compactación
Estabilidad
Temperatura
Tamaño de partícula
Modelo Predictivo
Caking
Predictive Model
Particle size
Temperature
Stability
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_9fe3cadeaad04bb9fb0b0cc61f726703
oai_identifier_str oai:repositorio.unal.edu.co:unal/84539
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación
dc.title.translated.eng.fl_str_mv Evaluation of the stability of a powdered food made with panela from its caking degree
title Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación
spellingShingle Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación
660 - Ingeniería química::664 - Tecnología de alimentos
Industria de la panela
Industrias alimenticias
Panela - Industry
Food industry and trade
Compactación
Estabilidad
Temperatura
Tamaño de partícula
Modelo Predictivo
Caking
Predictive Model
Particle size
Temperature
Stability
title_short Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación
title_full Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación
title_fullStr Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación
title_full_unstemmed Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación
title_sort Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación
dc.creator.fl_str_mv Garcia Quiroga, Laura Camila
dc.contributor.advisor.none.fl_str_mv Zuluaga Domínguez, Carlos Mario
dc.contributor.author.none.fl_str_mv Garcia Quiroga, Laura Camila
dc.contributor.orcid.spa.fl_str_mv García Quiroga, Laura Camila
dc.contributor.cvlac.spa.fl_str_mv García Quiroga, Laura Camila
dc.contributor.scopus.spa.fl_str_mv García Quiroga, Laura Camila
dc.contributor.researchgate.spa.fl_str_mv García Quiroga, Laura Camila
dc.contributor.googlescholar.spa.fl_str_mv García Quiroga, Laura Camila
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::664 - Tecnología de alimentos
topic 660 - Ingeniería química::664 - Tecnología de alimentos
Industria de la panela
Industrias alimenticias
Panela - Industry
Food industry and trade
Compactación
Estabilidad
Temperatura
Tamaño de partícula
Modelo Predictivo
Caking
Predictive Model
Particle size
Temperature
Stability
dc.subject.lemb.spa.fl_str_mv Industria de la panela
Industrias alimenticias
dc.subject.lemb.eng.fl_str_mv Panela - Industry
Food industry and trade
dc.subject.proposal.spa.fl_str_mv Compactación
Estabilidad
Temperatura
Tamaño de partícula
Modelo Predictivo
dc.subject.proposal.eng.fl_str_mv Caking
Predictive Model
Particle size
Temperature
Stability
description ilustraciones, diagramas, fotografías a color
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-11T20:17:54Z
dc.date.available.none.fl_str_mv 2023-08-11T20:17:54Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84539
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84539
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Addo, K. A., Bi, J., Chen, Q., Wu, X., Zhou, M., Lyu, J., & Song, J. (2019). Understanding the caking behavior of amorphous jujube powder by powder rheometer. Lwt, 101(June 2018), 483–490. https://doi.org/10.1016/j.lwt.2018.11.059
Aguilera, J. M., Valle, J. M., & Ka, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science & Technology, 6(5), 149–155.
Alarcón, A. L., Palacios, L. M., Osorio, C., César Narváez, P., Heredia, F. J., Orjuela, A., & Hernanz, D. (2021). Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, 340(August 2020). https://doi.org/10.1016/j.foodchem.2020.128183
Asikin, Y., Kamiya, A., Mizu, M., Takara, K., Tamaki, H., & Wada, K. (2014). Changes in the physicochemical characteristics, including flavour components and Maillard reaction products, of non-centrifugal cane brown sugar during storage. Food Chemistry, 149, 170–177. https://doi.org/10.1016/j.foodchem.2013.10.089
Carpin, M., Bertelsen, H., Dalberg, A., Bech, J. K., Risbo, J., Schuck, P., & Jeantet, R. (2017). How does particle size influence caking in lactose powder? Journal of Food Engineering, 209, 61–67. https://doi.org/10.1016/j.jfoodeng.2017.04.006
Cookson, M. D., & Stirk, P. M. R. (2019). Handbook of food powders.
Doğan, M., Aslan, D., Gürmeriç, V., Özgür, A., & Göksel Saraç, M. (2019). Powder caking and cohesion behaviours of coffee powders as affected by roasting and particle sizes: Principal component analyses (PCA) for flow and bioactive properties. Powder Technology, 344, 222–232. https://doi.org/10.1016/j.powtec.2018.12.030
Ermiş, E. (2015). Food Powders: Properties and Characterization. In Gida / the Journal of Food. https://doi.org/10.15237/gida.gd14072
Fitzpatrick, J. J., Descamps, N., O’Meara, K., Jones, C., Walsh, D., & Spitere, M. (2010). Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt. Powder Technology, 204(1), 131–137. https://doi.org/10.1016/j.powtec.2010.07.029
Fitzpatrick, J. J., O’Callaghan, E., & O’Flynn, J. (2008). Application of a novel cake strength tester for investigating caking of skim milk powder. Food and Bioproducts Processing, 86(3), 198–203. https://doi.org/10.1016/j.fbp.2007.10.009
Gooch, J. W. (2015). Sieve Analysis. In Retsch GmbH Haan. https://doi.org/10.1007/978-1-4419-6247-8_10621
Hartmann, M., & Palzer, S. (2011). Caking of amorphous powders - Material aspects, modelling and applications. Powder Technology, 206(1–2), 112–121. https://doi.org/10.1016/j.powtec.2010.04.014
Jena, S., & Das, H. (2012). Shelf life prediction of aluminum foil laminated polyethylene packed vacuum dried coconut milk powder. Journal of Food Engineering, 108(1), 135–142. https://doi.org/10.1016/j.jfoodeng.2011.06.036
Jiang, Y., Yang, X., Jin, H., Feng, X., Tian, F., Song, Y., Ren, Y., Man, C., & Zhang, W. (2021). Shelf-life prediction and chemical characteristics analysis of milk formula during storage. Lwt, 144(March). https://doi.org/10.1016/j.lwt.2021.111268
Kouhestani, S., & Honarvar, M. (2021). An Overview on Panela. Journal of Food Biosciences and Technology, 11(1), 35–42. https://jfbt.srbiau.ac.ir/article_16846.html
Manzocco, L., Calligaris, S., & Nicoli, M. C. (2010). Methods for food shelf life determination and prediction. Oxidation in Foods and Beverages and Antioxidant Applications: Understanding Mechanisms of Oxidation and Antioxidant Activity, 196–222. https://doi.org/10.1533/9780857090447.1.196
Marsh, K., & Bugusu, B. (2007). Food packaging - Roles, materials, and environmental issues: Scientific status summary. Journal of Food Science, 72(3). https://doi.org/10.1111/j.1750-3841.2007.00301
Mendoza-Rivera, H. (2021). Diseño Experimental. Universidad Nacional de Colombia. http://red.unal.edu.co/cursos/ciencias/2000352/html/un3/cont_315-58.html
Resolución 779, (2006)
Minitab. (2021). Soporte de Minitab(R) 20. https://support.minitab.com/es-mx/minitab/20/
Mizrahi, S. (2011). Accelerated shelf life testing of foods. In Food and Beverage Stability and Shelf Life. https://doi.org/10.1016/B978-1-84569-701-3.50015-3
Mosquera, L., Arias, S., Jimenez, D., Lopez, D., & Osorio, A. (2015). Transición vítrea en alimentos: sistemas binarios agua-carbohidratos. Revista Vector, 9(2014), 24. http://vector.ucaldas.edu.co/downloads/Vector9_4.pdf
Paterson, A. H. J., & Bröckel, U. (2015). Caking development in lemon juice powder. Procedia Engineering, 102, 142–149. https://doi.org/10.1016/j.proeng.2015.01.117
Rasane, P., Jha, A., & Sharma, N. (2015). Predictive modelling for shelf life determination of nutricereal based fermented baby food. Journal of Food Science and Technology, 52(8), 5003–5011. https://doi.org/10.1007/s13197-014-1545-x
Retsch. (2022). Retsch. https://www.retsch.com/
Ruiz-Cabrera, M. A., & Schmidt, S. J. (2015). Determination of glass transition temperatures during cooling and heating of low-moisture amorphous sugar mixtures. Journal of Food Engineering, 146, 36–43. https://doi.org/10.1016/j.jfoodeng.2014.08.023
Salehi, H., Berry, R., Deng, T., Larsson, S. H., Farnish, R., & Bradley, M. (2019). Development and application of a novel cake strength tester. Powder Technology, 350, 36–42. https://doi.org/10.1016/j.powtec.2019.03.024
Salish, K., & Ambrose, R. P. K. (2021). Predicting powder caking using cohesion energy density. Powder Technology, 393, 312–322. https://doi.org/10.1016/j.powtec.2021.07.079
Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodríguez, J. (2019). Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(March), 32–40. https://doi.org/10.1016/j.jfoodeng.2019.03.009
Verma, P., Shah, N. G., & Mahajani, S. M. (2019). Why jaggery powder is more stable than solid jaggery blocks. Lwt, 110(December 2018), 299–306. https://doi.org/10.1016/j.lwt.2019.04.093
Zafar, U., Vivacqua, V., Calvert, G., Ghadiri, M., & Cleaver, J. A. S. (2017). A review of bulk powder caking. Powder Technology, 313, 389–401. https://doi.org/10.1016/j.powtec.2017.02.024
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 131 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84539/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84539/2/1072659060.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84539/3/1072659060.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
c70cc2c203c763cb36b5e1723fe582c6
f0ed9a33299840128d560b46574c5edf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090149039964160
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zuluaga Domínguez, Carlos Marioe62c6eaefb21c224237f001387877fd5Garcia Quiroga, Laura Camila057b1f5d20ccdc29739cf9ab685204acGarcía Quiroga, Laura CamilaGarcía Quiroga, Laura CamilaGarcía Quiroga, Laura CamilaGarcía Quiroga, Laura CamilaGarcía Quiroga, Laura Camila2023-08-11T20:17:54Z2023-08-11T20:17:54Z2023https://repositorio.unal.edu.co/handle/unal/84539Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías a colorLa compactación es uno de los mayores y más comunes problemas en el manejo de alimentos en polvo durante su almacenamiento y vida útil; en el mejor conocimiento del autor, a la fecha, no se conocen modelos matemáticos que permitan predecir la estabilidad de un alimento de acuerdo con su grado de compactación. Por ello, en el presente trabajo, se evaluaron tres técnicas para medir compactación en un alimento en polvo con incorporación de panela sometido a ciclos de alta temperatura y congelación. El método del diámetro medio de partícula calculado a partir de tamizaje, mostró una mejor tendencia y menor variabilidad que el método visual y el método de compresión uniaxial, por lo que fue seleccionado para medir el fenómeno de compactación. Posteriormente, el alimento se sometió a tres temperaturas (20°C, 37°C y 50°C) durante seis semanas, con evaluaciones semanales del nivel de compactación por el método de diámetro medio de partícula. Los resultados mostraron que a 37°C y 50°C el alimento sufre cambios significativos en cuanto a su nivel de compactación, mientras que a 20°C el producto se mantiene estable durante el tiempo de evaluación, y se comprobó que estadísticamente el tiempo no tiene un impacto en la compactación. Con los datos obtenidos, se determinó el orden del modelo para cada temperatura, encontrando que el modelo de orden cero representa los datos adecuadamente con un R2 superior a 90% para las temperaturas de 37°C y 50°C. Finalmente, se modeló la dependencia de la constante de aglomeración como función de la temperatura utilizando la ecuación de Arrhenius. Sin embargo, se encontró que este modelo no representa adecuadamente los datos experimentales obtenidos, posiblemente por los cambios de fase que pueden ocurrir alrededor de la temperatura de transición vítrea de la panela. Estos resultados demuestran que es viable modelar el comportamiento de la compactación de un alimento en polvo en función del tiempo, aunque se requiere realizar ajustes en las temperaturas y frecuencias de medición para obtener un ajuste adecuado de los datos experimentales. Los hallazgos de este estudio resultan útiles para simplificar los estudios de estabilidad de alimentos en polvo no perecederos. (Texto tomado de la fuente)Caking is one of the most common and biggest problems in the handling of food powders during their storage and shelf life; to the best of the author’s knowledge, to date, there are not known mathematical models that allow to predict the stability of food powders based on their caking degree. Therefore, in the present work, three techniques were evaluated to measure the caking degree in a powdered food with panela, which was subjected to high temperature and freezing cycles. The mean particle diameter method calculated from sieving test showed a better trend and less variability than the visual method and the uniaxial compression test, so it was selected to measure the caking phenomena. Subsequently, the food was subjected to three different temperatures (20°C, 37°C and 50°C) for six weeks with weekly evaluations of the caking degree by the mean particle diameter method. Results showed that the food undergoes significant changes in terms of caking at 37°C and 50°C, while the product remains stable during the evaluation period at 20°C, and it was verified that statically the times does not have an impact on the caking behavior. With the data obtained, the order of the model was determined for each temperature, finding that zero order model adequately represents the data with an R2 higher than 90% at 37°C and 50°C. Finally, the dependency of the agglomeration constant k as a function of the temperature was modeled using the Arrhenius equation. However, it was found that this model does not represent properly the experimental data, possibly due to the phase changes that might occur around the glass transition temperature of the panela. These results show that modelling the caking behavior of a food powder as a function of time is feasible, even when adjustments on the temperatures and measuring frequencies must be done to get a better fit on the experimental data. The results of this work are useful to simplify the stability studies of non-perishable food powders.MaestríaMagíster en Ciencia y Tecnología de Alimentos131 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::664 - Tecnología de alimentosIndustria de la panelaIndustrias alimenticiasPanela - IndustryFood industry and tradeCompactaciónEstabilidadTemperaturaTamaño de partículaModelo PredictivoCakingPredictive ModelParticle sizeTemperatureStabilityEvaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactaciónEvaluation of the stability of a powdered food made with panela from its caking degreeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAddo, K. A., Bi, J., Chen, Q., Wu, X., Zhou, M., Lyu, J., & Song, J. (2019). Understanding the caking behavior of amorphous jujube powder by powder rheometer. Lwt, 101(June 2018), 483–490. https://doi.org/10.1016/j.lwt.2018.11.059Aguilera, J. M., Valle, J. M., & Ka, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science & Technology, 6(5), 149–155.Alarcón, A. L., Palacios, L. M., Osorio, C., César Narváez, P., Heredia, F. J., Orjuela, A., & Hernanz, D. (2021). Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, 340(August 2020). https://doi.org/10.1016/j.foodchem.2020.128183Asikin, Y., Kamiya, A., Mizu, M., Takara, K., Tamaki, H., & Wada, K. (2014). Changes in the physicochemical characteristics, including flavour components and Maillard reaction products, of non-centrifugal cane brown sugar during storage. Food Chemistry, 149, 170–177. https://doi.org/10.1016/j.foodchem.2013.10.089Carpin, M., Bertelsen, H., Dalberg, A., Bech, J. K., Risbo, J., Schuck, P., & Jeantet, R. (2017). How does particle size influence caking in lactose powder? Journal of Food Engineering, 209, 61–67. https://doi.org/10.1016/j.jfoodeng.2017.04.006Cookson, M. D., & Stirk, P. M. R. (2019). Handbook of food powders.Doğan, M., Aslan, D., Gürmeriç, V., Özgür, A., & Göksel Saraç, M. (2019). Powder caking and cohesion behaviours of coffee powders as affected by roasting and particle sizes: Principal component analyses (PCA) for flow and bioactive properties. Powder Technology, 344, 222–232. https://doi.org/10.1016/j.powtec.2018.12.030Ermiş, E. (2015). Food Powders: Properties and Characterization. In Gida / the Journal of Food. https://doi.org/10.15237/gida.gd14072Fitzpatrick, J. J., Descamps, N., O’Meara, K., Jones, C., Walsh, D., & Spitere, M. (2010). Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt. Powder Technology, 204(1), 131–137. https://doi.org/10.1016/j.powtec.2010.07.029Fitzpatrick, J. J., O’Callaghan, E., & O’Flynn, J. (2008). Application of a novel cake strength tester for investigating caking of skim milk powder. Food and Bioproducts Processing, 86(3), 198–203. https://doi.org/10.1016/j.fbp.2007.10.009Gooch, J. W. (2015). Sieve Analysis. In Retsch GmbH Haan. https://doi.org/10.1007/978-1-4419-6247-8_10621Hartmann, M., & Palzer, S. (2011). Caking of amorphous powders - Material aspects, modelling and applications. Powder Technology, 206(1–2), 112–121. https://doi.org/10.1016/j.powtec.2010.04.014Jena, S., & Das, H. (2012). Shelf life prediction of aluminum foil laminated polyethylene packed vacuum dried coconut milk powder. Journal of Food Engineering, 108(1), 135–142. https://doi.org/10.1016/j.jfoodeng.2011.06.036Jiang, Y., Yang, X., Jin, H., Feng, X., Tian, F., Song, Y., Ren, Y., Man, C., & Zhang, W. (2021). Shelf-life prediction and chemical characteristics analysis of milk formula during storage. Lwt, 144(March). https://doi.org/10.1016/j.lwt.2021.111268Kouhestani, S., & Honarvar, M. (2021). An Overview on Panela. Journal of Food Biosciences and Technology, 11(1), 35–42. https://jfbt.srbiau.ac.ir/article_16846.htmlManzocco, L., Calligaris, S., & Nicoli, M. C. (2010). Methods for food shelf life determination and prediction. Oxidation in Foods and Beverages and Antioxidant Applications: Understanding Mechanisms of Oxidation and Antioxidant Activity, 196–222. https://doi.org/10.1533/9780857090447.1.196Marsh, K., & Bugusu, B. (2007). Food packaging - Roles, materials, and environmental issues: Scientific status summary. Journal of Food Science, 72(3). https://doi.org/10.1111/j.1750-3841.2007.00301Mendoza-Rivera, H. (2021). Diseño Experimental. Universidad Nacional de Colombia. http://red.unal.edu.co/cursos/ciencias/2000352/html/un3/cont_315-58.htmlResolución 779, (2006)Minitab. (2021). Soporte de Minitab(R) 20. https://support.minitab.com/es-mx/minitab/20/Mizrahi, S. (2011). Accelerated shelf life testing of foods. In Food and Beverage Stability and Shelf Life. https://doi.org/10.1016/B978-1-84569-701-3.50015-3Mosquera, L., Arias, S., Jimenez, D., Lopez, D., & Osorio, A. (2015). Transición vítrea en alimentos: sistemas binarios agua-carbohidratos. Revista Vector, 9(2014), 24. http://vector.ucaldas.edu.co/downloads/Vector9_4.pdfPaterson, A. H. J., & Bröckel, U. (2015). Caking development in lemon juice powder. Procedia Engineering, 102, 142–149. https://doi.org/10.1016/j.proeng.2015.01.117Rasane, P., Jha, A., & Sharma, N. (2015). Predictive modelling for shelf life determination of nutricereal based fermented baby food. Journal of Food Science and Technology, 52(8), 5003–5011. https://doi.org/10.1007/s13197-014-1545-xRetsch. (2022). Retsch. https://www.retsch.com/Ruiz-Cabrera, M. A., & Schmidt, S. J. (2015). Determination of glass transition temperatures during cooling and heating of low-moisture amorphous sugar mixtures. Journal of Food Engineering, 146, 36–43. https://doi.org/10.1016/j.jfoodeng.2014.08.023Salehi, H., Berry, R., Deng, T., Larsson, S. H., Farnish, R., & Bradley, M. (2019). Development and application of a novel cake strength tester. Powder Technology, 350, 36–42. https://doi.org/10.1016/j.powtec.2019.03.024Salish, K., & Ambrose, R. P. K. (2021). Predicting powder caking using cohesion energy density. Powder Technology, 393, 312–322. https://doi.org/10.1016/j.powtec.2021.07.079Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodríguez, J. (2019). Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(March), 32–40. https://doi.org/10.1016/j.jfoodeng.2019.03.009Verma, P., Shah, N. G., & Mahajani, S. M. (2019). Why jaggery powder is more stable than solid jaggery blocks. Lwt, 110(December 2018), 299–306. https://doi.org/10.1016/j.lwt.2019.04.093Zafar, U., Vivacqua, V., Calvert, G., Ghadiri, M., & Cleaver, J. A. S. (2017). A review of bulk powder caking. Powder Technology, 313, 389–401. https://doi.org/10.1016/j.powtec.2017.02.024EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84539/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1072659060.2023.pdf1072659060.2023.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf2559292https://repositorio.unal.edu.co/bitstream/unal/84539/2/1072659060.2023.pdfc70cc2c203c763cb36b5e1723fe582c6MD52THUMBNAIL1072659060.2023.pdf.jpg1072659060.2023.pdf.jpgGenerated Thumbnailimage/jpeg4918https://repositorio.unal.edu.co/bitstream/unal/84539/3/1072659060.2023.pdf.jpgf0ed9a33299840128d560b46574c5edfMD53unal/84539oai:repositorio.unal.edu.co:unal/845392024-08-18 23:13:01.301Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=