Semiparametric smoothing spline to joint mean and variance models with responses from the biparametric exponential family: a bayesian perspective
ilustraciones, gráficas, tablas
- Autores:
-
Zárate Solano, Héctor Manuel
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80887
- Palabra clave:
- 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Spline theory
Bayesian statistical decision theory
Lineal models (statistics)
Teoría Spline
Teoría bayesiana de decisiones estadísticas
Modelos lineales (Estadística)
Semiparametric heteroscedastic models
Calculus of variations
Optimization
Biparametric exponential models
Markov chain Monte Carlo
Generalized linear models
Smoothing spline
Asymmetric distributions
Variational bayesian learning
Modelos semiparamétricos
Familia exponencial biparamétrica
Cadenas de markov Monte Carlo
Modelos lineales generalizados
Suavizamiento spline
Distribuciones asimétricas
Aprendizaje bayesiano variacional
Análisis numérico
Numerical analysis
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_962e210e6d48296ea679246834ddc9e4 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80887 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Semiparametric smoothing spline to joint mean and variance models with responses from the biparametric exponential family: a bayesian perspective |
dc.title.translated.spa.fl_str_mv |
Suavizamiento spline semiparamétrico para modelar simultaneamente las funciones media y varianza con respuestas de la familia exponencial biparamétrica: una perspectiva bayesiana |
title |
Semiparametric smoothing spline to joint mean and variance models with responses from the biparametric exponential family: a bayesian perspective |
spellingShingle |
Semiparametric smoothing spline to joint mean and variance models with responses from the biparametric exponential family: a bayesian perspective 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Spline theory Bayesian statistical decision theory Lineal models (statistics) Teoría Spline Teoría bayesiana de decisiones estadísticas Modelos lineales (Estadística) Semiparametric heteroscedastic models Calculus of variations Optimization Biparametric exponential models Markov chain Monte Carlo Generalized linear models Smoothing spline Asymmetric distributions Variational bayesian learning Modelos semiparamétricos Familia exponencial biparamétrica Cadenas de markov Monte Carlo Modelos lineales generalizados Suavizamiento spline Distribuciones asimétricas Aprendizaje bayesiano variacional Análisis numérico Numerical analysis |
title_short |
Semiparametric smoothing spline to joint mean and variance models with responses from the biparametric exponential family: a bayesian perspective |
title_full |
Semiparametric smoothing spline to joint mean and variance models with responses from the biparametric exponential family: a bayesian perspective |
title_fullStr |
Semiparametric smoothing spline to joint mean and variance models with responses from the biparametric exponential family: a bayesian perspective |
title_full_unstemmed |
Semiparametric smoothing spline to joint mean and variance models with responses from the biparametric exponential family: a bayesian perspective |
title_sort |
Semiparametric smoothing spline to joint mean and variance models with responses from the biparametric exponential family: a bayesian perspective |
dc.creator.fl_str_mv |
Zárate Solano, Héctor Manuel |
dc.contributor.advisor.spa.fl_str_mv |
Cepeda Cuervo, Edilberto |
dc.contributor.author.spa.fl_str_mv |
Zárate Solano, Héctor Manuel |
dc.contributor.researchgroup.spa.fl_str_mv |
Inferencia Bayesiana |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas |
topic |
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Spline theory Bayesian statistical decision theory Lineal models (statistics) Teoría Spline Teoría bayesiana de decisiones estadísticas Modelos lineales (Estadística) Semiparametric heteroscedastic models Calculus of variations Optimization Biparametric exponential models Markov chain Monte Carlo Generalized linear models Smoothing spline Asymmetric distributions Variational bayesian learning Modelos semiparamétricos Familia exponencial biparamétrica Cadenas de markov Monte Carlo Modelos lineales generalizados Suavizamiento spline Distribuciones asimétricas Aprendizaje bayesiano variacional Análisis numérico Numerical analysis |
dc.subject.lemb.eng.fl_str_mv |
Spline theory Bayesian statistical decision theory Lineal models (statistics) |
dc.subject.lemb.spa.fl_str_mv |
Teoría Spline Teoría bayesiana de decisiones estadísticas Modelos lineales (Estadística) |
dc.subject.proposal.eng.fl_str_mv |
Semiparametric heteroscedastic models Calculus of variations Optimization Biparametric exponential models Markov chain Monte Carlo Generalized linear models Smoothing spline Asymmetric distributions Variational bayesian learning |
dc.subject.proposal.spa.fl_str_mv |
Modelos semiparamétricos Familia exponencial biparamétrica Cadenas de markov Monte Carlo Modelos lineales generalizados Suavizamiento spline Distribuciones asimétricas Aprendizaje bayesiano variacional |
dc.subject.unesco.spa.fl_str_mv |
Análisis numérico |
dc.subject.unesco.eng.fl_str_mv |
Numerical analysis |
description |
ilustraciones, gráficas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-02-05T00:31:26Z |
dc.date.available.none.fl_str_mv |
2022-02-05T00:31:26Z |
dc.date.issued.none.fl_str_mv |
2022-01 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80887 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80887 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.eng.fl_str_mv |
Anderson, D. F. and Livingston, P. S. The zero-divisor graph of a commutative ring. Journal of Algebra, 217(2):434–447, 1999. Berry, S., Carroll, R., and Ruppert, D. Bayesian smoothing and regression splines for measurement error problems. Journal of the American Statistical Association, 97(457):160 – 169, 2002. Bishop, C. M. Pattern recognition and Machine Learning, volume 1 of Graduate Texts in Mathematics. New York : Springer, 2006. Blei, D. M., Kucukelbir, A., and McAuliffe, J.D. Variational inference: a review for statisticians. Journal of the American Statistical Association, 112:859–857, 2017. Brooks, S., Gelman, A., Jones, G., and Meng, X. Handbook of Markov Chain Monte Carlo. Handbooks of Modern and Statistical Methods. Chapman Hall/CR, 2011. Cepeda, E. and Gamerman, D. Bayesian modeling of variance heterogeneity in normal regression models. J. Prob. Stat, 14:207–221, 2001. Crainiceanu, C., Ruppert, D., and Wand, M. Bayesian analysis for penalized spline regression using winbugs. Journal of Statistical Software, 14:1–24, 2005. Crevar, M. Shared file systems: Determining the best choice for your distributed SAS® foundation applications. SAS Institute Inc., Cary, NC., pages 1–11, 2017. 21 Dey, D.K., Gelfand, A.E., and Peng, F. Overdispersed generalized linear models. Journal of Statistical Planning and Inference,, 64(64):93–108, 1997. Evans, M. J. and Rosenthal, J. S. Probability and Statistics: The science of Uncertainty. The American Statistician. New York: W.H Freeman and Company, 2004. Gilks, W.R., Richardson, S., and Spiegelhalter, D.J. Markov Chain Monte Carlo in practice. Interdisciplinary Statistics. Chapman Hall/CR, 1998. Green, P.J. and Silverman, B.W. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach. Chapman and Hall, London, 1994. Groll, A., Hambuckers, J., , Kneib, T., and Umlauf, N. Lasso-type penalization in the framework of generalized additive models for location, scale and shape. Computational Statistics Data Analysis, 140:59–73, 2019. Hastings, W. Monte carlo sampling methods using markov chains and their applications. Biometrika, (57):97–109, 1970. Jang, E. A beginner’s guide to variational methods: Mean-field approximation. http://blog.evjang.com/2016/08/variational-bayes.html, (3):233–240, 2016. Kullback, S. Information Theory and Statistics. Gloucester , MASS, 1978. Landau, D. and Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, 2005. Nakajima, S., Watanabe, K., and Sugiyama, M. Variational Bayesian Learning Theory, volume 1 of Graduate Texts in Mathematics. Cambridge University Press, 2019. Nosedal-Sanchez, A., Storlie, C., Thomas, C., and Chisrensen, R. Reproducing kernel hilbert spaces for penalized regression : A tutorial. The American Statistician, (66):50–60, 2012. Ormerod, J. T. and Wand, J. T. Explaining variational approximations. The American Statistician, 64:140–153, 2001. 22 Pierce, N. and Wand, D. Penalized splines and reproducible kernel methods. American Statistical Association, (3):233–240, 2006. Ruppert, D., Wand, M., and Carroll, R. Semiparametric regression during 2003-2007. Electronic Journal of Statistics, 3:1193–1256, 2009. Stasinopoulos, D. and Rigby, R. Generalized additive models for location scale and shape (gamlss) in r. Journal of Statistical Software, 23:1–46, 2007. Turkman, M., Paulino, C., and Muller, P. Computational Bayesian Statistics . An Introduction. Cambridge, 2019. Umlauf, N., Nadja, K., and Achim, Z. Bamlss: Bayesian additive models for location, scale, and shape (and beyond). Journal of Computational and Graphical Statistics, 27:612–627, 2018. Wahba, G. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, 1990. Whaba, G. and Wendelberger, J. Some new mathematical methods for variational objective analysis using splines and cross validation. Monthly weather review, 108:1122–1143, 1980. 23 Berry, S., Carroll, R., and Ruppert, D. Bayesian smoothing and regression splines for measurement error problems. Journal of the American Statistical Association, (457):160–169, 2011. Cepeda, E. Variability modeling in Generalized Linear models. PhD thesis, Unpublished Ph.D thesis, Mathematics Institute Universidade Federal do Rio de Janeiro, 2001. Cepeda, E. and Gamerman, D. Bayesian methodology for modeling parameters in the two parametric exponential family. Estadística, 57:93–105, 2005. Cepeda,E., Achcar,J., and Garrido Lopera,L. Bivariate beta regression models: joint modeling of the mean, dispersion and association parameters. Journal of Applied statistics, 41(3):677– 687, Marzo 2014. Crainiceanu, C. Spatially adaptative bayesian penalized splines with heteroscedastic errors. Journal of Computational and Graphical Statistics, (2):265–288, 2007. Currie, I. and Burban, M. Flexible smoothing with p-splines : a unified approach. Statistical Modelling, (4):333–349, 2002. Davidian, M., Lin, X., Morris, J., and Stefanski, O. The Work of Raymond J. Carroll. The impact and influence of a Statistician. 2014. 49 Denison, D., Mallick, B., and Smith, F. A bayesian cart algorithm. Biometrika, (2):363 – 367, 1998. Dey, D.K., Gelfand,A.E., and Peng, F. Overdispersed generalized linear models. Journal of Statistical Planning and Inference,, 64(64):93–108, 1997. Eilers, P.and Marx, B. and Durbán, M. Twenty years of p-splines. SORT (Statistics and Operations Research Transactions), (39), 2014. Gamerman, D. Sampling from the posterior distribution in generalized linear mixed models. Instituto de matemática, Universidade Federal do Rio de Janeiro, pages 59 – 68, 1997. Gijbels, I. and Prosdocimi, I. Flexible mean and dispersion function estimation in extended generalized additive models. Communications in statistics - Theory and Methods, (41):3259 – 3277, 2012. Gu,C. Smoothing Spline ANOVA Models. Springer, West Lafayette,USA, 2002. Littell, R. and Schabenberger, O. SAS for Mixed Models. Number 2. 2006. Loomis, C. MCMC in SAS: From scratch or by proc. Western users of SAS software 2016, 1(1):1 – 19, 2016. Ma, Y. and Carroll R.J. Locally efficient estimators for semiparametric models with measurement error. Journal of the American Statistical Association, (101):1465–1474, 2006. Mencitas, M. and Wand, M. Variational inference for heteroscedastic semiparametric regression. School of mathematical sciences, University of Technology. Sydney, Australia, 2014. Nosedal-Sanchez, A., Storlie, C., Thomas, C., and Chisrensen, R. Reproducing kernel hilbert spaces for penalized regression : A tutorial. The American Statistician, (66):50–60, 2012. Nott, D. Semiparametric estimation of mean and variance functions for non-gaussian data. Computational Statistics, (3-4):603–620, 2006. Pierce, N. and Wand, D. Penalized splines and reproducible kernel methods. American Statistical Association, (3):233–240, 2006. Pinheiro, J. and Bates, D. Mixed-Effects Models in S and S-Plus. Springer Verlag, 2009. Robert, C.P., Elvira,V., Tawn, N., and Wu, C. Accelerating mcmc algorithms. Journal of the American Statistical Association, 2018. Ruppert, D., Wand, M.P., Holst,U., and Hössjer, O. Local polynomial variance-function estimation. Technometrics, (39):262–273, 1997. Spiegelhalter, D. and Best, N. Bayesian approaches to multiple sources of evidence in complex cost-effectiveness modelling. Statistics in Medicine, (23):3687 – 3709, 2003. Tran, M., Nguyen, N., Nott, D., and Kohn, R. Bayesian deep net glm and glmm. SORT ( arXiv:1805.10157v1 [stat.CO]), 2018. Xu,D. and Zhang,Z. A semiparametric bayesian approach to joint mean and variance models. Statistics & Probability Letters, 83(7):1624 – 1631, 2013. Azzalini, A. A class of distribution which includes the normal ones. Scandinavian Journal of Statistics, 12:171–178, 1985. Azzalini, A. Further results on a class of distributions which includes the normal ones. Statistica, 46:199–208, 1986. Charenza, W. and Diaz, C. Choosing the rigth skew normal distribution: the macroeconomist dilemma. Journal of Forecasting, 19:235–254, 2015. Dursun, A. and Ersin, Y. Modified estimators in semiparametric regression models with rightcensored data. Journal of Statistical Computation and Simulation, 88:1470–1498, 2018. Ferreira, J. and Steel, M. A new class of skewed multivariate distributions with applications to regression analysis. Statistica Sinica, 17:505–529, 2007. Franceschini, C. and Loperfido, N. Testing for normality when the sampled distribution is extended skew-normal. Mathematical and statistical methods for actuarial sciences and finance Springer, 2014. Genton, M. Discussion of the ’skew-normal’. Scandinavian Journal of Statistics, 32:189–198, 2005. Groll, A., Hambuckers, J., , Kneib, T., and Umlauf, N. Lasso-type penalization in the framework of generalized additive models for location, scale and shape. Computational Statistics Data Analysis, 140:59–73, 2019. Gómez, H., Salinas, H., and Bolfarine, H. Generalized skew-normal models: properties and inference. Statistics, 40:495–505, 2006. Huiqiong, L., Liucang, W., and Ting, M. Variable selection in joint location, scale and skewness models of the skew-normal distribution. J Syst Sci Complex, 30:694–709, 2017. Kuligowsk, A. and Mendes, L. Working with sparse matrices in sas®. Proceedings of the SAS® Global Forum 2019 Conference, pages 1–9, 2019. Ma, Y. and Genton, M. Flexible class of skew-symmetric distributions. Scandinavian Journal of Statistics, 31:459–468, 2004. Ma, Y., Genton, M., and Tsiatis, A. Locally efficient semiparametric estimators for generalized skew-elliptical distributions. Journal of American Statistical Association, 100:980–989, 2005. Perez, P., Acosta, R., and Perez, S. A bayesian genomic regression model with skew normal random errors? G3, 8:1771–1785, 2018. Potgieter, C. and Genton, M. Bayesian analysis of two-piece normal regression models. Presented at Joint Statistical meeting, San Francisco Statistics, 2003. Potgieter, C. and Genton, M. Characteristic function-based semiparametric inference for skewsymmetric models. Scandinavian Journal of Statistics, 40:1803–1819, 2013. Satori, N. Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions. Journal of Statistical Planning and Inference, 136:4259–4275, 2006. Stasinopoulos, D. and Rigby, R. Generalized additive models for location scale and shape (gamlss) in r. Journal of Statistical Software, 23:1–46, 2007. Umlauf, N., Nadja, K., and Achim, Z. Bamlss: Bayesian additive models for location, scale, and shape (and beyond). Journal of Computational and Graphical Statistics, 27:612–627, 2018. Wilhelmsson, Y. Value at risk with time varying variance, skewness and kurtosis - the nig-acd model. Econometrics Journal, 12:82–104, 2009. Yu, K., Alhamzawi, A., Becker, F., and Lord, J. Statistical methods for body mass index: a selective review of the literature. arXiv:1412.3653v1 [stat.AP], pages 1–32, 2014. Zareifard, H. and Khaledi, M. Non-gaussian modeling of spatial data using scale mixing of a unified skew gaussian process. Journal of Multivariate Analysis, 114:16–28, 2013. 99 Ahmedt, D., Ali, M., Denman, S., Fookes, C., and Petersson, L. Graph-based deep learning for medical diagnosis and analysis: Past, present and future. arXIV:2105.13137v1 cs.LG, pages 1–41, 2021. Barro, S and Sala i Martin, X. Economic growth. MIT, 2004. Bishop, C. Pattern recognition and machine learning. Springer, 2016. Bugbee, B., Bredit, J., and Van der Woerd, M. Laplace variational approximation for semiparametric regression in presence of heterocedastic errors. Journal of Computational and Graphical Statistics, 25:225–245, 2016. Buxton, R. Introduction to Functional Magnetic Resonance Imaging : Principles and Techniques. Cambridge, 2009. Caffo, B., Bowman, D., Elberly, L., and Bassett, S. Handbook of Markov Chain Monte Carlo: Part II, chapter 14. Chapman Hall / CRC, 2011. Faes, C. and Wand, M.P. Semiparametric mean field variational bayes: General principles and numerical issues. Journal of Machine Learning Research, (17):1–47, 2016. Hans, S. MRI made easy (...well almost). Schering, 1990. Koller, D. and Friedman, N. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2010. Larsen, W. and McCleary, S. The use of partial residual plots in regression analysis. Technometrics, (14):781–790, 1970. Lazaro, M. Bayesian warped gaussian processes. Advances in Neural Information Processing Systems, 26:225–245, 2013. Mencitas, M. and Wand, M. Variational inference for heteroscedastic semiparametric regression. School of mathematical sciences, University of Technology. Sydney, Australia, 2014. Nakajima, S., Watanabe, K., and Sugiyama, M. Variational Bayesian Learning Theory. Cambridge University press, 2019. Nott , D., Tran, M., and Kuk, A. Efficient variational inference for generalized linear mixed models with large datasets. arXiv preprint, 2018. Potgieter, C. and Genton, M. Bayesian analysis of two-piece normal regression models. Presented at Joint Statistical meeting, San Francisco Statistics, 2003. Rindler, F. Calculus of Variations. Springer-Verlag, 2016. Starke, L. and Ostwald, D. Variational bayesian parameter estimation techniques for the general linear model. Frontiers in Neuroscience, pages 1–22, 2017. Zárate, H. and Cepeda, E. Semiparametric smoothing spline in joint mean and dispersion models with responses from the biparametric exponential family: A bayesian perspective. Statistics, Optimization Information Computing, 9(2):351–367, 2021. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 133 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Estadística |
dc.publisher.department.spa.fl_str_mv |
Departamento de Estadística |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80887/4/7219498.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80887/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/80887/6/7219498.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
065e4358dbfb8a106fa9ec981cf4ac2b 8153f7789df02f0a4c9e079953658ab2 302590e62151297d196efed118852031 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089380646617088 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cepeda Cuervo, Edilberto5d0ed32887a693c303b0ad910550b643600Zárate Solano, Héctor Manuela949726249a602be2f603c3cd9aa37a2Inferencia Bayesiana2022-02-05T00:31:26Z2022-02-05T00:31:26Z2022-01https://repositorio.unal.edu.co/handle/unal/80887Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasStatistical applications need to address an increasing complexity due to new data arising from recent technologies, new phenomenons, and diverse sources of uncertainty. The demand for flexible methods with non-standard data structures, high-dimensional real-time estimation, and latent models framework have caused semiparametric modeling to play a crucial role in contemporary statistical analysis. We provide flexible Bayesian methods to jointly infer the mean, variance, and skewness functions when the response variable comes either from a two-parameter exponential family or asymmetric distributions. Hence, we implemented Bayesian algorithms based on MCMC sampling techniques and deterministic variational Bayesian learning theory. In these settings, each sub-model depends on some covariates parametrically and for others in a non-parametrically way. It follows that understanding how the moments change with predictors is a goal of Statistics, and it is of intrinsic interest given the role in approximating other quantities. We propose several modeling scenarios that benefit from the fusion of the graphical models' approach to Bayesian semiparametric regression under the architecture of GLM models. The significance and implications of our strategy lie in its potential to contribute to a unified computational methodology that provides insight into many complex models that otherwise could be intractable analytically. Therefore, combining data models and algorithms contribute to solving real-world problems enjoying crucial advantages related to faster computation time, which allow not only to explore quickly many models for the data but to estimate them accurately.Las aplicaciones estadísticas deben abordar una complejidad cada vez mayor debido a los nuevos datos que surgen con las tecnologías recientes, los nuevos fenómenos y las diversas fuentes de incertidumbre. La demanda por métodos con estructuras de datos no estándar, estimación en tiempo real de alta dimensión y modelos latentes adecuados ha causado que los modelos semiparamétricos desempeñen un papel crucial en el análisis estadístico reciente. En esta tesis se implementan métodos Bayesianos flexibles para inferir conjuntamente las funciones de media, varianza y asimetría cuando la variable de respuesta proviene de la familia exponencial biparamétrica o de distribuciones asimétricas. La aproximación es obtenida con métodos basados en técnicas de simulación de Monte Carlo con cadenas de markov y en algoritmos de aprendizaje variacional determinístico. En estos escenarios, cada submodelo incluye variables en forma paramétrica y no paramétrica para analizar el efecto de los predictores sobre los momentos. Los escenarios de modelamiento se benefician de la fusión entre los modelos gráficos y la regresión semiparamétrica Bayesiana utilizando la arquitectura de modelos lineales generalizados. La importancia e implicaciones de nuestra estrategia radican en su potencial para contribuir con una metodología computacional unificada que proporciona información sobre una gran variedad de modelos complejos que, de otro modo, podrían resultar analíticamente intratables. Por lo tanto, la combinación de modelos de datos y algoritmos contribuye a resolver problemas del mundo real y disfruta de ventajas cruciales relacionadas con el bajo tiempo de cómputo, lo cual permite no solo explorar rápidamente muchos modelos para los datos, sino también estimarlos con precisión. (Texto tomado de la fuente).Incluye anexosDoctoradoDoctor en Ciencias - Estadísticaxvii, 133 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - EstadísticaDepartamento de EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasSpline theoryBayesian statistical decision theoryLineal models (statistics)Teoría SplineTeoría bayesiana de decisiones estadísticasModelos lineales (Estadística)Semiparametric heteroscedastic modelsCalculus of variationsOptimizationBiparametric exponential modelsMarkov chain Monte CarloGeneralized linear modelsSmoothing splineAsymmetric distributionsVariational bayesian learningModelos semiparamétricosFamilia exponencial biparamétricaCadenas de markov Monte CarloModelos lineales generalizadosSuavizamiento splineDistribuciones asimétricasAprendizaje bayesiano variacionalAnálisis numéricoNumerical analysisSemiparametric smoothing spline to joint mean and variance models with responses from the biparametric exponential family: a bayesian perspectiveSuavizamiento spline semiparamétrico para modelar simultaneamente las funciones media y varianza con respuestas de la familia exponencial biparamétrica: una perspectiva bayesianaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAnderson, D. F. and Livingston, P. S. The zero-divisor graph of a commutative ring. Journal of Algebra, 217(2):434–447, 1999.Berry, S., Carroll, R., and Ruppert, D. Bayesian smoothing and regression splines for measurement error problems. Journal of the American Statistical Association, 97(457):160 – 169, 2002.Bishop, C. M. Pattern recognition and Machine Learning, volume 1 of Graduate Texts in Mathematics. New York : Springer, 2006.Blei, D. M., Kucukelbir, A., and McAuliffe, J.D. Variational inference: a review for statisticians. Journal of the American Statistical Association, 112:859–857, 2017.Brooks, S., Gelman, A., Jones, G., and Meng, X. Handbook of Markov Chain Monte Carlo. Handbooks of Modern and Statistical Methods. Chapman Hall/CR, 2011.Cepeda, E. and Gamerman, D. Bayesian modeling of variance heterogeneity in normal regression models. J. Prob. Stat, 14:207–221, 2001.Crainiceanu, C., Ruppert, D., and Wand, M. Bayesian analysis for penalized spline regression using winbugs. Journal of Statistical Software, 14:1–24, 2005.Crevar, M. Shared file systems: Determining the best choice for your distributed SAS® foundation applications. SAS Institute Inc., Cary, NC., pages 1–11, 2017. 21Dey, D.K., Gelfand, A.E., and Peng, F. Overdispersed generalized linear models. Journal of Statistical Planning and Inference,, 64(64):93–108, 1997.Evans, M. J. and Rosenthal, J. S. Probability and Statistics: The science of Uncertainty. The American Statistician. New York: W.H Freeman and Company, 2004.Gilks, W.R., Richardson, S., and Spiegelhalter, D.J. Markov Chain Monte Carlo in practice. Interdisciplinary Statistics. Chapman Hall/CR, 1998.Green, P.J. and Silverman, B.W. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach. Chapman and Hall, London, 1994.Groll, A., Hambuckers, J., , Kneib, T., and Umlauf, N. Lasso-type penalization in the framework of generalized additive models for location, scale and shape. Computational Statistics Data Analysis, 140:59–73, 2019.Hastings, W. Monte carlo sampling methods using markov chains and their applications. Biometrika, (57):97–109, 1970.Jang, E. A beginner’s guide to variational methods: Mean-field approximation. http://blog.evjang.com/2016/08/variational-bayes.html, (3):233–240, 2016.Kullback, S. Information Theory and Statistics. Gloucester , MASS, 1978.Landau, D. and Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, 2005.Nakajima, S., Watanabe, K., and Sugiyama, M. Variational Bayesian Learning Theory, volume 1 of Graduate Texts in Mathematics. Cambridge University Press, 2019.Nosedal-Sanchez, A., Storlie, C., Thomas, C., and Chisrensen, R. Reproducing kernel hilbert spaces for penalized regression : A tutorial. The American Statistician, (66):50–60, 2012.Ormerod, J. T. and Wand, J. T. Explaining variational approximations. The American Statistician, 64:140–153, 2001. 22Pierce, N. and Wand, D. Penalized splines and reproducible kernel methods. American Statistical Association, (3):233–240, 2006.Ruppert, D., Wand, M., and Carroll, R. Semiparametric regression during 2003-2007. Electronic Journal of Statistics, 3:1193–1256, 2009.Stasinopoulos, D. and Rigby, R. Generalized additive models for location scale and shape (gamlss) in r. Journal of Statistical Software, 23:1–46, 2007.Turkman, M., Paulino, C., and Muller, P. Computational Bayesian Statistics . An Introduction. Cambridge, 2019.Umlauf, N., Nadja, K., and Achim, Z. Bamlss: Bayesian additive models for location, scale, and shape (and beyond). Journal of Computational and Graphical Statistics, 27:612–627, 2018.Wahba, G. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, 1990.Whaba, G. and Wendelberger, J. Some new mathematical methods for variational objective analysis using splines and cross validation. Monthly weather review, 108:1122–1143, 1980. 23Berry, S., Carroll, R., and Ruppert, D. Bayesian smoothing and regression splines for measurement error problems. Journal of the American Statistical Association, (457):160–169, 2011.Cepeda, E. Variability modeling in Generalized Linear models. PhD thesis, Unpublished Ph.D thesis, Mathematics Institute Universidade Federal do Rio de Janeiro, 2001.Cepeda, E. and Gamerman, D. Bayesian methodology for modeling parameters in the two parametric exponential family. Estadística, 57:93–105, 2005.Cepeda,E., Achcar,J., and Garrido Lopera,L. Bivariate beta regression models: joint modeling of the mean, dispersion and association parameters. Journal of Applied statistics, 41(3):677– 687, Marzo 2014.Crainiceanu, C. Spatially adaptative bayesian penalized splines with heteroscedastic errors. Journal of Computational and Graphical Statistics, (2):265–288, 2007.Currie, I. and Burban, M. Flexible smoothing with p-splines : a unified approach. Statistical Modelling, (4):333–349, 2002.Davidian, M., Lin, X., Morris, J., and Stefanski, O. The Work of Raymond J. Carroll. The impact and influence of a Statistician. 2014. 49Denison, D., Mallick, B., and Smith, F. A bayesian cart algorithm. Biometrika, (2):363 – 367, 1998.Dey, D.K., Gelfand,A.E., and Peng, F. Overdispersed generalized linear models. Journal of Statistical Planning and Inference,, 64(64):93–108, 1997.Eilers, P.and Marx, B. and Durbán, M. Twenty years of p-splines. SORT (Statistics and Operations Research Transactions), (39), 2014.Gamerman, D. Sampling from the posterior distribution in generalized linear mixed models. Instituto de matemática, Universidade Federal do Rio de Janeiro, pages 59 – 68, 1997.Gijbels, I. and Prosdocimi, I. Flexible mean and dispersion function estimation in extended generalized additive models. Communications in statistics - Theory and Methods, (41):3259 – 3277, 2012.Gu,C. Smoothing Spline ANOVA Models. Springer, West Lafayette,USA, 2002.Littell, R. and Schabenberger, O. SAS for Mixed Models. Number 2. 2006.Loomis, C. MCMC in SAS: From scratch or by proc. Western users of SAS software 2016, 1(1):1 – 19, 2016.Ma, Y. and Carroll R.J. Locally efficient estimators for semiparametric models with measurement error. Journal of the American Statistical Association, (101):1465–1474, 2006.Mencitas, M. and Wand, M. Variational inference for heteroscedastic semiparametric regression. School of mathematical sciences, University of Technology. Sydney, Australia, 2014.Nosedal-Sanchez, A., Storlie, C., Thomas, C., and Chisrensen, R. Reproducing kernel hilbert spaces for penalized regression : A tutorial. The American Statistician, (66):50–60, 2012.Nott, D. Semiparametric estimation of mean and variance functions for non-gaussian data. Computational Statistics, (3-4):603–620, 2006.Pierce, N. and Wand, D. Penalized splines and reproducible kernel methods. American Statistical Association, (3):233–240, 2006.Pinheiro, J. and Bates, D. Mixed-Effects Models in S and S-Plus. Springer Verlag, 2009.Robert, C.P., Elvira,V., Tawn, N., and Wu, C. Accelerating mcmc algorithms. Journal of the American Statistical Association, 2018.Ruppert, D., Wand, M.P., Holst,U., and Hössjer, O. Local polynomial variance-function estimation. Technometrics, (39):262–273, 1997.Spiegelhalter, D. and Best, N. Bayesian approaches to multiple sources of evidence in complex cost-effectiveness modelling. Statistics in Medicine, (23):3687 – 3709, 2003.Tran, M., Nguyen, N., Nott, D., and Kohn, R. Bayesian deep net glm and glmm. SORT ( arXiv:1805.10157v1 [stat.CO]), 2018.Xu,D. and Zhang,Z. A semiparametric bayesian approach to joint mean and variance models. Statistics & Probability Letters, 83(7):1624 – 1631, 2013.Azzalini, A. A class of distribution which includes the normal ones. Scandinavian Journal of Statistics, 12:171–178, 1985.Azzalini, A. Further results on a class of distributions which includes the normal ones. Statistica, 46:199–208, 1986.Charenza, W. and Diaz, C. Choosing the rigth skew normal distribution: the macroeconomist dilemma. Journal of Forecasting, 19:235–254, 2015.Dursun, A. and Ersin, Y. Modified estimators in semiparametric regression models with rightcensored data. Journal of Statistical Computation and Simulation, 88:1470–1498, 2018.Ferreira, J. and Steel, M. A new class of skewed multivariate distributions with applications to regression analysis. Statistica Sinica, 17:505–529, 2007.Franceschini, C. and Loperfido, N. Testing for normality when the sampled distribution is extended skew-normal. Mathematical and statistical methods for actuarial sciences and finance Springer, 2014.Genton, M. Discussion of the ’skew-normal’. Scandinavian Journal of Statistics, 32:189–198, 2005.Groll, A., Hambuckers, J., , Kneib, T., and Umlauf, N. Lasso-type penalization in the framework of generalized additive models for location, scale and shape. Computational Statistics Data Analysis, 140:59–73, 2019.Gómez, H., Salinas, H., and Bolfarine, H. Generalized skew-normal models: properties and inference. Statistics, 40:495–505, 2006.Huiqiong, L., Liucang, W., and Ting, M. Variable selection in joint location, scale and skewness models of the skew-normal distribution. J Syst Sci Complex, 30:694–709, 2017.Kuligowsk, A. and Mendes, L. Working with sparse matrices in sas®. Proceedings of the SAS® Global Forum 2019 Conference, pages 1–9, 2019.Ma, Y. and Genton, M. Flexible class of skew-symmetric distributions. Scandinavian Journal of Statistics, 31:459–468, 2004.Ma, Y., Genton, M., and Tsiatis, A. Locally efficient semiparametric estimators for generalized skew-elliptical distributions. Journal of American Statistical Association, 100:980–989, 2005.Perez, P., Acosta, R., and Perez, S. A bayesian genomic regression model with skew normal random errors? G3, 8:1771–1785, 2018.Potgieter, C. and Genton, M. Bayesian analysis of two-piece normal regression models. Presented at Joint Statistical meeting, San Francisco Statistics, 2003.Potgieter, C. and Genton, M. Characteristic function-based semiparametric inference for skewsymmetric models. Scandinavian Journal of Statistics, 40:1803–1819, 2013.Satori, N. Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions. Journal of Statistical Planning and Inference, 136:4259–4275, 2006.Stasinopoulos, D. and Rigby, R. Generalized additive models for location scale and shape (gamlss) in r. Journal of Statistical Software, 23:1–46, 2007.Umlauf, N., Nadja, K., and Achim, Z. Bamlss: Bayesian additive models for location, scale, and shape (and beyond). Journal of Computational and Graphical Statistics, 27:612–627, 2018.Wilhelmsson, Y. Value at risk with time varying variance, skewness and kurtosis - the nig-acd model. Econometrics Journal, 12:82–104, 2009.Yu, K., Alhamzawi, A., Becker, F., and Lord, J. Statistical methods for body mass index: a selective review of the literature. arXiv:1412.3653v1 [stat.AP], pages 1–32, 2014.Zareifard, H. and Khaledi, M. Non-gaussian modeling of spatial data using scale mixing of a unified skew gaussian process. Journal of Multivariate Analysis, 114:16–28, 2013. 99Ahmedt, D., Ali, M., Denman, S., Fookes, C., and Petersson, L. Graph-based deep learning for medical diagnosis and analysis: Past, present and future. arXIV:2105.13137v1 cs.LG, pages 1–41, 2021.Barro, S and Sala i Martin, X. Economic growth. MIT, 2004.Bishop, C. Pattern recognition and machine learning. Springer, 2016.Bugbee, B., Bredit, J., and Van der Woerd, M. Laplace variational approximation for semiparametric regression in presence of heterocedastic errors. Journal of Computational and Graphical Statistics, 25:225–245, 2016.Buxton, R. Introduction to Functional Magnetic Resonance Imaging : Principles and Techniques. Cambridge, 2009.Caffo, B., Bowman, D., Elberly, L., and Bassett, S. Handbook of Markov Chain Monte Carlo: Part II, chapter 14. Chapman Hall / CRC, 2011.Faes, C. and Wand, M.P. Semiparametric mean field variational bayes: General principles and numerical issues. Journal of Machine Learning Research, (17):1–47, 2016.Hans, S. MRI made easy (...well almost). Schering, 1990.Koller, D. and Friedman, N. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2010.Larsen, W. and McCleary, S. The use of partial residual plots in regression analysis. Technometrics, (14):781–790, 1970.Lazaro, M. Bayesian warped gaussian processes. Advances in Neural Information Processing Systems, 26:225–245, 2013.Mencitas, M. and Wand, M. Variational inference for heteroscedastic semiparametric regression. School of mathematical sciences, University of Technology. Sydney, Australia, 2014.Nakajima, S., Watanabe, K., and Sugiyama, M. Variational Bayesian Learning Theory. Cambridge University press, 2019.Nott , D., Tran, M., and Kuk, A. Efficient variational inference for generalized linear mixed models with large datasets. arXiv preprint, 2018.Potgieter, C. and Genton, M. Bayesian analysis of two-piece normal regression models. Presented at Joint Statistical meeting, San Francisco Statistics, 2003.Rindler, F. Calculus of Variations. Springer-Verlag, 2016.Starke, L. and Ostwald, D. Variational bayesian parameter estimation techniques for the general linear model. Frontiers in Neuroscience, pages 1–22, 2017.Zárate, H. and Cepeda, E. Semiparametric smoothing spline in joint mean and dispersion models with responses from the biparametric exponential family: A bayesian perspective. Statistics, Optimization Information Computing, 9(2):351–367, 2021.Público generalORIGINAL7219498.2021.pdf7219498.2021.pdfTesis de Doctorado en Ciencias - Estadísticaapplication/pdf4756185https://repositorio.unal.edu.co/bitstream/unal/80887/4/7219498.2021.pdf065e4358dbfb8a106fa9ec981cf4ac2bMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80887/5/license.txt8153f7789df02f0a4c9e079953658ab2MD55THUMBNAIL7219498.2021.pdf.jpg7219498.2021.pdf.jpgGenerated Thumbnailimage/jpeg4922https://repositorio.unal.edu.co/bitstream/unal/80887/6/7219498.2021.pdf.jpg302590e62151297d196efed118852031MD56unal/80887oai:repositorio.unal.edu.co:unal/808872023-07-31 23:04:25.228Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |