Efecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido poliláctico
Ilustraciones, tablas
- Autores:
-
Gómez López, Rudy Alberto
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80090
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Materiales de empaque
Almidón de la mandioca
Extrusion
Packaging materials
Plastificante
Acido poliláctico
Isosorbida
Extrusión
Retrogradación
Almidón termoplástico
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_9546c5e2005067285916f2a910a6abae |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80090 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido poliláctico |
dc.title.translated.eng.fl_str_mv |
Effect of isosorbide on structural changes of cassava thermoplastic starch films and polylactic acid |
title |
Efecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido poliláctico |
spellingShingle |
Efecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido poliláctico 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Materiales de empaque Almidón de la mandioca Extrusion Packaging materials Plastificante Acido poliláctico Isosorbida Extrusión Retrogradación Almidón termoplástico |
title_short |
Efecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido poliláctico |
title_full |
Efecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido poliláctico |
title_fullStr |
Efecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido poliláctico |
title_full_unstemmed |
Efecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido poliláctico |
title_sort |
Efecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido poliláctico |
dc.creator.fl_str_mv |
Gómez López, Rudy Alberto |
dc.contributor.advisor.none.fl_str_mv |
Villada Castillo, Héctor Samuel Serna Cock, Liliana |
dc.contributor.author.none.fl_str_mv |
Gómez López, Rudy Alberto |
dc.contributor.researchgroup.spa.fl_str_mv |
Ciencia y Tecnología de Biomoléculas de Interés Agroindustrial - CYTBIA |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Materiales de empaque Almidón de la mandioca Extrusion Packaging materials Plastificante Acido poliláctico Isosorbida Extrusión Retrogradación Almidón termoplástico |
dc.subject.agrovoc.none.fl_str_mv |
Materiales de empaque Almidón de la mandioca |
dc.subject.armarc.none.fl_str_mv |
Extrusion Packaging materials |
dc.subject.proposal.spa.fl_str_mv |
Plastificante Acido poliláctico Isosorbida Extrusión Retrogradación Almidón termoplástico |
description |
Ilustraciones, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-02T23:21:57Z |
dc.date.available.none.fl_str_mv |
2021-09-02T23:21:57Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80090 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80090 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdullah, A. H. D., Chalimah, S., Primadona, I., & Hanantyo, M. H. G. (2018). Physical and chemical properties of corn, cassava, and potato starchs. IOP Conference Series: Earth and Environmental Science, 160(1). https://doi.org/10.1088/1755-1315/160/1/012003 Abera, G., Woldeyes, B., Demash, H. D., & Miyake, G. (2020). The effect of plasticizers on thermoplastic starch films developed from the indigenous Ethiopian tuber crop Anchote (Coccinia abyssinica) starch. International Journal of Biological Macromolecules, 155, 581–587. https://doi.org/10.1016/j.ijbiomac.2020.03.218 Acioli-Moura, R., & Sun, X. S. (2008). Thermal Degradation and Physical Aging of Poly(lactic acid) and its Blends With Starch. Polymer Engineering & Science, 48(4), 829–836. https://doi.org/10.1002/pen Adamus, J., Spychaj, T., Zdanowicz, M., & Jędrzejewski, R. (2018). Thermoplastic starch with deep eutectic solvents and montmorillonite as a base for composite materials. Industrial Crops and Products, 123(January), 278–284. https://doi.org/10.1016/j.indcrop.2018.06.069 Ahmed, I., Bilal, M., Niazi, K., Hussain, A., & Jahan, Z. (2017). Influence of Amphiphilic Plasticizer on Properties of Thermoplastic Starch Films. Polymer-Plastics Technology and Engineering, 0(0), 1–11. https://doi.org/10.1080/03602559.2017.1298803 Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254–262. https://doi.org/10.1016/j.carbpol.2016.02.035 Altayan, M. M., Al Darouich, T., & Karabet, F. (2017). On the Plasticization Process of Potato Starch: Preparation and Characterization. Food Biophysics, 12(4), 397–403. https://doi.org/10.1007/s11483-017-9495-2 Arboleda, G. A., Montilla, C. E., Villada, H. S., & Varona, G. A. (2015). Obtaining a flexible film elaborated from cassava thermoplastic starch and polylactic acid. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/627268 Area, M. R., Montero, B., Rico, M., Barral, L., Bouza, R., & López, J. (2020). Properties and behavior under environmental factors of isosorbide-plasticized starch reinforced with microcrystalline cellulose biocomposites. International Journal of Biological Macromolecules, 164, 2028–2037. https://doi.org/10.1016/j.ijbiomac.2020.08.075 Area, M. R., Rico, M., Montero, B., Barral, L., Bouza, R., López, J., & Ramírez, C. (2019). Corn starch plasticized with isosorbide and filled with microcrystalline cellulose: Processing and characterization. Carbohydrate Polymers, 206(October 2018), 726–733. https://doi.org/10.1016/j.carbpol.2018.11.055 Arrieta, A., Palencia, M., & Pestana, R. (2018). New Composite Biopolymer with Conductive Properties Obtained from Cassava and Poly Starch (3, 4-Ethylenedioxythiophene). Indian Journal of Science and Technology, 11(2), 1–10. https://doi.org/10.17485/ijst/2018/v11i2/117345 ASTM, I. (2008a). Standard test method for compositional analysis by thermogravimetry. ASTM, I. (2008b). Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM, I. (2010). Standard test method for tensile properties of thin plastic sheeting. Awale, R. J., Ali, F. B., Azmi, A. S., Puad, N. I. M., Anuar, H., & Hassan, A. (2018). Enhanced flexibility of biodegradable polylactic acid/starch blends using epoxidized palm oil as plasticizer. Polymers, 10(9), 977. https://doi.org/10.3390/polym10090977 Aydin, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends. Carbohydrate Polymers, 136, 441–448. https://doi.org/10.1016/j.carbpol.2015.08.093 Backes, E. H., Pires, L. de N., Costa, L. C., Passador, F. R., & Pessan, L. A. (2019). Analysis of the Degradation During Melt Processing of PLA/Biosilicate® Composites. Journal of Composites Science, 3(2), 52. https://doi.org/10.3390/jcs3020052 Baran, A., Vrábel, P., Kovaľaková, M., Hutníková, M., Fričová, O., & Olčák, D. (2020). Effects of sorbitol and formamide plasticizers on molecular motion in corn starch studied using NMR and DMTA. Journal of Applied Polymer Science, 137(33), 48964. https://doi.org/10.1002/app.48964 Battegazzore, D., Bocchini, S., Nicola, G., Martini, E., & Frache, A. (2015). Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate. Carbohydrate Polymers, 119, 78–84. https://doi.org/10.1016/j.carbpol.2014.11.030 Berski, W., Witczak, M., & Gambu, H. (2018). International Journal of Biological Macromolecules The retrogradation kinetics of starches of different botanical origin in the presence of glucose syrup. 114, 1288–1294. https://doi.org/10.1016/j.ijbiomac.2018.04.019 Breuninger, W. F., Piyachomkwan, K., & Sriroth, K. (2009). Tapioca / Cassava Starch : Production and Use. Starch, 541–568. https://doi.org/10.1016/B978-0-12-746275-2.00012-4 Cao, N., Yang, X., & Fu, Y. (2009). Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids, 23(3), 729–735. Castillo, L. A., López, O. V., García, M. A., Barbosa, S. E., & Villar, M. A. (2019). Crystalline morphology of thermoplastic starch/talc nanocomposites induced by thermal processing. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01877 Ceballos, R. L., Ochoa-Yepes, O., Goyanes, S., Bernal, C., & Famá, L. (2020). Effect of yerba mate extract on the performance of starch films obtained by extrusion and compression molding as active and smart packaging. Carbohydrate Polymers, 244, 116495. https://doi.org/10.1016/j.carbpol.2020.116495 Cheng, L. H., Karim, A. A., & Seow, C. C. (2006). Effects of water‐glycerol and water‐sorbitol interactions on the physical properties of konjac glucomannan films. Journal of Food Science, 71(2), E62–E67. Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., & Hussein, M. Z. (2014). Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers, 6(1), 93–104. https://doi.org/10.3390/polym6010093 Choi, J. S., & Park, W. H. (2004). Effect of biodegradable plasticizers on thermal and mechanical properties of poly (3-hydroxybutyrate). Polymer Testing, 23(4), 455–460. Chotiprayon, P., Chaisawad, B., & Yoksan, R. (2020). Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. International Journal of Biological Macromolecules, 156, 960–968. https://doi.org/10.1016/j.ijbiomac.2020.04.121 Chuang, L., Panyoyai, N., Katopo, L., Shanks, R., & Kasapis, S. (2016). Calcium chloride effects on the glass transition of condensed systems of potato starch. Food Chemistry, 199, 791–798. https://doi.org/10.1016/j.foodchem.2015.12.076 Colivet, J., & Carvalho, R. A. (2017). Hydrophilicity and physicochemical properties of chemically modified cassava starch films. Industrial Crops and Products, 95, 599–607. https://doi.org/10.1016/j.indcrop.2016.11.018 Cuevas-Carballo, Z. B., Duarte-Aranda, S., & Canché-Escamilla, G. (2019). Properties and Biodegradation of Thermoplastic Starch Obtained from Grafted Starches with Poly(lactic acid). Journal of Polymers and the Environment, 27(11), 2607–2617. https://doi.org/10.1007/s10924-019-01540-w Decaen, P., Rolland-Sabaté, A., Colomines, G., Guilois, S., Lourdin, D., Della Valle, G., & Leroy, E. (2020). Influence of ionic plasticizers on the processing and viscosity of starch melts. Carbohydrate Polymers, 230(June), 115591. https://doi.org/10.1016/j.carbpol.2019.115591 Delbecq, F., Khodadadi, M. R., Rodriguez Padron, D., Varma, R., & Len, C. (2020). Isosorbide: Recent advances in catalytic production. Molecular Catalysis, 482(September 2019). https://doi.org/10.1016/j.mcat.2019.110648 Domene-López, D., García-Quesada, J. C., Martin-Gullon, I., & Montalbán, M. G. (2019). Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, 11(7), 1–17. https://doi.org/10.3390/polym11071084 Dong, W., Zou, B., Yan, Y., Ma, P., & Chen, M. (2013). Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/ poly(butylene adipate-co-terephthalate) blends. International Journal of Molecular Sciences, 14(10), 20189–20203. https://doi.org/10.3390/ijms141020189 Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Effect of various plasticizers and concentration on the physical , thermal , mechanical , and structural properties of cassava-starch-based films. Starch‐Stärke, 69(2), 1–11. https://doi.org/10.1002/star.201500366 Esmaeili, M., Pircheraghi, G., Bagheri, R., & Altstädt, V. (2018). The impact of morphology on thermal properties and aerobic biodegradation of physically compatibilized poly (lactic acid)/co‐plasticized thermoplastic starch blends. Polymers for Advanced Technologies, 29(12), 2880–2889. Esmaeili, Mohsen, Pircheraghi, G., & Bagheri, R. (2017). Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol. October 2016. https://doi.org/10.1002/pi.5319 Esmaeili, Mohsen, Pircheraghi, G., Bagheri, R., & Altstädt, V. (2018). Poly(lactic acid)/coplasticized thermoplastic starch blend: Effect of plasticizer migration on rheological and mechanical properties. Polymers for Advanced Technologies, 30(4), 839–851. https://doi.org/10.1002/pat.4517 Espejo, L. (2011). Modificación estructural de Poli (Acido Láctico)(PLA) mediante extrusión reactiva: estudio preliminar en mezclador interno escala laboratorio. Universidad Politécnica de Catalanuya. Estevez-Areco, S., Guz, L., Famá, L., Candal, R., & Goyanes, S. (2019). Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression. Food Hydrocolloids, 96, 518–528. https://doi.org/10.1016/J.FOODHYD.2019.05.054 European Bioplastics. (2018). What are bioplastics? https://www.european-bioplastics.org/bioplastics/ Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. In Advanced Drug Delivery Reviews (Vol. 107, pp. 367–392). Elsevier B.V. https://doi.org/10.1016/j.addr.2016.06.012 Fekete, E., Bella, É., Csiszár, E., & Móczó, J. (2019). Improving physical properties and retrogradation of thermoplastic starch by incorporating agar. International Journal of Biological Macromolecules, 136, 1026–1033. https://doi.org/10.1016/j.ijbiomac.2019.06.109 Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2018). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. https://doi.org/10.1002/app.45751 Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60–68. https://doi.org/10.1016/j.carbpol.2016.03.082 Gamarano, D. de S., Pereira, I. M., da Silva, M. C., Mottin, A. C., & Ayres, E. (2019). Crystal structure transformations in extruded starch plasticized with glycerol and urea. Polymer Bulletin. https://doi.org/10.1007/s00289-019-02999-2 Gao, W., Liu, P., Li, X., Qiu, L., Hou, H., & Cui, B. (2019). The co-plasticization effects of glycerol and small molecular sugars on starch-based nanocomposite films prepared by extrusion blowing. International Journal of Biological Macromolecules, 133, 1175–1181. Gao, Wei, Liu, P., Li, X., Qiu, L., Hou, H., & Cui, B. (2019). The co-plasticization effects of glycerol and small molecular sugars on starch-based nanocomposite films prepared by extrusion blowing. International Journal of Biological Macromolecules, 133, 1175–1181. https://doi.org/10.1016/j.ijbiomac.2019.04.193 Garalde, R. A., Thipmanee, R., Jariyasakoolroj, P., & Sane, A. (2019). The effects of blend ratio and storage time on thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Heliyon, 5(3), e01251. https://doi.org/10.1016/j.heliyon.2019.e01251 Genovese, L., Dominici, F., Gigli, M., Armentano, I., Lotti, N., Fortunati, E., Siracusa, V., Torre, L., & Munari, A. (2018). Processing, thermo-mechanical characterization and gas permeability of thermoplastic starch/poly(butylene trans-1,4-cyclohexanedicarboxylate) blends. Polymer Degradation and Stability, 157, 100–107. https://doi.org/10.1016/j.polymdegradstab.2018.10.004 George, W. (2004). Handbook of plasticizers. In Chem. Tech. Publishing. Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. International Journal of Biological Macromolecules, 112, 442–447. https://doi.org/10.1016/j.ijbiomac.2018.02.007 Giroto, A. S., Garcia, R. H. S., Colnago, L. A., Klamczynski, A., Glenn, G. M., & Ribeiro, C. (2020). Role of urea and melamine as synergic co-plasticizers for starch composites for fertilizer application. International Journal of Biological Macromolecules, 144, 143–150. https://doi.org/10.1016/j.ijbiomac.2019.12.094 González-Seligra, P., Guz, L., Ochoa-Yepes, O., Goyanes, S., & Famá, L. (2017). Influence of extrusion process conditions on starch film morphology. LWT, 84, 520–528. https://doi.org/10.1016/j.lwt.2017.06.027 González, K., Iturriaga, L., González, A., Eceiza, A., & Gabilondo, N. (2020). Improving mechanical and barrier properties of thermoplastic starch and polysaccharide nanocrystals nanocomposites. European Polymer Journal, 123, 109415. https://doi.org/10.1016/j.eurpolymj.2019.109415 González, K., Martin, L., González, A., Retegi, A., Eceiza, A., & Gabilondo, N. (2017). D-isosorbide and 1,3-propanediol as plasticizers for starch-based films: Characterization and aging study. Journal of Applied Polymer Science, 134(20), 1–10. https://doi.org/10.1002/app.44793 Halley, P. J., & Avérous, L. R. (2014). Starch polymers: From the field to industrial products. Hammami, N., Jarroux, N., Robitzer, M., Majdoub, M., & Habas, J. P. (2016). Optimized synthesis according to one-step process of a biobased thermoplastic polyacetal derived from isosorbide. Polymers, 8(8). https://doi.org/10.3390/polym8080294 Hornung, P. S., do Prado Cordoba, L., da Silveira Lazzarotto, S. R., Schnitzler, E., Lazzarotto, M., & Ribani, R. H. (2017). Brazilian Dioscoreaceas starches: Thermal, structural and rheological properties compared to commercial starches. Journal of Thermal Analysis and Calorimetry, 127(3), 1869–1877. https://doi.org/10.1007/s10973-016-5747-5 Hulleman, S. H. D., Kalisvaart, M. G., Janssen, F. H. P., Feil, H., & Vliegenthart, J. F. G. (1999). Origins of B-type crystallinity in glycerol-plasticized, compression-moulded potato starches. Carbohydrate Polymers, 39(4), 351–360. https://doi.org/10.1016/S0144-8617(99)00024-7 Huntrakul, K., Yoksan, R., Sane, A., & Harnkarnsujarit, N. (2020). Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging and Shelf Life, 24(February), 100480. https://doi.org/10.1016/j.fpsl.2020.100480 Ismail, S., Mansor, N., Majeed, Z., & Man, Z. (2016). Effect of Water and [Emim][OAc] as Plasticizer on Gelatinization of Starch. Procedia Engineering, 148, 524–529. https://doi.org/10.1016/j.proeng.2016.06.542 Ismail, S., Mansor, N., & Man, Z. (2017). A Study on Thermal Behaviour of Thermoplastic Starch Plasticized by [Emim] Ac and by [Emim] Cl. Procedia Engineering, 184, 567–572. https://doi.org/10.1016/j.proeng.2017.04.138 Isotton, F. S., Bernardo, G. L., Baldasso, C., Rosa, L. M., & Zeni, M. (2015). The plasticizer effect on preparation and properties of etherified corn starchs films. Industrial Crops and Products, 76, 717–724. https://doi.org/http://dx.doi.org/10.1016/j.indcrop.2015.04.005 Ivanič, F., Jochec-Mošková, D., Janigová, I., & Chodák, I. (2017). Physical properties of starch plasticized by a mixture of plasticizers. European Polymer Journal, 93(October 2016), 843–849. https://doi.org/10.1016/j.eurpolymj.2017.04.006 Jeziorska, R., Szadkowska, A., Spasowka, E., Lukomska, A., & Chmielarek, M. (2018). Characteristics of Biodegradable Polylactide/Thermoplastic Starch/Nanosilica Composites: Effects of Plasticizer and Nanosilica Functionality. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/4571368 Jullanun, P., & Yoksan, R. (2020). Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polymer Testing, 88, 106522. https://doi.org/10.1016/j.polymertesting.2020.106522 Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. International Journal of Biological Macromolecules, 89, 575–581. https://doi.org/10.1016/j.ijbiomac.2016.05.028 Kahvand, F., & Fasihi, M. (2019). Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, 140, 775–781. https://doi.org/10.1016/J.IJBIOMAC.2019.08.185 Ke, T., & Sun, X. (2001). Effects of moisture content and heat treatment on the physical properties of starch and poly (lactic acid) blends. Journal of Applied Polymer Science, 81(12), 3069–3082. https://doi.org/10.1002/app.1758 Khan, B., Bilal, M., Niazi, K., Hussain, A., & Jahan, Z. (2017). Influence of Carboxylic Acids on Mechanical Properties of Thermoplastic Starch by Spray Drying. Fibers and Polymers, 18(1), 64–73. https://doi.org/10.1007/s12221-017-6769-8 Kim, H. Y., Lamsal, B., Jane, J. lin, & Grewell, D. (2020). Sheet-extruded films from blends of hydroxypropylated and native corn starches, and their characterization. Journal of Food Process Engineering, 43(3), 1–8. https://doi.org/10.1111/jfpe.13216 Kmetty, Á., Litauszki, K., & Réti, D. (2018). Characterization of different chemical blowing agents and their applicability to produce poly(lactic acid) foams by extrusion. Applied Sciences (Switzerland), 8(10). https://doi.org/10.3390/app8101960 Kutz, M., Dearmitt, C., Plastics, P., Rothon, R., Consultants, R., Abyss, I., Innovator, A., Innovation, C., View, F., & Dearmitt, C. (2016). Applied Plastics Engineering Handbook (M. Kutz (ed.); 2nd ed., Issue May). Lai, J. C., Rahman, W. A. W. A., Averous, L., & Tim, T. H. (2016). Study and characterisation of the post processing ageing of sago pith waste biocomposites | Request PDF. Sains Malaysiana. https://www.researchgate.net/publication/303699771_Study_and_characterisation_of_the_post_processing_ageing_of_sago_pith_waste_biocomposites Liu, Y, Fan, L., Mo, X., Yang, F., & Pang, J. (2017). Effects of nanosilica on retrogradation properties and structures of thermoplastic cassava starch. Journal of Applied Polymer Science, 135(2), 45687. https://doi.org/10.1002/app.45687 Liu, Yuxin, Fan, L., Pang, J., & Tan, D. (2020). Effect of tensile action on retrogradation of thermoplastic cassava starch/nanosilica composite. Iranian Polymer Journal, 29(2), 171–183. https://doi.org/10.1007/s13726-020-00782-z Lumdubwong, N. (2019). Applications of Starch-Based Films in Food Packaging. Reference Module in Food Science. https://doi.org/10.1016/B978-0-08-100596-5.22481-5 Ma, X, Yu, J., He, K., & Wang, N. (2007). The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromolecular Materials and Engineering, 292(4), 503–510. https://doi.org/10.1002/mame.200600445 Ma, Xiaofei, & Yu, J. (2004). The effects of plasticizers containing amide groups on the properties of thermoplastic starch. Starch/Staerke, 56(11), 545–551. https://doi.org/10.1002/star.200300256 Maniglia, B. C., Tessaro, L., Ramos, A. P., & Tapia-Blácido, D. R. (2019). Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocolloids, 89, 143–152. https://doi.org/10.1016/j.foodhyd.2018.10.038 Martin, O., & Avérous, L. (2001). Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6 Meite, N., Konan, L. K., Bamba, D., Goure-Doubi, B. I. H., & Oyetola, S. (2018). Structural and Thermomechanical Study of Plastic Films Made from Cassava-Starch Reinforced with Kaolin and Metakaolin. Materials Sciences and Applications, 09(01), 41–54. https://doi.org/10.4236/msa.2018.91003 Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379–13398. https://doi.org/10.1039/c3ta12555f Mikus, P.-Y., Coqueret, X., Alix, S., Krawczak, P., Soulestin, J., Lacrampe, M. F., & Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114, 450–457. https://doi.org/10.1016/j.carbpol.2014.06.087 Mina, J. H., Valadez, A., Herrera-Franco, P. J., & Toledano, T. (2012). Influence of aging time on the structural changes of cassava thermoplastic starch. Materials Research Society Symposium Proceedings, 1372, 21–27. https://doi.org/10.1557/opl.2012.129 Mina, J., Valadez-González, A., Herrera-Franco, P., Zuluaga, F., & Delvasto, S. (2013). Preparation and physical-chemical and mechanical characterization of ternary blends of polylactide (PLLA), polycaprolactone (PCL) and thermoplastic starch (TPS). Revista Latinoamericana de Metalurgia y Materiales, 33(1), 82–91. Moghaddam, M. R. A., Razavi, S. M. A., & Jahani, Y. (2018). Effects of Compatibilizer and Thermoplastic Starch (TPS) Concentration on Morphological, Rheological, Tensile, Thermal and Moisture Sorption Properties of Plasticized Polylactic Acid/TPS Blends. Journal of Polymers and the Environment, 26(8), 3202–3215. https://doi.org/10.1007/s10924-018-1206-7 Montilla-buitrago, C. E., Gómez-lópez, R. A., & Solanilla-duque, J. F. (2021). Effect of Plasticizers on Properties , Retrogradation , and Processing of Extrusion-Obtained Thermoplastic Starch : A Review. Starch‐Stärke, 2100060, 1–15. https://doi.org/10.1002/star.202100060 Müller, P., Bere, J., Fekete, E., Nagy, B., Kállay, M., Gyarmati, B., & Pukánszky, B. (2016). Interactions , structure and properties in PLA / plasticized starch blends. Polymer, 103, 9–18. https://doi.org/10.1016/j.polymer.2016.09.031 Müller, Péter, Imre, B., Bere, J., Móczó, J., & Pukánszky, B. (2015). Physical ageing and molecular mobility in PLA blends and composites. Journal of Thermal Analysis and Calorimetry, 122(3), 1423–1433. https://doi.org/10.1007/s10973-015-4831-6 Nawab, A., Alam, F., Haq, M. A., & Hasnain, A. (2016). Biodegradable film from mango kernel starch: Effect of plasticizers on physical, barrier, and mechanical properties. Starch/Staerke, 68(9–10), 919–928. https://doi.org/10.1002/star.201500349 Nguyen, H. P., & Lumdubwong, N. (2016). Starch behaviors and mechanical properties of starch blend films with different plasticizers. Carbohydrate Polymers, 154, 112–120. https://doi.org/10.1016/j.carbpol.2016.08.034 Niaounakis, M. (2015). Recycling. In Biopolymers: Processing and Products (pp. 481–530). Elsevier. https://doi.org/10.1016/B978-0-323-26698-7.00016-7 Niaounakis, M., Kontou, E., & Xanthis, M. (2011). Effects of aging on the thermomechanical properties of poly(lactic acid). Journal of Applied Polymer Science, 119(1), 472–481. https://doi.org/10.1002/app.32644 Niazi, M. B. K., Zijlstra, M., & Broekhuis, A. A. (2015). Influence of plasticizer with different functional groups on thermoplastic starch. Journal of Applied Polymer Science, 132 (22)(22), 1–12. https://doi.org/10.1002/app.42012 Niazi, M., & Broekhuis, A. (2016). Oxidized potato starch based thermoplastic films: Effect of combination of hydrophilic and amphiphilic plasticizers. Starch/Staerke, 68(7–8), 785–795. https://doi.org/10.1002/star.201500227 Niranjana Prabhu, T., & Prashantha, K. (2018). A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polymer Composites, 39(7), 2499–2522. https://doi.org/10.1002/pc.24236 Orozco S., D. M., & Cadavid C., M. A. (2008). Test de Kruskal- Wallis (p. 14). Palai, B., Biswal, M., Mohanty, S., & Nayak, S. K. (2019). In situ reactive compatibilization of polylactic acid ( PLA ) and thermoplastic starch ( TPS ) blends ; synthesis and evaluation of extrusion blown films thereof. Industrial Crops & Products, 141(August), 111748. https://doi.org/10.1016/j.indcrop.2019.111748 Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. In Starch/Staerke (Vol. 62, Issue 8, pp. 389–420). https://doi.org/10.1002/star.201000013 Pushpadass, H. A., & Hanna, M. A. (2009). Age-induced changes in the microstructure and selected properties of extruded starch films plasticized with glycerol and stearic acid. Industrial and Engineering Chemistry Research, 48(18), 8457–8463. https://doi.org/10.1021/ie801922z Qin, Y., Zhang, H., Dai, Y., Hou, H., & Dong, H. (2019). Effect of Silane Treatment on Mechanical Properties. Materials, 12(1705), 1–13. Qin, Yang, Zhang, H., Dai, Y., Hou, H., & Dong, H. (2019). Effect of alkali treatment on structure and properties of high amylose corn starch film. Materials, 12(10). https://doi.org/10.3390/MA12101705 Ren, J., Dang, K. M., Pollet, E., & Avérous, L. (2018). Preparation and Characterization of Thermoplastic Potato Starch / Halloysite Nano-Biocomposites : Effect of Plasticizer Nature and Nanoclay Content. Polymers Article, 10(8). https://doi.org/10.3390/polym10080808 Ren, J., Zhang, W., Lou, F., Wang, Y., & Guo, W. (2017). Characteristics of starch-based films produced using glycerol and 1-butyl-3-methylimidazolium chloride as combined plasticizers. Starch/Staerke, 69(1–2), 1–8. https://doi.org/10.1002/star.201600161 Rico, M., Rodríguez-Llamazares, S., Barral, L., Bouza, R., & Montero, B. (2016). Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydrate Polymers, 149, 83–93. https://doi.org/10.1016/j.carbpol.2016.04.087 Ridhwan, J., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2017). Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. International Journal of Biological Macromolecules, 97, 606–615. https://doi.org/10.1016/j.ijbiomac.2017.01.079 Righetti, M. C., Cinelli, P., Mallegni, N., Massa, C. A., Bronco, S., Stäbler, A., & Lazzeri, A. (2019). Thermal, mechanical, and rheological properties of biocomposites made of poly(Lactic acid) and potato pulp powder. International Journal of Molecular Sciences, 20(3), 1–17. https://doi.org/10.3390/ijms20030675 Santos, F. A. dos, & Tavares, M. I. B. (2013). Preparo e caracterização de filmes obtidos a partir de poli(ácido lático) e celulose microcristalina. Polímeros, 23(ahead), 0–0. https://doi.org/10.1590/s0104-14282013005000021 Schmitt, H., Guidez, A., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydrate Polymers, 115, 364–372. https://doi.org/10.1016/j.carbpol.2014.09.004 Seligra, P. G., Medina Jaramillo, C., Famá, L., & Goyanes, S. (2016). Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydrate Polymers, 138, 66–74. https://doi.org/10.1016/j.carbpol.2015.11.041 Shamsuri, A. A., & Daik, R. (2012). Plasticizing effect of choline chloride/urea eutectic-based ionic liquid on physicochemical properties of agarose films. BioResources, 7(4), 4760–4775. https://doi.org/10.15376/biores.7.4.4760-4775 Shanks, R., & Kong, I. (2012). Thermoplastic Starch. In Thermoplastic elastomers (pp. 96–116). IntechOpen. Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S., & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers, 92(1), 19–22. https://doi.org/10.1016/j.carbpol.2012.09.038 Surya, I., Olaiya, N. G., Rizal, S., Zein, I., Aprilia, N. A. S., Hasan, M., Yahya, E. B., Sadasivuni, K. K., & Khalil, H. P. S. A. (2020). Plasticizer enhancement on the miscibility and thermomechanical properties of polylactic acid-chitin-starch composites. Polymers, 12(1). https://doi.org/10.3390/polym12010115 Teixeira, E. de M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61–68. https://doi.org/10.1016/j.indcrop.2011.11.036 Tian, Y., Li, Y., Xu, X., & Jin, Z. (2011). Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydrate Polymers, 84(3), 1165–1168. https://doi.org/10.1016/j.carbpol.2011.01.006 Turco, R., Ortega-Toro, R., Tesser, R., Mallardo, S., Collazo-Bigliardi, S., Boix, A. C., Malinconico, M., Rippa, M., Di Serio, M., & Santagata, G. (2019). Poly (lactic acid)/thermoplastic starch films: Effect of cardoon seed epoxidized oil on their chemicophysical, mechanical, and barrier properties. Coatings, 9(9), 1–20. https://doi.org/10.3390/coatings9090574 Valero-Valdivieso, M., Ortegon, Y., & Uscategui, Y. (2013). Biopolímeros: Avances Y Perspectivas Biopolymers: Progress and Prospects. SciELO Colómbia, 181(0012–7353), 171–180. http://www.revistas.unal.edu.co/index.php/dyna/article/viewFile/20642/42269 Van Oosterhout, J. T., & Gilbert, M. (2003). Interactions between PVC and binary or ternary blends of plasticizers. Polymer, 44(26), 8081–8094. Van Soest, J. J. G., Benes, K., De Wit, D., & Vliegenthart, J. F. G. (1996). The influence of starch molecular mass on the properties of extruded thermoplastic starch. Polymer, 37(16), 3543–3552. https://doi.org/10.1016/0032-3861(96)00165-6 van Soest, J. J. G., De Wit, D., Tournois, H., & Vliegenthart, J. F. G. (1994). Retrogradation of Potato Starch as Studied by Fourier Transform Infrared Spectroscopy. Starch ‐ Stärke, 46(12), 453–457. https://doi.org/10.1002/star.19940461202 Van Soest, J. J. G., Hulleman, S. H. D., De Wit, D., & Vliegenthart, J. F. G. (1996). Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity. Carbohydrate Polymers, 29(3), 225–232. https://doi.org/10.1016/0144-8617(96)00011-2 Van Soest, J. J. G., Hulleman, S. H. D., De Wit, D., Vliegenthart, J. F. G., Wita, D. De, & Vliegenthartb, J. F. G. (1996). Crystallinity in starch bioplastics. Industrial Crops and Products, 5(1), 11–22. https://doi.org/10.1016/0926-6690(95)00048-8 Van Soest, J. J. G., Vliegenthart, J. F. G., Soest, J. J. G. Van, & Vliegenthart, J. F. G. (1997). Crystallinity in starch plastics : consequences for material properties. Trends in Biotechnology, 15(June), 208–213. https://doi.org/10.1016/S0167-7799(97)01021-4 Varona Beltran, G. A. (2014). Estabilidad Estructural de una Película Flexible Obtenida a Partir de Almidón Termoplástico con Ácido Esteárico. Revista Facultad Nacional de Agronomía, 67 (2), 502–504. Vazifehasl, Z., Hemmati, S., Zamanloo, M., & Dizaj, S. M. (2013). New Series of Dimethacrylate-Based Monomers on Isosorbide as a Dental Material : Synthesis and Characterization. International Journal of Composite Materials, 3(4), 100–107. https://doi.org/10.5923/j.cmaterials.20130304.03 Vieira, A., Altenhofen, M., Oliveira, L., Beppu, M. M., Vieira, M. G. A., Da Silva, M. A., Dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011 Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344. https://doi.org/10.3390/ma2020307 WagnerJr, J. R., & GilesJr, H. F. (2014). Single Screw Extruder. In Extrusion (Second Edition). https://www.sciencedirect.com/topics/engineering/single-screw-extruder Warren, F. J., Gidley, M. J., & Flanagan, B. M. (2016). Infrared spectroscopy as a tool to characterise starch ordered structure - A joint FTIR-ATR, NMR, XRD and DSC study. Carbohydrate Polymers, 139, 35–42. https://doi.org/10.1016/j.carbpol.2015.11.066 Winuk, A. J., Rane, S. Y., & Terry, J. (2012). U.S. Patent Application. Wypych, G. (2017). Handbook of Plasticizers. In G. Wypych (Ed.), ChemTec Publishing (Third Edit, Vol. 3). ChemTec Publishing. Xie, F., Flanagan, B. M., Li, M., Sangwan, P., Truss, R. W., Halley, P. J., Strounina, E. V., Whittaker, A. K., Gidley, M. J., Dean, K. M., Shamshina, J. L., Rogers, R. D., & McNally, T. (2014). Characteristics of starch-based films plasticised by glycerol and by the ionic liquid 1-ethyl-3-methylimidazolium acetate: A comparative study. Carbohydrate Polymers, 111, 841–848. https://doi.org/10.1016/j.carbpol.2014.05.058 Xie, F., Liu, P., & Yu, L. (2014). Processing of plasticized starch-based materials: state of the art and perspectives. In Starch polymers. Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007 Yang, Q., Yang, Y., Luo, Z., Xiao, Z., Ren, H., Li, D., & Yu, J. (2016). Effects of Lecithin Addition on the Properties of Extruded Maize Starch. Journal of Food Processing and Preservation, 40(1), 20–28. https://doi.org/10.1111/jfpp.12579 Yu, Y., Cheng, Y., Ren, J., Cao, E., Fu, X., & Guo, W. (2015). Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends. Journal of Applied Polymer Science, 132(16), 1–9. https://doi.org/10.1002/app.41808 Zaaba, N. F., & Ismail, H. (2019). A review on tensile and morphological properties of poly (lactic acid) (PLA)/ thermoplastic starch (TPS) blends. In Polymer-Plastics Technology and Materials (Vol. 58, Issue 18, pp. 1945–1964). Taylor & Francis. https://doi.org/10.1080/25740881.2019.1599941 Zdanowicz, M. (2020). Starch treatment with deep eutectic solvents, ionic liquids and glycerol. A comparative study. Carbohydrate Polymers, 229, 115574. https://doi.org/10.1016/j.carbpol.2019.115574 Zdanowicz, M., Staciwa, P., Jedrzejewski, R., & Spychaj, T. (2019). Sugar alcohol-based deep eutectic solvents as potato starch plasticizers. Polymers, 11(9). https://doi.org/10.3390/polym11091385 Zdanowicz, M., Staciwa, P., & Spychaj, T. (2019). Low Transition Temperature Mixtures (LTTM) Containing Sugars as Potato Starch Plasticizers. Starch/Staerke, 71(9–10), 1900004. https://doi.org/10.1002/star.201900004 Zhang, B., Xie, F., Zhang, T., Chen, L., Li, X., Truss, R. W., Halley, P. J., Shamshina, J. L., McNally, T., & Rogers, R. D. (2016). Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol. Carbohydrate Polymers, 146, 67–79. https://doi.org/10.1016/j.carbpol.2016.03.056 Zhang, H., Sun, B., Zhang, S., Zhu, Y., & Tian, Y. (2015). Inhibition of wheat starch retrogradation by tea derivatives. Carbohydrate Polymers, 134, 413–417. https://doi.org/https://doi.org/10.1016/j.carbpol.2015.08.018 Zhang, K., Zhang, K., Cheng, F., Lin, Y., Zhou, M., & Zhu, P. (2019). Aging properties and hydrophilicity of maize starch plasticized by hyperbranched poly(citrate glyceride). Journal of Applied Polymer Science, 136(1), 1–8. https://doi.org/10.1002/app.46899 Zhang, L., Wang, X.-F., Liu, H., Yu, L., Wang, Y., Simon, G. P., & Qian, J. (2018). Effect of plasticizers on microstructure, compatibility and mechanical property of hydroxypropyl methylcellulose/hydroxypropyl starch blends. International Journal of Biological Macromolecules, 119, 141–148. https://doi.org/10.1016/J.IJBIOMAC.2018.07.064 Zhang, Y., Zhang, Y., Li, B., Xu, F., Zhu, K., Tan, L., Wu, G., Dong, W., & Li, S. (2019). Retrogradation behavior of amylopectin extracted different jackfruit cultivars seeds in presence on the same amylose. LWT, 114, 108366. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108366 Zhong, Yajie, Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27–35. https://doi.org/10.1016/j.aiepr.2019.11.002 Zhong, Yuyue, Li, Y., Liang, W., Liu, L., Li, S., Xue, J., & Guo, D. (2018). Comparison of gelatinization method, starch concentration, and plasticizer on physical properties of high-amylose starch films. Journal of Food Process Engineering, 41(2), 1–8. https://doi.org/10.1111/jfpe.12645 Zhu, F. (2015). Composition, structure, physicochemical properties and Modifications of Cassava Starch. Carbohydrate Polymers, 122, 456–480. https://doi.org/10.1016/j.carbpol.2014.10.063 Zou, G. X., Jin, P. Q., & Xin, L. Z. (2008). Extruded starch/PVA composites: Water resistance, thermal properties, and morphology. Journal of Elastomers and Plastics, 40(4), 303–316. https://doi.org/10.1177/0095244307085787 Zuo, Y., Gu, J., Cao, J., Wei, S., Tan, H., & Zhang, Y. (2015). Effect of starch/polylactic acid ratio on the interdependence of two-phase and the properties of composites. Journal Wuhan University of Technology, Materials Science Edition, 30(5), 1108–1114. https://doi.org/10.1007/s11595-015-1280-9 Zuo, Y., Gu, J., Tan, H., & Zhang, Y. (2015). Thermoplastic Starch Prepared with Different Plasticizers : Relation between Degree of Plasticization and Properties. Journal of Wuhan University of Technology-Mater, 30(2), 423–428. https://doi.org/10.1007/s11595-015-1164-z |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
144 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Administración |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80090/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80090/2/1061714431.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80090/3/1061714431.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 8973a6a907401bc07f36bb606460dbe3 8f8361d880d20deb94dcab87e574fc93 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089469229268992 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Villada Castillo, Héctor Samuel5fee3fb5d847f3a890d1cfe8dfc2a06d600Serna Cock, Liliana0b7161d132f1585022c73d0e1f8740dd600Gómez López, Rudy Albertodacff2b1d1bb5aa1dda0e893ccddc2a6Ciencia y Tecnología de Biomoléculas de Interés Agroindustrial - CYTBIA2021-09-02T23:21:57Z2021-09-02T23:21:57Z2021https://repositorio.unal.edu.co/handle/unal/80090Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablasEl almidón termoplástico (TPS) ha surgido como importante alternativa para la producción de materiales de empaque amigables con el ambiente, debido su bajo costo y biodegradabilidad. Sin embargo, uno de los grandes problemas es la retrogradación que disminuye su vida útil. El objetivo de este trabajo fue evaluar el efecto co-plastificante de la isosorbida con glicerol sobre las propiedades mecánicas, térmicas, fisicoquímicas, microestructurales y retrogradación en películas de TPS y en mezclas de TPS/PLA. El análisis de los materiales obtenidos se realizó mediante SEM, calorimetría de diferencial de barrido (DSC), análisis termogravimétrico (TGA), difracción de rayos X (DRX), FTIR, pruebas mecánicas de tensión y absorción de humedad. Además, se analizó el efecto del tiempo en las propiedades térmicas, físico-químicas, microestructurales y mecánicas. La evolución de la retrogradación del TPS se modeló mediante la aplicación de la ecuación de Avrami. Los parámetros cinéticos indicaron que la presencia de isosorbida causó una reducción de la velocidad de retrogradación (k) y un mecanismo (n) de recristalización instantáneo mediante un proceso combinado de nucleación térmico y atérmico. La presencia de isosorbida promovió una mayor interacción mediante enlaces de hidrógeno entre las cadenas de almidón y las moléculas de isosorbida, que fueron verificados mediante análisis por espectroscopia infrarrojo por transformada de Fourier (FTIR). Estos cambios en el mecanismo de cristalización del TPS afectaron las propiedades mecánicas y microestructurales del material. En las mezclas de TPS/PLA, la isosorbida fue empleada como plastificante en diferentes proporciones. En las imágenes SEM, se evidenció que la mayor parte de las estructuras cristalinas nativas fueron desestructuradas. Independientemente del plastificante, los espectros FTIR de todas las películas de TPS/PLA mostraron que la isosorbida provocó cambios en las bandas de absorción que sugirieron una reducción de la cristalinidad del almidón nativo, concordando con los resultados de DRX, que además indicaron la formación de estructuras cristalinas diferentes (tipo EH). El tratamiento M-i5 (relación glicerol/isosorbida 25/5) presentó propiedades mecánicas balaceadas y se seleccionó para realizar seguimiento de envejecimiento. Los cambios en las bandas de absorción de 1018 y 995 cm-1 sugirieron que la co-plastificación con isosorbida es capaz de frenar la retrogradación en las muestras de M-i5. La cristalinidad de las películas co-plastificadas con isosorbida pasó de 4.3% a 4.9%, lo cual representa una menor variación en comparación al uso de glicerol como único plastificante. En las películas que contenían isosorbida, la resistencia a la tensión (σ) presentó menor variación. Aunque la elongación se redujo notablemente en los primeros 8 días de almacenamiento, la variación fue menor que en las películas con glicerol. Las películas plastificadas con isosorbida absorbieron menor cantidad agua que las películas control (3.2 vs 5.2%, respectivamente), lo cual afectó favorablemente su estabilidad térmica inicial. En general se pudo establecer que la incorporación de isosorbida como plastificante del glicerol, incluso en pequeñas cantidades (relación 25:5 glicerol/isosorbida), podría aumentar la estabilidad estructural y, por ende, las propiedades macroscópicas de las películas de TPS/PLA. Esto es posible gracias a que las ventajas de cada uno de los plastificantes se complementan, mientras que las desventajas (migración, débiles enlaces de hidrógeno entre plastificante-almidón) se reducen, proporcionando un efecto sinérgico que afecta positivamente el comportamiento de la mezcla de TPS/PLA (Texto tomado de la fuente).Thermoplastic starch (TPS) has emerged as an important alternative for the production of environmentally friendly packaging materials, due to its low cost and biodegradability. However, one of the big problems is retrogradation that decreases its useful life. The objective of this work was to evaluate the co-plasticizing effect of isosorbide with glycerol on the mechanical, thermal, physicochemical, microstructural and retrogradation properties in TPS films and in TPS / PLA mixtures. The analysis of the materials obtained was carried out using SEM, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), FTIR, mechanical stress and moisture absorption tests. In addition, the effect of time on thermal, physicochemical, microstructural and mechanical properties was analyzed. The evolution of TPS retrogradation was modeled by applying the Avrami equation. The kinetic parameters indicated that the presence of isosorbide caused a reduction in the retrogradation rate (k) and an instantaneous recrystallization mechanism (n) through a combined thermal and athermic nucleation process. The presence of isosorbide promoted a greater interaction through hydrogen bonds between the starch chains and the isosorbide molecules, which were verified by Fourier transform infrared spectroscopy (FTIR) analysis. These changes in the crystallization mechanism of TPS affected the mechanical and microstructural properties of the material. In the TPS / PLA mixtures, isosorbide was used as plasticizer in different proportions. In the SEM images, it was evident that most of the native crystalline structures were unstructured. Regardless of the plasticizer, the FTIR spectra of all the TPS / PLA films showed that isosorbide caused changes in the absorption bands that suggested a reduction in the crystallinity of the native starch, in agreement with the XRD results, which also indicated the formation of different crystal structures (EH type). The M-i5 treatment (glycerol / isosorbide ratio 25/5) presented balanced mechanical properties and was selected for monitoring aging. Changes in the 1018 and 995 cm-1 absorption bands suggested that co-plasticization with isosorbide is able to slow down retrogradation in M-i5 samples. The crystallinity of the films co-plasticized with isosorbide went from 4.3% to 4.9%, which represents a lower variation compared to the use of glycerol as the only plasticizer. In the films containing isosorbide, the tensile strength (σ) presented less variation. Although the elongation was markedly reduced in the first 8 days of storage, the variation was less than in the glycerol films. The films plasticized with isosorbide absorbed less water than the control films (3.2 vs 5.2%, respectively), which favorably affected their initial thermal stability. In general, it was established that the incorporation of isosorbide as a glycerol plasticizer, even in small amounts (ratio 25: 5 glycerol / isosorbide), could increase the structural stability and, therefore, the macroscopic properties of TPS / PLA films. This is possible thanks to the fact that the advantages of each of the plasticizers complement each other, while the disadvantages (migration, weak hydrogen bonds between plasticizer-starch) are reduced, providing a synergistic effect that positively affects the behavior of the TPS/PLA mixture.MaestríaMagister en Ingeniería AgroindustrialEl almidón húmedo se secó en un horno (Memmert, Alemania) de convección forzada. La temperatura de secado fue de 80 °C durante un tiempo de 16 h, hasta alcanzar una humedad entre 1 a 2%. El almidón seco se mezcló con plastificante (glicerol y/o isosorbida) en una proporción de 70:30 (almidón/plastificante) en una mezcladora (KITCHEN Aid, modelo K45SS, USA) por un tiempo de 10 min y se almacenó en un recipiente hermético por un tiempo de 48 h (Arboleda et al., 2015). Se realizaron tres mezclas en las proporciones que se presentan en la tabla 6-1. El almidón acondicionado previamente se procesó en el extrusor de tornillo sencillo (Thermo Scientific, HaakePolylab OS, Alemania) el cual está equipado con un barril de 19 mm de diámetro, una relación de compresión 5:1 y relación L/D de 25, con un dado de soplado y una boquilla de cordón de 3 mm de diámetro, de acuerdo con las condiciones descritas en la tabla 6-1. Las condiciones de proceso fueron obtenidas en ensayos preliminares. El material obtenido en forma de cordón fue peletizado y almacenado en recipientes herméticos hasta su posterior procesamiento.Empaques biodegradables144 páginasapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ingeniería y Administración - Maestría en Ingeniería AgroindustrialFacultad de Ingeniería y AdministraciónUniversidad Nacional de Colombia - Sede Palmira620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaMateriales de empaqueAlmidón de la mandiocaExtrusionPackaging materialsPlastificanteAcido polilácticoIsosorbidaExtrusiónRetrogradaciónAlmidón termoplásticoEfecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido polilácticoEffect of isosorbide on structural changes of cassava thermoplastic starch films and polylactic acidTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMAbdullah, A. H. D., Chalimah, S., Primadona, I., & Hanantyo, M. H. G. (2018). Physical and chemical properties of corn, cassava, and potato starchs. IOP Conference Series: Earth and Environmental Science, 160(1). https://doi.org/10.1088/1755-1315/160/1/012003Abera, G., Woldeyes, B., Demash, H. D., & Miyake, G. (2020). The effect of plasticizers on thermoplastic starch films developed from the indigenous Ethiopian tuber crop Anchote (Coccinia abyssinica) starch. International Journal of Biological Macromolecules, 155, 581–587. https://doi.org/10.1016/j.ijbiomac.2020.03.218Acioli-Moura, R., & Sun, X. S. (2008). Thermal Degradation and Physical Aging of Poly(lactic acid) and its Blends With Starch. Polymer Engineering & Science, 48(4), 829–836. https://doi.org/10.1002/penAdamus, J., Spychaj, T., Zdanowicz, M., & Jędrzejewski, R. (2018). Thermoplastic starch with deep eutectic solvents and montmorillonite as a base for composite materials. Industrial Crops and Products, 123(January), 278–284. https://doi.org/10.1016/j.indcrop.2018.06.069Ahmed, I., Bilal, M., Niazi, K., Hussain, A., & Jahan, Z. (2017). Influence of Amphiphilic Plasticizer on Properties of Thermoplastic Starch Films. Polymer-Plastics Technology and Engineering, 0(0), 1–11. https://doi.org/10.1080/03602559.2017.1298803Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254–262. https://doi.org/10.1016/j.carbpol.2016.02.035Altayan, M. M., Al Darouich, T., & Karabet, F. (2017). On the Plasticization Process of Potato Starch: Preparation and Characterization. Food Biophysics, 12(4), 397–403. https://doi.org/10.1007/s11483-017-9495-2Arboleda, G. A., Montilla, C. E., Villada, H. S., & Varona, G. A. (2015). Obtaining a flexible film elaborated from cassava thermoplastic starch and polylactic acid. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/627268Area, M. R., Montero, B., Rico, M., Barral, L., Bouza, R., & López, J. (2020). Properties and behavior under environmental factors of isosorbide-plasticized starch reinforced with microcrystalline cellulose biocomposites. International Journal of Biological Macromolecules, 164, 2028–2037. https://doi.org/10.1016/j.ijbiomac.2020.08.075Area, M. R., Rico, M., Montero, B., Barral, L., Bouza, R., López, J., & Ramírez, C. (2019). Corn starch plasticized with isosorbide and filled with microcrystalline cellulose: Processing and characterization. Carbohydrate Polymers, 206(October 2018), 726–733. https://doi.org/10.1016/j.carbpol.2018.11.055Arrieta, A., Palencia, M., & Pestana, R. (2018). New Composite Biopolymer with Conductive Properties Obtained from Cassava and Poly Starch (3, 4-Ethylenedioxythiophene). Indian Journal of Science and Technology, 11(2), 1–10. https://doi.org/10.17485/ijst/2018/v11i2/117345ASTM, I. (2008a). Standard test method for compositional analysis by thermogravimetry.ASTM, I. (2008b). Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry.ASTM, I. (2010). Standard test method for tensile properties of thin plastic sheeting.Awale, R. J., Ali, F. B., Azmi, A. S., Puad, N. I. M., Anuar, H., & Hassan, A. (2018). Enhanced flexibility of biodegradable polylactic acid/starch blends using epoxidized palm oil as plasticizer. Polymers, 10(9), 977. https://doi.org/10.3390/polym10090977Aydin, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends. Carbohydrate Polymers, 136, 441–448. https://doi.org/10.1016/j.carbpol.2015.08.093Backes, E. H., Pires, L. de N., Costa, L. C., Passador, F. R., & Pessan, L. A. (2019). Analysis of the Degradation During Melt Processing of PLA/Biosilicate® Composites. Journal of Composites Science, 3(2), 52. https://doi.org/10.3390/jcs3020052Baran, A., Vrábel, P., Kovaľaková, M., Hutníková, M., Fričová, O., & Olčák, D. (2020). Effects of sorbitol and formamide plasticizers on molecular motion in corn starch studied using NMR and DMTA. Journal of Applied Polymer Science, 137(33), 48964. https://doi.org/10.1002/app.48964Battegazzore, D., Bocchini, S., Nicola, G., Martini, E., & Frache, A. (2015). Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate. Carbohydrate Polymers, 119, 78–84. https://doi.org/10.1016/j.carbpol.2014.11.030Berski, W., Witczak, M., & Gambu, H. (2018). International Journal of Biological Macromolecules The retrogradation kinetics of starches of different botanical origin in the presence of glucose syrup. 114, 1288–1294. https://doi.org/10.1016/j.ijbiomac.2018.04.019Breuninger, W. F., Piyachomkwan, K., & Sriroth, K. (2009). Tapioca / Cassava Starch : Production and Use. Starch, 541–568. https://doi.org/10.1016/B978-0-12-746275-2.00012-4Cao, N., Yang, X., & Fu, Y. (2009). Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids, 23(3), 729–735.Castillo, L. A., López, O. V., García, M. A., Barbosa, S. E., & Villar, M. A. (2019). Crystalline morphology of thermoplastic starch/talc nanocomposites induced by thermal processing. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01877Ceballos, R. L., Ochoa-Yepes, O., Goyanes, S., Bernal, C., & Famá, L. (2020). Effect of yerba mate extract on the performance of starch films obtained by extrusion and compression molding as active and smart packaging. Carbohydrate Polymers, 244, 116495. https://doi.org/10.1016/j.carbpol.2020.116495Cheng, L. H., Karim, A. A., & Seow, C. C. (2006). Effects of water‐glycerol and water‐sorbitol interactions on the physical properties of konjac glucomannan films. Journal of Food Science, 71(2), E62–E67.Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., & Hussein, M. Z. (2014). Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers, 6(1), 93–104. https://doi.org/10.3390/polym6010093Choi, J. S., & Park, W. H. (2004). Effect of biodegradable plasticizers on thermal and mechanical properties of poly (3-hydroxybutyrate). Polymer Testing, 23(4), 455–460.Chotiprayon, P., Chaisawad, B., & Yoksan, R. (2020). Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. International Journal of Biological Macromolecules, 156, 960–968. https://doi.org/10.1016/j.ijbiomac.2020.04.121Chuang, L., Panyoyai, N., Katopo, L., Shanks, R., & Kasapis, S. (2016). Calcium chloride effects on the glass transition of condensed systems of potato starch. Food Chemistry, 199, 791–798. https://doi.org/10.1016/j.foodchem.2015.12.076Colivet, J., & Carvalho, R. A. (2017). Hydrophilicity and physicochemical properties of chemically modified cassava starch films. Industrial Crops and Products, 95, 599–607. https://doi.org/10.1016/j.indcrop.2016.11.018Cuevas-Carballo, Z. B., Duarte-Aranda, S., & Canché-Escamilla, G. (2019). Properties and Biodegradation of Thermoplastic Starch Obtained from Grafted Starches with Poly(lactic acid). Journal of Polymers and the Environment, 27(11), 2607–2617. https://doi.org/10.1007/s10924-019-01540-wDecaen, P., Rolland-Sabaté, A., Colomines, G., Guilois, S., Lourdin, D., Della Valle, G., & Leroy, E. (2020). Influence of ionic plasticizers on the processing and viscosity of starch melts. Carbohydrate Polymers, 230(June), 115591. https://doi.org/10.1016/j.carbpol.2019.115591Delbecq, F., Khodadadi, M. R., Rodriguez Padron, D., Varma, R., & Len, C. (2020). Isosorbide: Recent advances in catalytic production. Molecular Catalysis, 482(September 2019). https://doi.org/10.1016/j.mcat.2019.110648Domene-López, D., García-Quesada, J. C., Martin-Gullon, I., & Montalbán, M. G. (2019). Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, 11(7), 1–17. https://doi.org/10.3390/polym11071084Dong, W., Zou, B., Yan, Y., Ma, P., & Chen, M. (2013). Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/ poly(butylene adipate-co-terephthalate) blends. International Journal of Molecular Sciences, 14(10), 20189–20203. https://doi.org/10.3390/ijms141020189Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Effect of various plasticizers and concentration on the physical , thermal , mechanical , and structural properties of cassava-starch-based films. Starch‐Stärke, 69(2), 1–11. https://doi.org/10.1002/star.201500366Esmaeili, M., Pircheraghi, G., Bagheri, R., & Altstädt, V. (2018). The impact of morphology on thermal properties and aerobic biodegradation of physically compatibilized poly (lactic acid)/co‐plasticized thermoplastic starch blends. Polymers for Advanced Technologies, 29(12), 2880–2889.Esmaeili, Mohsen, Pircheraghi, G., & Bagheri, R. (2017). Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol. October 2016. https://doi.org/10.1002/pi.5319Esmaeili, Mohsen, Pircheraghi, G., Bagheri, R., & Altstädt, V. (2018). Poly(lactic acid)/coplasticized thermoplastic starch blend: Effect of plasticizer migration on rheological and mechanical properties. Polymers for Advanced Technologies, 30(4), 839–851. https://doi.org/10.1002/pat.4517Espejo, L. (2011). Modificación estructural de Poli (Acido Láctico)(PLA) mediante extrusión reactiva: estudio preliminar en mezclador interno escala laboratorio. Universidad Politécnica de Catalanuya.Estevez-Areco, S., Guz, L., Famá, L., Candal, R., & Goyanes, S. (2019). Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression. Food Hydrocolloids, 96, 518–528. https://doi.org/10.1016/J.FOODHYD.2019.05.054European Bioplastics. (2018). What are bioplastics? https://www.european-bioplastics.org/bioplastics/Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. In Advanced Drug Delivery Reviews (Vol. 107, pp. 367–392). Elsevier B.V. https://doi.org/10.1016/j.addr.2016.06.012Fekete, E., Bella, É., Csiszár, E., & Móczó, J. (2019). Improving physical properties and retrogradation of thermoplastic starch by incorporating agar. International Journal of Biological Macromolecules, 136, 1026–1033. https://doi.org/10.1016/j.ijbiomac.2019.06.109Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2018). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. https://doi.org/10.1002/app.45751Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60–68. https://doi.org/10.1016/j.carbpol.2016.03.082Gamarano, D. de S., Pereira, I. M., da Silva, M. C., Mottin, A. C., & Ayres, E. (2019). Crystal structure transformations in extruded starch plasticized with glycerol and urea. Polymer Bulletin. https://doi.org/10.1007/s00289-019-02999-2Gao, W., Liu, P., Li, X., Qiu, L., Hou, H., & Cui, B. (2019). The co-plasticization effects of glycerol and small molecular sugars on starch-based nanocomposite films prepared by extrusion blowing. International Journal of Biological Macromolecules, 133, 1175–1181.Gao, Wei, Liu, P., Li, X., Qiu, L., Hou, H., & Cui, B. (2019). The co-plasticization effects of glycerol and small molecular sugars on starch-based nanocomposite films prepared by extrusion blowing. International Journal of Biological Macromolecules, 133, 1175–1181. https://doi.org/10.1016/j.ijbiomac.2019.04.193Garalde, R. A., Thipmanee, R., Jariyasakoolroj, P., & Sane, A. (2019). The effects of blend ratio and storage time on thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Heliyon, 5(3), e01251. https://doi.org/10.1016/j.heliyon.2019.e01251Genovese, L., Dominici, F., Gigli, M., Armentano, I., Lotti, N., Fortunati, E., Siracusa, V., Torre, L., & Munari, A. (2018). Processing, thermo-mechanical characterization and gas permeability of thermoplastic starch/poly(butylene trans-1,4-cyclohexanedicarboxylate) blends. Polymer Degradation and Stability, 157, 100–107. https://doi.org/10.1016/j.polymdegradstab.2018.10.004George, W. (2004). Handbook of plasticizers. In Chem. Tech. Publishing.Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. International Journal of Biological Macromolecules, 112, 442–447. https://doi.org/10.1016/j.ijbiomac.2018.02.007Giroto, A. S., Garcia, R. H. S., Colnago, L. A., Klamczynski, A., Glenn, G. M., & Ribeiro, C. (2020). Role of urea and melamine as synergic co-plasticizers for starch composites for fertilizer application. International Journal of Biological Macromolecules, 144, 143–150. https://doi.org/10.1016/j.ijbiomac.2019.12.094González-Seligra, P., Guz, L., Ochoa-Yepes, O., Goyanes, S., & Famá, L. (2017). Influence of extrusion process conditions on starch film morphology. LWT, 84, 520–528. https://doi.org/10.1016/j.lwt.2017.06.027González, K., Iturriaga, L., González, A., Eceiza, A., & Gabilondo, N. (2020). Improving mechanical and barrier properties of thermoplastic starch and polysaccharide nanocrystals nanocomposites. European Polymer Journal, 123, 109415. https://doi.org/10.1016/j.eurpolymj.2019.109415González, K., Martin, L., González, A., Retegi, A., Eceiza, A., & Gabilondo, N. (2017). D-isosorbide and 1,3-propanediol as plasticizers for starch-based films: Characterization and aging study. Journal of Applied Polymer Science, 134(20), 1–10. https://doi.org/10.1002/app.44793Halley, P. J., & Avérous, L. R. (2014). Starch polymers: From the field to industrial products.Hammami, N., Jarroux, N., Robitzer, M., Majdoub, M., & Habas, J. P. (2016). Optimized synthesis according to one-step process of a biobased thermoplastic polyacetal derived from isosorbide. Polymers, 8(8). https://doi.org/10.3390/polym8080294Hornung, P. S., do Prado Cordoba, L., da Silveira Lazzarotto, S. R., Schnitzler, E., Lazzarotto, M., & Ribani, R. H. (2017). Brazilian Dioscoreaceas starches: Thermal, structural and rheological properties compared to commercial starches. Journal of Thermal Analysis and Calorimetry, 127(3), 1869–1877. https://doi.org/10.1007/s10973-016-5747-5Hulleman, S. H. D., Kalisvaart, M. G., Janssen, F. H. P., Feil, H., & Vliegenthart, J. F. G. (1999). Origins of B-type crystallinity in glycerol-plasticized, compression-moulded potato starches. Carbohydrate Polymers, 39(4), 351–360. https://doi.org/10.1016/S0144-8617(99)00024-7Huntrakul, K., Yoksan, R., Sane, A., & Harnkarnsujarit, N. (2020). Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging and Shelf Life, 24(February), 100480. https://doi.org/10.1016/j.fpsl.2020.100480Ismail, S., Mansor, N., Majeed, Z., & Man, Z. (2016). Effect of Water and [Emim][OAc] as Plasticizer on Gelatinization of Starch. Procedia Engineering, 148, 524–529. https://doi.org/10.1016/j.proeng.2016.06.542Ismail, S., Mansor, N., & Man, Z. (2017). A Study on Thermal Behaviour of Thermoplastic Starch Plasticized by [Emim] Ac and by [Emim] Cl. Procedia Engineering, 184, 567–572. https://doi.org/10.1016/j.proeng.2017.04.138Isotton, F. S., Bernardo, G. L., Baldasso, C., Rosa, L. M., & Zeni, M. (2015). The plasticizer effect on preparation and properties of etherified corn starchs films. Industrial Crops and Products, 76, 717–724. https://doi.org/http://dx.doi.org/10.1016/j.indcrop.2015.04.005Ivanič, F., Jochec-Mošková, D., Janigová, I., & Chodák, I. (2017). Physical properties of starch plasticized by a mixture of plasticizers. European Polymer Journal, 93(October 2016), 843–849. https://doi.org/10.1016/j.eurpolymj.2017.04.006Jeziorska, R., Szadkowska, A., Spasowka, E., Lukomska, A., & Chmielarek, M. (2018). Characteristics of Biodegradable Polylactide/Thermoplastic Starch/Nanosilica Composites: Effects of Plasticizer and Nanosilica Functionality. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/4571368Jullanun, P., & Yoksan, R. (2020). Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polymer Testing, 88, 106522. https://doi.org/10.1016/j.polymertesting.2020.106522Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. International Journal of Biological Macromolecules, 89, 575–581. https://doi.org/10.1016/j.ijbiomac.2016.05.028Kahvand, F., & Fasihi, M. (2019). Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, 140, 775–781. https://doi.org/10.1016/J.IJBIOMAC.2019.08.185Ke, T., & Sun, X. (2001). Effects of moisture content and heat treatment on the physical properties of starch and poly (lactic acid) blends. Journal of Applied Polymer Science, 81(12), 3069–3082. https://doi.org/10.1002/app.1758Khan, B., Bilal, M., Niazi, K., Hussain, A., & Jahan, Z. (2017). Influence of Carboxylic Acids on Mechanical Properties of Thermoplastic Starch by Spray Drying. Fibers and Polymers, 18(1), 64–73. https://doi.org/10.1007/s12221-017-6769-8Kim, H. Y., Lamsal, B., Jane, J. lin, & Grewell, D. (2020). Sheet-extruded films from blends of hydroxypropylated and native corn starches, and their characterization. Journal of Food Process Engineering, 43(3), 1–8. https://doi.org/10.1111/jfpe.13216Kmetty, Á., Litauszki, K., & Réti, D. (2018). Characterization of different chemical blowing agents and their applicability to produce poly(lactic acid) foams by extrusion. Applied Sciences (Switzerland), 8(10). https://doi.org/10.3390/app8101960Kutz, M., Dearmitt, C., Plastics, P., Rothon, R., Consultants, R., Abyss, I., Innovator, A., Innovation, C., View, F., & Dearmitt, C. (2016). Applied Plastics Engineering Handbook (M. Kutz (ed.); 2nd ed., Issue May).Lai, J. C., Rahman, W. A. W. A., Averous, L., & Tim, T. H. (2016). Study and characterisation of the post processing ageing of sago pith waste biocomposites | Request PDF. Sains Malaysiana. https://www.researchgate.net/publication/303699771_Study_and_characterisation_of_the_post_processing_ageing_of_sago_pith_waste_biocompositesLiu, Y, Fan, L., Mo, X., Yang, F., & Pang, J. (2017). Effects of nanosilica on retrogradation properties and structures of thermoplastic cassava starch. Journal of Applied Polymer Science, 135(2), 45687. https://doi.org/10.1002/app.45687Liu, Yuxin, Fan, L., Pang, J., & Tan, D. (2020). Effect of tensile action on retrogradation of thermoplastic cassava starch/nanosilica composite. Iranian Polymer Journal, 29(2), 171–183. https://doi.org/10.1007/s13726-020-00782-zLumdubwong, N. (2019). Applications of Starch-Based Films in Food Packaging. Reference Module in Food Science. https://doi.org/10.1016/B978-0-08-100596-5.22481-5Ma, X, Yu, J., He, K., & Wang, N. (2007). The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromolecular Materials and Engineering, 292(4), 503–510. https://doi.org/10.1002/mame.200600445Ma, Xiaofei, & Yu, J. (2004). The effects of plasticizers containing amide groups on the properties of thermoplastic starch. Starch/Staerke, 56(11), 545–551. https://doi.org/10.1002/star.200300256Maniglia, B. C., Tessaro, L., Ramos, A. P., & Tapia-Blácido, D. R. (2019). Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocolloids, 89, 143–152. https://doi.org/10.1016/j.foodhyd.2018.10.038Martin, O., & Avérous, L. (2001). Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6Meite, N., Konan, L. K., Bamba, D., Goure-Doubi, B. I. H., & Oyetola, S. (2018). Structural and Thermomechanical Study of Plastic Films Made from Cassava-Starch Reinforced with Kaolin and Metakaolin. Materials Sciences and Applications, 09(01), 41–54. https://doi.org/10.4236/msa.2018.91003Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379–13398. https://doi.org/10.1039/c3ta12555fMikus, P.-Y., Coqueret, X., Alix, S., Krawczak, P., Soulestin, J., Lacrampe, M. F., & Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114, 450–457. https://doi.org/10.1016/j.carbpol.2014.06.087Mina, J. H., Valadez, A., Herrera-Franco, P. J., & Toledano, T. (2012). Influence of aging time on the structural changes of cassava thermoplastic starch. Materials Research Society Symposium Proceedings, 1372, 21–27. https://doi.org/10.1557/opl.2012.129Mina, J., Valadez-González, A., Herrera-Franco, P., Zuluaga, F., & Delvasto, S. (2013). Preparation and physical-chemical and mechanical characterization of ternary blends of polylactide (PLLA), polycaprolactone (PCL) and thermoplastic starch (TPS). Revista Latinoamericana de Metalurgia y Materiales, 33(1), 82–91.Moghaddam, M. R. A., Razavi, S. M. A., & Jahani, Y. (2018). Effects of Compatibilizer and Thermoplastic Starch (TPS) Concentration on Morphological, Rheological, Tensile, Thermal and Moisture Sorption Properties of Plasticized Polylactic Acid/TPS Blends. Journal of Polymers and the Environment, 26(8), 3202–3215. https://doi.org/10.1007/s10924-018-1206-7Montilla-buitrago, C. E., Gómez-lópez, R. A., & Solanilla-duque, J. F. (2021). Effect of Plasticizers on Properties , Retrogradation , and Processing of Extrusion-Obtained Thermoplastic Starch : A Review. Starch‐Stärke, 2100060, 1–15. https://doi.org/10.1002/star.202100060Müller, P., Bere, J., Fekete, E., Nagy, B., Kállay, M., Gyarmati, B., & Pukánszky, B. (2016). Interactions , structure and properties in PLA / plasticized starch blends. Polymer, 103, 9–18. https://doi.org/10.1016/j.polymer.2016.09.031Müller, Péter, Imre, B., Bere, J., Móczó, J., & Pukánszky, B. (2015). Physical ageing and molecular mobility in PLA blends and composites. Journal of Thermal Analysis and Calorimetry, 122(3), 1423–1433. https://doi.org/10.1007/s10973-015-4831-6Nawab, A., Alam, F., Haq, M. A., & Hasnain, A. (2016). Biodegradable film from mango kernel starch: Effect of plasticizers on physical, barrier, and mechanical properties. Starch/Staerke, 68(9–10), 919–928. https://doi.org/10.1002/star.201500349Nguyen, H. P., & Lumdubwong, N. (2016). Starch behaviors and mechanical properties of starch blend films with different plasticizers. Carbohydrate Polymers, 154, 112–120. https://doi.org/10.1016/j.carbpol.2016.08.034Niaounakis, M. (2015). Recycling. In Biopolymers: Processing and Products (pp. 481–530). Elsevier. https://doi.org/10.1016/B978-0-323-26698-7.00016-7Niaounakis, M., Kontou, E., & Xanthis, M. (2011). Effects of aging on the thermomechanical properties of poly(lactic acid). Journal of Applied Polymer Science, 119(1), 472–481. https://doi.org/10.1002/app.32644Niazi, M. B. K., Zijlstra, M., & Broekhuis, A. A. (2015). Influence of plasticizer with different functional groups on thermoplastic starch. Journal of Applied Polymer Science, 132 (22)(22), 1–12. https://doi.org/10.1002/app.42012Niazi, M., & Broekhuis, A. (2016). Oxidized potato starch based thermoplastic films: Effect of combination of hydrophilic and amphiphilic plasticizers. Starch/Staerke, 68(7–8), 785–795. https://doi.org/10.1002/star.201500227Niranjana Prabhu, T., & Prashantha, K. (2018). A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polymer Composites, 39(7), 2499–2522. https://doi.org/10.1002/pc.24236Orozco S., D. M., & Cadavid C., M. A. (2008). Test de Kruskal- Wallis (p. 14).Palai, B., Biswal, M., Mohanty, S., & Nayak, S. K. (2019). In situ reactive compatibilization of polylactic acid ( PLA ) and thermoplastic starch ( TPS ) blends ; synthesis and evaluation of extrusion blown films thereof. Industrial Crops & Products, 141(August), 111748. https://doi.org/10.1016/j.indcrop.2019.111748Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. In Starch/Staerke (Vol. 62, Issue 8, pp. 389–420). https://doi.org/10.1002/star.201000013Pushpadass, H. A., & Hanna, M. A. (2009). Age-induced changes in the microstructure and selected properties of extruded starch films plasticized with glycerol and stearic acid. Industrial and Engineering Chemistry Research, 48(18), 8457–8463. https://doi.org/10.1021/ie801922zQin, Y., Zhang, H., Dai, Y., Hou, H., & Dong, H. (2019). Effect of Silane Treatment on Mechanical Properties. Materials, 12(1705), 1–13.Qin, Yang, Zhang, H., Dai, Y., Hou, H., & Dong, H. (2019). Effect of alkali treatment on structure and properties of high amylose corn starch film. Materials, 12(10). https://doi.org/10.3390/MA12101705Ren, J., Dang, K. M., Pollet, E., & Avérous, L. (2018). Preparation and Characterization of Thermoplastic Potato Starch / Halloysite Nano-Biocomposites : Effect of Plasticizer Nature and Nanoclay Content. Polymers Article, 10(8). https://doi.org/10.3390/polym10080808Ren, J., Zhang, W., Lou, F., Wang, Y., & Guo, W. (2017). Characteristics of starch-based films produced using glycerol and 1-butyl-3-methylimidazolium chloride as combined plasticizers. Starch/Staerke, 69(1–2), 1–8. https://doi.org/10.1002/star.201600161Rico, M., Rodríguez-Llamazares, S., Barral, L., Bouza, R., & Montero, B. (2016). Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydrate Polymers, 149, 83–93. https://doi.org/10.1016/j.carbpol.2016.04.087Ridhwan, J., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2017). Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. International Journal of Biological Macromolecules, 97, 606–615. https://doi.org/10.1016/j.ijbiomac.2017.01.079Righetti, M. C., Cinelli, P., Mallegni, N., Massa, C. A., Bronco, S., Stäbler, A., & Lazzeri, A. (2019). Thermal, mechanical, and rheological properties of biocomposites made of poly(Lactic acid) and potato pulp powder. International Journal of Molecular Sciences, 20(3), 1–17. https://doi.org/10.3390/ijms20030675Santos, F. A. dos, & Tavares, M. I. B. (2013). Preparo e caracterização de filmes obtidos a partir de poli(ácido lático) e celulose microcristalina. Polímeros, 23(ahead), 0–0. https://doi.org/10.1590/s0104-14282013005000021Schmitt, H., Guidez, A., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydrate Polymers, 115, 364–372. https://doi.org/10.1016/j.carbpol.2014.09.004Seligra, P. G., Medina Jaramillo, C., Famá, L., & Goyanes, S. (2016). Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydrate Polymers, 138, 66–74. https://doi.org/10.1016/j.carbpol.2015.11.041Shamsuri, A. A., & Daik, R. (2012). Plasticizing effect of choline chloride/urea eutectic-based ionic liquid on physicochemical properties of agarose films. BioResources, 7(4), 4760–4775. https://doi.org/10.15376/biores.7.4.4760-4775Shanks, R., & Kong, I. (2012). Thermoplastic Starch. In Thermoplastic elastomers (pp. 96–116). IntechOpen.Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S., & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers, 92(1), 19–22. https://doi.org/10.1016/j.carbpol.2012.09.038Surya, I., Olaiya, N. G., Rizal, S., Zein, I., Aprilia, N. A. S., Hasan, M., Yahya, E. B., Sadasivuni, K. K., & Khalil, H. P. S. A. (2020). Plasticizer enhancement on the miscibility and thermomechanical properties of polylactic acid-chitin-starch composites. Polymers, 12(1). https://doi.org/10.3390/polym12010115Teixeira, E. de M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61–68. https://doi.org/10.1016/j.indcrop.2011.11.036Tian, Y., Li, Y., Xu, X., & Jin, Z. (2011). Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydrate Polymers, 84(3), 1165–1168. https://doi.org/10.1016/j.carbpol.2011.01.006Turco, R., Ortega-Toro, R., Tesser, R., Mallardo, S., Collazo-Bigliardi, S., Boix, A. C., Malinconico, M., Rippa, M., Di Serio, M., & Santagata, G. (2019). Poly (lactic acid)/thermoplastic starch films: Effect of cardoon seed epoxidized oil on their chemicophysical, mechanical, and barrier properties. Coatings, 9(9), 1–20. https://doi.org/10.3390/coatings9090574Valero-Valdivieso, M., Ortegon, Y., & Uscategui, Y. (2013). Biopolímeros: Avances Y Perspectivas Biopolymers: Progress and Prospects. SciELO Colómbia, 181(0012–7353), 171–180. http://www.revistas.unal.edu.co/index.php/dyna/article/viewFile/20642/42269Van Oosterhout, J. T., & Gilbert, M. (2003). Interactions between PVC and binary or ternary blends of plasticizers. Polymer, 44(26), 8081–8094.Van Soest, J. J. G., Benes, K., De Wit, D., & Vliegenthart, J. F. G. (1996). The influence of starch molecular mass on the properties of extruded thermoplastic starch. Polymer, 37(16), 3543–3552. https://doi.org/10.1016/0032-3861(96)00165-6van Soest, J. J. G., De Wit, D., Tournois, H., & Vliegenthart, J. F. G. (1994). Retrogradation of Potato Starch as Studied by Fourier Transform Infrared Spectroscopy. Starch ‐ Stärke, 46(12), 453–457. https://doi.org/10.1002/star.19940461202Van Soest, J. J. G., Hulleman, S. H. D., De Wit, D., & Vliegenthart, J. F. G. (1996). Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity. Carbohydrate Polymers, 29(3), 225–232. https://doi.org/10.1016/0144-8617(96)00011-2Van Soest, J. J. G., Hulleman, S. H. D., De Wit, D., Vliegenthart, J. F. G., Wita, D. De, & Vliegenthartb, J. F. G. (1996). Crystallinity in starch bioplastics. Industrial Crops and Products, 5(1), 11–22. https://doi.org/10.1016/0926-6690(95)00048-8Van Soest, J. J. G., Vliegenthart, J. F. G., Soest, J. J. G. Van, & Vliegenthart, J. F. G. (1997). Crystallinity in starch plastics : consequences for material properties. Trends in Biotechnology, 15(June), 208–213. https://doi.org/10.1016/S0167-7799(97)01021-4Varona Beltran, G. A. (2014). Estabilidad Estructural de una Película Flexible Obtenida a Partir de Almidón Termoplástico con Ácido Esteárico. Revista Facultad Nacional de Agronomía, 67 (2), 502–504.Vazifehasl, Z., Hemmati, S., Zamanloo, M., & Dizaj, S. M. (2013). New Series of Dimethacrylate-Based Monomers on Isosorbide as a Dental Material : Synthesis and Characterization. International Journal of Composite Materials, 3(4), 100–107. https://doi.org/10.5923/j.cmaterials.20130304.03Vieira, A., Altenhofen, M., Oliveira, L., Beppu, M. M., Vieira, M. G. A., Da Silva, M. A., Dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344. https://doi.org/10.3390/ma2020307WagnerJr, J. R., & GilesJr, H. F. (2014). Single Screw Extruder. In Extrusion (Second Edition). https://www.sciencedirect.com/topics/engineering/single-screw-extruderWarren, F. J., Gidley, M. J., & Flanagan, B. M. (2016). Infrared spectroscopy as a tool to characterise starch ordered structure - A joint FTIR-ATR, NMR, XRD and DSC study. Carbohydrate Polymers, 139, 35–42. https://doi.org/10.1016/j.carbpol.2015.11.066Winuk, A. J., Rane, S. Y., & Terry, J. (2012). U.S. Patent Application.Wypych, G. (2017). Handbook of Plasticizers. In G. Wypych (Ed.), ChemTec Publishing (Third Edit, Vol. 3). ChemTec Publishing.Xie, F., Flanagan, B. M., Li, M., Sangwan, P., Truss, R. W., Halley, P. J., Strounina, E. V., Whittaker, A. K., Gidley, M. J., Dean, K. M., Shamshina, J. L., Rogers, R. D., & McNally, T. (2014). Characteristics of starch-based films plasticised by glycerol and by the ionic liquid 1-ethyl-3-methylimidazolium acetate: A comparative study. Carbohydrate Polymers, 111, 841–848. https://doi.org/10.1016/j.carbpol.2014.05.058Xie, F., Liu, P., & Yu, L. (2014). Processing of plasticized starch-based materials: state of the art and perspectives. In Starch polymers.Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007Yang, Q., Yang, Y., Luo, Z., Xiao, Z., Ren, H., Li, D., & Yu, J. (2016). Effects of Lecithin Addition on the Properties of Extruded Maize Starch. Journal of Food Processing and Preservation, 40(1), 20–28. https://doi.org/10.1111/jfpp.12579Yu, Y., Cheng, Y., Ren, J., Cao, E., Fu, X., & Guo, W. (2015). Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends. Journal of Applied Polymer Science, 132(16), 1–9. https://doi.org/10.1002/app.41808Zaaba, N. F., & Ismail, H. (2019). A review on tensile and morphological properties of poly (lactic acid) (PLA)/ thermoplastic starch (TPS) blends. In Polymer-Plastics Technology and Materials (Vol. 58, Issue 18, pp. 1945–1964). Taylor & Francis. https://doi.org/10.1080/25740881.2019.1599941Zdanowicz, M. (2020). Starch treatment with deep eutectic solvents, ionic liquids and glycerol. A comparative study. Carbohydrate Polymers, 229, 115574. https://doi.org/10.1016/j.carbpol.2019.115574Zdanowicz, M., Staciwa, P., Jedrzejewski, R., & Spychaj, T. (2019). Sugar alcohol-based deep eutectic solvents as potato starch plasticizers. Polymers, 11(9). https://doi.org/10.3390/polym11091385Zdanowicz, M., Staciwa, P., & Spychaj, T. (2019). Low Transition Temperature Mixtures (LTTM) Containing Sugars as Potato Starch Plasticizers. Starch/Staerke, 71(9–10), 1900004. https://doi.org/10.1002/star.201900004Zhang, B., Xie, F., Zhang, T., Chen, L., Li, X., Truss, R. W., Halley, P. J., Shamshina, J. L., McNally, T., & Rogers, R. D. (2016). Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol. Carbohydrate Polymers, 146, 67–79. https://doi.org/10.1016/j.carbpol.2016.03.056Zhang, H., Sun, B., Zhang, S., Zhu, Y., & Tian, Y. (2015). Inhibition of wheat starch retrogradation by tea derivatives. Carbohydrate Polymers, 134, 413–417. https://doi.org/https://doi.org/10.1016/j.carbpol.2015.08.018Zhang, K., Zhang, K., Cheng, F., Lin, Y., Zhou, M., & Zhu, P. (2019). Aging properties and hydrophilicity of maize starch plasticized by hyperbranched poly(citrate glyceride). Journal of Applied Polymer Science, 136(1), 1–8. https://doi.org/10.1002/app.46899Zhang, L., Wang, X.-F., Liu, H., Yu, L., Wang, Y., Simon, G. P., & Qian, J. (2018). Effect of plasticizers on microstructure, compatibility and mechanical property of hydroxypropyl methylcellulose/hydroxypropyl starch blends. International Journal of Biological Macromolecules, 119, 141–148. https://doi.org/10.1016/J.IJBIOMAC.2018.07.064Zhang, Y., Zhang, Y., Li, B., Xu, F., Zhu, K., Tan, L., Wu, G., Dong, W., & Li, S. (2019). Retrogradation behavior of amylopectin extracted different jackfruit cultivars seeds in presence on the same amylose. LWT, 114, 108366. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108366Zhong, Yajie, Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27–35. https://doi.org/10.1016/j.aiepr.2019.11.002Zhong, Yuyue, Li, Y., Liang, W., Liu, L., Li, S., Xue, J., & Guo, D. (2018). Comparison of gelatinization method, starch concentration, and plasticizer on physical properties of high-amylose starch films. Journal of Food Process Engineering, 41(2), 1–8. https://doi.org/10.1111/jfpe.12645Zhu, F. (2015). Composition, structure, physicochemical properties and Modifications of Cassava Starch. Carbohydrate Polymers, 122, 456–480. https://doi.org/10.1016/j.carbpol.2014.10.063Zou, G. X., Jin, P. Q., & Xin, L. Z. (2008). Extruded starch/PVA composites: Water resistance, thermal properties, and morphology. Journal of Elastomers and Plastics, 40(4), 303–316. https://doi.org/10.1177/0095244307085787Zuo, Y., Gu, J., Cao, J., Wei, S., Tan, H., & Zhang, Y. (2015). Effect of starch/polylactic acid ratio on the interdependence of two-phase and the properties of composites. Journal Wuhan University of Technology, Materials Science Edition, 30(5), 1108–1114. https://doi.org/10.1007/s11595-015-1280-9Zuo, Y., Gu, J., Tan, H., & Zhang, Y. (2015). Thermoplastic Starch Prepared with Different Plasticizers : Relation between Degree of Plasticization and Properties. Journal of Wuhan University of Technology-Mater, 30(2), 423–428. https://doi.org/10.1007/s11595-015-1164-zSistema General de RegalíasLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80090/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1061714431.2021.pdf1061714431.2021.pdfapplication/pdf4700415https://repositorio.unal.edu.co/bitstream/unal/80090/2/1061714431.2021.pdf8973a6a907401bc07f36bb606460dbe3MD52THUMBNAIL1061714431.2021.pdf.jpg1061714431.2021.pdf.jpgGenerated Thumbnailimage/jpeg4538https://repositorio.unal.edu.co/bitstream/unal/80090/3/1061714431.2021.pdf.jpg8f8361d880d20deb94dcab87e574fc93MD53unal/80090oai:repositorio.unal.edu.co:unal/800902024-07-24 23:41:57.64Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |