Fractional Brownian motion applied to the study of the dynamics associated with non-stationary time series
ilustraciones a color, diagramas
- Autores:
-
Abril Bermúdez, Felipe Segundo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85513
- Palabra clave:
- 530 - Física::539 - Física moderna
330 - Economía::332 - Economía financiera
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Multifractal system
Supersymmetry
Fractional calculus
Análisis multifractal
Supersimetría
Cálculo fraccionario
Movimiento browniano
Análisis de series de tiempo
Procesos estocásticos
Brownian movements
Time-series analysis
Stochastic processes
Fractional stochastic path integral formalism
Fractional Brownian motion
Econophysics
Multifractality
Shannon index
Supersymmetric theory of stochastic dynamics
Formalismo de integral de camino estocástica fraccional
Movimiento Browniano fraccional
Econofísica
Multifractalidad
Índice de Shannon
Teoría supersimétrica de la dinámica estocástica
Econofísica
Econophysics
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_8947e2b3578d031614c55fa163f2eef7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85513 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Fractional Brownian motion applied to the study of the dynamics associated with non-stationary time series |
dc.title.translated.spa.fl_str_mv |
Movimiento Browniano fraccional aplicado al estudio de la dinámica asociada con series de tiempo no estacionarias |
title |
Fractional Brownian motion applied to the study of the dynamics associated with non-stationary time series |
spellingShingle |
Fractional Brownian motion applied to the study of the dynamics associated with non-stationary time series 530 - Física::539 - Física moderna 330 - Economía::332 - Economía financiera 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Multifractal system Supersymmetry Fractional calculus Análisis multifractal Supersimetría Cálculo fraccionario Movimiento browniano Análisis de series de tiempo Procesos estocásticos Brownian movements Time-series analysis Stochastic processes Fractional stochastic path integral formalism Fractional Brownian motion Econophysics Multifractality Shannon index Supersymmetric theory of stochastic dynamics Formalismo de integral de camino estocástica fraccional Movimiento Browniano fraccional Econofísica Multifractalidad Índice de Shannon Teoría supersimétrica de la dinámica estocástica Econofísica Econophysics |
title_short |
Fractional Brownian motion applied to the study of the dynamics associated with non-stationary time series |
title_full |
Fractional Brownian motion applied to the study of the dynamics associated with non-stationary time series |
title_fullStr |
Fractional Brownian motion applied to the study of the dynamics associated with non-stationary time series |
title_full_unstemmed |
Fractional Brownian motion applied to the study of the dynamics associated with non-stationary time series |
title_sort |
Fractional Brownian motion applied to the study of the dynamics associated with non-stationary time series |
dc.creator.fl_str_mv |
Abril Bermúdez, Felipe Segundo |
dc.contributor.advisor.none.fl_str_mv |
Quimbay Herrera, Carlos José |
dc.contributor.author.none.fl_str_mv |
Abril Bermúdez, Felipe Segundo |
dc.contributor.researchgroup.spa.fl_str_mv |
Econofisica y Sociofisica |
dc.contributor.orcid.spa.fl_str_mv |
Felipe Segundo Abril Bermúdez [0000-0002-2512-4929] |
dc.contributor.cvlac.spa.fl_str_mv |
Felipe Segundo Abril Bermúdez |
dc.contributor.researchgate.spa.fl_str_mv |
Felipe Segundo Abril Bermúdez |
dc.contributor.googlescholar.spa.fl_str_mv |
Felipe Segundo Abril Bermúdez |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::539 - Física moderna 330 - Economía::332 - Economía financiera 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas |
topic |
530 - Física::539 - Física moderna 330 - Economía::332 - Economía financiera 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Multifractal system Supersymmetry Fractional calculus Análisis multifractal Supersimetría Cálculo fraccionario Movimiento browniano Análisis de series de tiempo Procesos estocásticos Brownian movements Time-series analysis Stochastic processes Fractional stochastic path integral formalism Fractional Brownian motion Econophysics Multifractality Shannon index Supersymmetric theory of stochastic dynamics Formalismo de integral de camino estocástica fraccional Movimiento Browniano fraccional Econofísica Multifractalidad Índice de Shannon Teoría supersimétrica de la dinámica estocástica Econofísica Econophysics |
dc.subject.lcc.eng.fl_str_mv |
Multifractal system Supersymmetry Fractional calculus |
dc.subject.lcc.spa.fl_str_mv |
Análisis multifractal Supersimetría Cálculo fraccionario |
dc.subject.lemb.spa.fl_str_mv |
Movimiento browniano Análisis de series de tiempo Procesos estocásticos |
dc.subject.lemb.eng.fl_str_mv |
Brownian movements Time-series analysis Stochastic processes |
dc.subject.proposal.eng.fl_str_mv |
Fractional stochastic path integral formalism Fractional Brownian motion Econophysics Multifractality Shannon index Supersymmetric theory of stochastic dynamics |
dc.subject.proposal.spa.fl_str_mv |
Formalismo de integral de camino estocástica fraccional Movimiento Browniano fraccional Econofísica Multifractalidad Índice de Shannon Teoría supersimétrica de la dinámica estocástica |
dc.subject.wikidata.spa.fl_str_mv |
Econofísica |
dc.subject.wikidata.eng.fl_str_mv |
Econophysics |
description |
ilustraciones a color, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-01-30T15:09:12Z |
dc.date.available.none.fl_str_mv |
2024-01-30T15:09:12Z |
dc.date.issued.none.fl_str_mv |
2024-01-29 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85513 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85513 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
F. S. Abril and C. J. Quimbay. Temporal fluctuation scaling in non-stationary time series using the path integral formalism. Phys. Rev. E, 103(4), 04 2021. doi: https://doi.org/10.1103/PhysRevE.103.042126. F. S. Abril and C. J. Quimbay. Temporal Theil scaling in diffusive trajectory time series. Phys. Rev. E, 106(1), 07 2022. doi: https://doi.org/10.1103/PhysRevE.106.014117. F. S. Abril and C. J. Quimbay. Evolution of temporal fluctuation scaling exponent in nonstationary time series using supersymmetric theory of stochastic dynamics. Manuscript accepted to be published on Phys. Rev. E at: https://journals.aps.org/pre/accepted/02074Rb1Xe31ac2a727e1f49be6f73c21dba65baf, 01 2024. F. S. Abril and C. J. Quimbay. Temporal fluctuation scaling and temporal Theil scaling in financial time series. In Advances in quantitative methods for economics and business. Springer, 07 2024. Manuscript accepted to be published as a chapter (forthcoming). F. S. Abril, J. E. Trinidad-Segovia, M. A. Sánchez-Granero, and C. J. Quimbay. Generalized Shannon index as a multifractal measure in financial time series. Department of Physics, Universidad Nacional de Colombia. Manuscript submitted for publication, 01 2024. F. S. Abril and C. J. Quimbay. Feynman-Kac formula driven by an arbitrary fractional noise. Department of Physics, Universidad Nacional de Colombia. Manuscript submitted for publication, 11 2023. F. S. Abril and C. J. Quimbay. Universality on the Spatial and Temporal Spread of Covid-19. Manuscript on webpage at: https://dx.doi.org/10.2139/ssrn.4511708, 2023. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, and H. E. Stanley. Econophysics: financial time series from a statistical physics point of view. Physica A, 279(1-4):443–456, 05 2000. doi: https://doi.org/10.1016/s0378-4371(00)00010-8. H. E. Stanley, S. V. Buldyrev, G. Franzese, S. Havlin, F. Mallamace, P. Kumar, V. Plerou, and T. Preis. Correlated randomness and switching phenomena. Physica A, 389(15):2880–2893, 08 2010. doi: https://doi.org/10.1016/j.physa.2010.02.023. H. E. Stanley, V. Afanasyev, L. A. N. Amaral, S. V. Buldyrev, A. L. Goldberger, S. Havlin, H. Leschhorn, P. Maass, R. N. Mantegna, C. K. Peng, P. A. Prince, M. A. Salinger, M. H. R. Stanley, and G. M. Viswanathan. Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Physica A, 224(1-2):302–321, 02 1996. doi: https://doi.org/10.1016/0378-4371(95)00409-2. R. N. Mantegna and H. E. Stanley. Scaling behavior in the dynamics of an economic index. Nature, 376(6535):46–49, 05 1993. doi: https://doi.org/10.1038/376046a0. H. M. Gupta and J. R. Campanha. The gradually truncated Lévy flight for systems with power-law distributions. Physica A, 268(1-2):231–239, 06 1999. doi: https://doi.org/10.1016/S0378-4371(99)00028-X. R. N. Mantegna and H. E. Stanley. Ultra-slow convergence to a Gaussian: The truncated Lévy flight. In Lévy Flights and Related Topics in Physics, pages 300–312. Springer, Berlin Heidelberg, Germany, 2005. doi: https://doi.org/10.1007/3-540-59222-9_42. A. Dragulescu and V. M. Yakovenko. Statistical mechanics of money. Eur. Phys. J. B, 17(4):723–729, 10 2000. doi: https://doi.org/10.1007/s100510070114. M. Patriarca, A. Chakraborti, and K. Kaski. Statistical model with a standard Gamma distribution. Phys. Rev. E, 70(1), 07 2004. doi: https://doi.org/10.1103/PhysRevE.70.016104. A. C. Silva, R. E. Prange, and V. M. Yakovenko. Exponential Distribution of Financial Returns at Mesoscopic Time Lags: A New Stylized Fact. Physica A, 344(1-2):227–235, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.122. J. P. Bouchaud. Elements for a theory of financial risks. Physica A, 263(1-4):415–426, 02 1999. doi: https://doi.org/10.1016/s0378-4371(98)00486-5. H. Kleinert. Stochastic calculus for assets with non-Gaussian price fluctuations. Physica A, 311(3-4):536–562, 08 2002. doi: https://doi.org/10.1016/S0378-4371(02)00803-8. T. Lix and F. Westerhoff. Economics crisis. Nature Phys., 5(1):2–3, 01 2009. doi: https://doi.org/10.1038/nphys1163. J. D. Farmer and D. Foley. The economy needs agent-based modelling. Nature, 460(7256):685–686, 08 2009. doi: https://doi.org/10.1038/460685a. C. Schinckus. Economic uncertainty and econophysics. Physica A, 388(20):4415–4423, 10 2009. doi: https://doi.org/10.1016/j.physa.2009.07.008. C. Schinckus. Between complexity of modelling and modelling of complexity: An essay on econophysics. Physica A, 392(17):3654–3665, 09 2013. doi: https://doi.org/10.1016/j.physa.2013.04.005. A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel. Econophysics review: I. Empirical facts. Quant. Finance, 11(7):991–1012, 06 2011. doi: https://doi.org/10.1080/14697688.2010.539248. J. M. Courtault, Y. Kabanov, B. Bru, P. Crepel, I. Lebon, and A. Marchand. Louis Bachelier on the Centenary of Theorie de la Speculation. Math. Financ., 10(3):339–353, 07 2000. doi: https://doi.org/10.1111/1467-9965.00098. A. Einstein. über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys., 322(8):549–560, 07 1905. doi: https://doi.org/10.1002/andp.19053220806. N. G. van Kampen. Itô versus Stratonovich. J. Stat. Phys., 24(1):175–187, 01 1981. doi: https://doi.org/10.1007/bf01007642. M. F. M. Osborne. Brownian Motion in the Stock Market. Oper. Res., 7(2):145–173, 04 1959. doi: https://doi.org/10.1287/opre.7.2.145. F. Black and M. Scholes. The pricing of options and corporate liabilities. In World Scientific Reference on Contingent Claims Analysis in Corporate Finance, pages 3–21. World Scientific Publishing Company, 03 2019. doi: https://doi.org/10.1142/9789814759588_0001. H. Föllmer and A. Schied. Stochastic Finance. De Gruyter, 12 2004. doi: https://doi.org/10.1515/9783110212075. B. Mandelbrot. The Pareto–Levy law and the distribution of income. Intl. Econ. Rev., 1(2):79–106, 05 1960. doi: https://doi.org/10.2307/2525289. B. Mandelbrot. The variation of certain speculative prices. J. Bus., 36(4):394–419, 10 1963. https://www.jstor.org/stable/2351623. S. L. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Rev. Financ. Stud., 6(2):327–343, 04 1993. https://doi.org/10.1093/rfs/6.2.327. P. Tankov and R. Cont. Financial modelling beyond Brownian motion 1. In Financial Modelling with Jump Processes. Chapman and Hall/CRC, 12 2003. B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review, 10(4):422–437, 10 1968. doi: https://doi.org/10.1137/1010093. Z. Jiang, W. Xie, W. Zhou, and D. Sornette. Multifractal analysis of financial markets: a review. Rep. Prog. Phys., 82(12), 11 125901. doi: https://doi.org/10.1088/1361-6633/ab42fb. J. Rosiński. Tempering stable processes. Stoch. Process. Their Appl., 117(6):677–707, 06 2007. doi: https://doi.org/10.1016/j.spa.2006.10.003. M. A. Sánchez-Granero, J. E. Trinidad-Segovia, and J. García-Pérez. Some comments on Hurst exponent and the long memory processes on capital markets. Physica A, 387(22):5543–5551, 09 2008. doi: https://doi.org/10.1016/j.physa.2008.05.053. M. Fernández-Martínez, M. A. Sánchez-Granero, and J. E. Trinidad-Segovia. Measuring the self-similarity exponent in Lévy stable processes of financial time series. Physica A, 392(21):5330 – 5345, 11 2013. doi: https://doi.org/10.1016/j.physa.2013.06.026. M. Fernández-Martínez, M. A. Sánchez-Granero, J. E. Trinidad-Segovia, and I. M. Román-Sánchez. An accurate algorithm to calculate the Hurst exponent of self-similar processes. Phys. Lett. A, 378(32-33):2355–2362, 06 2014. doi: https://doi.org/10.1016/j.physleta.2014.06.018. H. Lotfalinezhad and A. Maleki. TTA, a new approach to estimate Hurst exponent with less estimation error and computational time. Physica A, 553:124093, 09 2020. doi: https://doi.org/10.1016/j.physa.2019.124093. A. Gómez-Águila, J. E. Trinidad-Segovia, and M. A. Sánchez-Granero. Improvement in Hurst exponent estimation and its application to financial markets. Financial Innov., 8(1), 09 2022. doi: https://doi.org/10.1186/s40854-022-00394-x. H. E. Hurst. Long-Term Storage Capacity of Reservoirs. ASCE Trans., 116(1):770–799, 01 1951. doi: https://doi.org/10.1061/taceat.0006518. L. A. Martín-Montoya, N. M. Aranda-Camacho, and C. J. Quimbay. Long-range correlations and trends in Colombian seismic time series. Physica A, 421:124–133, 03 2015. doi: https://doi.org/10.1016/j.physa.2014.10.073. M. Tokeshi. On the mathematical basis of the variance-mean power relationship. Popul. Ecol., 37(1):43–48, 06 1995. doi: https://doi.org/10.1007/BF02515760. J. W. Kirchner, X. Feng, and C. Neal. Fractal stream chemistry and its implications for contaminant transport in catchments. Nature, 403(6769):524–527, 02 2000. doi: https://doi.org/10.1038/35000537. J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 316(1-4):87–114, 12 2002. doi: https://doi.org/10.1016/S0378-4371(02)01383-3. K. Linkenkaer-Hansen, V. V. Nikouline, J. M. Palva, and R. J. Ilmoniemi. LongRange Temporal Correlations and Scaling Behavior in Human Brain Oscillations. J. Neurosci., 21(4):1370–1377, 02 2001. doi: https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66(4):1125–1388, 10 1994. doi: https://doi.org/10.1103/RevModPhys.66.1125. G. Paladin and A. Vulpiani. Anomalous scaling laws in multifractal objects. Phys. Rep., 156(4):147–225, 12 1987. doi: https://doi.org/10.1016/0370-1573(87)90110-4. P. Gopikrishnan, V. Plerou, L. A. Nunes Amaral, M. Meyer, and H. E. Stanley. Scaling of the distribution of fluctuations of financial market indices. Phys. Rev. E, 60(5):5305–5316, 11 1999. doi: https://doi.org/10.1103/PhysRevE.60.5305. V. Plerou and H. E. Stanley. Tests of scaling and universality of the distributions of trade size and share volume: Evidence from three distinct markets. Phys. Rev. E, 76(4), 10 2007. doi: https://doi.org/10.1103/PhysRevE.76.046109. M. A. Sánchez-Granero, J. E. Trinidad-Segovia, J. García, and M. Fernández. The Effect of the Underlying Distribution in Hurst Exponent Estimation. PLoS One, 10(5):e0127824, 05 2015. doi: https://doi.org/10.1371/journal.pone.0127824. J. Barunik and L. Kristoufek. On Hurst exponent estimation under heavy-tailed distributions. Physica A, 389(18):3844–3855, 09 2010. doi: https://doi.org/10.1016/j.physa.2010.05.025. Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi. Financial market models with Lévy processes and time-varying volatility. J. Bank. Financ., 32(7):1363–1378, 07 2008. doi: https://doi.org/10.1016/j.jbankfin.2007.11.004. P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica D, 9(1-2):189–208, 10 1983. doi: https://doi.org/10.1016/0167-2789(83)90298-1. A. Carbone, G. Castelli, and H. E. Stanley. Time-dependent Hurst exponent in financial time series. Physica A, 344(1-2):267–271, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.130. M. A. de Menezes and A. L. Barabási. Fluctuations in Network Dynamics. Phys. Rev. Lett., 92(2), 01 2004. doi: https://doi.org/10.1103/PhysRevLett.92.028701. Z. Eisler and J. Kertész. Scaling theory of temporal correlations and size-dependent fluctuations in the traded value of stocks. Phys. Rev. E, 73(4), 04 2006. doi: https://doi.org/10.1103/PhysRevE.73.046109. Z. Eisler, I. Bartos, and J. Kertész. Fluctuation scaling in complex systems: Taylor's law and beyond. Adv. Phys., 57(1):89–142, 01 2008. doi: https://doi.org/10.1080/00018730801893043. A. Fronczak and P. Fronczak. Origins of Taylor’s power law for fluctuation scaling in complex systems. Phys. Rev. E, 81(6), 06 2010. doi: https://doi.org/10.1103/PhysRevE.81.066112. J. E. Cohen and M. Xu. Random sampling of skewed distributions implies Taylor’s power law of fluctuation scaling. Proc. Natl. Acad. Sci., 112(25):7749–7754, 04 2015. doi: https://doi.org/10.1073/pnas.1503824112. Z. Eisler, J. Kertész, S. H. Yook, and A. L. Barabási. Multiscaling and nonuniversality in fluctuations of driven complex systems. Europhys. Lett., 69(4):664–670, 02 2005. doi: https://doi.org/10.1209/epl/i2004-10384-1. L. Blanco, V. Arunachalam, and S. Dharmaraja. Introduction to probability and stochastic processes with applications. John Wiley & Sons, Nashville, TN, 06 2012. N. Scafetta and P. Grigolini. Scaling detection in time series: Diffusion entropy analysis. Phys. Rev. E, 66(3), 09 2002. doi: https://doi.org/10.1103/PhysRevE.66.036130. G. Trefán, E. Floriani, B. J. West, and P. Grigolini. Dynamical approach to anomalous diffusion: Response of Lévy processes to a perturbation. Phys. Rev. E, 50(4):2564–2579, 11 1994. doi: https://doi.org/10.1103/PhysRevE.50.2564. J. Qi and H. Yang. Hurst exponents for short time series. Phys. Rev. E, 84(6), 12 2011. doi: https://doi.org/10.1103/PhysRevE.84.066114. I. F. Spellerberg and P. J. Fedor. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ShannonWiener Index. Glob. Ecol. Biogeogr., 12(3):177–179, 04 2003. doi: https://doi.org/10.1046/j.1466-822x.2003.00015.x. J. Johnston and H. Theil. Economics and information theory. Econ. J., 79(315):601, 09 1969. doi: https://doi.org/10.2307/2230396. J. M. Sarabia, V. Jordá, and L. Remuzgo. The Theil Indices in Parametric Families of Income Distributions—A Short Review. Rev. Income Wealth, 63(4):867–880, 11 2016. doi: https://doi.org/10.1111/roiw.12260. F. Cowell. Theil, Inequality and the Structure of Income Distribution. Theil, Inequality and the Structure of Income Distribution, 2003. D. Schertzer, M. Larchev, J. Duan, V. V. Yanovsky, and S. Lovejoy. Fractional Fokker–Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises. arXiv, 09 2004. doi: https://doi.org/10.48550/arXiv.math/0409486. I. Calvo, R. Sánchez, and B. A. Carreras. Fractional Lévy motion through path integrals. J. Phys. A Math. Theor., 42(5):055003, 01 2009. doi: https://doi.org/10.1088/1751-8113/42/5/055003. C. Ma, Q. Ma, H. Yao, and T. Hou. An accurate european option pricing model under fractional stable process based on Feynman path integral. Physica A, 494:87–117, 03 2018. doi: https://doi.org/10.1016/j.physa.2017.11.120. R. P. Feynman. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys., 20(2):367–387, 04 1948. doi: https://doi.org/10.1103/RevModPhys.20.367. L. C. Fai. Feynman path integrals in quantum mechanics and statistical physics. CRC Press, London, England, 04 2021. H. S. Wio. Path Integrals for Stochastic Processes. World Scientific Publishing Company, 11 2012. doi: https://doi.org/10.1142/8695. N. Laskin. Fractional Nonlinear Quantum Mechanics. In Fractional Quantum Mechanics, pages 184–185. World Scientific Publishing Company, 03 2018. doi: https://doi.org/10.1142/10541. M. G. Tsionas. Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility. Physica A, 567:125647, 04 2021. doi: https://doi.org/10.1016/j.physa.2020.125647. M. Kac. On distributions of certain Wiener functionals. Trans. Am. Math. Soc., 65(1):1–13, 01 1949. doi: https://doi.org/10.1090/s0002-9947-1949-0027960-x. X. Wu, W. Deng, and E. Barkai. Tempered fractional Feynman-Kac equation: Theory and examples. Phys. Rev. E, 93(3), 03 2016. doi: https://doi.org/10.1103/physreve.93.032151. H. F. Smith. An empirical law describing heterogeneity in the yields of agricultural crops. J. Agri. Sci., 28(1):1–23, 01 1938. doi: https://doi.org/10.1017/S0021859600050516. L. R. Taylor. Aggregation, Variance and the Mean. Nature, 189(4766):732–735, 03 1961. doi: https://doi.org/10.1038/189732a0. A. G. Zawadowski, J. Kertész, and G. Andor. Large price changes on small scales. Physica A, 344(4):221–226, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.121. P. C. Ivanov, A. Yuen, and P. Perakakis. Impact of Stock Market Structure on Intertrade Time and Price Dynamics. PLoS ONE, 9(4), 04 2014. doi: https://doi.org/10.1371/journal.pone.0092885. A. L. Barabasi and T. Vicsek. Multifractality of self-affine fractals. Phys. Rev. A, 44(4):2730–2733, 08 1991. doi: https://doi.org/10.1103/PhysRevA.44.2730. J. Kwapień, P. Oświęcimka, and S. Drożdż. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys. Rev. E, 92(5), 11 2015. doi: https://doi.org/10.1103/PhysRevE.92.052815. F. Benassi, A. Naccarato, and M. Xu. Taylor's law detects and interprets temporal trends of the spatial distribution of Covid-19 daily infection density across Italian provinces. Research Square, 14, 07 2021. doi: https://doi.org/10.21203/rs.3.rs-626505/v1. Z. S. Ma. Coupling power laws offers a powerful method for problems such as biodiversity and COVID-19 fatality predictions. Front. Appl. Math. Stat., 8, 03 2022. doi: https://doi.org/10.3389/fams.2022.801830. J. Choloniewski. Modelling dynamics of news media, 10 2022. D. Valenti, B. Spagnolo, and G. Bonanno. Hitting time distributions in financial markets. Physica A, 382(1):311–320, 08 2007. doi: https://doi.org/10.1016/j.physa.2007.03.044. B. Spagnolo and D. Valenti. Volatility Effects on the Escape Time in Financial Market Models. Int. J. Bifurc. Chaos Appl. Sci. Eng., 18(9):2775 – 2786, 09 2008. doi: https://doi.org/10.1142/S0218127408022007. D. Valenti, G. Fazio, and B. Spagnolo. Stabilizing effect of volatility in financial markets. Phys. Rev. E, 97(6), 06 2018. doi: https://doi.org/10.1103/PhysRevE.97.062307. A. Giuffrida, D. Valenti, G. Ziino, B. Spagnolo, and A. Panebianco. A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami. Eur. Food. Res. Technol., 228(5):767–775, 12 2008. doi: https://doi.org/10.1007/s00217-008-0988-6. N. Pizzolato, A. Fiasconaro, D. P. Adorno, and B. Spagnolo. Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field. Phys. Biol., 7(3):034001, 08 2010. doi: https://doi.org/10. 1088/1478-3975/7/3/034001. G. Denaro, D. Valenti, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, S. Mazzola, S. W. Zgozi, S. Aronica, and C. Brunet. Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics. Ecol. Complex., 13:21–34, 03 2013. doi: https://doi.org/10.1016/j.ecocom.2012.10.002. G. Falci, A. La Cognata, M. Berritta, A. D’Arrigo, E. Paladino, and B. Spagnolo. Design of a Lambda system for population transfer in superconducting nanocircuits. Phys. Rev. B, 87(21), 06 2013. doi: https://doi.org/10.1103/PhysRevB.87.214515. B. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent random variables. Mathematical Association, 08 2021. https://www.jstor.org/stable/i285536. H. Kleinert. Path Integrals and Financial Markets. In Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, chapter 20, pages 1440–1535. World Scientific Publishing Company, 05 2009. doi: https://doi.org/10.1142/7305. K. Taufemback, R. Giglio, and S. Da Silva. Algorithmic complexity theory detects decreases in the relative efficiency of stock markets in the aftermath of the 2008 financial crisis. Econ. Bull., 31(2):1631 – 1647, 6 2011. G. Parisi and N. Sourlas. Random Magnetic Fields, Supersymmetry, and Negative Dimensions. Phys. Rev. Lett., 43(11):744–745, 09 1979. doi: https://doi.org/10.1103/physrevlett.43.744. I. V. Ovchinnikov. Introduction to Supersymmetric Theory of Stochastics. Entropy, 18(4):108, 03 2016. doi: https://doi.org/10.48550/arxiv.1511.03393. A. Stuart. Kendall’s advanced theory of statistics. Wiley-Blackwell, Hoboken, NJ, 6 edition, 06 1994. E. T. Bell. Partition Polynomials. Ann. Math., 29(1-4):38–46, 07 1927. doi: https://doi.org/10.2307/1967979. T. Kim and D. S. Kim. A Note on Central Bell Numbers and Polynomials. Russ. J. Math. Phys., 27(1):76–81, 01 2020. doi: https://doi.org/10.1134/s1061920820010070. S. Roman. The Formula of Faa Di Bruno. Am. Math. Mon., 87(10):805–809, 12 1980. doi: https://doi.org/10.1080/00029890.1980.11995156. H. Kleinert and X. J. Chen. Boltzmann distribution and market temperature. Physica A, 383(2):513–518, 09 2007. doi: https://doi.org/10.1016/S0378-4371(02)00803-8. H. Kleinert and S. V. Shabanov. Supersymmetry in stochastic processes with higherorder time derivatives. Phys. Lett. A, 235(2):105–112, 10 1997. doi: https://doi.org/10.1016/s0375-9601(97)00660-9. J. J. Sakurai and J. J. Napolitano. Modern Quantum Mechanics. Pearson Education, Philadelphia, PA, 2 edition, 07 2010. R. K. P. Zia, E. F. Redish, and S. R. McKay. Making sense of the Legendre transform. Am. J. Phys., 77(7):614–622, 07 2009. doi: https://doi.org/10.1119/1.3119512. E. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev., 28(6):1049–1070, 12 1926. doi: https://doi.org/10.1103/physrev.28.1049. L. C. Evans. Nonlinear first-order PDE. In Graduate Studies in Mathematics, Graduate studies in mathematics, pages 91–166. American Mathematical Society, Providence, Rhode Island, 2 edition, 03 2010. R. Courant and D. Hilbert. Methods of mathematical physics. Wiley Classics Library. John Wiley & Sons, Nashville, TN, 04 1989. V. N. Popov. Functional integrals in quantum field theory and statistical physics. Mathematical Physics and Applied Mathematics. Springer, New York, NY, 11 2001. P. J. Daniell. Integrals in An Infinite Number of Dimensions. Ann. Math., 20(4):281, 07 1919. doi: https://doi.org/10.2307/1967122. R. Friedrich, J. Peinke, M. Sahimi, and M. R. R. Tabar. Approaching complexity by stochastic methods: From biological systems to turbulence. Phys. Rep., 506(5):87–162, 09 2011. doi: https://doi.org/10.1016/j.physrep.2011.05.003. J. E. Cohen, S. Friedland, T. Kato, and F. P. Kelly. Eigenvalue inequalities for products of matrix exponentials. Linear Algebra Appl., 45:55–95, 06 1982. doi: https://doi.org/10.1016/0024-3795(82)90211-7. A. Issaka and I. SenGupta. Feynman path integrals and asymptotic expansions for transition probability densities of some Lévy driven financial markets. J. Appl. Math. Comput., 54(1-2):159–182, 03 2016. doi: https://doi.org/10.1007/s12190-016-1002-2. R. LePage, K. Podgórski, and M. Ryznar. Strong and conditional invariance principles for samples attracted to stable laws. Probab. Theory Relat. Fields, 108(2):281–298, 06 1997. doi: https://doi.org/10.1007/s004400050110. A. Piryatinska. Inference for the Lévy models and their applications in medicine and statistical physics, 10 2005. J. P. Bouchaud and M. Mézard. Wealth condensation in a simple model of economy. Physica A, 282(3-4):536–545, 07 2000. doi: https://doi.org/10.1016/S0378-4371(00)00205-3. D. S. Quevedo and C. Quimbay. Non-conservative kinetic model of wealth exchange with saving of production. Eur. Phys. J. B, 93(10), 10 2020. doi: https://doi.org/10.1140/epjb/e2020-10193-3. R. Aroussi. Download market data from Yahoo! Finance API. Python, 2023. A. A. Dragulescu and V. M. Yakovenko. Probability distribution of returns in the Heston model with stochastic volatility. arXiv, 03 2004. doi: https://doi.org/10.48550/arXiv.cond-mat/0203046. F. Abril. Temporal_Fluctuation_Scaling. GitHub repository, 2023. https://github.com/fsabrilb/Temporal_Fluctuation_Scaling. H. E. Stanley, L. A. N. Amaral, P. Gopikrishnan, P. C. Ivanov, T. H. Keitt, and V. Plerou. Scale invariance and universality: organizing principles in complex systems. Physica A, 281(1-4):64–68, 06 2000. doi: https://doi.org/10.1016/s0378-4371(00)00195-3. B. Mandelbrot. The fractal geometry of nature. W. H. Freeman, New York, NY, 11 1982. C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger. Mosaic organization of DNA nucleotides. Phys. Rev. E, 49(2):1685–1689, 02 1994. doi: https://doi.org/10.1103/physreve.49.1685. F. Bourguignon. Decomposable Income Inequality Measures. Econometrica, 47(4):901, 07 1979. doi: https://doi.org/10.2307/1914138. F. Bourguignon and C. Morrison. Inequality among World Citizens: 1820-1992. Am. Econ. Rev., 92(4):727–744, 08 2002. doi: http://dx.doi.org/10.1257/00028280260344443. J. Miśkiewicz. Analysis of Time Series Correlation. The Choice of Distance Metrics and Network Structure. Acta Phys. Pol. A, 121(2B):B–89–B–94, 02 2012. doi: https://doi.org/10.12693/APHYSPOLA.121.B-89. J. Iglesias and R. M. C. de Almeida. Entropy and equilibrium state of free market models. Eur. Phys. J. B, 85(3), 03 2012. doi: https://doi.org/10.1140/epjb/e2012-21036-1. M. J. Salois. Regional changes in the distribution of foreign aid: An entropy approach. Physica A, 392(13):2893–2902, 07 2013. doi: https://doi.org/10.1016/j.physa.2013.02.007. T. Andrei, B. Oancea, P. Richmond, G. Dhesi, and C. Herteliu. Decomposition of the Inequality of Income Distribution by Income Types—Application for Romania. Entropy, 19(9):430, 09 2017. doi: https://doi.org/10.3390/e19090430. A. F. Shorrocks. The Class of Additively Decomposable Inequality Measures. Econometrica, 48(3):613, 04 1980. doi: https://doi.org/10.2307/1913126. L. I. Kuncheva and C. J. Whitaker. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Mach. Learn., 51(2):181–207, 2003. doi: https://doi.org/10.1023/A:1022859003006. J. V. T. de Lima, S. L. E. F. da Silva, J. M. de Araújo, G. Corso, and G. Z. Lima. Nonextensive statistical mechanics for robust physical parameter estimation: the role of entropic index. Eur. Phys J. Plus, 136(3), 03 2021. doi: https://doi.org/10.1140/epjp/s13360-021-01274-6. C. Chatterjee, A. Ghosh, J. Inoue, and B. K. Chakrabarti. Social inequality: from data to statistical physics modeling. J. Phys. Conf. Ser., 638:012014, 09 2015. doi: https://doi.org/10.1088/1742-6596/638/1/012014. I. Eliazar and I. M. Sokolov. Maximization of statistical heterogeneity: From Shannon’s entropy to Gini’s index. Physica A, 389(16):3023–3038, 08 2010. doi: https://doi.org/10.1016/j.physa.2010.03.045. L. Landau. The Theory of Phase Transitions. Nature, 138(3498):840 – 841, 11 1936. doi: https://doi.org/10.1038/138840a0. L. Landau. On the theory of superconductivity. In Collected Papers of L.D. Landau, pages 217–225. Elsevier, 1965. doi: https://doi.org/10.1016/b978-0-08-010586-4.50035-3. T. Lancaster and S. J. Blundell. Quantum field theory for the gifted amateur. Oxford University Press, London, England, 04 2014. Chapter 26 and 35. M. V. Milošević and R. Geurts. The Ginzburg–Landau theory in application. Physica C, 470:791–795, 10 2010. doi: https://doi.org/10.1016/j.physc.2010.02.056. J. Als-Nielsen. Neutron Scattering and Spatial Correlation near the Critical Point. In Phase Transition and Critical Phenomena, volume 5a, pages 87–163. Academic Press, San Diego, CA, 04 1976. J. S. Rowlinson. Liquids and liquid mixtures. Butterworth-Heinemann, Oxford, England, 3 edition, 01 1982. M. E. Lines and A. M. Glass. Principles and applications of ferroelectrics and related materials. Oxford University Press, London, England, 02 2001. doi: https://doi.org/10.1093/acprof:oso/9780198507789.001.0001. R. K. Pathria and P. D. Beale. Statistical mechanics. Elsevier, 3 edition, 2011. J. Chakravarty and D. Jain. Critical exponents for higher order phase transitions: Landau theory and RG flow. J. Stat. Mech., 2021(9):093204, 09 2021. doi: https://doi.org/10.1088/1742-5468/ac1f11. C. E. Ekuma, G. C. Asomba, and C. M. I. Okoye. Ginzburg–Landau theory for higher order phase transition. Physica C, 472(1):1–4, 01 2012. doi: https://doi.org/10.1016/j.physc.2011.09.015. C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J., 27(3):379–423, 07 1948. doi: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x. E. T. Jaynes. Information Theory and Statistical Mechanics. Phys. Rev., 106(4):620–630, 05 1957. doi: https://doi.org/10.1103/PhysRev.106.620. N. Laskin. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A, 268(4-6):298–305, 04 2000. doi: https://doi.org/10.1016/S0375-9601(00)00201-2. J. Goldstone. Field theories with Superconductor solutions. Il Nuovo Cimento, 19(1):154–164, 01 1961. doi: https://doi.org/10.1007/bf02812722. V. E. Tarasov and G. M. Zaslavsky. Fractional Ginzburg-Landau equation for fractal media. Physica A, 354:249–261, 08 2005. doi: https://doi.org/10.1016/j.physa.2005.02.047. Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He. Soliton dynamics in a fractional complex Ginzburg-Landau model. Chaos Solitons Fractals, 131(109471), 02 2020. doi: https://doi.org/10.1016/j.chaos.2019.109471. E. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento, 20(3):454–477, 05 1961. doi: https://doi.org/10.1007/BF02731494. D. A. Tayurskii and Y. V. Lysogorskiys. Superfluid hydrodynamic in fractal dimension space. J. Phys. Conf. Ser., 394:012004, 11 2012. doi: https://doi.org/10.1088/1742-6596/394/1/012004. National Office of Oceanic and Atmospheric Administration. Daily Summaries. NOAA, 2023. F. Abril. Temporal_Theil_Scaling. GitHub repository, 2023. https://github.com/fsabrilb/Temporal_Theil_Scaling. B. B. Mandelbrot. Multifractal measures, especially for the geophysicist. Pure Appl. Geophys., 131(1-2):5–42, 05 1989. doi: https://doi.org/10.1007/bf00874478. E. A. Novikov. Intermittency and scale similarity in the structure of a turbulent flow. Journal of Applied Mathematics and Mechanics, 35(2):231–241, 01 1971. doi: https://doi.org/10.1016/0021-8928(71)90029-3. T. Di Matteo. Multi-scaling in finance. Quant. Finance, 7(1):21–36, 02 2007. doi: https://doi.org/10.1080/14697680600969727. B. Mandelbrot. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 156(3775):636–638, 05 1967. doi: https://doi.org/10.1126/science.156.3775.636. A. Rényi. On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hungaricae, 10(1-2):193–215, 03 1959. doi: https://doi.org/10.1007/bf02063299. T. Vicsek. Fractal Growth Phenomena. World Scientific Publishing Company, 06 1992. doi: https://doi.org/10.1142/1407. P. Grassberger and I. Procaccia. The liapunov dimension of strange attractors. J. Differ. Equ., 49(2):185–207, 08 1983. doi: https://doi.org/10.1016/0022-0396(83)90011-6. T. Higuchi. Approach to an irregular time series on the basis of the fractal theory. Physica D, 31(2):277–283, 06 1988. doi: https://doi.org/10.1016/0167-2789(88)90081-4. T. Gneiting, H. Ševčíková, and D. B. Percival. Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data. Stat. Sci., 27(2), 05 2012. doi: https://doi.org/10.1214/11-sts370. W. S. Kendal and B. Jørgensen. Tweedie convergence: A mathematical basis for Taylor's power law, 1/f noise, and multifractality. Phys. Rev. E, 84(6), 12 2011. doi: https://doi.org/10.1103/physreve.84.066120. B. Jørgensen and C. C. Kokonendji. Dispersion models for geometric sums. Braz. J. Probab. Stat., 25(3), 11 2011. doi: https://doi.org/10.1214/10-bjps136. H. Xu, G. Gu, and W. Zhou. Direct determination approach for the multifractal detrending moving average analysis. Phys. Rev. E, 96(5), 11 2017. doi: https://doi.org/10.1103/physreve.96.052201. M. S. Taqqu. Benoît Mandelbrot and Fractional Brownian Motion. Stat. Sci., 28(1), 02 2013. doi: https://doi.org/10.1214/12-sts389. A. N. Kolmogorov. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Acad. Sci. URSS, 26:115–118, 01 1940. G. A. Hunt. Random Fourier transforms. Trans. Amer. Math. Soc., 71:38–69, 01 1951. A. M. Yaglom. Correlation theory of processes with random stationary nth increments. Mat. Sb. N.S., 79(37), 01 1955. H. Grad. The many faces of entropy. Commun. Pure Appl. Math., 14(3):323–354, 08 1961. doi: https://doi.org/10.1002/cpa.3160140312. R. Schumacher. The Generalization of Faulhaber’s Formula to Sums of Arbitrary Complex Powers. arXiv, 03 2021. doi: https://doi.org/10.48550/arxiv.2103.08027. L. Rydin-Gorjão, G. Hassan, J. Kurths, and D. Witthaut. MFDFA: Efficient multifractal detrended fluctuation analysis in python. Comput. Phys. Commun., 273:108254, 04 2022. doi: https://doi.org/10.1016/j.cpc.2021.108254. F. Abril. Generalized_Shannon_Index. GitHub repository, 2023. https://github.com/fsabrilb/Generalized_Shannon_Index. R. Adamczak, J. Prochno, M. Strzelecka, and M. Strzelecki. Norms of structured random matrices. Math. Ann., 04 2023. doi: https://doi.org/10.1007/s00208-023-02599-6. A. D. Fokker. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. der Physik, 348(5):810–820, 01 1914. doi: https://doi.org/10.1002/andp.19143480507. N. Laskin. Fractional Schrödinger equation. Phys. Rev. E, 66(5), 11 2002. doi: https://doi.org/10.1103/physreve.66.056108. H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4):284–304, 04 1940. doi: https://doi.org/10.1016/s0031-8914(40)90098-2. J. E. Moyal. Stochastic Processes and Statistical Physics. J. R. Stat. Soc. Ser. B Meth., 11(2):150–210, 01 1949. https://www.jstor.org/stable/2984076. P. Jung and P. Hänggi. Dynamical systems: A unified colored-noise approximation. Phys. Rev. A, 35(10):4464–4466, 05 1987. doi: https://doi.org/10.1103/physreva.35.4464. P. Hänggi and P. Jung. Colored Noise in Dynamical Systems. In Advances in Chemical Physics, pages 239–326. John Wiley & Sons, 03 2007. doi: https://doi.org/10.1002/9780470141489.ch4. C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys., 52(1-2):479–487, 07 1988. doi: https://doi.org/10.1007/bf01016429. E. M. F. Curado and C. Tsallis. Generalized statistical mechanics: connection with thermodynamics. J. Phys. A Math. Theor., 24(2):L69–L72, 01 1991. doi: https://doi.org/10.1088/0305-4470/24/2/004. E. M. F. Curado and C. Tsallis. Generalized statistical mechanics: connection with thermodynamics. J. Phys. A Math. Theor., 25(4):1019–1019, 02 1992. doi: https://doi.org/10.1088/0305-4470/25/4/038. L. Borland. Ito-Langevin equations within generalized thermostatistics. Phys. Lett. A, 245(1-2):67–72, 08 1998. doi: https://doi.org/10.1016/s0375-9601(98)00467-8. M. Gell-Mann and C. Tsallis. Nonextensive Entropy. Oxford University Press, New York, NY, 03 2004. C. H. Eab and S. C. Lim. Path integral representation of fractional harmonic oscillator. Physica A, 371(2):303–316, 11 2006. doi: https://doi.org/10.1016/j.physa.2006.03.029. A. H. Bhrawy and M. A. Zaky. An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl. Numer. Math., 111:197–218, 01 2017. doi: https://doi.org/10.1016/j.apnum.2016.09.009. P. Capuozzo, E. Panella, T. Schettini-Gherardini, and D. D. Vvedensky. Path integral Monte Carlo method for option pricing. Physica A, 581:126231, 11 2021. doi: https://doi.org/10.1016/j.physa.2021.126231. V. E. Tarasov and G. M. Zaslavsky. Fractional generalization of Kac integral. Commun. Nonlinear. Sci. Numer. Simul., 13(2):248–258, 03 2008. doi: https://doi.org/10.1016/j.cnsns.2007.04.020. A. V. Chechkin, R. Metzler, J. Klafter, and V. Y. Gonchar. Introduction to the Theory of Lévy Flights. In Anomalous Transport, pages 129–162. Wiley-VCH Verlag GmbH and Co. KGaA, 07 2008. doi: https://doi.org/10.1002/9783527622979.ch5. R. Hilfer. Applications of fractional calculus in physics. World Scientific Publishing Company, 03 2000. doi: https://doi.org/10.1142/3779. P. D. Lax. Change of Variables in Multiple Integrals. Am. Math. Mon., 106(6):497–501, 06 1999. doi: https://doi.org/10.1080/00029890.1999.12005078. J. Munkhammar. Riemann-Liouville Fractional Derivatives and the Taylor-Riemann Series, 06 2004. M. D. Ortigueira. Riesz potential operators and inverses via fractional centered derivatives. Int. J. Math. Math. Sci., 2006:1–12, 06 2006. doi: https://doi.org/10.1155/ijmms/2006/48391. C. Çelik and M. Duman. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys., 231(4):1743–1750, 02 2012.doi: https://doi.org/10.1016/j.jcp.2011.11.008. R. A. Aljethi and A. Kılıçman. Derivation of the Fractional Fokker-Planck Equation for Stable Lévy with Financial Applications. Mathematics, 11(5):1102, 02 2023. doi: https://doi.org/10.3390/math11051102. R. Metzler and J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339(1):1–77, 12 2000. doi: https://doi.org/10.1016/S0370-1573(00)00070-3. F. Mainardi, Y. Luchko, and G. Pagnini. The fundamental solution of the space-time fractional diffusion equation. arXiv, 02 2007. doi: https://doi.org/10.48550/arXiv.cond-mat/0702419. K. M. Kolwankar. Local Fractional Calculus: a Review. arXiv, 07 2013. doi: https://doi.org/10.48550/arxiv.1307.0739. F. Olivar-Romero and O. Rosas-Ortiz. Fractional Driven Damped Oscillator. J. Phys. Conf. Ser., 839:012010, 05 2017. doi: https://doi.org/10.1088/1742-6596/839/1/012010. Podcast UNAL. Physics Sounds: Episodio 4: Econo-física. http://podcastradio.unal.edu.co/detalle/episodio-4-econo-fisica, 03 2022. G. B. Folland. Advanced Calculus. Pearson, Upper Saddle River, NJ, 12 2001. p. 193. K. B. Oldham and P. Howlett. The fractional calculus. Elsevier Science & Technology, 05 2014. J. Klafter, A. Blumen, and M. F. Shlesinger. Stochastic pathway to anomalous diffusion. Phys. Rev. A, 35(7):3081–3085, 04 1987. doi: https://doi.org/10.1103/physreva.35.3081. J. Klafter, S. C. Lim, and R. Metzler. Fractional Dynamics. World Scientific Publishing Company, 10 2011. doi: https://doi.org/10.1142/8087. M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter. Strange kinetics. Nature, 363(6424):31–37, 05 1993. doi: https://doi.org/10.1038/363031a0. I. S. Gradshteyn and I. M. Ryzhik. Definite Integrals of Elementary Functions. In Table of Integrals, Series, and Products. Elsevier Science & Technology, San Diego, California, 7 edition, 01 2007. Formula 3.944.5 and 3.944.6. H. Bateman. Higher Transcendental Functions, volume 1. McGraw-Hill Book Company, New York, NY, 1953. Sec. 1.11, formula (14). J. E. Robinson. Note on the Bose-Einstein Integral Functions. Phys. Rev., 83(3):678–679, 08 1951. doi: https://doi.org/10.1103/PhysRev.83.678. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 160 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Departamento de Física - Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85513/2/1013671689.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85513/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/85513/4/1013671689.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
e83a4ec8f62fbc318c2c7c9142838c13 eb34b1cf90b7e1103fc9dfd26be24b4a 513979382778f13f7f15cdea533ff5a7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090141174595584 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quimbay Herrera, Carlos José8085b0115e03c75c6f713b3beab55a6a600Abril Bermúdez, Felipe Segundoc283cecd72678587dc9ea4eda9e9f1a5Econofisica y SociofisicaFelipe Segundo Abril Bermúdez [0000-0002-2512-4929]Felipe Segundo Abril BermúdezFelipe Segundo Abril BermúdezFelipe Segundo Abril Bermúdez2024-01-30T15:09:12Z2024-01-30T15:09:12Z2024-01-29https://repositorio.unal.edu.co/handle/unal/85513Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramasEn esta tesis doctoral se propone extender los procesos fraccionales estables, como el movimiento browniano fraccionario, haciendo uso del formalismo de la integral de camino de tal manera que tenga asociada una distribución de Levy truncada, estableciendo un vínculo entre el exponente de Hurst y el exponente del escalamiento temporal de Theil, y verificando este vínculo en series de tiempo no estacionarias empíricas. Para ello, como punto de referencia de la correcta construcción de una integral de camino estocástica, se propone primero explicar la existencia del escalamiento de la fluctuación temporal y la variación temporal de su exponente introduciendo una contribución estocástica dependiente del tiempo en la función generadora de cumulantes de la probabilidad de transición entre dos tiempos de una variable estocástica descrita en términos de un kernel de Feynman. Así, la función generadora de cumulantes se identifica como el hamiltoniano del sistema y la integral de trayectoria estocástica se inscribe en el contexto de la teoría supersimétrica de la dinámica estocástica. Con base en estos resultados y utilizando el índice de Shannon, se encuentra un nuevo escalamiento temporal denominado escalamiento temporal del índice de Theil en series de tiempo de trayectorias difusivas. De hecho, la existencia del escalamiento temporal del Theil se muestra en una amplia variedad de series de tiempo empíricas que utilizan el algoritmo de trayectoria difusiva. Además, el escalamiento temporal del Theil puede describirse como una transición de fase asociada con un funcional de energía con exponentes fraccionales y con un parámetro de orden asociado con el índice de Shannon normalizado a su valor máximo. Luego, se investiga la dependencia del exponente de Hurst generalizado con el exponente del escalamiento temporal del Theil en series de tiempo, estableciendo una relación teórica desde el enfoque de la función de partición multifractal. Finalmente, la generalización de la fórmula de Feynman-Kac se realiza en procesos fraccionales estables independiente del tipo de ruido subyacente en el sistema y teniendo en cuenta el formalismo de la integral de camino estocástica. Así, el formalismo de la integral de camino estocástica fraccional se define en términos de la función generadora de cumulantes del ruido del sistema y se aplica al caso particular de una distribución de Levy truncada. (Texto tomado de la fuente)In this doctoral thesis, it is proposed to extend the fractional stable processes, such as the fractional Brownian motion, making use of the path integral formalism in such a way that they have an associated truncated Levy distribution, establishing a link between the Hurst exponent and the temporal Theil scaling exponent and verifying this link in non-stationary empirical time series. To do this, as a benchmark of the correct construction of a stochastic path integral, it is first proposed to explain the existence of the temporal fluctuation scaling and the temporal variation of its exponent by introducing a time-dependent stochastic contribution in the cumulant generating function of the probability of change between two times of a stochastic variable described in terms of a Feynman kernel. Thus, the cumulant generating function is identified as the Hamiltonian of the system and the stochastic path integral is inscribed in the context of the supersymmetric theory of stochastic dynamics. Based on these results and using the Shannon index, a new time scaling called temporal Theil scaling is found in time series of diffusive trajectories. Indeed, the existence of temporal Theil scaling is shown in a wide variety of empirical time series using the diffusive path algorithm. Furthermore, the temporal Theil scaling can be described as a phase transition associated with an energy functional with fractional exponents and with an order parameter associated with the Shannon index normalized to its maximum value. Then, the temporal dependence of the generalized Hurst exponent with the temporal Theil scaling exponent in time series is investigated, establishing a theoretical relationship from the multifractal partition function approach. Finally, the generalization of the Feynman-Kac formula is made in fractional stable processes independent of the type of underlying noise in the system and taking into account the formalism of the stochastic path integral. Thus, the formalism of the fractional stochastic path integral is defined in terms of the cumulant generating function of the noise of the system and it is applied to the particular case of a truncated Levy distribution.DoctoradoDoctor en Ciencias - Físicaxviii, 160 páginasapplication/pdfengDepartamento de Física - Universidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física moderna330 - Economía::332 - Economía financiera510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasMultifractal systemSupersymmetryFractional calculusAnálisis multifractalSupersimetríaCálculo fraccionarioMovimiento brownianoAnálisis de series de tiempoProcesos estocásticosBrownian movementsTime-series analysisStochastic processesFractional stochastic path integral formalismFractional Brownian motionEconophysicsMultifractalityShannon indexSupersymmetric theory of stochastic dynamicsFormalismo de integral de camino estocástica fraccionalMovimiento Browniano fraccionalEconofísicaMultifractalidadÍndice de ShannonTeoría supersimétrica de la dinámica estocásticaEconofísicaEconophysicsFractional Brownian motion applied to the study of the dynamics associated with non-stationary time seriesMovimiento Browniano fraccional aplicado al estudio de la dinámica asociada con series de tiempo no estacionariasTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDF. S. Abril and C. J. Quimbay. Temporal fluctuation scaling in non-stationary time series using the path integral formalism. Phys. Rev. E, 103(4), 04 2021. doi: https://doi.org/10.1103/PhysRevE.103.042126.F. S. Abril and C. J. Quimbay. Temporal Theil scaling in diffusive trajectory time series. Phys. Rev. E, 106(1), 07 2022. doi: https://doi.org/10.1103/PhysRevE.106.014117.F. S. Abril and C. J. Quimbay. Evolution of temporal fluctuation scaling exponent in nonstationary time series using supersymmetric theory of stochastic dynamics. Manuscript accepted to be published on Phys. Rev. E at: https://journals.aps.org/pre/accepted/02074Rb1Xe31ac2a727e1f49be6f73c21dba65baf, 01 2024.F. S. Abril and C. J. Quimbay. Temporal fluctuation scaling and temporal Theil scaling in financial time series. In Advances in quantitative methods for economics and business. Springer, 07 2024. Manuscript accepted to be published as a chapter (forthcoming).F. S. Abril, J. E. Trinidad-Segovia, M. A. Sánchez-Granero, and C. J. Quimbay. Generalized Shannon index as a multifractal measure in financial time series. Department of Physics, Universidad Nacional de Colombia. Manuscript submitted for publication, 01 2024.F. S. Abril and C. J. Quimbay. Feynman-Kac formula driven by an arbitrary fractional noise. Department of Physics, Universidad Nacional de Colombia. Manuscript submitted for publication, 11 2023.F. S. Abril and C. J. Quimbay. Universality on the Spatial and Temporal Spread of Covid-19. Manuscript on webpage at: https://dx.doi.org/10.2139/ssrn.4511708, 2023.V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, and H. E. Stanley. Econophysics: financial time series from a statistical physics point of view. Physica A, 279(1-4):443–456, 05 2000. doi: https://doi.org/10.1016/s0378-4371(00)00010-8.H. E. Stanley, S. V. Buldyrev, G. Franzese, S. Havlin, F. Mallamace, P. Kumar, V. Plerou, and T. Preis. Correlated randomness and switching phenomena. Physica A, 389(15):2880–2893, 08 2010. doi: https://doi.org/10.1016/j.physa.2010.02.023.H. E. Stanley, V. Afanasyev, L. A. N. Amaral, S. V. Buldyrev, A. L. Goldberger, S. Havlin, H. Leschhorn, P. Maass, R. N. Mantegna, C. K. Peng, P. A. Prince, M. A. Salinger, M. H. R. Stanley, and G. M. Viswanathan. Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Physica A, 224(1-2):302–321, 02 1996. doi: https://doi.org/10.1016/0378-4371(95)00409-2.R. N. Mantegna and H. E. Stanley. Scaling behavior in the dynamics of an economic index. Nature, 376(6535):46–49, 05 1993. doi: https://doi.org/10.1038/376046a0.H. M. Gupta and J. R. Campanha. The gradually truncated Lévy flight for systems with power-law distributions. Physica A, 268(1-2):231–239, 06 1999. doi: https://doi.org/10.1016/S0378-4371(99)00028-X.R. N. Mantegna and H. E. Stanley. Ultra-slow convergence to a Gaussian: The truncated Lévy flight. In Lévy Flights and Related Topics in Physics, pages 300–312. Springer, Berlin Heidelberg, Germany, 2005. doi: https://doi.org/10.1007/3-540-59222-9_42.A. Dragulescu and V. M. Yakovenko. Statistical mechanics of money. Eur. Phys. J. B, 17(4):723–729, 10 2000. doi: https://doi.org/10.1007/s100510070114.M. Patriarca, A. Chakraborti, and K. Kaski. Statistical model with a standard Gamma distribution. Phys. Rev. E, 70(1), 07 2004. doi: https://doi.org/10.1103/PhysRevE.70.016104.A. C. Silva, R. E. Prange, and V. M. Yakovenko. Exponential Distribution of Financial Returns at Mesoscopic Time Lags: A New Stylized Fact. Physica A, 344(1-2):227–235, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.122.J. P. Bouchaud. Elements for a theory of financial risks. Physica A, 263(1-4):415–426, 02 1999. doi: https://doi.org/10.1016/s0378-4371(98)00486-5.H. Kleinert. Stochastic calculus for assets with non-Gaussian price fluctuations. Physica A, 311(3-4):536–562, 08 2002. doi: https://doi.org/10.1016/S0378-4371(02)00803-8.T. Lix and F. Westerhoff. Economics crisis. Nature Phys., 5(1):2–3, 01 2009. doi: https://doi.org/10.1038/nphys1163.J. D. Farmer and D. Foley. The economy needs agent-based modelling. Nature, 460(7256):685–686, 08 2009. doi: https://doi.org/10.1038/460685a.C. Schinckus. Economic uncertainty and econophysics. Physica A, 388(20):4415–4423, 10 2009. doi: https://doi.org/10.1016/j.physa.2009.07.008.C. Schinckus. Between complexity of modelling and modelling of complexity: An essay on econophysics. Physica A, 392(17):3654–3665, 09 2013. doi: https://doi.org/10.1016/j.physa.2013.04.005.A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel. Econophysics review: I. Empirical facts. Quant. Finance, 11(7):991–1012, 06 2011. doi: https://doi.org/10.1080/14697688.2010.539248.J. M. Courtault, Y. Kabanov, B. Bru, P. Crepel, I. Lebon, and A. Marchand. Louis Bachelier on the Centenary of Theorie de la Speculation. Math. Financ., 10(3):339–353, 07 2000. doi: https://doi.org/10.1111/1467-9965.00098.A. Einstein. über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys., 322(8):549–560, 07 1905. doi: https://doi.org/10.1002/andp.19053220806.N. G. van Kampen. Itô versus Stratonovich. J. Stat. Phys., 24(1):175–187, 01 1981. doi: https://doi.org/10.1007/bf01007642.M. F. M. Osborne. Brownian Motion in the Stock Market. Oper. Res., 7(2):145–173, 04 1959. doi: https://doi.org/10.1287/opre.7.2.145.F. Black and M. Scholes. The pricing of options and corporate liabilities. In World Scientific Reference on Contingent Claims Analysis in Corporate Finance, pages 3–21. World Scientific Publishing Company, 03 2019. doi: https://doi.org/10.1142/9789814759588_0001.H. Föllmer and A. Schied. Stochastic Finance. De Gruyter, 12 2004. doi: https://doi.org/10.1515/9783110212075.B. Mandelbrot. The Pareto–Levy law and the distribution of income. Intl. Econ. Rev., 1(2):79–106, 05 1960. doi: https://doi.org/10.2307/2525289.B. Mandelbrot. The variation of certain speculative prices. J. Bus., 36(4):394–419, 10 1963. https://www.jstor.org/stable/2351623.S. L. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Rev. Financ. Stud., 6(2):327–343, 04 1993. https://doi.org/10.1093/rfs/6.2.327.P. Tankov and R. Cont. Financial modelling beyond Brownian motion 1. In Financial Modelling with Jump Processes. Chapman and Hall/CRC, 12 2003.B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review, 10(4):422–437, 10 1968. doi: https://doi.org/10.1137/1010093.Z. Jiang, W. Xie, W. Zhou, and D. Sornette. Multifractal analysis of financial markets: a review. Rep. Prog. Phys., 82(12), 11 125901. doi: https://doi.org/10.1088/1361-6633/ab42fb.J. Rosiński. Tempering stable processes. Stoch. Process. Their Appl., 117(6):677–707, 06 2007. doi: https://doi.org/10.1016/j.spa.2006.10.003.M. A. Sánchez-Granero, J. E. Trinidad-Segovia, and J. García-Pérez. Some comments on Hurst exponent and the long memory processes on capital markets. Physica A, 387(22):5543–5551, 09 2008. doi: https://doi.org/10.1016/j.physa.2008.05.053.M. Fernández-Martínez, M. A. Sánchez-Granero, and J. E. Trinidad-Segovia. Measuring the self-similarity exponent in Lévy stable processes of financial time series. Physica A, 392(21):5330 – 5345, 11 2013. doi: https://doi.org/10.1016/j.physa.2013.06.026.M. Fernández-Martínez, M. A. Sánchez-Granero, J. E. Trinidad-Segovia, and I. M. Román-Sánchez. An accurate algorithm to calculate the Hurst exponent of self-similar processes. Phys. Lett. A, 378(32-33):2355–2362, 06 2014. doi: https://doi.org/10.1016/j.physleta.2014.06.018.H. Lotfalinezhad and A. Maleki. TTA, a new approach to estimate Hurst exponent with less estimation error and computational time. Physica A, 553:124093, 09 2020. doi: https://doi.org/10.1016/j.physa.2019.124093.A. Gómez-Águila, J. E. Trinidad-Segovia, and M. A. Sánchez-Granero. Improvement in Hurst exponent estimation and its application to financial markets. Financial Innov., 8(1), 09 2022. doi: https://doi.org/10.1186/s40854-022-00394-x.H. E. Hurst. Long-Term Storage Capacity of Reservoirs. ASCE Trans., 116(1):770–799, 01 1951. doi: https://doi.org/10.1061/taceat.0006518.L. A. Martín-Montoya, N. M. Aranda-Camacho, and C. J. Quimbay. Long-range correlations and trends in Colombian seismic time series. Physica A, 421:124–133, 03 2015. doi: https://doi.org/10.1016/j.physa.2014.10.073.M. Tokeshi. On the mathematical basis of the variance-mean power relationship. Popul. Ecol., 37(1):43–48, 06 1995. doi: https://doi.org/10.1007/BF02515760.J. W. Kirchner, X. Feng, and C. Neal. Fractal stream chemistry and its implications for contaminant transport in catchments. Nature, 403(6769):524–527, 02 2000. doi: https://doi.org/10.1038/35000537.J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 316(1-4):87–114, 12 2002. doi: https://doi.org/10.1016/S0378-4371(02)01383-3.K. Linkenkaer-Hansen, V. V. Nikouline, J. M. Palva, and R. J. Ilmoniemi. LongRange Temporal Correlations and Scaling Behavior in Human Brain Oscillations. J. Neurosci., 21(4):1370–1377, 02 2001. doi: https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001.G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66(4):1125–1388, 10 1994. doi: https://doi.org/10.1103/RevModPhys.66.1125.G. Paladin and A. Vulpiani. Anomalous scaling laws in multifractal objects. Phys. Rep., 156(4):147–225, 12 1987. doi: https://doi.org/10.1016/0370-1573(87)90110-4.P. Gopikrishnan, V. Plerou, L. A. Nunes Amaral, M. Meyer, and H. E. Stanley. Scaling of the distribution of fluctuations of financial market indices. Phys. Rev. E, 60(5):5305–5316, 11 1999. doi: https://doi.org/10.1103/PhysRevE.60.5305.V. Plerou and H. E. Stanley. Tests of scaling and universality of the distributions of trade size and share volume: Evidence from three distinct markets. Phys. Rev. E, 76(4), 10 2007. doi: https://doi.org/10.1103/PhysRevE.76.046109.M. A. Sánchez-Granero, J. E. Trinidad-Segovia, J. García, and M. Fernández. The Effect of the Underlying Distribution in Hurst Exponent Estimation. PLoS One, 10(5):e0127824, 05 2015. doi: https://doi.org/10.1371/journal.pone.0127824.J. Barunik and L. Kristoufek. On Hurst exponent estimation under heavy-tailed distributions. Physica A, 389(18):3844–3855, 09 2010. doi: https://doi.org/10.1016/j.physa.2010.05.025.Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi. Financial market models with Lévy processes and time-varying volatility. J. Bank. Financ., 32(7):1363–1378, 07 2008. doi: https://doi.org/10.1016/j.jbankfin.2007.11.004.P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica D, 9(1-2):189–208, 10 1983. doi: https://doi.org/10.1016/0167-2789(83)90298-1.A. Carbone, G. Castelli, and H. E. Stanley. Time-dependent Hurst exponent in financial time series. Physica A, 344(1-2):267–271, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.130.M. A. de Menezes and A. L. Barabási. Fluctuations in Network Dynamics. Phys. Rev. Lett., 92(2), 01 2004. doi: https://doi.org/10.1103/PhysRevLett.92.028701.Z. Eisler and J. Kertész. Scaling theory of temporal correlations and size-dependent fluctuations in the traded value of stocks. Phys. Rev. E, 73(4), 04 2006. doi: https://doi.org/10.1103/PhysRevE.73.046109.Z. Eisler, I. Bartos, and J. Kertész. Fluctuation scaling in complex systems: Taylor's law and beyond. Adv. Phys., 57(1):89–142, 01 2008. doi: https://doi.org/10.1080/00018730801893043.A. Fronczak and P. Fronczak. Origins of Taylor’s power law for fluctuation scaling in complex systems. Phys. Rev. E, 81(6), 06 2010. doi: https://doi.org/10.1103/PhysRevE.81.066112.J. E. Cohen and M. Xu. Random sampling of skewed distributions implies Taylor’s power law of fluctuation scaling. Proc. Natl. Acad. Sci., 112(25):7749–7754, 04 2015. doi: https://doi.org/10.1073/pnas.1503824112.Z. Eisler, J. Kertész, S. H. Yook, and A. L. Barabási. Multiscaling and nonuniversality in fluctuations of driven complex systems. Europhys. Lett., 69(4):664–670, 02 2005. doi: https://doi.org/10.1209/epl/i2004-10384-1.L. Blanco, V. Arunachalam, and S. Dharmaraja. Introduction to probability and stochastic processes with applications. John Wiley & Sons, Nashville, TN, 06 2012.N. Scafetta and P. Grigolini. Scaling detection in time series: Diffusion entropy analysis. Phys. Rev. E, 66(3), 09 2002. doi: https://doi.org/10.1103/PhysRevE.66.036130.G. Trefán, E. Floriani, B. J. West, and P. Grigolini. Dynamical approach to anomalous diffusion: Response of Lévy processes to a perturbation. Phys. Rev. E, 50(4):2564–2579, 11 1994. doi: https://doi.org/10.1103/PhysRevE.50.2564.J. Qi and H. Yang. Hurst exponents for short time series. Phys. Rev. E, 84(6), 12 2011. doi: https://doi.org/10.1103/PhysRevE.84.066114.I. F. Spellerberg and P. J. Fedor. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ShannonWiener Index. Glob. Ecol. Biogeogr., 12(3):177–179, 04 2003. doi: https://doi.org/10.1046/j.1466-822x.2003.00015.x.J. Johnston and H. Theil. Economics and information theory. Econ. J., 79(315):601, 09 1969. doi: https://doi.org/10.2307/2230396.J. M. Sarabia, V. Jordá, and L. Remuzgo. The Theil Indices in Parametric Families of Income Distributions—A Short Review. Rev. Income Wealth, 63(4):867–880, 11 2016. doi: https://doi.org/10.1111/roiw.12260.F. Cowell. Theil, Inequality and the Structure of Income Distribution. Theil, Inequality and the Structure of Income Distribution, 2003.D. Schertzer, M. Larchev, J. Duan, V. V. Yanovsky, and S. Lovejoy. Fractional Fokker–Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises. arXiv, 09 2004. doi: https://doi.org/10.48550/arXiv.math/0409486.I. Calvo, R. Sánchez, and B. A. Carreras. Fractional Lévy motion through path integrals. J. Phys. A Math. Theor., 42(5):055003, 01 2009. doi: https://doi.org/10.1088/1751-8113/42/5/055003.C. Ma, Q. Ma, H. Yao, and T. Hou. An accurate european option pricing model under fractional stable process based on Feynman path integral. Physica A, 494:87–117, 03 2018. doi: https://doi.org/10.1016/j.physa.2017.11.120.R. P. Feynman. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys., 20(2):367–387, 04 1948. doi: https://doi.org/10.1103/RevModPhys.20.367.L. C. Fai. Feynman path integrals in quantum mechanics and statistical physics. CRC Press, London, England, 04 2021.H. S. Wio. Path Integrals for Stochastic Processes. World Scientific Publishing Company, 11 2012. doi: https://doi.org/10.1142/8695.N. Laskin. Fractional Nonlinear Quantum Mechanics. In Fractional Quantum Mechanics, pages 184–185. World Scientific Publishing Company, 03 2018. doi: https://doi.org/10.1142/10541.M. G. Tsionas. Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility. Physica A, 567:125647, 04 2021. doi: https://doi.org/10.1016/j.physa.2020.125647.M. Kac. On distributions of certain Wiener functionals. Trans. Am. Math. Soc., 65(1):1–13, 01 1949. doi: https://doi.org/10.1090/s0002-9947-1949-0027960-x.X. Wu, W. Deng, and E. Barkai. Tempered fractional Feynman-Kac equation: Theory and examples. Phys. Rev. E, 93(3), 03 2016. doi: https://doi.org/10.1103/physreve.93.032151.H. F. Smith. An empirical law describing heterogeneity in the yields of agricultural crops. J. Agri. Sci., 28(1):1–23, 01 1938. doi: https://doi.org/10.1017/S0021859600050516.L. R. Taylor. Aggregation, Variance and the Mean. Nature, 189(4766):732–735, 03 1961. doi: https://doi.org/10.1038/189732a0.A. G. Zawadowski, J. Kertész, and G. Andor. Large price changes on small scales. Physica A, 344(4):221–226, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.121.P. C. Ivanov, A. Yuen, and P. Perakakis. Impact of Stock Market Structure on Intertrade Time and Price Dynamics. PLoS ONE, 9(4), 04 2014. doi: https://doi.org/10.1371/journal.pone.0092885.A. L. Barabasi and T. Vicsek. Multifractality of self-affine fractals. Phys. Rev. A, 44(4):2730–2733, 08 1991. doi: https://doi.org/10.1103/PhysRevA.44.2730.J. Kwapień, P. Oświęcimka, and S. Drożdż. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys. Rev. E, 92(5), 11 2015. doi: https://doi.org/10.1103/PhysRevE.92.052815.F. Benassi, A. Naccarato, and M. Xu. Taylor's law detects and interprets temporal trends of the spatial distribution of Covid-19 daily infection density across Italian provinces. Research Square, 14, 07 2021. doi: https://doi.org/10.21203/rs.3.rs-626505/v1.Z. S. Ma. Coupling power laws offers a powerful method for problems such as biodiversity and COVID-19 fatality predictions. Front. Appl. Math. Stat., 8, 03 2022. doi: https://doi.org/10.3389/fams.2022.801830.J. Choloniewski. Modelling dynamics of news media, 10 2022.D. Valenti, B. Spagnolo, and G. Bonanno. Hitting time distributions in financial markets. Physica A, 382(1):311–320, 08 2007. doi: https://doi.org/10.1016/j.physa.2007.03.044.B. Spagnolo and D. Valenti. Volatility Effects on the Escape Time in Financial Market Models. Int. J. Bifurc. Chaos Appl. Sci. Eng., 18(9):2775 – 2786, 09 2008. doi: https://doi.org/10.1142/S0218127408022007.D. Valenti, G. Fazio, and B. Spagnolo. Stabilizing effect of volatility in financial markets. Phys. Rev. E, 97(6), 06 2018. doi: https://doi.org/10.1103/PhysRevE.97.062307.A. Giuffrida, D. Valenti, G. Ziino, B. Spagnolo, and A. Panebianco. A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami. Eur. Food. Res. Technol., 228(5):767–775, 12 2008. doi: https://doi.org/10.1007/s00217-008-0988-6.N. Pizzolato, A. Fiasconaro, D. P. Adorno, and B. Spagnolo. Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field. Phys. Biol., 7(3):034001, 08 2010. doi: https://doi.org/10. 1088/1478-3975/7/3/034001.G. Denaro, D. Valenti, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, S. Mazzola, S. W. Zgozi, S. Aronica, and C. Brunet. Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics. Ecol. Complex., 13:21–34, 03 2013. doi: https://doi.org/10.1016/j.ecocom.2012.10.002.G. Falci, A. La Cognata, M. Berritta, A. D’Arrigo, E. Paladino, and B. Spagnolo. Design of a Lambda system for population transfer in superconducting nanocircuits. Phys. Rev. B, 87(21), 06 2013. doi: https://doi.org/10.1103/PhysRevB.87.214515.B. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent random variables. Mathematical Association, 08 2021. https://www.jstor.org/stable/i285536.H. Kleinert. Path Integrals and Financial Markets. In Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, chapter 20, pages 1440–1535. World Scientific Publishing Company, 05 2009. doi: https://doi.org/10.1142/7305.K. Taufemback, R. Giglio, and S. Da Silva. Algorithmic complexity theory detects decreases in the relative efficiency of stock markets in the aftermath of the 2008 financial crisis. Econ. Bull., 31(2):1631 – 1647, 6 2011.G. Parisi and N. Sourlas. Random Magnetic Fields, Supersymmetry, and Negative Dimensions. Phys. Rev. Lett., 43(11):744–745, 09 1979. doi: https://doi.org/10.1103/physrevlett.43.744.I. V. Ovchinnikov. Introduction to Supersymmetric Theory of Stochastics. Entropy, 18(4):108, 03 2016. doi: https://doi.org/10.48550/arxiv.1511.03393.A. Stuart. Kendall’s advanced theory of statistics. Wiley-Blackwell, Hoboken, NJ, 6 edition, 06 1994.E. T. Bell. Partition Polynomials. Ann. Math., 29(1-4):38–46, 07 1927. doi: https://doi.org/10.2307/1967979.T. Kim and D. S. Kim. A Note on Central Bell Numbers and Polynomials. Russ. J. Math. Phys., 27(1):76–81, 01 2020. doi: https://doi.org/10.1134/s1061920820010070.S. Roman. The Formula of Faa Di Bruno. Am. Math. Mon., 87(10):805–809, 12 1980. doi: https://doi.org/10.1080/00029890.1980.11995156.H. Kleinert and X. J. Chen. Boltzmann distribution and market temperature. Physica A, 383(2):513–518, 09 2007. doi: https://doi.org/10.1016/S0378-4371(02)00803-8.H. Kleinert and S. V. Shabanov. Supersymmetry in stochastic processes with higherorder time derivatives. Phys. Lett. A, 235(2):105–112, 10 1997. doi: https://doi.org/10.1016/s0375-9601(97)00660-9.J. J. Sakurai and J. J. Napolitano. Modern Quantum Mechanics. Pearson Education, Philadelphia, PA, 2 edition, 07 2010.R. K. P. Zia, E. F. Redish, and S. R. McKay. Making sense of the Legendre transform. Am. J. Phys., 77(7):614–622, 07 2009. doi: https://doi.org/10.1119/1.3119512.E. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev., 28(6):1049–1070, 12 1926. doi: https://doi.org/10.1103/physrev.28.1049.L. C. Evans. Nonlinear first-order PDE. In Graduate Studies in Mathematics, Graduate studies in mathematics, pages 91–166. American Mathematical Society, Providence, Rhode Island, 2 edition, 03 2010.R. Courant and D. Hilbert. Methods of mathematical physics. Wiley Classics Library. John Wiley & Sons, Nashville, TN, 04 1989.V. N. Popov. Functional integrals in quantum field theory and statistical physics. Mathematical Physics and Applied Mathematics. Springer, New York, NY, 11 2001.P. J. Daniell. Integrals in An Infinite Number of Dimensions. Ann. Math., 20(4):281, 07 1919. doi: https://doi.org/10.2307/1967122.R. Friedrich, J. Peinke, M. Sahimi, and M. R. R. Tabar. Approaching complexity by stochastic methods: From biological systems to turbulence. Phys. Rep., 506(5):87–162, 09 2011. doi: https://doi.org/10.1016/j.physrep.2011.05.003.J. E. Cohen, S. Friedland, T. Kato, and F. P. Kelly. Eigenvalue inequalities for products of matrix exponentials. Linear Algebra Appl., 45:55–95, 06 1982. doi: https://doi.org/10.1016/0024-3795(82)90211-7.A. Issaka and I. SenGupta. Feynman path integrals and asymptotic expansions for transition probability densities of some Lévy driven financial markets. J. Appl. Math. Comput., 54(1-2):159–182, 03 2016. doi: https://doi.org/10.1007/s12190-016-1002-2.R. LePage, K. Podgórski, and M. Ryznar. Strong and conditional invariance principles for samples attracted to stable laws. Probab. Theory Relat. Fields, 108(2):281–298, 06 1997. doi: https://doi.org/10.1007/s004400050110.A. Piryatinska. Inference for the Lévy models and their applications in medicine and statistical physics, 10 2005.J. P. Bouchaud and M. Mézard. Wealth condensation in a simple model of economy. Physica A, 282(3-4):536–545, 07 2000. doi: https://doi.org/10.1016/S0378-4371(00)00205-3.D. S. Quevedo and C. Quimbay. Non-conservative kinetic model of wealth exchange with saving of production. Eur. Phys. J. B, 93(10), 10 2020. doi: https://doi.org/10.1140/epjb/e2020-10193-3.R. Aroussi. Download market data from Yahoo! Finance API. Python, 2023.A. A. Dragulescu and V. M. Yakovenko. Probability distribution of returns in the Heston model with stochastic volatility. arXiv, 03 2004. doi: https://doi.org/10.48550/arXiv.cond-mat/0203046.F. Abril. Temporal_Fluctuation_Scaling. GitHub repository, 2023. https://github.com/fsabrilb/Temporal_Fluctuation_Scaling.H. E. Stanley, L. A. N. Amaral, P. Gopikrishnan, P. C. Ivanov, T. H. Keitt, and V. Plerou. Scale invariance and universality: organizing principles in complex systems. Physica A, 281(1-4):64–68, 06 2000. doi: https://doi.org/10.1016/s0378-4371(00)00195-3.B. Mandelbrot. The fractal geometry of nature. W. H. Freeman, New York, NY, 11 1982.C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger. Mosaic organization of DNA nucleotides. Phys. Rev. E, 49(2):1685–1689, 02 1994. doi: https://doi.org/10.1103/physreve.49.1685.F. Bourguignon. Decomposable Income Inequality Measures. Econometrica, 47(4):901, 07 1979. doi: https://doi.org/10.2307/1914138.F. Bourguignon and C. Morrison. Inequality among World Citizens: 1820-1992. Am. Econ. Rev., 92(4):727–744, 08 2002. doi: http://dx.doi.org/10.1257/00028280260344443.J. Miśkiewicz. Analysis of Time Series Correlation. The Choice of Distance Metrics and Network Structure. Acta Phys. Pol. A, 121(2B):B–89–B–94, 02 2012. doi: https://doi.org/10.12693/APHYSPOLA.121.B-89.J. Iglesias and R. M. C. de Almeida. Entropy and equilibrium state of free market models. Eur. Phys. J. B, 85(3), 03 2012. doi: https://doi.org/10.1140/epjb/e2012-21036-1.M. J. Salois. Regional changes in the distribution of foreign aid: An entropy approach. Physica A, 392(13):2893–2902, 07 2013. doi: https://doi.org/10.1016/j.physa.2013.02.007.T. Andrei, B. Oancea, P. Richmond, G. Dhesi, and C. Herteliu. Decomposition of the Inequality of Income Distribution by Income Types—Application for Romania. Entropy, 19(9):430, 09 2017. doi: https://doi.org/10.3390/e19090430.A. F. Shorrocks. The Class of Additively Decomposable Inequality Measures. Econometrica, 48(3):613, 04 1980. doi: https://doi.org/10.2307/1913126.L. I. Kuncheva and C. J. Whitaker. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Mach. Learn., 51(2):181–207, 2003. doi: https://doi.org/10.1023/A:1022859003006.J. V. T. de Lima, S. L. E. F. da Silva, J. M. de Araújo, G. Corso, and G. Z. Lima. Nonextensive statistical mechanics for robust physical parameter estimation: the role of entropic index. Eur. Phys J. Plus, 136(3), 03 2021. doi: https://doi.org/10.1140/epjp/s13360-021-01274-6.C. Chatterjee, A. Ghosh, J. Inoue, and B. K. Chakrabarti. Social inequality: from data to statistical physics modeling. J. Phys. Conf. Ser., 638:012014, 09 2015. doi: https://doi.org/10.1088/1742-6596/638/1/012014.I. Eliazar and I. M. Sokolov. Maximization of statistical heterogeneity: From Shannon’s entropy to Gini’s index. Physica A, 389(16):3023–3038, 08 2010. doi: https://doi.org/10.1016/j.physa.2010.03.045.L. Landau. The Theory of Phase Transitions. Nature, 138(3498):840 – 841, 11 1936. doi: https://doi.org/10.1038/138840a0.L. Landau. On the theory of superconductivity. In Collected Papers of L.D. Landau, pages 217–225. Elsevier, 1965. doi: https://doi.org/10.1016/b978-0-08-010586-4.50035-3.T. Lancaster and S. J. Blundell. Quantum field theory for the gifted amateur. Oxford University Press, London, England, 04 2014. Chapter 26 and 35.M. V. Milošević and R. Geurts. The Ginzburg–Landau theory in application. Physica C, 470:791–795, 10 2010. doi: https://doi.org/10.1016/j.physc.2010.02.056.J. Als-Nielsen. Neutron Scattering and Spatial Correlation near the Critical Point. In Phase Transition and Critical Phenomena, volume 5a, pages 87–163. Academic Press, San Diego, CA, 04 1976.J. S. Rowlinson. Liquids and liquid mixtures. Butterworth-Heinemann, Oxford, England, 3 edition, 01 1982.M. E. Lines and A. M. Glass. Principles and applications of ferroelectrics and related materials. Oxford University Press, London, England, 02 2001. doi: https://doi.org/10.1093/acprof:oso/9780198507789.001.0001.R. K. Pathria and P. D. Beale. Statistical mechanics. Elsevier, 3 edition, 2011.J. Chakravarty and D. Jain. Critical exponents for higher order phase transitions: Landau theory and RG flow. J. Stat. Mech., 2021(9):093204, 09 2021. doi: https://doi.org/10.1088/1742-5468/ac1f11.C. E. Ekuma, G. C. Asomba, and C. M. I. Okoye. Ginzburg–Landau theory for higher order phase transition. Physica C, 472(1):1–4, 01 2012. doi: https://doi.org/10.1016/j.physc.2011.09.015.C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J., 27(3):379–423, 07 1948. doi: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.E. T. Jaynes. Information Theory and Statistical Mechanics. Phys. Rev., 106(4):620–630, 05 1957. doi: https://doi.org/10.1103/PhysRev.106.620.N. Laskin. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A, 268(4-6):298–305, 04 2000. doi: https://doi.org/10.1016/S0375-9601(00)00201-2.J. Goldstone. Field theories with Superconductor solutions. Il Nuovo Cimento, 19(1):154–164, 01 1961. doi: https://doi.org/10.1007/bf02812722.V. E. Tarasov and G. M. Zaslavsky. Fractional Ginzburg-Landau equation for fractal media. Physica A, 354:249–261, 08 2005. doi: https://doi.org/10.1016/j.physa.2005.02.047.Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He. Soliton dynamics in a fractional complex Ginzburg-Landau model. Chaos Solitons Fractals, 131(109471), 02 2020. doi: https://doi.org/10.1016/j.chaos.2019.109471.E. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento, 20(3):454–477, 05 1961. doi: https://doi.org/10.1007/BF02731494.D. A. Tayurskii and Y. V. Lysogorskiys. Superfluid hydrodynamic in fractal dimension space. J. Phys. Conf. Ser., 394:012004, 11 2012. doi: https://doi.org/10.1088/1742-6596/394/1/012004.National Office of Oceanic and Atmospheric Administration. Daily Summaries. NOAA, 2023.F. Abril. Temporal_Theil_Scaling. GitHub repository, 2023. https://github.com/fsabrilb/Temporal_Theil_Scaling.B. B. Mandelbrot. Multifractal measures, especially for the geophysicist. Pure Appl. Geophys., 131(1-2):5–42, 05 1989. doi: https://doi.org/10.1007/bf00874478.E. A. Novikov. Intermittency and scale similarity in the structure of a turbulent flow. Journal of Applied Mathematics and Mechanics, 35(2):231–241, 01 1971. doi: https://doi.org/10.1016/0021-8928(71)90029-3.T. Di Matteo. Multi-scaling in finance. Quant. Finance, 7(1):21–36, 02 2007. doi: https://doi.org/10.1080/14697680600969727.B. Mandelbrot. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 156(3775):636–638, 05 1967. doi: https://doi.org/10.1126/science.156.3775.636.A. Rényi. On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hungaricae, 10(1-2):193–215, 03 1959. doi: https://doi.org/10.1007/bf02063299.T. Vicsek. Fractal Growth Phenomena. World Scientific Publishing Company, 06 1992. doi: https://doi.org/10.1142/1407.P. Grassberger and I. Procaccia. The liapunov dimension of strange attractors. J. Differ. Equ., 49(2):185–207, 08 1983. doi: https://doi.org/10.1016/0022-0396(83)90011-6.T. Higuchi. Approach to an irregular time series on the basis of the fractal theory. Physica D, 31(2):277–283, 06 1988. doi: https://doi.org/10.1016/0167-2789(88)90081-4.T. Gneiting, H. Ševčíková, and D. B. Percival. Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data. Stat. Sci., 27(2), 05 2012. doi: https://doi.org/10.1214/11-sts370.W. S. Kendal and B. Jørgensen. Tweedie convergence: A mathematical basis for Taylor's power law, 1/f noise, and multifractality. Phys. Rev. E, 84(6), 12 2011. doi: https://doi.org/10.1103/physreve.84.066120.B. Jørgensen and C. C. Kokonendji. Dispersion models for geometric sums. Braz. J. Probab. Stat., 25(3), 11 2011. doi: https://doi.org/10.1214/10-bjps136.H. Xu, G. Gu, and W. Zhou. Direct determination approach for the multifractal detrending moving average analysis. Phys. Rev. E, 96(5), 11 2017. doi: https://doi.org/10.1103/physreve.96.052201.M. S. Taqqu. Benoît Mandelbrot and Fractional Brownian Motion. Stat. Sci., 28(1), 02 2013. doi: https://doi.org/10.1214/12-sts389.A. N. Kolmogorov. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Acad. Sci. URSS, 26:115–118, 01 1940.G. A. Hunt. Random Fourier transforms. Trans. Amer. Math. Soc., 71:38–69, 01 1951.A. M. Yaglom. Correlation theory of processes with random stationary nth increments. Mat. Sb. N.S., 79(37), 01 1955.H. Grad. The many faces of entropy. Commun. Pure Appl. Math., 14(3):323–354, 08 1961. doi: https://doi.org/10.1002/cpa.3160140312.R. Schumacher. The Generalization of Faulhaber’s Formula to Sums of Arbitrary Complex Powers. arXiv, 03 2021. doi: https://doi.org/10.48550/arxiv.2103.08027.L. Rydin-Gorjão, G. Hassan, J. Kurths, and D. Witthaut. MFDFA: Efficient multifractal detrended fluctuation analysis in python. Comput. Phys. Commun., 273:108254, 04 2022. doi: https://doi.org/10.1016/j.cpc.2021.108254.F. Abril. Generalized_Shannon_Index. GitHub repository, 2023. https://github.com/fsabrilb/Generalized_Shannon_Index.R. Adamczak, J. Prochno, M. Strzelecka, and M. Strzelecki. Norms of structured random matrices. Math. Ann., 04 2023. doi: https://doi.org/10.1007/s00208-023-02599-6.A. D. Fokker. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. der Physik, 348(5):810–820, 01 1914. doi: https://doi.org/10.1002/andp.19143480507.N. Laskin. Fractional Schrödinger equation. Phys. Rev. E, 66(5), 11 2002. doi: https://doi.org/10.1103/physreve.66.056108.H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4):284–304, 04 1940. doi: https://doi.org/10.1016/s0031-8914(40)90098-2.J. E. Moyal. Stochastic Processes and Statistical Physics. J. R. Stat. Soc. Ser. B Meth., 11(2):150–210, 01 1949. https://www.jstor.org/stable/2984076.P. Jung and P. Hänggi. Dynamical systems: A unified colored-noise approximation. Phys. Rev. A, 35(10):4464–4466, 05 1987. doi: https://doi.org/10.1103/physreva.35.4464.P. Hänggi and P. Jung. Colored Noise in Dynamical Systems. In Advances in Chemical Physics, pages 239–326. John Wiley & Sons, 03 2007. doi: https://doi.org/10.1002/9780470141489.ch4.C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys., 52(1-2):479–487, 07 1988. doi: https://doi.org/10.1007/bf01016429.E. M. F. Curado and C. Tsallis. Generalized statistical mechanics: connection with thermodynamics. J. Phys. A Math. Theor., 24(2):L69–L72, 01 1991. doi: https://doi.org/10.1088/0305-4470/24/2/004.E. M. F. Curado and C. Tsallis. Generalized statistical mechanics: connection with thermodynamics. J. Phys. A Math. Theor., 25(4):1019–1019, 02 1992. doi: https://doi.org/10.1088/0305-4470/25/4/038.L. Borland. Ito-Langevin equations within generalized thermostatistics. Phys. Lett. A, 245(1-2):67–72, 08 1998. doi: https://doi.org/10.1016/s0375-9601(98)00467-8.M. Gell-Mann and C. Tsallis. Nonextensive Entropy. Oxford University Press, New York, NY, 03 2004.C. H. Eab and S. C. Lim. Path integral representation of fractional harmonic oscillator. Physica A, 371(2):303–316, 11 2006. doi: https://doi.org/10.1016/j.physa.2006.03.029.A. H. Bhrawy and M. A. Zaky. An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl. Numer. Math., 111:197–218, 01 2017. doi: https://doi.org/10.1016/j.apnum.2016.09.009.P. Capuozzo, E. Panella, T. Schettini-Gherardini, and D. D. Vvedensky. Path integral Monte Carlo method for option pricing. Physica A, 581:126231, 11 2021. doi: https://doi.org/10.1016/j.physa.2021.126231.V. E. Tarasov and G. M. Zaslavsky. Fractional generalization of Kac integral. Commun. Nonlinear. Sci. Numer. Simul., 13(2):248–258, 03 2008. doi: https://doi.org/10.1016/j.cnsns.2007.04.020.A. V. Chechkin, R. Metzler, J. Klafter, and V. Y. Gonchar. Introduction to the Theory of Lévy Flights. In Anomalous Transport, pages 129–162. Wiley-VCH Verlag GmbH and Co. KGaA, 07 2008. doi: https://doi.org/10.1002/9783527622979.ch5.R. Hilfer. Applications of fractional calculus in physics. World Scientific Publishing Company, 03 2000. doi: https://doi.org/10.1142/3779.P. D. Lax. Change of Variables in Multiple Integrals. Am. Math. Mon., 106(6):497–501, 06 1999. doi: https://doi.org/10.1080/00029890.1999.12005078.J. Munkhammar. Riemann-Liouville Fractional Derivatives and the Taylor-Riemann Series, 06 2004.M. D. Ortigueira. Riesz potential operators and inverses via fractional centered derivatives. Int. J. Math. Math. Sci., 2006:1–12, 06 2006. doi: https://doi.org/10.1155/ijmms/2006/48391.C. Çelik and M. Duman. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys., 231(4):1743–1750, 02 2012.doi: https://doi.org/10.1016/j.jcp.2011.11.008.R. A. Aljethi and A. Kılıçman. Derivation of the Fractional Fokker-Planck Equation for Stable Lévy with Financial Applications. Mathematics, 11(5):1102, 02 2023. doi: https://doi.org/10.3390/math11051102.R. Metzler and J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339(1):1–77, 12 2000. doi: https://doi.org/10.1016/S0370-1573(00)00070-3.F. Mainardi, Y. Luchko, and G. Pagnini. The fundamental solution of the space-time fractional diffusion equation. arXiv, 02 2007. doi: https://doi.org/10.48550/arXiv.cond-mat/0702419.K. M. Kolwankar. Local Fractional Calculus: a Review. arXiv, 07 2013. doi: https://doi.org/10.48550/arxiv.1307.0739.F. Olivar-Romero and O. Rosas-Ortiz. Fractional Driven Damped Oscillator. J. Phys. Conf. Ser., 839:012010, 05 2017. doi: https://doi.org/10.1088/1742-6596/839/1/012010.Podcast UNAL. Physics Sounds: Episodio 4: Econo-física. http://podcastradio.unal.edu.co/detalle/episodio-4-econo-fisica, 03 2022.G. B. Folland. Advanced Calculus. Pearson, Upper Saddle River, NJ, 12 2001. p. 193.K. B. Oldham and P. Howlett. The fractional calculus. Elsevier Science & Technology, 05 2014.J. Klafter, A. Blumen, and M. F. Shlesinger. Stochastic pathway to anomalous diffusion. Phys. Rev. A, 35(7):3081–3085, 04 1987. doi: https://doi.org/10.1103/physreva.35.3081.J. Klafter, S. C. Lim, and R. Metzler. Fractional Dynamics. World Scientific Publishing Company, 10 2011. doi: https://doi.org/10.1142/8087.M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter. Strange kinetics. Nature, 363(6424):31–37, 05 1993. doi: https://doi.org/10.1038/363031a0.I. S. Gradshteyn and I. M. Ryzhik. Definite Integrals of Elementary Functions. In Table of Integrals, Series, and Products. Elsevier Science & Technology, San Diego, California, 7 edition, 01 2007. Formula 3.944.5 and 3.944.6.H. Bateman. Higher Transcendental Functions, volume 1. McGraw-Hill Book Company, New York, NY, 1953. Sec. 1.11, formula (14).J. E. Robinson. Note on the Bose-Einstein Integral Functions. Phys. Rev., 83(3):678–679, 08 1951. doi: https://doi.org/10.1103/PhysRev.83.678.EstudiantesInvestigadoresORIGINAL1013671689.2023.pdf1013671689.2023.pdfTesis de Doctorado en Físicaapplication/pdf20373904https://repositorio.unal.edu.co/bitstream/unal/85513/2/1013671689.2023.pdfe83a4ec8f62fbc318c2c7c9142838c13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85513/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1013671689.2023.pdf.jpg1013671689.2023.pdf.jpgGenerated Thumbnailimage/jpeg7452https://repositorio.unal.edu.co/bitstream/unal/85513/4/1013671689.2023.pdf.jpg513979382778f13f7f15cdea533ff5a7MD54unal/85513oai:repositorio.unal.edu.co:unal/855132024-01-30 23:03:50.576Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |