Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida

ilustraciones, fotografías, gráficas, tablas

Autores:
Vallejos Jiménez, Mario Alejandro
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83227
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83227
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
Poliuronidos
Hidrólisis
Mucilagos
polyuronides
hydrolysis
mucilages
Mucílago y pulpa
Pectina
Hidrólisis ácida
Celulosa bacteriana
Extracto de borra de café
Grado de esterificación
Biodegradabilidad
Mucilage and pulp
Pectin
Acid hydrolysis
Bacterial cellulose
Spent coffee grounds extract
Degree of esterification
Biodegradability
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_865f53b0c53f7a6f6c49aed0c38a8aee
oai_identifier_str oai:repositorio.unal.edu.co:unal/83227
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida
dc.title.translated.eng.fl_str_mv Development of biodegradable films based on pectins extracted from coffee processing by-products by acid hydrolysis
title Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida
spellingShingle Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
Poliuronidos
Hidrólisis
Mucilagos
polyuronides
hydrolysis
mucilages
Mucílago y pulpa
Pectina
Hidrólisis ácida
Celulosa bacteriana
Extracto de borra de café
Grado de esterificación
Biodegradabilidad
Mucilage and pulp
Pectin
Acid hydrolysis
Bacterial cellulose
Spent coffee grounds extract
Degree of esterification
Biodegradability
title_short Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida
title_full Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida
title_fullStr Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida
title_full_unstemmed Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida
title_sort Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida
dc.creator.fl_str_mv Vallejos Jiménez, Mario Alejandro
dc.contributor.advisor.spa.fl_str_mv Cadena Chamorro, Edith Marleny
dc.contributor.author.spa.fl_str_mv Vallejos Jiménez, Mario Alejandro
dc.contributor.orcid.spa.fl_str_mv Vallejos Jiménez, Mario Alejandro [0000-0002-5842-9702]
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
topic 660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
Poliuronidos
Hidrólisis
Mucilagos
polyuronides
hydrolysis
mucilages
Mucílago y pulpa
Pectina
Hidrólisis ácida
Celulosa bacteriana
Extracto de borra de café
Grado de esterificación
Biodegradabilidad
Mucilage and pulp
Pectin
Acid hydrolysis
Bacterial cellulose
Spent coffee grounds extract
Degree of esterification
Biodegradability
dc.subject.agrovoc.spa.fl_str_mv Poliuronidos
Hidrólisis
Mucilagos
dc.subject.agrovoc.eng.fl_str_mv polyuronides
hydrolysis
mucilages
dc.subject.proposal.spa.fl_str_mv Mucílago y pulpa
Pectina
Hidrólisis ácida
Celulosa bacteriana
Extracto de borra de café
Grado de esterificación
Biodegradabilidad
dc.subject.proposal.eng.fl_str_mv Mucilage and pulp
Pectin
Acid hydrolysis
Bacterial cellulose
Spent coffee grounds extract
Degree of esterification
Biodegradability
description ilustraciones, fotografías, gráficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-02-01T20:02:51Z
dc.date.available.none.fl_str_mv 2023-02-01T20:02:51Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83227
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83227
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adilah, A. N., Jamilah, B., Noranizan, M. A., & Nur Hanani, Z. A. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006
Akinalan Balik, B., Argin, S., M. Lagaron, J., & Torres-Giner, S. (2019). Preparation and characterization of electrospun pectin-based films and their application in sustainable aroma barrier multilayer packaging. Applied Sciences, 9(23), 2–24. https://doi.org/10.3390/app9235136
Arriola Delia, & Garcia Ricardo. (1985). Caracterización química de la pectina obtenida de desechos del beneficio de café. Revista Científica, 3(1), 13–18.
Barreto, G. E., Púa, A. L., De Alba, D. D., & Pión, M. M. (2017). Extracción y caracterización de pectina de mango de azúcar (Mangifera indica L.). Temas Agrarios, 22(1), 78. https://doi.org/10.21897/rta.v22i1.918
Bátori, V., Jabbari, M., Åkesson, D., Lennartsson, P. R., Taherzadeh, M. J., & Zamani, A. (2017). Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling. International Journal of Polymer Science, 1–9. https://doi.org/10.1155/2017/9732329
BeMiller, J. N. (1986). An Introduction to Pectins: Structure and Properties. American Chemical Society, 2–12. https://doi.org/10.1021/bk-1986-0310.ch001
Bonnin, E., & Lahaye, M. (2013). Contribution of cell wall-modifying enzymes to the texture of fleshy fruits. The example of apple. Journal of the Serbian Chemical Society, 78(3), 417–427. https://doi.org/10.2298/JSC121123004B
Braham, J. E., & Bressani, R. (1978). Pulpa de café: Composición, tecnología y utilización (J. E. Braham & R. Bressani (eds.)). Instituto de Nutrición de Centro América y Panamá, INCAP*.
Canteri-Schemin, M. H., Ramos Fertonani, H. C., Waszczynskyj, N., & Wosiacki, G. (2005). Extraction of Pectin From Apple Pomace. Brazilian Archives of Biology and Technology, 48(2), 259–266. https://doi.org/10.1590/S1516-89132005000200013
Chan, S. Y., & Choo, W. S. (2013). Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chemistry, 141(4), 3752–3758. https://doi.org/10.1016/j.foodchem.2013.06.097
Chen, Y., Zhang, J. G., Sun, H. J., & Wei, Z. J. (2014). Pectin from Abelmoschus esculentus: Optimization of extraction and rheological properties. International Journal of Biological Macromolecules, 70, 498–505. https://doi.org/10.1016/j.ijbiomac.2014.07.024
Comité de Cafeteros de Antioquia. (2022). Producción de café de Colombia cierra 2021 en 12,6 millones de sacos. Federación Nacional de Cafeteros de Colombia. https://fncantioquia.org/produccion-de-cafe-de-colombia-cierra-2021-en-126-millones-de-sacos/
El Halal, S. L. M., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, N. L. V., Dias, A. R. G., & Zavareze, E. D. R. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644–653. https://doi.org/10.1016/j.carbpol.2015.07.024
Endress, H.-U. (1991). Nonfood Uses of Pectin. In The Chemistry and Technology of pectin (pp. 251–268).
Faravash, R. S., & Ashtiani, F. Z. (2007). The effect of pH, ethanol volume and acid washing time on the yield of pectin extraction from peach pomace. International Journal of Food Science and Technology, 42, 1177–1187. https://doi.org/10.1111/j.1365-2621.2006.01324.x
Federación de cafeteros de Colombia. (2020). Regiones cafeteras de Colombia. Café de Colombia. https://www.cafedecolombia.com/particulares/regiones-cafeteras/
Ferreira Ardila, S. (2007). Pectinas: aislamiento, caracterización y producción a partir de frutas tropicales y de los residuos de su procesamiento industrial [Universidad Nacional de Colombia]. In Facultad de Ciencias (Vol. 1). http://ciencias.bogota.unal.edu.co/fileadmin/Facultad_de_Ciencias/Publicaciones/Archivos_Libros/Libros_Farmacia/Pectinas/pectinas.pdf
Gharibzahedi, S. M. T., Smith, B., & Guo, Y. (2019). Pectin extraction from common fig skin by different methods: The physicochemical, rheological, functional, and structural evaluations. International Journal of Biological Macromolecules, 136, 275–283. https://doi.org/10.1016/j.ijbiomac.2019.06.040
Greenpeace. (2019). ¿Cómo llega el plástico a los océanos y qué sucede entonces? - ES | Greenpeace España. Greenpeace. https://es.greenpeace.org/es/trabajamos-en/consumismo/plasticos/como-llega-el-plastico-a-los-oceanos-y-que-sucede-entonces/
Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules, 125, 621–629. https://doi.org/10.1016/j.ijbiomac.2018.12.096
Kian, L. K., Jawaid, M., Ariffin, H., & Karim, Z. (2018). Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. International Journal of Biological Macromolecules, 114, 54–63. https://doi.org/10.1016/j.ijbiomac.2018.03.065
Lei, Y., Wu, H., Jiao, C., Jiang, Y., Liu, R., Xiao, D., Lu, J., Zhang, Z., Shen, G., & Li, S. (2019). Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids, 94, 128–135. https://doi.org/10.1016/j.foodhyd.2019.03.011
Liew, S. Q., Chin, N. L., & Yusof, Y. A. (2014). Extraction and Characterization of Pectin from Passion Fruit Peels. Agriculture and Agricultural Science Procedia, 2, 231–236. https://doi.org/10.1016/j.aaspro.2014.11.033
Mellinas, C., Ramos, M., Jiménez, A., & Garrigós, M. C. (2020). Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials, 13(3), 1–17. https://doi.org/10.3390/ma13030673
Mendes, J. F., Martins, J. T., Manrich, A., Sena Neto, A. R., Pinheiro, A. C. M., Mattoso, L. H. C., & Martins, M. A. (2019). Development and physical-chemical properties of pectin film reinforced with spent coffee grounds by continuous casting. Carbohydrate Polymers, 210, 92–99. https://doi.org/10.1016/j.carbpol.2019.01.058
Minjares-Fuentes, R., Femenia, A., Garau, M. C., Meza-Velázquez, J. A., Simal, S., & Rosselló, C. (2014). Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohydrate Polymers, 106(1), 179–189. https://doi.org/10.1016/j.carbpol.2014.02.013
Muhammad, N. W. F., Nurrulhidayah, A. F., Hamzah, M. S., Rashidi, O., & Rohman, A. (2020). Physicochemical properties of dragon fruit peel pectin and citrus peel pectin: A comparison. Food Research, 4(Suppl. 1), 266–273. https://doi.org/10.26656/fr.2017.4(S1).S14
Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005
Oakenfull, D. . (1991). The Chemistry of High-Methoxyl Pectins. In I. Academic Press (Ed.), The Chemistry and Technology of pectin (pp. 87–108).
Pereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldron, K. W., & Azeredo, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 88, 373–379. https://doi.org/10.1016/j.ijbiomac.2016.03.074
Pinheiro, E. R., Silva, I. M. D. A., Gonzaga, L. V., Amante, E. R., Teófilo, R. F., Ferreira, M. M. C., & Amboni, R. D. M. C. (2008). Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology. Bioresource Technology, 99(13), 5561–5566. https://doi.org/10.1016/j.biortech.2007.10.058
Puerta Quintero, G. I., & Ríos Arias, S. (2011). Composición química del mucílago de café, según el tiempo de fermentación y refrigeración. Cenicafé, 62(2), 23–40.
Quader, F. B., Khan, R. A., Islam, M. A., Saha, S., & Sharmin, K. N. (2015). Development and Characterization of a Biodegradable Colored Film Based on Starch and Chitosan by Using Acacia Catechu. Journal of Environmental Science & Natural Resources, 8(2), 123–130.
Ranganna, S. (1986). Handbook of Analysis and Quality Control for Fruit and Vegetable Products (2nd ed). https://books.google.com.co/books?hl=es&lr=&id=jQN8Kpj0UOMC&oi=fnd&pg=PA1&ots=fdVlYTkIxJ&sig=_B0IwkCbswnkqfDkAkbO-vxtqZc&redir_esc=y#v=onepage&q&f=false
Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929–967. https://doi.org/10.1016/S0031-9422(01)00113-3
Rodríguez Valencia, N., & Zambrano Franco, D. A. (2011). Producción de alcohol a partir del mucílago del café. Revista Cenicafé, 62(1), 56–69. http://biblioteca.cenicafe.org/bitstream/10778/541/1/arc064(02)78-93.pdf
Roy, S., & Rhim, J. W. (2021). Fabrication of pectin/agar blended functional film: Effect of reinforcement of melanin nanoparticles and grapefruit seed extract. Food Hydrocolloids, 118, 106823. https://doi.org/10.1016/j.foodhyd.2021.106823
Sánchez Aldana, D., Contreras-Esquivel, J. C., Nevárez-Moorillón, G. V., & Aguilar, C. N. (2015). Caracterización de películas comestibles a base de extractos pécticos y aceite esencial de limón Mexicano. CyTA - Journal of Food, 13(1), 17–25. https://doi.org/10.1080/19476337.2014.904929
Santos, E. E., Amaro, R. C., Bustamante, C. C. C., Guerra, M. H. A., Soares, L. C., & Froes, R. E. S. (2020). Extraction of pectin from agroindustrial residue with an ecofriendly solvent: use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification. Food Hydrocolloids, 107, 105921. https://doi.org/10.1016/j.foodhyd.2020.105921
Sengar, A. S., Rawson, A., Muthiah, M., & Kalakandan, S. K. (2020). Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrasonics Sonochemistry, 61, 104812. https://doi.org/10.1016/j.ultsonch.2019.104812
Serrat-Díaz, M., De la Fé-Isaac, Á. D., De la Fé-Isaac, J. A., & Montero-Cabrales, C. (2018). Extracción y caracterización de pectina de pulpa de café de la variedad Robusta. Revista Cubana de Química, 30(3), 522–538.
Sood, A., & Saini, C. S. (2022). Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocolloids, 123, 107–135. https://doi.org/10.1016/j.foodhyd.2021.107135
Tai, N. L., Adhikari, R., Shanks, R., & Adhikari, B. (2019). Aerobic biodegradation of starch–polyurethane flexible films under soil burial condition: Changes in physical structure and chemical composition. International Biodeterioration and Biodegradation, 145, 104–793. https://doi.org/10.1016/j.ibiod.2019.104793
Thankur, B. R., Singh, R. K., Handa, A. K., & Rao, D. M. A. (1997). Chemistry and uses of pectin - A review. A Review, Critical Reviews in Food Science & Nutrition, 37(1), 47–73. https://doi.org/10.1080/10408399709527767
Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71–78. https://doi.org/10.1016/S0924-2244(02)00280-7
Valdespino-León, M., Calderón-Domínguez, G., De La Paz Salgado-Cruz, M., Rentería-Ortega, M., Farrera-Rebollo, R. R., Morales-Sánchez, E., Gaona-Sánchez, V. A., & Terrazas-Valencia, F. (2021). Biodegradable Electrosprayed Pectin Films: An Alternative to Valorize Coffee Mucilage. Waste and Biomass Valorization, 12, 2477–2494. https://doi.org/10.1007/s12649-020-01194-z
Valencia, N. R. (2000). Manejo de residuos en la agroindustria cafetera. Seminario Internacional Gestión Integral De Residuos Sólidos Y Peligrosos, Siglo Xxi, 1–10.
Voragen, A. G. J., Coenen, G. J., Verhoef, R. P., & Schols, H. A. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20, 263–275. https://doi.org/10.1007/s11224-009-9442-z
Vriesmann, L. C., Teófilo, R. F., & Lúcia de Oliveira Petkowicz, C. (2012). Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. LWT - Food Science and Technology, 49(1), 108–116. https://doi.org/10.1016/j.lwt.2012.04.018
Wu, J., Zhong, F., Li, Y., Shoemaker, C. F., & Xia, W. (2013). Preparation and characterization of pullulan-chitosan and pullulan-carboxymethyl chitosan blended films. Food Hydrocolloids, 30, 82–91. https://doi.org/10.1016/j.foodhyd.2012.04.002
Yabe, T. (2018). New understanding of pectin as a bioactive dietary fiber. Journal of Food Bioactives, 3, 95–100. https://doi.org/10.31665/jfb.2018.3152
Yapo, B M. (2007). Effect of extraction conditions on the yield , purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 100, 1356–1364. https://doi.org/10.1016/j.foodchem.2005.12.012
Yapo, Beda M. (2011). Pectic substances: From simple pectic polysaccharides to complex pectins - A new hypothetical model. Carbohydrate Polymers, 86, 373–385. https://doi.org/10.1016/j.carbpol.2011.05.065
Ye, S., He, S., Su, C., Jiang, L., Wen, Y., Zhu, Z., & Shao, W. (2018). Morphological, release and antibacterial performances of amoxicillin-loaded cellulose aerogels. Molecules, 23(8), 1–9. https://doi.org/10.3390/molecules23082082
Ye, S., Zhu, Z., Wen, Y., Su, C., Jiang, L., He, S., & Shao, W. (2019). Facile and green preparation of pectin/cellulose composite films with enhanced antibacterial and antioxidant behaviors. Polymers, 11(57). https://doi.org/10.3390/polym11010057
Yu, M., Xia, Y., Zhou, M., Guo, Y., Zheng, J., & Zhang, Y. (2021). Effects of different extraction methods on structural and physicochemical properties of pectins from finger citron pomace. Carbohydrate Polymers, 258, 117662. https://doi.org/10.1016/j.carbpol.2021.117662
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 103 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83227/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83227/2/1124857659.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83227/3/1124857659.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
90f59e70c49d135d83139507fca56dfa
77fd0e4f95ab5aa13bbcde72cfa30fcb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089623688708096
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cadena Chamorro, Edith Marleny7ec26456adea5743c43ee53e999944a4600Vallejos Jiménez, Mario Alejandrof6e2384245bba3b02c998f9ed33af728600Vallejos Jiménez, Mario Alejandro [0000-0002-5842-9702]2023-02-01T20:02:51Z2023-02-01T20:02:51Z2022https://repositorio.unal.edu.co/handle/unal/83227Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasEl aprovechamiento de los subproductos de la industria cafetera, como el mucílago y la pulpa, se muestra como alternativa para la obtención de compuestos de interés como la pectina, polímero ampliamente utilizado en la industria alimentaria gracias a su propiedad gelificante. El objetivo de este estudio es el desarrollo de películas biodegradables basadas en pectina de dichos subproductos, obtenidas mediante hidrólisis ácida con ácido cítrico, reforzadas con extracto de borra de café y celulosa bacteriana. El procesamiento del mucílago y la pulpa generó rendimientos de extracción de pectina en promedio de 10,98 ± 0,28 y 6,14 ± 0,18 %, caracterizándose por tener un contenido de metoxilo de 7,05 ± 0,27 y 4,85 ± 0,26 %, además de un grado de esterificación de 81,40 ± 2,08 y 72,74 ± 0,32 %, respectivamente. El desarrollo de películas reforzadas con celulosa y extracto de borra de café mostró resultados diferentes en función de las propiedades mecánicas y de solubilidad, obteniendo una resistencia a la tracción de 2,41 ± 0,16 y 3,41 ± 0,78 MPa y solubilidad de 63,52 ± 4,25 y 40,46 ± 5,26 %, en películas reforzadas basadas en pectina de mucílago y pulpa de café, respectivamente. Asimismo, se estimaron tiempos de biodegradabilidad en suelo de 3 y 16 días, siendo más estables las películas basadas en pectina de pulpa. Finalmente, la producción de películas a partir de pectina presente en estos subproductos se presenta como alternativa a un cambio progresivo de plásticos convencionales, proporcionando valor agregado a subproductos poco explorados. (Texto tomado de la fuente).The use of coffee industry by-products, such as mucilage and pulp, is shown as an alternative for obtaining compounds of interest such as pectin, a polymer widely used in the food industry due to its gelling properties. The objective of this study is the development of biodegradable films based on pectin from these by-products, obtained by acid hydrolysis with citric acid, reinforced with spent coffee grounds extract and bacterial cellulose. The processing of mucilage and pulp generated pectin extraction yields averaging 10.98 ± 0.28 and 6.14 ± 0.18 %, characterized by methoxyl contents of 7.05 ± 0.27 and 4.85 ± 0.26 %, in addition to an esterification degree of 81.40 ± 2.08 and 72.74 ± 0.32 %, respectively. The development of films reinforced with cellulose and spent coffee grounds extract showed different results in terms of mechanical and solubility properties, obtaining a tensile strength of 2.41 ± 0.16 and 3.41 ± 0.78 MPa and solubility of 63.52 ± 4.25 and 40.46 ± 5.26 %, in reinforced films based on mucilage pectin and coffee pulp, respectively. Likewise, biodegradability times in soil of 3 and 16 days were estimated, being more stable the films based on pulp pectin. Finally, the production of films from pectin present in these by-products is presented as an alternative to a progressive change of conventional plastics, providing added value to little explored by-products.MINCIENCIAS por la financiación del proyecto “Valorisation of waste from Coffee supply chain in Colombia and UK to develop novel products” con CTO No. 543-2020 de la convocatoria Institutional Links – Newton Fund – 2019 a través del Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación “FRANCISCO JOSÉ DE CALDAS”.MaestríaMagíster en Ingeniería - Ingeniería QuímicaBioprocesos agroindustrialesxvii, 103 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::668 - Tecnología de otros productos orgánicosPoliuronidosHidrólisisMucilagospolyuronideshydrolysismucilagesMucílago y pulpaPectinaHidrólisis ácidaCelulosa bacterianaExtracto de borra de caféGrado de esterificaciónBiodegradabilidadMucilage and pulpPectinAcid hydrolysisBacterial celluloseSpent coffee grounds extractDegree of esterificationBiodegradabilityDesarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácidaDevelopment of biodegradable films based on pectins extracted from coffee processing by-products by acid hydrolysisTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdilah, A. N., Jamilah, B., Noranizan, M. A., & Nur Hanani, Z. A. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006Akinalan Balik, B., Argin, S., M. Lagaron, J., & Torres-Giner, S. (2019). Preparation and characterization of electrospun pectin-based films and their application in sustainable aroma barrier multilayer packaging. Applied Sciences, 9(23), 2–24. https://doi.org/10.3390/app9235136Arriola Delia, & Garcia Ricardo. (1985). Caracterización química de la pectina obtenida de desechos del beneficio de café. Revista Científica, 3(1), 13–18.Barreto, G. E., Púa, A. L., De Alba, D. D., & Pión, M. M. (2017). Extracción y caracterización de pectina de mango de azúcar (Mangifera indica L.). Temas Agrarios, 22(1), 78. https://doi.org/10.21897/rta.v22i1.918Bátori, V., Jabbari, M., Åkesson, D., Lennartsson, P. R., Taherzadeh, M. J., & Zamani, A. (2017). Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling. International Journal of Polymer Science, 1–9. https://doi.org/10.1155/2017/9732329BeMiller, J. N. (1986). An Introduction to Pectins: Structure and Properties. American Chemical Society, 2–12. https://doi.org/10.1021/bk-1986-0310.ch001Bonnin, E., & Lahaye, M. (2013). Contribution of cell wall-modifying enzymes to the texture of fleshy fruits. The example of apple. Journal of the Serbian Chemical Society, 78(3), 417–427. https://doi.org/10.2298/JSC121123004BBraham, J. E., & Bressani, R. (1978). Pulpa de café: Composición, tecnología y utilización (J. E. Braham & R. Bressani (eds.)). Instituto de Nutrición de Centro América y Panamá, INCAP*.Canteri-Schemin, M. H., Ramos Fertonani, H. C., Waszczynskyj, N., & Wosiacki, G. (2005). Extraction of Pectin From Apple Pomace. Brazilian Archives of Biology and Technology, 48(2), 259–266. https://doi.org/10.1590/S1516-89132005000200013Chan, S. Y., & Choo, W. S. (2013). Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chemistry, 141(4), 3752–3758. https://doi.org/10.1016/j.foodchem.2013.06.097Chen, Y., Zhang, J. G., Sun, H. J., & Wei, Z. J. (2014). Pectin from Abelmoschus esculentus: Optimization of extraction and rheological properties. International Journal of Biological Macromolecules, 70, 498–505. https://doi.org/10.1016/j.ijbiomac.2014.07.024Comité de Cafeteros de Antioquia. (2022). Producción de café de Colombia cierra 2021 en 12,6 millones de sacos. Federación Nacional de Cafeteros de Colombia. https://fncantioquia.org/produccion-de-cafe-de-colombia-cierra-2021-en-126-millones-de-sacos/El Halal, S. L. M., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, N. L. V., Dias, A. R. G., & Zavareze, E. D. R. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644–653. https://doi.org/10.1016/j.carbpol.2015.07.024Endress, H.-U. (1991). Nonfood Uses of Pectin. In The Chemistry and Technology of pectin (pp. 251–268).Faravash, R. S., & Ashtiani, F. Z. (2007). The effect of pH, ethanol volume and acid washing time on the yield of pectin extraction from peach pomace. International Journal of Food Science and Technology, 42, 1177–1187. https://doi.org/10.1111/j.1365-2621.2006.01324.xFederación de cafeteros de Colombia. (2020). Regiones cafeteras de Colombia. Café de Colombia. https://www.cafedecolombia.com/particulares/regiones-cafeteras/Ferreira Ardila, S. (2007). Pectinas: aislamiento, caracterización y producción a partir de frutas tropicales y de los residuos de su procesamiento industrial [Universidad Nacional de Colombia]. In Facultad de Ciencias (Vol. 1). http://ciencias.bogota.unal.edu.co/fileadmin/Facultad_de_Ciencias/Publicaciones/Archivos_Libros/Libros_Farmacia/Pectinas/pectinas.pdfGharibzahedi, S. M. T., Smith, B., & Guo, Y. (2019). Pectin extraction from common fig skin by different methods: The physicochemical, rheological, functional, and structural evaluations. International Journal of Biological Macromolecules, 136, 275–283. https://doi.org/10.1016/j.ijbiomac.2019.06.040Greenpeace. (2019). ¿Cómo llega el plástico a los océanos y qué sucede entonces? - ES | Greenpeace España. Greenpeace. https://es.greenpeace.org/es/trabajamos-en/consumismo/plasticos/como-llega-el-plastico-a-los-oceanos-y-que-sucede-entonces/Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules, 125, 621–629. https://doi.org/10.1016/j.ijbiomac.2018.12.096Kian, L. K., Jawaid, M., Ariffin, H., & Karim, Z. (2018). Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. International Journal of Biological Macromolecules, 114, 54–63. https://doi.org/10.1016/j.ijbiomac.2018.03.065Lei, Y., Wu, H., Jiao, C., Jiang, Y., Liu, R., Xiao, D., Lu, J., Zhang, Z., Shen, G., & Li, S. (2019). Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids, 94, 128–135. https://doi.org/10.1016/j.foodhyd.2019.03.011Liew, S. Q., Chin, N. L., & Yusof, Y. A. (2014). Extraction and Characterization of Pectin from Passion Fruit Peels. Agriculture and Agricultural Science Procedia, 2, 231–236. https://doi.org/10.1016/j.aaspro.2014.11.033Mellinas, C., Ramos, M., Jiménez, A., & Garrigós, M. C. (2020). Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials, 13(3), 1–17. https://doi.org/10.3390/ma13030673Mendes, J. F., Martins, J. T., Manrich, A., Sena Neto, A. R., Pinheiro, A. C. M., Mattoso, L. H. C., & Martins, M. A. (2019). Development and physical-chemical properties of pectin film reinforced with spent coffee grounds by continuous casting. Carbohydrate Polymers, 210, 92–99. https://doi.org/10.1016/j.carbpol.2019.01.058Minjares-Fuentes, R., Femenia, A., Garau, M. C., Meza-Velázquez, J. A., Simal, S., & Rosselló, C. (2014). Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohydrate Polymers, 106(1), 179–189. https://doi.org/10.1016/j.carbpol.2014.02.013Muhammad, N. W. F., Nurrulhidayah, A. F., Hamzah, M. S., Rashidi, O., & Rohman, A. (2020). Physicochemical properties of dragon fruit peel pectin and citrus peel pectin: A comparison. Food Research, 4(Suppl. 1), 266–273. https://doi.org/10.26656/fr.2017.4(S1).S14Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005Oakenfull, D. . (1991). The Chemistry of High-Methoxyl Pectins. In I. Academic Press (Ed.), The Chemistry and Technology of pectin (pp. 87–108).Pereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldron, K. W., & Azeredo, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 88, 373–379. https://doi.org/10.1016/j.ijbiomac.2016.03.074Pinheiro, E. R., Silva, I. M. D. A., Gonzaga, L. V., Amante, E. R., Teófilo, R. F., Ferreira, M. M. C., & Amboni, R. D. M. C. (2008). Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology. Bioresource Technology, 99(13), 5561–5566. https://doi.org/10.1016/j.biortech.2007.10.058Puerta Quintero, G. I., & Ríos Arias, S. (2011). Composición química del mucílago de café, según el tiempo de fermentación y refrigeración. Cenicafé, 62(2), 23–40.Quader, F. B., Khan, R. A., Islam, M. A., Saha, S., & Sharmin, K. N. (2015). Development and Characterization of a Biodegradable Colored Film Based on Starch and Chitosan by Using Acacia Catechu. Journal of Environmental Science & Natural Resources, 8(2), 123–130.Ranganna, S. (1986). Handbook of Analysis and Quality Control for Fruit and Vegetable Products (2nd ed). https://books.google.com.co/books?hl=es&lr=&id=jQN8Kpj0UOMC&oi=fnd&pg=PA1&ots=fdVlYTkIxJ&sig=_B0IwkCbswnkqfDkAkbO-vxtqZc&redir_esc=y#v=onepage&q&f=falseRidley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929–967. https://doi.org/10.1016/S0031-9422(01)00113-3Rodríguez Valencia, N., & Zambrano Franco, D. A. (2011). Producción de alcohol a partir del mucílago del café. Revista Cenicafé, 62(1), 56–69. http://biblioteca.cenicafe.org/bitstream/10778/541/1/arc064(02)78-93.pdfRoy, S., & Rhim, J. W. (2021). Fabrication of pectin/agar blended functional film: Effect of reinforcement of melanin nanoparticles and grapefruit seed extract. Food Hydrocolloids, 118, 106823. https://doi.org/10.1016/j.foodhyd.2021.106823Sánchez Aldana, D., Contreras-Esquivel, J. C., Nevárez-Moorillón, G. V., & Aguilar, C. N. (2015). Caracterización de películas comestibles a base de extractos pécticos y aceite esencial de limón Mexicano. CyTA - Journal of Food, 13(1), 17–25. https://doi.org/10.1080/19476337.2014.904929Santos, E. E., Amaro, R. C., Bustamante, C. C. C., Guerra, M. H. A., Soares, L. C., & Froes, R. E. S. (2020). Extraction of pectin from agroindustrial residue with an ecofriendly solvent: use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification. Food Hydrocolloids, 107, 105921. https://doi.org/10.1016/j.foodhyd.2020.105921Sengar, A. S., Rawson, A., Muthiah, M., & Kalakandan, S. K. (2020). Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrasonics Sonochemistry, 61, 104812. https://doi.org/10.1016/j.ultsonch.2019.104812Serrat-Díaz, M., De la Fé-Isaac, Á. D., De la Fé-Isaac, J. A., & Montero-Cabrales, C. (2018). Extracción y caracterización de pectina de pulpa de café de la variedad Robusta. Revista Cubana de Química, 30(3), 522–538.Sood, A., & Saini, C. S. (2022). Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocolloids, 123, 107–135. https://doi.org/10.1016/j.foodhyd.2021.107135Tai, N. L., Adhikari, R., Shanks, R., & Adhikari, B. (2019). Aerobic biodegradation of starch–polyurethane flexible films under soil burial condition: Changes in physical structure and chemical composition. International Biodeterioration and Biodegradation, 145, 104–793. https://doi.org/10.1016/j.ibiod.2019.104793Thankur, B. R., Singh, R. K., Handa, A. K., & Rao, D. M. A. (1997). Chemistry and uses of pectin - A review. A Review, Critical Reviews in Food Science & Nutrition, 37(1), 47–73. https://doi.org/10.1080/10408399709527767Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71–78. https://doi.org/10.1016/S0924-2244(02)00280-7Valdespino-León, M., Calderón-Domínguez, G., De La Paz Salgado-Cruz, M., Rentería-Ortega, M., Farrera-Rebollo, R. R., Morales-Sánchez, E., Gaona-Sánchez, V. A., & Terrazas-Valencia, F. (2021). Biodegradable Electrosprayed Pectin Films: An Alternative to Valorize Coffee Mucilage. Waste and Biomass Valorization, 12, 2477–2494. https://doi.org/10.1007/s12649-020-01194-zValencia, N. R. (2000). Manejo de residuos en la agroindustria cafetera. Seminario Internacional Gestión Integral De Residuos Sólidos Y Peligrosos, Siglo Xxi, 1–10.Voragen, A. G. J., Coenen, G. J., Verhoef, R. P., & Schols, H. A. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20, 263–275. https://doi.org/10.1007/s11224-009-9442-zVriesmann, L. C., Teófilo, R. F., & Lúcia de Oliveira Petkowicz, C. (2012). Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. LWT - Food Science and Technology, 49(1), 108–116. https://doi.org/10.1016/j.lwt.2012.04.018Wu, J., Zhong, F., Li, Y., Shoemaker, C. F., & Xia, W. (2013). Preparation and characterization of pullulan-chitosan and pullulan-carboxymethyl chitosan blended films. Food Hydrocolloids, 30, 82–91. https://doi.org/10.1016/j.foodhyd.2012.04.002Yabe, T. (2018). New understanding of pectin as a bioactive dietary fiber. Journal of Food Bioactives, 3, 95–100. https://doi.org/10.31665/jfb.2018.3152Yapo, B M. (2007). Effect of extraction conditions on the yield , purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 100, 1356–1364. https://doi.org/10.1016/j.foodchem.2005.12.012Yapo, Beda M. (2011). Pectic substances: From simple pectic polysaccharides to complex pectins - A new hypothetical model. Carbohydrate Polymers, 86, 373–385. https://doi.org/10.1016/j.carbpol.2011.05.065Ye, S., He, S., Su, C., Jiang, L., Wen, Y., Zhu, Z., & Shao, W. (2018). Morphological, release and antibacterial performances of amoxicillin-loaded cellulose aerogels. Molecules, 23(8), 1–9. https://doi.org/10.3390/molecules23082082Ye, S., Zhu, Z., Wen, Y., Su, C., Jiang, L., He, S., & Shao, W. (2019). Facile and green preparation of pectin/cellulose composite films with enhanced antibacterial and antioxidant behaviors. Polymers, 11(57). https://doi.org/10.3390/polym11010057Yu, M., Xia, Y., Zhou, M., Guo, Y., Zheng, J., & Zhang, Y. (2021). Effects of different extraction methods on structural and physicochemical properties of pectins from finger citron pomace. Carbohydrate Polymers, 258, 117662. https://doi.org/10.1016/j.carbpol.2021.117662Ministerio de CienciasBibliotecariosEstudiantesInvestigadoresMaestrosMedios de comunicaciónProveedores de ayuda financiera para estudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83227/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1124857659.2022.pdf1124857659.2022.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf4589070https://repositorio.unal.edu.co/bitstream/unal/83227/2/1124857659.2022.pdf90f59e70c49d135d83139507fca56dfaMD52THUMBNAIL1124857659.2022.pdf.jpg1124857659.2022.pdf.jpgGenerated Thumbnailimage/jpeg6873https://repositorio.unal.edu.co/bitstream/unal/83227/3/1124857659.2022.pdf.jpg77fd0e4f95ab5aa13bbcde72cfa30fcbMD53unal/83227oai:repositorio.unal.edu.co:unal/832272024-08-17 00:01:20.003Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=