Optimization of the linear quadratic regulator (LQR) control quarter car suspension system using genetic algorithm

In this paper, a genetic algorithm (GA) based in an optimization approach is presented in order to search the optimum weighting matrix parameters of a linear quadratic regulator (LQR). A Macpherson strut quarter car suspension system is implemented for ride control application. Initially, the GA is...

Full description

Autores:
Nagarkar, Mahesh
Vikhe Patil, G. J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/67625
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/67625
http://bdigital.unal.edu.co/68654/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Genetic algorithm (GA)
MacPherson strut
quarter car
linear quadratic regulator (LQR)
optimization.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In this paper, a genetic algorithm (GA) based in an optimization approach is presented in order to search the optimum weighting matrix parameters of a linear quadratic regulator (LQR). A Macpherson strut quarter car suspension system is implemented for ride control application. Initially, the GA is implemented with the objective of minimizing root mean square (RMS) controller force. For single objective optimization, RMS controller force is reduced by 20.42% with slight increase in RMS sprung mass acceleration. Trade-off is observed between controller force and sprung mass acceleration. Further, an analysis is extended to multi-objective optimization with objectives such as minimization of RMS controller force and RMS sprung mass acceleration and minimization of RMS controller force, RMS sprung mass acceleration and suspension space deflection. For multi-objective optimization, Pareto-front gives flexibility in order to choose the optimum solution as per designer’s need.