Evaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuero
ilustraciones, diagramas, fotografías
- Autores:
-
Oliveros Pineda, Daniel
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86065
- Palabra clave:
- 660 - Ingeniería química::664 - Tecnología de alimentos
Oligosacáridos
Lactosuero
Enzimas
oligosaccharides
whey
enzymes
Galacto-oligosacáridos
Beta-galactosidasa
Agregados enzimáticos
Ácido glucónico
Inmovilización enzimática
Lactosuero
Galacto-oligosaccharides
Glucosa oxidasa
Beta-galactosidase
Glucose oxidase
Enzyme aggregates
Gluconic acid
Enzyme immobilization
Whey
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_84ef9f7821531abbb7d0f06c16ba7270 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86065 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuero |
dc.title.translated.eng.fl_str_mv |
Evaluation of an immobilized multienzyme system for the production of galactooligosaccharides (GOS) from whey |
title |
Evaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuero |
spellingShingle |
Evaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuero 660 - Ingeniería química::664 - Tecnología de alimentos Oligosacáridos Lactosuero Enzimas oligosaccharides whey enzymes Galacto-oligosacáridos Beta-galactosidasa Agregados enzimáticos Ácido glucónico Inmovilización enzimática Lactosuero Galacto-oligosaccharides Glucosa oxidasa Beta-galactosidase Glucose oxidase Enzyme aggregates Gluconic acid Enzyme immobilization Whey |
title_short |
Evaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuero |
title_full |
Evaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuero |
title_fullStr |
Evaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuero |
title_full_unstemmed |
Evaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuero |
title_sort |
Evaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuero |
dc.creator.fl_str_mv |
Oliveros Pineda, Daniel |
dc.contributor.advisor.spa.fl_str_mv |
Serrato Bermúdez, Juan Carlos |
dc.contributor.author.spa.fl_str_mv |
Oliveros Pineda, Daniel |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Procesos Químicos y Bioquímicos |
dc.contributor.orcid.spa.fl_str_mv |
Oliveros Pineda, Daniel [0000-0002-2222-1598] |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::664 - Tecnología de alimentos |
topic |
660 - Ingeniería química::664 - Tecnología de alimentos Oligosacáridos Lactosuero Enzimas oligosaccharides whey enzymes Galacto-oligosacáridos Beta-galactosidasa Agregados enzimáticos Ácido glucónico Inmovilización enzimática Lactosuero Galacto-oligosaccharides Glucosa oxidasa Beta-galactosidase Glucose oxidase Enzyme aggregates Gluconic acid Enzyme immobilization Whey |
dc.subject.agrovoc.spa.fl_str_mv |
Oligosacáridos Lactosuero Enzimas |
dc.subject.agrovoc.eng.fl_str_mv |
oligosaccharides whey enzymes |
dc.subject.proposal.spa.fl_str_mv |
Galacto-oligosacáridos Beta-galactosidasa Agregados enzimáticos Ácido glucónico Inmovilización enzimática Lactosuero |
dc.subject.proposal.eng.fl_str_mv |
Galacto-oligosaccharides Glucosa oxidasa Beta-galactosidase Glucose oxidase Enzyme aggregates Gluconic acid Enzyme immobilization Whey |
description |
ilustraciones, diagramas, fotografías |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-05-09T20:19:28Z |
dc.date.available.none.fl_str_mv |
2024-05-09T20:19:28Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86065 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86065 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alnadari, F., Xue, Y., Almakas, A., Mohedein, A., Samie, A., Abdel‐Shafi, M., & Abdin, M. (2021). Large batch production of Galactooligosaccharides using β‐glucosidase immobilized on chitosan‐functionalized magnetic nanoparticle. Journal of Food Biochemistry, 45(2). https://doi.org/10.1111/jfbc.13589 Ammam, M., & Fransaer, J. (2010). Two-enzyme lactose biosensor based on βgalactosidase and glucose oxidase deposited by AC-electrophoresis: Characteristics and performance for lactose determination in milk. Sensors and Actuators B: Chemical, 148(2), 583–589. https://doi.org/10.1016/j.snb.2010.05.027 AOAC, I. (2002). Official Methods of Analysis of AOAC International (17th ed.). Arana-Peña, S., Carballares, D., Morellon-Sterlling, R., Berenguer-Murcia, Á., Alcántara, A. R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2021). Enzyme coimmobilization: Always the biocatalyst designers’ choice…or not? Biotechnology Advances, 51, 107584. https://doi.org/10.1016/j.biotechadv.2020.107584 Araya, E., Urrutia, P., Romero, O., Illanes, A., & Wilson, L. (2019). Design of combined crosslinked enzyme aggregates (combi-CLEAs) of β-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chemistry, 288, 102–107. https://doi.org/10.1016/j.foodchem.2019.02.024 Argenta, A. B., Nogueira, A., & de P. Scheer, A. (2021). Hydrolysis of whey lactose: Kluyveromyces lactis β-galactosidase immobilisation and integrated process hydrolysis-ultrafiltration. International Dairy Journal, 117, 105007. https://doi.org/10.1016/j.idairyj.2021.105007 Ayhan, F., & Ispirli, Y. (2011). Cross- Linked Glucose Oxidase Aggregates: Synthesis and Characterization. Hacettepe J. Biol. & Chem, 39(3), 241–251. Azcarate-Peril, M. A., Ritter, A. J., Savaiano, D., Monteagudo-Mera, A., Anderson, C., Magness, S. T., & Klaenhammer, T. R. (2017). Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proceedings of the National Academy of Sciences, 114(3). https://doi.org/10.1073/pnas.1606722113 Barile, D., & Rastall, R. A. (2013). Human milk and related oligosaccharides as prebiotics. Current Opinion in Biotechnology, 24(2), 214–219. https://doi.org/10.1016/j.copbio.2013.01.008 Bauer, J. A., Zámocká, M., Majtán, J., & Bauerová-Hlinková, V. (2022). Glucose Oxidase, an Enzyme “Ferrari”: Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules, 12(3), 472. https://doi.org/10.3390/biom12030472 Benavides, J., & Palomares, M. (2017). Aqueous two-phase systems for bioprocess development for the recovery of biological products. Springer Science+Business Media. Bensadoun, A., & Weinstein, D. (1976). Assay of proteins in the presence of interfering materials. Analytical Biochemistry, 70(1), 241–250. https://doi.org/10.1016/S00032697(76)80064-4 Bernal, C., Marciello, M., Mesa, M., Sierra, L., Fernandez-Lorente, G., Mateo, C., & Guisan, J. M. (2013). Immobilisation and stabilisation of β-galactosidase from Kluyveromyces lactis using a glyoxyl support. International Dairy Journal, 28(2), 76–82. https://doi.org/10.1016/j.idairyj.2012.08.009 Bilal, M., & Iqbal, H. M. N. (2019). Sustainable bioconversion of food waste into highvalue products by immobilized enzymes to meet bio-economy challenges and opportunities – A review. Food Research International, 123, 226–240. https://doi.org/10.1016/j.foodres.2019.04.066 BIOCON. (2021). PRODUCCIÓN Y CONTROL DE LECHE DESLACTOSADA. https://biocon.es/wp-content/uploads/2017/01/Leche-deslactosada.pdf Blandino, A., Macı ́ as, M., & Cantero, D. (2001). Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochemistry, 36(7), 601–606. https://doi.org/10.1016/S0032-9592(00)00240-5 otvynko, A., Bednářová, A., Henke, S., Shakhno, N., & Čurda, L. (2019). Production of galactooligosaccharides using various combinations of the commercial βgalactosidases. Biochemical and Biophysical Research Communications, 517(4), 762–766. https://doi.org/10.1016/j.bbrc.2019.08.001 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Brás, N. F., Moura-Tamames, S. A., Fernandes, P. A., & Ramos, M. J. (2008). Mechanistic studies on the formation of glycosidase-substrate and glycosidaseinhibitor covalent intermediates. Journal of Computational Chemistry, 29(15), 2565–2574. https://doi.org/10.1002/jcc.21013 Brena, B., González-Pombo, P., & Batista-Viera, F. (2013). Immobilization of Enzymes: A Literature Survey. In J. M. Guisan (Ed.), Immobilization of Enzymes and Cells (Vol. 1051, pp. 15–31). Humana Press. https://doi.org/10.1007/978-1-62703-5507_2 Cardelle-Cobas, A., Olano, A., Irazoqui, G., Giacomini, C., Batista-Viera, F., Corzo, N., & Corzo-Martínez, M. (2016). Synthesis of Oligosaccharides Derived from Lactulose (OsLu) Using Soluble and Immobilized Aspergillus oryzae β-Galactosidase. Frontiers in Bioengineering and Biotechnology, 4. https://doi.org/10.3389/fbioe.2016.00021 Carvalho, F., Prazeres, A. R., & Rivas, J. (2013). Cheese whey wastewater: Characterization and treatment. Science of The Total Environment, 445–446, 385–396. https://doi.org/10.1016/j.scitotenv.2012.12.038 Castro, G. (2020). Evaluación de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido pormicroondas. Universidad Nacional de Colombia. Catenza, K. F., & Donkor, K. K. (2021). Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review. Food Chemistry, 355, 129416. https://doi.org/10.1016/j.foodchem.2021.129416 Chanfrau, P., Núñez, J., Lara, M., & Rivera LM. (2017). Milk-Whey From a problematicbyproduct to a source of valuable products for health and industry: An overview from biotechnology. La Prensa Medica, 103(4). https://doi.org/10.4172/lpma.1000257 Charalampopoulos, D., & Rastall, R. A. (2012). Prebiotics in foods. Current Opinion in Biotechnology, 23(2), 187–191. https://doi.org/10.1016/j.copbio.2011.12.028 Chen, T.-L., & Weng, H.-S. (1986). A method for the determination of the activity and optimal pH of glucose oxidase in an unbuffered solution. Biotechnology and Bioengineering, 28, 107–109. Chmura, A., Rustler, S., Paravidino, M., Van Rantwijk, F., Stolz, A., & Sheldon, R. A. (2013). The combi-CLEA approach: Enzymatic cascade synthesis of enantiomerically pure (S)-mandelic acid. Tetrahedron: Asymmetry, 24(19), 1225– 1232. https://doi.org/10.1016/j.tetasy.2013.08.013 Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144. https://doi.org/10.1016/j.biteb.2022.101144 Corral, J. M., Bañuelos, O., Adrio, J. L., & Velasco, J. (2006). Cloning and characterization of a β-galactosidase encoding region in Lactobacillus coryniformis CECT 5711. Applied Microbiology and Biotechnology, 73(3), 640–646. https://doi.org/10.1007/s00253-006-0510-7 Crittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of foodgrade oligosaccharides. Trends in Food Science & Technology, 7(11), 353–361. https://doi.org/10.1016/S0924-2244(96)10038-8 Damin, B. I. S., Kovalski, F. C., Fischer, J., Piccin, J. S., & Dettmer, A. (2021). Challenges and perspectives of the β-galactosidase enzyme. Applied Microbiology and Biotechnology, 105(13), 5281–5298. https://doi.org/10.1007/s00253-021-11423-7 de Albuquerque, T. L., de Sousa, M., Gomes e Silva, N. C., Girão Neto, C. A. C., Gonçalves, L. R. B., Fernandez-Lafuente, R., & Rocha, M. V. P. (2021). βGalactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. International Journal of Biological Macromolecules, 191, 881–898. https://doi.org/10.1016/j.ijbiomac.2021.09.133 Dekker, P. J. T. (2019). Enzymes Exogenous to Milk in Dairy Technology: β-dGalactosidase. In Reference Module in Food Science (p. B9780081005965007435). Elsevier. https://doi.org/10.1016/B978-0-08-1005965.00743-5 Deng, C., Chen, J., Nie, Z., & Si, S. (2010). A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode. Biosensors and Bioelectronics, 26(1), 213–219. https://doi.org/10.1016/j.bios.2010.06.013 Ding, H., Zhou, L., Zeng, Q., Yu, Y., & Chen, B. (2018). Heterologous Expression of a Thermostable β-1,3-Galactosidase and Its Potential in Synthesis of Galactooligosaccharides. Marine Drugs, 16(11), 415. https://doi.org/10.3390/md16110415 Dubey, M. K., Zehra, A., Aamir, M., Meena, M., Ahirwal, L., Singh, S., Shukla, S., Upadhyay, R. S., Bueno-Mari, R., & Bajpai, V. K. (2017). Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates. Frontiers in Microbiology, 8, 1032. https://doi.org/10.3389/fmicb.2017.01032 Dunnill, P. (1979). Immobilized enzymes—Research and development. Biochemical Education, 7(3), 73. https://doi.org/10.1016/0307-4412(79)90055-4 Erazo, R., & Cárdenas, J. (2001). DETERMINACIÓN EXPERIMENTAL DEL COEFICIENTE DE TRANSFERENCIA DE OXÍGENO (kLa) EN UN BIORREACTOR BATCH. Rev. Per. Qufm. Ing. Qufm., VoL 4(2), 22–27. Farias, D. de P., de Araújo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology, 93, 23–35. https://doi.org/10.1016/j.tifs.2019.09.004 FEDEGAN. (2022). Cifras del sector ganadero: Producción y acopio de leche en Colombia. https://www.fedegan.org.co/estadisticas/produccion-0 FINAGRO. (2023). Crecimiento del sector agropecuario y Agroexpo 2023. https://www.finagro.com.co/noticias/articulos/crecimiento-del-sector-agropecuarioagroexpo-2023-reto-desarrollo-del-campo-0 Fischer, C., & Kleinschmidt, T. (2015). Synthesis of galactooligosaccharides using sweet and acid whey as a substrate. International Dairy Journal, 48, 15–22. https://doi.org/10.1016/j.idairyj.2015.01.003 Fischer, C., & Kleinschmidt, T. (2018a). Combination of two β-galactosidases during the synthesis of galactooligosaccharides may enhance yield and structural diversity. Biochemical and Biophysical Research Communications, 506(1), 211–215. https://doi.org/10.1016/j.bbrc.2018.10.091 Fischer, C., & Kleinschmidt, T. (2018b). Synthesis of Galactooligosaccharides in Milk and Whey: A Review: Synthesis of galactooligosaccharides…. Comprehensive Reviews in Food Science and Food Safety, 17(3), 678–697. https://doi.org/10.1111/1541-4337.12344 Fischer, C., & Kleinschmidt, T. (2019). Effect of glucose depletion during the synthesis of galactooligosaccharides using a trienzymatic system. Enzyme and Microbial Technology, 121, 45–50. https://doi.org/10.1016/j.enzmictec.2018.10.009 Fischer, C., & Kleinschmidt, T. (2021). Synthesis of galactooligosaccharides by Cryptococcus laurentii and Aspergillus oryzae using different kinds of acid whey. International Dairy Journal, 112, 104867. https://doi.org/10.1016/j.idairyj.2020.104867 Frenzel, M., Zerge, K., Clawin-Rädecker, I., & Lorenzen, P. Chr. (2015). Comparison of the galacto-oligosaccharide forming activity of different β-galactosidases. LWT - Food Science and Technology, 60(2), 1068–1071. https://doi.org/10.1016/j.lwt.2014.10.064 Füreder, V., Rodriguez-Colinas, B., Cervantes, F. V., Fernandez-Arrojo, L., Poveda, A., Jimenez-Barbero, J., Ballesteros, A. O., & Plou, F. J. (2020). Selective Synthesis of Galactooligosaccharides Containing β(1→3) Linkages with β-Galactosidase from Bifidobacterium bifidum (Saphera). Journal of Agricultural and Food Chemistry, 68(17), 4930–4938. https://doi.org/10.1021/acs.jafc.0c00997 Gao, X., Wu, J., & Wu, D. (2019). Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production. Food Chemistry, 286, 362–367. https://doi.org/10.1016/j.foodchem.2019.01.212 Garcia-Cruz, C. H., Foggetti, U., & Silva, A. N. D. (2008). Alginato bacteriano: Aspectos tecnológicos, características e produção. Química Nova, 31(7), 1800–1806. https://doi.org/10.1590/S0100-40422008000700035 Gargova, S., Pishtijski, I., & Stoilova, I. (1995). Purification and Properties of βGalactosidase from Aspergillus Oryzae. Biotechnology & Biotechnological Equipment, 9(4), 47–51. https://doi.org/10.1080/13102818.1995.10818861 Gennari, A., Mobayed, F. H., Volpato, G., & De Souza, C. F. V. (2018). Chelation by collagen in the immobilization of Aspergillus oryzae β-galactosidase: A potential biocatalyst to hydrolyze lactose by batch processes. International Journal of Biological Macromolecules, 109, 303–310. https://doi.org/10.1016/j.ijbiomac.2017.12.088 Göktuğ, T., Sezgintürk, M. K., & Dinçkaya, E. (2005). Glucose oxidase-β-galactosidase hybrid biosensor based on glassy carbon electrode modified with mercury for lactose determination. Analytica Chimica Acta, 551(1–2), 51–56. https://doi.org/10.1016/j.aca.2005.07.021 Gómez Soto, J. A., & Sánchez Toro, Ó. J. (2022). Producción de galactooligosacáridos: Alternativa para el aprovechamiento del lactosuero. Una revisión. Ingeniería y Desarrollo, 37(01), 129–158. https://doi.org/10.14482/inde.37.1.637 Gosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E., & Gras, S. L. (2010). Recent advances refining galactooligosaccharide production from lactose. Food Chemistry, 121(2), 307–318. https://doi.org/10.1016/j.foodchem.2009.12.063 Gouda, M. D., Singh, S. A., Rao, A. G. A., Thakur, M. S., & Karanth, N. G. (2003). Thermal Inactivation of Glucose Oxidase. Journal of Biological Chemistry, 278(27), 24324–24333. https://doi.org/10.1074/jbc.M208711200 Grosová, Z., Rosenberg, M., & Rebroš, M. (2008). Perspectives and applications of immobilised β-galactosidase in food industry – a review. Czech Journal of Food Sciences, 26(No. 1), 1–14. https://doi.org/10.17221/1134-CJFS Guerrero, C., Aburto, C., Suárez, S., Vera, C., & Illanes, A. (2018). Effect of the type of immobilization of β-galactosidase on the yield and selectivity of synthesis of transgalactosylated oligosaccharides. Biocatalysis and Agricultural Biotechnology, 16, 353–363. https://doi.org/10.1016/j.bcab.2018.08.021 Guerrero, C., Aburto, C., Súarez, S., Vera, C., & Illanes, A. (2020). Improvements in the production of Aspergillus oryzae β-galactosidase crosslinked aggregates and their use in repeated-batch synthesis of lactulose. International Journal of Biological Macromolecules, 142, 452–462. https://doi.org/10.1016/j.ijbiomac.2019.09.117 Guerrero, C., Vera, C., Conejeros, R., & Illanes, A. (2015). Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology, 70, 9–17. https://doi.org/10.1016/j.enzmictec.2014.12.006 Guerrero, C., Vera, C., Serna, N., & Illanes, A. (2017). Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresource Technology, 232, 53–63. https://doi.org/10.1016/j.biortech.2017.02.003 Guío, A. F. (2014). EVALUACIÓN DE LA PRODUCCIÓN DE GALACTOOLIGOSACÁRIDOS A PARTIR DE MATERIAS PRIMAS LÁCTEAS CON BETA-GALACTOSIDASA INMOVILIZADA. Universidad Nacional de Colombia. Guisán, JoséM. (1988). Aldehyde-agarose gels as activated supports for immobilizationstabilization of enzymes. Enzyme and Microbial Technology, 10(6), 375–382. https://doi.org/10.1016/0141-0229(88)90018-X Hackenhaar, C. R., Spolidoro, L. S., Flores, E. E. E., Klein, M. P., & Hertz, P. F. (2021). Batch synthesis of galactooligosaccharides from co-products of milk processing using immobilized β-galactosidase from Bacillus circulans. Biocatalysis and Agricultural Biotechnology, 36, 102136. https://doi.org/10.1016/j.bcab.2021.102136 Hernandez, K., Berenguer-Murcia, A., C. Rodrigues, R., & Fernandez-Lafuente, R. (2012). Hydrogen Peroxide in Biocatalysis. A Dangerous Liaison. Current Organic Chemistry, 16(22), 2652–2672. https://doi.org/10.2174/138527212804004526 Hetrick, E. M., Sperry, D. C., Nguyen, H. K., & Strege, M. A. (2014). Characterization of a Novel Cross-Linked Lipase: Impact of Cross-Linking on Solubility and Release from Drug Product. Molecular Pharmaceutics, 11(4), 1189–1200. https://doi.org/10.1021/mp4006529 Huerta, L. M., Vera, C., Guerrero, C., Wilson, L., & Illanes, A. (2011). Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized βgalactosidases from Aspergillus oryzae. Process Biochemistry, 46(1), 245–252. https://doi.org/10.1016/j.procbio.2010.08.018 ain, M., Gote, M., Dubey, A. K., Narayanan, S., Krishnappa, H., Kumar, D. S., Ravi, G., Vijayasarathi, S., & Shankar, S. (2018). Safety evaluation of fructooligosaccharide (FOSSENCE TM ): Acute, 14-day, and subchronic oral toxicity study in Wistar rats. Toxicology Research and Application, 2, 239784731878775. https://doi.org/10.1177/2397847318787750 asti, L. S., Dola, S. R., Fadnavis, N. W., Addepally, U., Daniels, S., & Ponrathnam, S. (2014). Co-immobilized glucose oxidase and β-galactosidase on bovine serum albumin coated allyl glycidyl ether (AGE)–ethylene glycol dimethacrylate (EGDM) opolymer as a biosensor for lactose determination in milk. Enzyme and Microbial Technology, 64–65, 67–73. https://doi.org/10.1016/j.enzmictec.2014.07.005 Katrolia, P., Liu, X., Li, G., & Kopparapu, N. K. (2019). Enhanced Properties and Lactose Hydrolysis Efficiencies of Food-Grade β-Galactosidases Immobilized on Various Supports: A Comparative Approach. Applied Biochemistry and Biotechnology, 188(2), 410–423. https://doi.org/10.1007/s12010-018-2927-8 Ladero, M., Santos, A., Garcı ́ a, J. L., Carrascosa, A. V., Pessela, B. C. C., & Garcı Ochoa, F. (2002). Studies on the activity and the stability of β-galactosidases from Thermus sp strain T2 and from Kluyveromyces fragilis. Enzyme and Microbial Technology, 30(3), 392–405. https://doi.org/10.1016/S0141-0229(01)00506-3 Liu, H., Li, H., Ying, T., Sun, K., Qin, Y., & Qi, D. (1998). Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer. Analytica Chimica Acta, 358(2), 137–144. https://doi.org/10.1016/S0003-2670(97)00576-X Loğoğlu, E., Sungur, S., & Yildiz, Y. (2006). Development of Lactose Biosensor Based on β‐Galactosidase and Glucose Oxidase Immobilized into Gelatin. Journal of Macromolecular Science, Part A, 43(3), 525–533. https://doi.org/10.1080/10601320600575256 Long, J., Pan, T., Xie, Z., Xu, X., & Jin, Z. (2020). Co-immobilization of βfructofuranosidase and glucose oxidase improves the stability of Bi-enzymes and the production of lactosucrose. LWT, 128, 109460. https://doi.org/10.1016/j.lwt.2020.109460 Lorenzen, P. Chr., Breiter, J., Clawin‐Rädecker, I., & Dau, A. (2013). A novel bi‐enzymatic system for lactose conversion. International Journal of Food Science & Technology, 48(7), 1396–1403. https://doi.org/10.1111/ijfs.12101 Lu, L., Guo, L., Wang, K., Liu, Y., & Xiao, M. (2020). β-Galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnology Advances, 39, 107465. https://doi.org/10.1016/j.biotechadv.2019.107465 Lu, L., Xu, S., Zhao, R., Zhang, D., Li, Z., Li, Y., & Xiao, M. (2012). Synthesis of galactooligosaccharides by CBD fusion β-galactosidase immobilized on cellulose. Bioresource Technology, 116, 327–333. https://doi.org/10.1016/j.biortech.2012.03.108 Mano, N. (2019). Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry, 128, 218–240. https://doi.org/10.1016/j.bioelechem.2019.04.015 Marilho, I. (2016). Degradation of Calcium Gels of alginate and Periodate Oxidised Alginate [Norwegian University of Science and technology]. https://ntnuopen.ntnu.no/ntnuxmlui/bitstream/handle/11250/2441304/16008_FULLTEXT.pdf?sequence=1 Martínez-Villaluenga, C., Cardelle-Cobas, A., Corzo, N., & Olano, A. (2008). Study of galactooligosaccharide composition in commercial fermented milks. Journal of Food Composition and Analysis, 21(7), 540–544. https://doi.org/10.1016/j.jfca.2008.05.008 Megazyme. (2023). Megazyme: Beta-galactosidase from Aspergillus niger. https://www.megazyme.com/documents/Data_Sheet/E-BGLAN_DATA.pdf MINAGRICULTURA. (2022). Plan de ordenamiento productivo de la cadena láctea. Ministerio de Salud. (2007). Resolución 2997. Mordor Intelligence. (2023). Global Feed Prebiotics Market 2017-2029. Movahedpour, A., Ahmadi, N., Ghalamfarsa, F., Ghesmati, Z., Khalifeh, M., Maleksabet, A., Shabaninejad, Z., Taheri‐Anganeh, M., & Savardashtaki, A. (2021). β‐ Galactosidase: From its source and applications to its recombinant form. Biotechnology and Applied Biochemistry, bab.2137. https://doi.org/10.1002/bab.2137 Muset, G., & Castells, L. (2017). VALORIZACIÓN Colección TRANSFERENCIA TECNOLÓGICA Suma valor a un país de ideas. Nakano, H., Takenishi, S., & Watanabe, Y. (1987). Substrate Specificity of Several β Galactosidases toward a Series of β -1,4-Linked Galactooligosaccharides. Agricultural and Biological Chemistry, 51(8), 2267–2269. https://doi.org/10.1080/00021369.1987.10868356 Neri, D. F. M., Balcão, V. M., Dourado, F. O. Q., Oliveira, J. M. B., Carvalho, L. B., & Teixeira, J. A. (2009). Galactooligosaccharides production by β-galactosidase immobilized onto magnetic polysiloxane–polyaniline particles. Reactive and Functional Polymers, 69(4), 246–251. https://doi.org/10.1016/j.reactfunctpolym.2009.01.002 Nguyen, V. D., Styevkó, G., Madaras, E., Haktanirlar, G., Tran, A. T. M., Bujna, E., Dam, M. S., & Nguyen, Q. D. (2019). Immobilization of β-galactosidase on chitosancoated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochemistry, 84, 30–38. https://doi.org/10.1016/j.procbio.2019.05.021 Ölçücü, G., Krauss, U., Jaeger, K.-E., & Pietruszka, J. (2023). Carrier‐Free Enzyme Immobilizates for Flow Chemistry. Chemie Ingenieur Technik, 95(4), 531–542. https://doi.org/10.1002/cite.202200167 Ospina-Corral, S., Cardona Alzate, C. A., & Orrego Alzate, C. E. (2019). Prebiotics in Beverages: From Health Impact to Preservation. In Preservatives and Preservation Approaches in Beverages (pp. 339–373). Elsevier. https://doi.org/10.1016/B978-0-12-816685-7.00011-2 Panesar, P. S., Kumari, S., & Panesar, R. (2010). Potential Applications of Immobilized β -Galactosidase in Food Processing Industries. Enzyme Research, 2010, 1–16. https://doi.org/10.4061/2010/473137 Parashar, A., Jin, Y., Mason, B., Chae, M., & Bressler, D. (2016). Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. Journal of Dairy Science, 99(3), 18591867. https://doi.org/10.3168/jds.2015-10059 Pawlak-Szukalska, A., Wanarska, M., Popinigis, A. T., & Kur, J. (2014). A novel coldactive β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB – Gene cloning, purification and characterization. Process Biochemistry, 49(12), 2122–2133. https://doi.org/10.1016/j.procbio.2014.09.018 Peirce, S., Virgen-Ortíz, J. J., Tacias-Pascacio, V. G., Rueda, N., Bartolome-Cabrero, R., Fernandez-Lopez, L., Russo, M. E., Marzocchella, A., & Fernandez-Lafuente, R. (2016). Development of simple protocols to solve the problems of enzyme coimmobilization. Application to coimmobilize a lipase and a β-galactosidase. RSC Advances, 6(66), 61707–61715. https://doi.org/10.1039/C6RA10906C Pereira-Rodríguez, Á., Fernández-Leiro, R., González-Siso, M. I., Cerdán, M. E., Becerra, M., & Sanz-Aparicio, J. (2012). Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. Journal of Structural Biology, 177(2), 392– 401. https://doi.org/10.1016/j.jsb.2011.11.031 Rastall, R. A. (2010). Functional Oligosaccharides: Application and Manufacture. Annual Review of Food Science and Technology, 1(1), 305–339. https://doi.org/10.1146/annurev.food.080708.100746 Ren, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373, 1254–1278. https://doi.org/10.1016/j.cej.2019.05.141 Rico‐Díaz, A., Ramírez‐Escudero, M., Vizoso‐Vázquez, Á., Cerdán, M. E., Becerra, M., & Sanz‐Aparicio, J. (2017). Structural features of Aspergillus niger β‐galactosidase define its activity against glycoside linkages. The FEBS Journal, 284(12), 1815– 1829. https://doi.org/10.1111/febs.14083 Rico-Rodríguez, F. (2018). Evaluación de un sistema mixto de enzimas para la producción de galactooligosacáridos y ácido glucónico a partir de lactosuero como fuente de lactosa. Universidad Nacional de Colombia. Rico-Rodríguez, F., Noriega, M. A., Lancheros, R., & Serrato-Bermúdez, J. C. (2021). Kinetics of galactooligosaccharide (GOS) production with two β-galactosidases combined: Mathematical model and raw material effects. International Dairy Journal, 118, 105015. https://doi.org/10.1016/j.idairyj.2021.105015 Rico-Rodríguez, F., Villamiel, M., Ruiz-Aceituno, L., Serrato, J. C., & Montilla, A. (2020). Effect of the lactose source on the ultrasound-assisted enzymatic production of galactooligosaccharides and gluconic acid. Ultrasonics Sonochemistry, 67, 104945. https://doi.org/10.1016/j.ultsonch.2019.104945 Roberfroid, M. (2007). Prebiotics: The Concept Revisited. The Journal of Nutrition, 137(3), 830S-837S. https://doi.org/10.1093/jn/137.3.830S Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev., 42(15), 6290–6307. https://doi.org/10.1039/C2CS35231A Rodriguez, C., Lavandera, I., & Gotor, V. (2012). Recent Advances in Cofactor Regeneration Systems Applied to Biocatalyzed Oxidative Processes. Current Organic Chemistry, 16(21), 2525–2541. https://doi.org/10.2174/138527212804004643 Roy, I., Mukherjee, J., & Gupta, M. N. (2017). Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media. In S. D. Minteer (Ed.), Enzyme Stabilization and Immobilization (Vol. 1504, pp. 109–123). Springer New York. https://doi.org/10.1007/978-1-4939-6499-4_9 Saqib, S., Akram, A., Halim, S. A., & Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech, 7(1), 79. https://doi.org/10.1007/s13205-017-0645-5 Segel, I. H. (1993). Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and SteadyState Enzyme Systems. John Wiley & Sons, Inc. Serey, M., Vera, C., Guerrero, C., & Illanes, A. (2021). Immobilization of Aspergillus oryzae β-galactosidase in cation functionalized agarose matrix and its application in the synthesis of lactulose. International Journal of Biological Macromolecules, 167, 1564–1574. https://doi.org/10.1016/j.ijbiomac.2020.11.110 Shahriari, D., Koffler, J., Lynam, D. A., Tuszynski, M. H., & Sakamoto, J. S. (2016). Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair. Journal of Biomedical Materials Research Part A, 104(3), 611–619. https://doi.org/10.1002/jbm.a.35600 Srisimarat, W., & Pongsawasdi, P. (2008). Enhancement of the oligosaccharide synthetic activity of β-galactosidase in organic solvents by cyclodextrin. Enzyme and Microbial Technology, 43(6), 436–441. https://doi.org/10.1016/j.enzmictec.2008.06.007 Superintendencia de Industria y comercio. (2020). EStudios económicos sectoriales. Análisis del sector lácteo en Colombia. Eviencia para el período 2010-2020. ankeshwar, A. (2023). ONPG: β-galactosidase Test. https://microbeonline.com/onpgtest-galactosidase-principle-procedure-results/ Terrasan, C. R. F., de Morais Junior, W. G., & Contesini, F. J. (2019). Enzyme Immobilization for Oligosaccharide Production. In Encyclopedia of Food Chemistry (pp. 415–423). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22444-X Todea, A., Benea, I. C., Bîtcan, I., Péter, F., Klébert, S., Feczkó, T., Károly, Z., & Biró, E. (2021). One-pot biocatalytic conversion of lactose to gluconic acid and galactooligosaccharides using immobilized β-galactosidase and glucose oxidase. Catalysis Today, 366, 202–211. https://doi.org/10.1016/j.cattod.2020.06.090 Torres, D. P. M., Gonçalves, M. do P. F., Teixeira, J. A., & Rodrigues, L. R. (2010). Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9(5), 438–454. https://doi.org/10.1111/j.1541-4337.2010.00119.x Trademap. (2020). Cheese whey. https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7c414 %7c%7c%7c%7c0401%7c%7c%7c4%7c1%7c1%7c2%7c2%7c1%7c2%7c1%7c %7c1 Treid. (2022). Exportaciones colombianas de quesos en los primeros 9 meses de 2020, 2021 y 2022. https://www.treid.co/post/exportaciones-colombianas-de-quesos-enlos-primeros-9-meses-de-2020-2021-y2022#:~:text=En%20Colombia%20la%20producci%C3%B3n%20promedio,est%C 3%A1%20el%20queso%20fresco%20%C3%A1cido Trobo, L. (2018). Co-inmovilización y estabilización de enzimas y cofactores: Glicosilación regioselectiva de compuestos bioactivos catalizada por glicosiltransfeasas. Universidad Autónoma de Madrid. Tzortzis, G., & Vulevic, J. (2009). Galacto-Oligosaccharide Prebiotics. In D. Charalampopoulos & R. A. Rastall (Eds.), Prebiotics and Probiotics Science and Technology (pp. 207–244). Springer New York. https://doi.org/10.1007/978-0-38779058-9_7 Urrutia, P., Mateo, C., Guisan, J. M., Wilson, L., & Illanes, A. (2013). Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galactooligosaccharides under repeated-batch operation. Biochemical Engineering Journal, 77, 41–48. https://doi.org/10.1016/j.bej.2013.04.015 Varnam, A. H., & Sutherland, J. P. (2001). Milk and milk products: Technology, chemistry and microbiology. Aspen Publishers. Vera, C., Córdova, A., Aburto, C., Guerrero, C., Suárez, S., & Illanes, A. (2016). Synthesis and purification of galacto-oligosaccharides: State of the art. World Journal of Microbiology and Biotechnology, 32(12), 197. https://doi.org/10.1007/s11274-016-2159-4 Vera, C., Guerrero, C., Aburto, C., Cordova, A., & Illanes, A. (2020). Conventional and non-conventional applications of β-galactosidases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(1), 140271. https://doi.org/10.1016/j.bbapap.2019.140271 Vera, C., Guerrero, C., Conejeros, R., & Illanes, A. (2012). Synthesis of galactooligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme and Microbial Technology, 50(3), 188–194. https://doi.org/10.1016/j.enzmictec.2011.12.003 Vera, C., Guerrero, C., & Illanes, A. (2011). Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: Effect of pH, temperature, and galactose and glucose concentrations. Carbohydrate Research, 346(6), 745–752. https://doi.org/10.1016/j.carres.2011.01.030 Wang, G., Wang, H., Chen, Y., Pei, X., Sun, W., Liu, L., Wang, F., Umar Yaqoob, M., Tao, W., Xiao, Z., Jin, Y., Yang, S.-T., Lin, D., & Wang, M. (2021). Optimization and comparison of the production of galactooligosaccharides using free or immobilized Aspergillus oryzae β-galactosidase, followed by purification using silica gel. Food Chemistry, 362, 130195. https://doi.org/10.1016/j.foodchem.2021.130195 Wang, G., Zhu, J., Liu, L., Yaqoob, M. U., Pei, X., Tao, W., Xiao, Z., Sun, W., & Wang, M. (2020). Optimization for galactooligosaccharides synthesis: A potential alternative for gut health and immunity. Life Sciences, 245, 117353. https://doi.org/10.1016/j.lfs.2020.117353 Wolf, M., Gasparin, B. C., & Paulino, A. T. (2018). Hydrolysis of lactose using β-dgalactosidase immobilized in a modified Arabic gum-based hydrogel for the production of lactose-free/low-lactose milk. International Journal of Biological Macromolecules, 115, 157–164. https://doi.org/10.1016/j.ijbiomac.2018.04.058 Xavier, J. R., Ramana, K. V., & Sharma, R. K. (2018). β-galactosidase: Biotechnological applications in food processing. Journal of Food Biochemistry, 42(5), e12564. https://doi.org/10.1111/jfbc.12564 Yañez-Ñeco, C. V., Cervantes, F. V., Amaya-Delgado, L., Ballesteros, A. O., Plou, F. J., & Arrizon, J. (2021). Synthesis of β(1 → 3) and β(1 → 6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electronic Journal of Biotechnology, 49, 14–21. https://doi.org/10.1016/j.ejbt.2020.10.004 Yang, G., Wu, J., Xu, G., & Yang, L. (2010). Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods. Colloids and Surfaces B: Biointerfaces, 78(2), 351–356. https://doi.org/10.1016/j.colsurfb.2010.03.022 Yin, H., Bultema, J. B., Dijkhuizen, L., & van Leeuwen, S. S. (2017). Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chemistry, 225, 230–238. https://doi.org/10.1016/j.foodchem.2017.01.030 Yin, H., Dijkhuizen, L., & van Leeuwen, S. S. (2018). Synthesis of galactooligosaccharides derived from lactulose by wild-type and mutant β-galactosidase enzymes from Bacillus circulans ATCC 31382. Carbohydrate Research, 465, 58– 65. https://doi.org/10.1016/j.carres.2018.06.009 Zamora, H. (2008). MÉTODOS SELECTOS DE BIOQUIMICA EXPERIMENTAL. Universidad Nacional de Colombia. Zhang, H., Ding, X., Chen, X., Ma, Y., Wang, Z., & Zhao, X. (2015). A new method of utilizing rice husk: Consecutively preparing d-xylose, organosolv lignin, ethanol and amorphous superfine silica. Journal of Hazardous Materials, 291, 65–73. https://doi.org/10.1016/j.jhazmat.2015.03.003 FAO. (2006). Specific methods, Enzyme preparations. http://www.fao.org/docrep/009/a0691e/A0691E07.htm |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 128 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86065/2/1053850718.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86065/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86065/4/1053850718.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
8de68134a52b3dc9758f51a923a042f9 eb34b1cf90b7e1103fc9dfd26be24b4a 8b377fb19f72f07aa80906d42e146074 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089571507372032 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Serrato Bermúdez, Juan Carlos2cec2f7270f1d605a516d2e2beace5a2Oliveros Pineda, Daniel3edb0e8643c1a2f4e7c452da4056f73a600Grupo de Investigación en Procesos Químicos y BioquímicosOliveros Pineda, Daniel [0000-0002-2222-1598]2024-05-09T20:19:28Z2024-05-09T20:19:28Z2024https://repositorio.unal.edu.co/handle/unal/86065Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEl lactosuero es un subproducto de la industria láctea que, debido a su elevada carga orgánica, puede emplearse como materia prima para la obtención de sustancias de alto valor agregado. En este trabajo se aprovechó su contenido de lactosa para la síntesis enzimática de galacto-oligosacáridos (GOS), compuestos prebióticos destinados al mercado de alimentos funcionales. La síntesis de los GOS se realizó con β-galactosidasas aisladas de Aspergillus oryzae y Aspergillus niger; ésta es de naturaleza reversible y se inhibe por la acumulación de glucosa en el medio. Para reducir dicha inhibición se evaluó la adición de glucosa oxidasa (GOx), logrando un menor contenido final de monosacáridos, la obtención de ácido glucónico y un rendimiento incrementado de prebióticos, que alcanzó los 128 g/L. Considerando el alto costo que representan estos catalizadores respecto al lactosuero, también se estudiaron métodos de inmovilización mono y multienzimáticos con el fin de reutilizarlos en múltiples ciclos de reacción. Para esto, se evaluó el atrapamiento en esferas de alginato y la formación de agregados enzimáticos entrecruzados. La inmovilización individual de β-gal por entrecruzamiento redujo el rendimiento de GOS a 22.8% (91 g/L), pero permitió su uso por 20 veces sin una degradación considerable de las enzimas. Por otra parte, los sistemas multienzimáticos co-inmovilizados aumentaron el rendimiento hasta en un 36%, consiguiendo 125 gGOS/L en el primer uso. De igual forma, generaron concentraciones de prebióticos superiores a los sistemas monoenzimáticos hasta por 13 ciclos de reacción, aunque con menor estabilidad en usos posteriores. (Texto tomado de la fuente).Whey is a by-product of the dairy industry that, due to its high organic load, can be used as a raw material for obtaining high value-added substances. In this work, its lactose content was used for the enzymatic synthesis of galacto-oligosaccharides (GOS), prebiotic compounds targeted to the functional food market. The synthesis of GOS was carried out with β-galactosidases isolated from Aspergillus oryzae and Aspergillus niger; this is a reversible process and is inhibited by the accumulation of glucose in the medium. To reduce such inhibition, the addition of glucose oxidase (Gox) was evaluated, achieving a lower final content of monosaccharides, obtaining gluconic acid and an increased yield of prebiotics, which reached 128 g/L. Considering the high cost of these catalysts compared to whey, mono- and multi-enzymatic immobilization methods were also evaluated, in order to reuse them in multiple reaction cycles. For this purpose, the entrapment in alginate spheres and the formation of crosslinked enzyme aggregates were evaluated. Individual immobilization of β-gal by crosslinking reduced the yield of GOS to 22.8% (91 g/L), but allowed its use for 20 times without considerable enzyme degradation. On the other hand, co-immobilized multienzyme systems (β-gal+Gox) increased the yield by up to 36%, achieving 125 gGOS/L on the first use. Furthermore, they generated higher concentrations of prebiotics compared to the mono-enzymatic systems for up to 13 reaction cycles, although with lower stability in subsequent uses.MaestríaMagíster en Ingeniería - Ingeniería QuímicaBioprocesosxvi, 128 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::664 - Tecnología de alimentosOligosacáridosLactosueroEnzimasoligosaccharideswheyenzymesGalacto-oligosacáridosBeta-galactosidasaAgregados enzimáticosÁcido glucónicoInmovilización enzimáticaLactosueroGalacto-oligosaccharidesGlucosa oxidasaBeta-galactosidaseGlucose oxidaseEnzyme aggregatesGluconic acidEnzyme immobilizationWheyEvaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosueroEvaluation of an immobilized multienzyme system for the production of galactooligosaccharides (GOS) from wheyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlnadari, F., Xue, Y., Almakas, A., Mohedein, A., Samie, A., Abdel‐Shafi, M., & Abdin, M. (2021). Large batch production of Galactooligosaccharides using β‐glucosidase immobilized on chitosan‐functionalized magnetic nanoparticle. Journal of Food Biochemistry, 45(2). https://doi.org/10.1111/jfbc.13589Ammam, M., & Fransaer, J. (2010). Two-enzyme lactose biosensor based on βgalactosidase and glucose oxidase deposited by AC-electrophoresis: Characteristics and performance for lactose determination in milk. Sensors and Actuators B: Chemical, 148(2), 583–589. https://doi.org/10.1016/j.snb.2010.05.027AOAC, I. (2002). Official Methods of Analysis of AOAC International (17th ed.).Arana-Peña, S., Carballares, D., Morellon-Sterlling, R., Berenguer-Murcia, Á., Alcántara, A. R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2021). Enzyme coimmobilization: Always the biocatalyst designers’ choice…or not? Biotechnology Advances, 51, 107584. https://doi.org/10.1016/j.biotechadv.2020.107584Araya, E., Urrutia, P., Romero, O., Illanes, A., & Wilson, L. (2019). Design of combined crosslinked enzyme aggregates (combi-CLEAs) of β-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chemistry, 288, 102–107. https://doi.org/10.1016/j.foodchem.2019.02.024Argenta, A. B., Nogueira, A., & de P. Scheer, A. (2021). Hydrolysis of whey lactose: Kluyveromyces lactis β-galactosidase immobilisation and integrated process hydrolysis-ultrafiltration. International Dairy Journal, 117, 105007. https://doi.org/10.1016/j.idairyj.2021.105007Ayhan, F., & Ispirli, Y. (2011). Cross- Linked Glucose Oxidase Aggregates: Synthesis and Characterization. Hacettepe J. Biol. & Chem, 39(3), 241–251.Azcarate-Peril, M. A., Ritter, A. J., Savaiano, D., Monteagudo-Mera, A., Anderson, C., Magness, S. T., & Klaenhammer, T. R. (2017). Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proceedings of the National Academy of Sciences, 114(3). https://doi.org/10.1073/pnas.1606722113Barile, D., & Rastall, R. A. (2013). Human milk and related oligosaccharides as prebiotics. Current Opinion in Biotechnology, 24(2), 214–219. https://doi.org/10.1016/j.copbio.2013.01.008Bauer, J. A., Zámocká, M., Majtán, J., & Bauerová-Hlinková, V. (2022). Glucose Oxidase, an Enzyme “Ferrari”: Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules, 12(3), 472. https://doi.org/10.3390/biom12030472Benavides, J., & Palomares, M. (2017). Aqueous two-phase systems for bioprocess development for the recovery of biological products. Springer Science+Business Media.Bensadoun, A., & Weinstein, D. (1976). Assay of proteins in the presence of interfering materials. Analytical Biochemistry, 70(1), 241–250. https://doi.org/10.1016/S00032697(76)80064-4Bernal, C., Marciello, M., Mesa, M., Sierra, L., Fernandez-Lorente, G., Mateo, C., & Guisan, J. M. (2013). Immobilisation and stabilisation of β-galactosidase from Kluyveromyces lactis using a glyoxyl support. International Dairy Journal, 28(2), 76–82. https://doi.org/10.1016/j.idairyj.2012.08.009Bilal, M., & Iqbal, H. M. N. (2019). Sustainable bioconversion of food waste into highvalue products by immobilized enzymes to meet bio-economy challenges and opportunities – A review. Food Research International, 123, 226–240. https://doi.org/10.1016/j.foodres.2019.04.066BIOCON. (2021). PRODUCCIÓN Y CONTROL DE LECHE DESLACTOSADA. https://biocon.es/wp-content/uploads/2017/01/Leche-deslactosada.pdfBlandino, A., Macı ́ as, M., & Cantero, D. (2001). Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochemistry, 36(7), 601–606. https://doi.org/10.1016/S0032-9592(00)00240-5otvynko, A., Bednářová, A., Henke, S., Shakhno, N., & Čurda, L. (2019). Production of galactooligosaccharides using various combinations of the commercial βgalactosidases. Biochemical and Biophysical Research Communications, 517(4), 762–766. https://doi.org/10.1016/j.bbrc.2019.08.001Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3Brás, N. F., Moura-Tamames, S. A., Fernandes, P. A., & Ramos, M. J. (2008). Mechanistic studies on the formation of glycosidase-substrate and glycosidaseinhibitor covalent intermediates. Journal of Computational Chemistry, 29(15), 2565–2574. https://doi.org/10.1002/jcc.21013Brena, B., González-Pombo, P., & Batista-Viera, F. (2013). Immobilization of Enzymes: A Literature Survey. In J. M. Guisan (Ed.), Immobilization of Enzymes and Cells (Vol. 1051, pp. 15–31). Humana Press. https://doi.org/10.1007/978-1-62703-5507_2Cardelle-Cobas, A., Olano, A., Irazoqui, G., Giacomini, C., Batista-Viera, F., Corzo, N., & Corzo-Martínez, M. (2016). Synthesis of Oligosaccharides Derived from Lactulose (OsLu) Using Soluble and Immobilized Aspergillus oryzae β-Galactosidase. Frontiers in Bioengineering and Biotechnology, 4. https://doi.org/10.3389/fbioe.2016.00021Carvalho, F., Prazeres, A. R., & Rivas, J. (2013). Cheese whey wastewater: Characterization and treatment. Science of The Total Environment, 445–446, 385–396. https://doi.org/10.1016/j.scitotenv.2012.12.038Castro, G. (2020). Evaluación de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido pormicroondas. Universidad Nacional de Colombia.Catenza, K. F., & Donkor, K. K. (2021). Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review. Food Chemistry, 355, 129416. https://doi.org/10.1016/j.foodchem.2021.129416Chanfrau, P., Núñez, J., Lara, M., & Rivera LM. (2017). Milk-Whey From a problematicbyproduct to a source of valuable products for health and industry: An overview from biotechnology. La Prensa Medica, 103(4). https://doi.org/10.4172/lpma.1000257Charalampopoulos, D., & Rastall, R. A. (2012). Prebiotics in foods. Current Opinion in Biotechnology, 23(2), 187–191. https://doi.org/10.1016/j.copbio.2011.12.028Chen, T.-L., & Weng, H.-S. (1986). A method for the determination of the activity and optimal pH of glucose oxidase in an unbuffered solution. Biotechnology and Bioengineering, 28, 107–109.Chmura, A., Rustler, S., Paravidino, M., Van Rantwijk, F., Stolz, A., & Sheldon, R. A. (2013). The combi-CLEA approach: Enzymatic cascade synthesis of enantiomerically pure (S)-mandelic acid. Tetrahedron: Asymmetry, 24(19), 1225– 1232. https://doi.org/10.1016/j.tetasy.2013.08.013Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144. https://doi.org/10.1016/j.biteb.2022.101144Corral, J. M., Bañuelos, O., Adrio, J. L., & Velasco, J. (2006). Cloning and characterization of a β-galactosidase encoding region in Lactobacillus coryniformis CECT 5711. Applied Microbiology and Biotechnology, 73(3), 640–646. https://doi.org/10.1007/s00253-006-0510-7Crittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of foodgrade oligosaccharides. Trends in Food Science & Technology, 7(11), 353–361. https://doi.org/10.1016/S0924-2244(96)10038-8Damin, B. I. S., Kovalski, F. C., Fischer, J., Piccin, J. S., & Dettmer, A. (2021). Challenges and perspectives of the β-galactosidase enzyme. Applied Microbiology and Biotechnology, 105(13), 5281–5298. https://doi.org/10.1007/s00253-021-11423-7de Albuquerque, T. L., de Sousa, M., Gomes e Silva, N. C., Girão Neto, C. A. C., Gonçalves, L. R. B., Fernandez-Lafuente, R., & Rocha, M. V. P. (2021). βGalactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. International Journal of Biological Macromolecules, 191, 881–898. https://doi.org/10.1016/j.ijbiomac.2021.09.133Dekker, P. J. T. (2019). Enzymes Exogenous to Milk in Dairy Technology: β-dGalactosidase. In Reference Module in Food Science (p. B9780081005965007435). Elsevier. https://doi.org/10.1016/B978-0-08-1005965.00743-5Deng, C., Chen, J., Nie, Z., & Si, S. (2010). A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode. Biosensors and Bioelectronics, 26(1), 213–219. https://doi.org/10.1016/j.bios.2010.06.013Ding, H., Zhou, L., Zeng, Q., Yu, Y., & Chen, B. (2018). Heterologous Expression of a Thermostable β-1,3-Galactosidase and Its Potential in Synthesis of Galactooligosaccharides. Marine Drugs, 16(11), 415. https://doi.org/10.3390/md16110415Dubey, M. K., Zehra, A., Aamir, M., Meena, M., Ahirwal, L., Singh, S., Shukla, S., Upadhyay, R. S., Bueno-Mari, R., & Bajpai, V. K. (2017). Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates. Frontiers in Microbiology, 8, 1032. https://doi.org/10.3389/fmicb.2017.01032Dunnill, P. (1979). Immobilized enzymes—Research and development. Biochemical Education, 7(3), 73. https://doi.org/10.1016/0307-4412(79)90055-4Erazo, R., & Cárdenas, J. (2001). DETERMINACIÓN EXPERIMENTAL DEL COEFICIENTE DE TRANSFERENCIA DE OXÍGENO (kLa) EN UN BIORREACTOR BATCH. Rev. Per. Qufm. Ing. Qufm., VoL 4(2), 22–27.Farias, D. de P., de Araújo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology, 93, 23–35. https://doi.org/10.1016/j.tifs.2019.09.004FEDEGAN. (2022). Cifras del sector ganadero: Producción y acopio de leche en Colombia. https://www.fedegan.org.co/estadisticas/produccion-0FINAGRO. (2023). Crecimiento del sector agropecuario y Agroexpo 2023. https://www.finagro.com.co/noticias/articulos/crecimiento-del-sector-agropecuarioagroexpo-2023-reto-desarrollo-del-campo-0Fischer, C., & Kleinschmidt, T. (2015). Synthesis of galactooligosaccharides using sweet and acid whey as a substrate. International Dairy Journal, 48, 15–22. https://doi.org/10.1016/j.idairyj.2015.01.003Fischer, C., & Kleinschmidt, T. (2018a). Combination of two β-galactosidases during the synthesis of galactooligosaccharides may enhance yield and structural diversity. Biochemical and Biophysical Research Communications, 506(1), 211–215. https://doi.org/10.1016/j.bbrc.2018.10.091Fischer, C., & Kleinschmidt, T. (2018b). Synthesis of Galactooligosaccharides in Milk and Whey: A Review: Synthesis of galactooligosaccharides…. Comprehensive Reviews in Food Science and Food Safety, 17(3), 678–697. https://doi.org/10.1111/1541-4337.12344Fischer, C., & Kleinschmidt, T. (2019). Effect of glucose depletion during the synthesis of galactooligosaccharides using a trienzymatic system. Enzyme and Microbial Technology, 121, 45–50. https://doi.org/10.1016/j.enzmictec.2018.10.009Fischer, C., & Kleinschmidt, T. (2021). Synthesis of galactooligosaccharides by Cryptococcus laurentii and Aspergillus oryzae using different kinds of acid whey. International Dairy Journal, 112, 104867. https://doi.org/10.1016/j.idairyj.2020.104867Frenzel, M., Zerge, K., Clawin-Rädecker, I., & Lorenzen, P. Chr. (2015). Comparison of the galacto-oligosaccharide forming activity of different β-galactosidases. LWT - Food Science and Technology, 60(2), 1068–1071. https://doi.org/10.1016/j.lwt.2014.10.064Füreder, V., Rodriguez-Colinas, B., Cervantes, F. V., Fernandez-Arrojo, L., Poveda, A., Jimenez-Barbero, J., Ballesteros, A. O., & Plou, F. J. (2020). Selective Synthesis of Galactooligosaccharides Containing β(1→3) Linkages with β-Galactosidase from Bifidobacterium bifidum (Saphera). Journal of Agricultural and Food Chemistry, 68(17), 4930–4938. https://doi.org/10.1021/acs.jafc.0c00997Gao, X., Wu, J., & Wu, D. (2019). Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production. Food Chemistry, 286, 362–367. https://doi.org/10.1016/j.foodchem.2019.01.212Garcia-Cruz, C. H., Foggetti, U., & Silva, A. N. D. (2008). Alginato bacteriano: Aspectos tecnológicos, características e produção. Química Nova, 31(7), 1800–1806. https://doi.org/10.1590/S0100-40422008000700035Gargova, S., Pishtijski, I., & Stoilova, I. (1995). Purification and Properties of βGalactosidase from Aspergillus Oryzae. Biotechnology & Biotechnological Equipment, 9(4), 47–51. https://doi.org/10.1080/13102818.1995.10818861Gennari, A., Mobayed, F. H., Volpato, G., & De Souza, C. F. V. (2018). Chelation by collagen in the immobilization of Aspergillus oryzae β-galactosidase: A potential biocatalyst to hydrolyze lactose by batch processes. International Journal of Biological Macromolecules, 109, 303–310. https://doi.org/10.1016/j.ijbiomac.2017.12.088Göktuğ, T., Sezgintürk, M. K., & Dinçkaya, E. (2005). Glucose oxidase-β-galactosidase hybrid biosensor based on glassy carbon electrode modified with mercury for lactose determination. Analytica Chimica Acta, 551(1–2), 51–56. https://doi.org/10.1016/j.aca.2005.07.021Gómez Soto, J. A., & Sánchez Toro, Ó. J. (2022). Producción de galactooligosacáridos: Alternativa para el aprovechamiento del lactosuero. Una revisión. Ingeniería y Desarrollo, 37(01), 129–158. https://doi.org/10.14482/inde.37.1.637Gosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E., & Gras, S. L. (2010). Recent advances refining galactooligosaccharide production from lactose. Food Chemistry, 121(2), 307–318. https://doi.org/10.1016/j.foodchem.2009.12.063Gouda, M. D., Singh, S. A., Rao, A. G. A., Thakur, M. S., & Karanth, N. G. (2003). Thermal Inactivation of Glucose Oxidase. Journal of Biological Chemistry, 278(27), 24324–24333. https://doi.org/10.1074/jbc.M208711200Grosová, Z., Rosenberg, M., & Rebroš, M. (2008). Perspectives and applications of immobilised β-galactosidase in food industry – a review. Czech Journal of Food Sciences, 26(No. 1), 1–14. https://doi.org/10.17221/1134-CJFSGuerrero, C., Aburto, C., Suárez, S., Vera, C., & Illanes, A. (2018). Effect of the type of immobilization of β-galactosidase on the yield and selectivity of synthesis of transgalactosylated oligosaccharides. Biocatalysis and Agricultural Biotechnology, 16, 353–363. https://doi.org/10.1016/j.bcab.2018.08.021Guerrero, C., Aburto, C., Súarez, S., Vera, C., & Illanes, A. (2020). Improvements in the production of Aspergillus oryzae β-galactosidase crosslinked aggregates and their use in repeated-batch synthesis of lactulose. International Journal of Biological Macromolecules, 142, 452–462. https://doi.org/10.1016/j.ijbiomac.2019.09.117Guerrero, C., Vera, C., Conejeros, R., & Illanes, A. (2015). Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology, 70, 9–17. https://doi.org/10.1016/j.enzmictec.2014.12.006Guerrero, C., Vera, C., Serna, N., & Illanes, A. (2017). Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresource Technology, 232, 53–63. https://doi.org/10.1016/j.biortech.2017.02.003Guío, A. F. (2014). EVALUACIÓN DE LA PRODUCCIÓN DE GALACTOOLIGOSACÁRIDOS A PARTIR DE MATERIAS PRIMAS LÁCTEAS CON BETA-GALACTOSIDASA INMOVILIZADA. Universidad Nacional de Colombia.Guisán, JoséM. (1988). Aldehyde-agarose gels as activated supports for immobilizationstabilization of enzymes. Enzyme and Microbial Technology, 10(6), 375–382. https://doi.org/10.1016/0141-0229(88)90018-XHackenhaar, C. R., Spolidoro, L. S., Flores, E. E. E., Klein, M. P., & Hertz, P. F. (2021). Batch synthesis of galactooligosaccharides from co-products of milk processing using immobilized β-galactosidase from Bacillus circulans. Biocatalysis and Agricultural Biotechnology, 36, 102136. https://doi.org/10.1016/j.bcab.2021.102136Hernandez, K., Berenguer-Murcia, A., C. Rodrigues, R., & Fernandez-Lafuente, R. (2012). Hydrogen Peroxide in Biocatalysis. A Dangerous Liaison. Current Organic Chemistry, 16(22), 2652–2672. https://doi.org/10.2174/138527212804004526Hetrick, E. M., Sperry, D. C., Nguyen, H. K., & Strege, M. A. (2014). Characterization of a Novel Cross-Linked Lipase: Impact of Cross-Linking on Solubility and Release from Drug Product. Molecular Pharmaceutics, 11(4), 1189–1200. https://doi.org/10.1021/mp4006529Huerta, L. M., Vera, C., Guerrero, C., Wilson, L., & Illanes, A. (2011). Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized βgalactosidases from Aspergillus oryzae. Process Biochemistry, 46(1), 245–252. https://doi.org/10.1016/j.procbio.2010.08.018ain, M., Gote, M., Dubey, A. K., Narayanan, S., Krishnappa, H., Kumar, D. S., Ravi, G., Vijayasarathi, S., & Shankar, S. (2018). Safety evaluation of fructooligosaccharide (FOSSENCE TM ): Acute, 14-day, and subchronic oral toxicity study in Wistar rats. Toxicology Research and Application, 2, 239784731878775. https://doi.org/10.1177/2397847318787750asti, L. S., Dola, S. R., Fadnavis, N. W., Addepally, U., Daniels, S., & Ponrathnam, S. (2014). Co-immobilized glucose oxidase and β-galactosidase on bovine serum albumin coated allyl glycidyl ether (AGE)–ethylene glycol dimethacrylate (EGDM) opolymer as a biosensor for lactose determination in milk. Enzyme and Microbial Technology, 64–65, 67–73. https://doi.org/10.1016/j.enzmictec.2014.07.005Katrolia, P., Liu, X., Li, G., & Kopparapu, N. K. (2019). Enhanced Properties and Lactose Hydrolysis Efficiencies of Food-Grade β-Galactosidases Immobilized on Various Supports: A Comparative Approach. Applied Biochemistry and Biotechnology, 188(2), 410–423. https://doi.org/10.1007/s12010-018-2927-8Ladero, M., Santos, A., Garcı ́ a, J. L., Carrascosa, A. V., Pessela, B. C. C., & Garcı Ochoa, F. (2002). Studies on the activity and the stability of β-galactosidases from Thermus sp strain T2 and from Kluyveromyces fragilis. Enzyme and Microbial Technology, 30(3), 392–405. https://doi.org/10.1016/S0141-0229(01)00506-3Liu, H., Li, H., Ying, T., Sun, K., Qin, Y., & Qi, D. (1998). Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer. Analytica Chimica Acta, 358(2), 137–144. https://doi.org/10.1016/S0003-2670(97)00576-XLoğoğlu, E., Sungur, S., & Yildiz, Y. (2006). Development of Lactose Biosensor Based on β‐Galactosidase and Glucose Oxidase Immobilized into Gelatin. Journal of Macromolecular Science, Part A, 43(3), 525–533. https://doi.org/10.1080/10601320600575256Long, J., Pan, T., Xie, Z., Xu, X., & Jin, Z. (2020). Co-immobilization of βfructofuranosidase and glucose oxidase improves the stability of Bi-enzymes and the production of lactosucrose. LWT, 128, 109460. https://doi.org/10.1016/j.lwt.2020.109460Lorenzen, P. Chr., Breiter, J., Clawin‐Rädecker, I., & Dau, A. (2013). A novel bi‐enzymatic system for lactose conversion. International Journal of Food Science & Technology, 48(7), 1396–1403. https://doi.org/10.1111/ijfs.12101Lu, L., Guo, L., Wang, K., Liu, Y., & Xiao, M. (2020). β-Galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnology Advances, 39, 107465. https://doi.org/10.1016/j.biotechadv.2019.107465Lu, L., Xu, S., Zhao, R., Zhang, D., Li, Z., Li, Y., & Xiao, M. (2012). Synthesis of galactooligosaccharides by CBD fusion β-galactosidase immobilized on cellulose. Bioresource Technology, 116, 327–333. https://doi.org/10.1016/j.biortech.2012.03.108Mano, N. (2019). Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry, 128, 218–240. https://doi.org/10.1016/j.bioelechem.2019.04.015Marilho, I. (2016). Degradation of Calcium Gels of alginate and Periodate Oxidised Alginate [Norwegian University of Science and technology]. https://ntnuopen.ntnu.no/ntnuxmlui/bitstream/handle/11250/2441304/16008_FULLTEXT.pdf?sequence=1Martínez-Villaluenga, C., Cardelle-Cobas, A., Corzo, N., & Olano, A. (2008). Study of galactooligosaccharide composition in commercial fermented milks. Journal of Food Composition and Analysis, 21(7), 540–544. https://doi.org/10.1016/j.jfca.2008.05.008Megazyme. (2023). Megazyme: Beta-galactosidase from Aspergillus niger. https://www.megazyme.com/documents/Data_Sheet/E-BGLAN_DATA.pdfMINAGRICULTURA. (2022). Plan de ordenamiento productivo de la cadena láctea.Ministerio de Salud. (2007). Resolución 2997.Mordor Intelligence. (2023). Global Feed Prebiotics Market 2017-2029.Movahedpour, A., Ahmadi, N., Ghalamfarsa, F., Ghesmati, Z., Khalifeh, M., Maleksabet, A., Shabaninejad, Z., Taheri‐Anganeh, M., & Savardashtaki, A. (2021). β‐ Galactosidase: From its source and applications to its recombinant form. Biotechnology and Applied Biochemistry, bab.2137. https://doi.org/10.1002/bab.2137Muset, G., & Castells, L. (2017). VALORIZACIÓN Colección TRANSFERENCIA TECNOLÓGICA Suma valor a un país de ideas.Nakano, H., Takenishi, S., & Watanabe, Y. (1987). Substrate Specificity of Several β Galactosidases toward a Series of β -1,4-Linked Galactooligosaccharides. Agricultural and Biological Chemistry, 51(8), 2267–2269. https://doi.org/10.1080/00021369.1987.10868356Neri, D. F. M., Balcão, V. M., Dourado, F. O. Q., Oliveira, J. M. B., Carvalho, L. B., & Teixeira, J. A. (2009). Galactooligosaccharides production by β-galactosidase immobilized onto magnetic polysiloxane–polyaniline particles. Reactive and Functional Polymers, 69(4), 246–251. https://doi.org/10.1016/j.reactfunctpolym.2009.01.002Nguyen, V. D., Styevkó, G., Madaras, E., Haktanirlar, G., Tran, A. T. M., Bujna, E., Dam, M. S., & Nguyen, Q. D. (2019). Immobilization of β-galactosidase on chitosancoated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochemistry, 84, 30–38. https://doi.org/10.1016/j.procbio.2019.05.021Ölçücü, G., Krauss, U., Jaeger, K.-E., & Pietruszka, J. (2023). Carrier‐Free Enzyme Immobilizates for Flow Chemistry. Chemie Ingenieur Technik, 95(4), 531–542. https://doi.org/10.1002/cite.202200167Ospina-Corral, S., Cardona Alzate, C. A., & Orrego Alzate, C. E. (2019). Prebiotics in Beverages: From Health Impact to Preservation. In Preservatives and Preservation Approaches in Beverages (pp. 339–373). Elsevier. https://doi.org/10.1016/B978-0-12-816685-7.00011-2Panesar, P. S., Kumari, S., & Panesar, R. (2010). Potential Applications of Immobilized β -Galactosidase in Food Processing Industries. Enzyme Research, 2010, 1–16. https://doi.org/10.4061/2010/473137Parashar, A., Jin, Y., Mason, B., Chae, M., & Bressler, D. (2016). Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. Journal of Dairy Science, 99(3), 18591867. https://doi.org/10.3168/jds.2015-10059Pawlak-Szukalska, A., Wanarska, M., Popinigis, A. T., & Kur, J. (2014). A novel coldactive β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB – Gene cloning, purification and characterization. Process Biochemistry, 49(12), 2122–2133. https://doi.org/10.1016/j.procbio.2014.09.018Peirce, S., Virgen-Ortíz, J. J., Tacias-Pascacio, V. G., Rueda, N., Bartolome-Cabrero, R., Fernandez-Lopez, L., Russo, M. E., Marzocchella, A., & Fernandez-Lafuente, R. (2016). Development of simple protocols to solve the problems of enzyme coimmobilization. Application to coimmobilize a lipase and a β-galactosidase. RSC Advances, 6(66), 61707–61715. https://doi.org/10.1039/C6RA10906CPereira-Rodríguez, Á., Fernández-Leiro, R., González-Siso, M. I., Cerdán, M. E., Becerra, M., & Sanz-Aparicio, J. (2012). Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. Journal of Structural Biology, 177(2), 392– 401. https://doi.org/10.1016/j.jsb.2011.11.031Rastall, R. A. (2010). Functional Oligosaccharides: Application and Manufacture. Annual Review of Food Science and Technology, 1(1), 305–339. https://doi.org/10.1146/annurev.food.080708.100746Ren, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373, 1254–1278. https://doi.org/10.1016/j.cej.2019.05.141Rico‐Díaz, A., Ramírez‐Escudero, M., Vizoso‐Vázquez, Á., Cerdán, M. E., Becerra, M., & Sanz‐Aparicio, J. (2017). Structural features of Aspergillus niger β‐galactosidase define its activity against glycoside linkages. The FEBS Journal, 284(12), 1815– 1829. https://doi.org/10.1111/febs.14083Rico-Rodríguez, F. (2018). Evaluación de un sistema mixto de enzimas para la producción de galactooligosacáridos y ácido glucónico a partir de lactosuero como fuente de lactosa. Universidad Nacional de Colombia.Rico-Rodríguez, F., Noriega, M. A., Lancheros, R., & Serrato-Bermúdez, J. C. (2021). Kinetics of galactooligosaccharide (GOS) production with two β-galactosidases combined: Mathematical model and raw material effects. International Dairy Journal, 118, 105015. https://doi.org/10.1016/j.idairyj.2021.105015Rico-Rodríguez, F., Villamiel, M., Ruiz-Aceituno, L., Serrato, J. C., & Montilla, A. (2020). Effect of the lactose source on the ultrasound-assisted enzymatic production of galactooligosaccharides and gluconic acid. Ultrasonics Sonochemistry, 67, 104945. https://doi.org/10.1016/j.ultsonch.2019.104945Roberfroid, M. (2007). Prebiotics: The Concept Revisited. The Journal of Nutrition, 137(3), 830S-837S. https://doi.org/10.1093/jn/137.3.830SRodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev., 42(15), 6290–6307. https://doi.org/10.1039/C2CS35231ARodriguez, C., Lavandera, I., & Gotor, V. (2012). Recent Advances in Cofactor Regeneration Systems Applied to Biocatalyzed Oxidative Processes. Current Organic Chemistry, 16(21), 2525–2541. https://doi.org/10.2174/138527212804004643Roy, I., Mukherjee, J., & Gupta, M. N. (2017). Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media. In S. D. Minteer (Ed.), Enzyme Stabilization and Immobilization (Vol. 1504, pp. 109–123). Springer New York. https://doi.org/10.1007/978-1-4939-6499-4_9Saqib, S., Akram, A., Halim, S. A., & Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech, 7(1), 79. https://doi.org/10.1007/s13205-017-0645-5Segel, I. H. (1993). Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and SteadyState Enzyme Systems. John Wiley & Sons, Inc.Serey, M., Vera, C., Guerrero, C., & Illanes, A. (2021). Immobilization of Aspergillus oryzae β-galactosidase in cation functionalized agarose matrix and its application in the synthesis of lactulose. International Journal of Biological Macromolecules, 167, 1564–1574. https://doi.org/10.1016/j.ijbiomac.2020.11.110Shahriari, D., Koffler, J., Lynam, D. A., Tuszynski, M. H., & Sakamoto, J. S. (2016). Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair. Journal of Biomedical Materials Research Part A, 104(3), 611–619. https://doi.org/10.1002/jbm.a.35600Srisimarat, W., & Pongsawasdi, P. (2008). Enhancement of the oligosaccharide synthetic activity of β-galactosidase in organic solvents by cyclodextrin. Enzyme and Microbial Technology, 43(6), 436–441. https://doi.org/10.1016/j.enzmictec.2008.06.007Superintendencia de Industria y comercio. (2020). EStudios económicos sectoriales. Análisis del sector lácteo en Colombia. Eviencia para el período 2010-2020.ankeshwar, A. (2023). ONPG: β-galactosidase Test. https://microbeonline.com/onpgtest-galactosidase-principle-procedure-results/Terrasan, C. R. F., de Morais Junior, W. G., & Contesini, F. J. (2019). Enzyme Immobilization for Oligosaccharide Production. In Encyclopedia of Food Chemistry (pp. 415–423). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22444-XTodea, A., Benea, I. C., Bîtcan, I., Péter, F., Klébert, S., Feczkó, T., Károly, Z., & Biró, E. (2021). One-pot biocatalytic conversion of lactose to gluconic acid and galactooligosaccharides using immobilized β-galactosidase and glucose oxidase. Catalysis Today, 366, 202–211. https://doi.org/10.1016/j.cattod.2020.06.090Torres, D. P. M., Gonçalves, M. do P. F., Teixeira, J. A., & Rodrigues, L. R. (2010). Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9(5), 438–454. https://doi.org/10.1111/j.1541-4337.2010.00119.xTrademap. (2020). Cheese whey. https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7c414 %7c%7c%7c%7c0401%7c%7c%7c4%7c1%7c1%7c2%7c2%7c1%7c2%7c1%7c %7c1Treid. (2022). Exportaciones colombianas de quesos en los primeros 9 meses de 2020, 2021 y 2022. https://www.treid.co/post/exportaciones-colombianas-de-quesos-enlos-primeros-9-meses-de-2020-2021-y2022#:~:text=En%20Colombia%20la%20producci%C3%B3n%20promedio,est%C 3%A1%20el%20queso%20fresco%20%C3%A1cidoTrobo, L. (2018). Co-inmovilización y estabilización de enzimas y cofactores: Glicosilación regioselectiva de compuestos bioactivos catalizada por glicosiltransfeasas. Universidad Autónoma de Madrid.Tzortzis, G., & Vulevic, J. (2009). Galacto-Oligosaccharide Prebiotics. In D. Charalampopoulos & R. A. Rastall (Eds.), Prebiotics and Probiotics Science and Technology (pp. 207–244). Springer New York. https://doi.org/10.1007/978-0-38779058-9_7Urrutia, P., Mateo, C., Guisan, J. M., Wilson, L., & Illanes, A. (2013). Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galactooligosaccharides under repeated-batch operation. Biochemical Engineering Journal, 77, 41–48. https://doi.org/10.1016/j.bej.2013.04.015Varnam, A. H., & Sutherland, J. P. (2001). Milk and milk products: Technology, chemistry and microbiology. Aspen Publishers.Vera, C., Córdova, A., Aburto, C., Guerrero, C., Suárez, S., & Illanes, A. (2016). Synthesis and purification of galacto-oligosaccharides: State of the art. World Journal of Microbiology and Biotechnology, 32(12), 197. https://doi.org/10.1007/s11274-016-2159-4Vera, C., Guerrero, C., Aburto, C., Cordova, A., & Illanes, A. (2020). Conventional and non-conventional applications of β-galactosidases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(1), 140271. https://doi.org/10.1016/j.bbapap.2019.140271Vera, C., Guerrero, C., Conejeros, R., & Illanes, A. (2012). Synthesis of galactooligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme and Microbial Technology, 50(3), 188–194. https://doi.org/10.1016/j.enzmictec.2011.12.003Vera, C., Guerrero, C., & Illanes, A. (2011). Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: Effect of pH, temperature, and galactose and glucose concentrations. Carbohydrate Research, 346(6), 745–752. https://doi.org/10.1016/j.carres.2011.01.030Wang, G., Wang, H., Chen, Y., Pei, X., Sun, W., Liu, L., Wang, F., Umar Yaqoob, M., Tao, W., Xiao, Z., Jin, Y., Yang, S.-T., Lin, D., & Wang, M. (2021). Optimization and comparison of the production of galactooligosaccharides using free or immobilized Aspergillus oryzae β-galactosidase, followed by purification using silica gel. Food Chemistry, 362, 130195. https://doi.org/10.1016/j.foodchem.2021.130195Wang, G., Zhu, J., Liu, L., Yaqoob, M. U., Pei, X., Tao, W., Xiao, Z., Sun, W., & Wang, M. (2020). Optimization for galactooligosaccharides synthesis: A potential alternative for gut health and immunity. Life Sciences, 245, 117353. https://doi.org/10.1016/j.lfs.2020.117353Wolf, M., Gasparin, B. C., & Paulino, A. T. (2018). Hydrolysis of lactose using β-dgalactosidase immobilized in a modified Arabic gum-based hydrogel for the production of lactose-free/low-lactose milk. International Journal of Biological Macromolecules, 115, 157–164. https://doi.org/10.1016/j.ijbiomac.2018.04.058Xavier, J. R., Ramana, K. V., & Sharma, R. K. (2018). β-galactosidase: Biotechnological applications in food processing. Journal of Food Biochemistry, 42(5), e12564. https://doi.org/10.1111/jfbc.12564Yañez-Ñeco, C. V., Cervantes, F. V., Amaya-Delgado, L., Ballesteros, A. O., Plou, F. J., & Arrizon, J. (2021). Synthesis of β(1 → 3) and β(1 → 6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electronic Journal of Biotechnology, 49, 14–21. https://doi.org/10.1016/j.ejbt.2020.10.004Yang, G., Wu, J., Xu, G., & Yang, L. (2010). Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods. Colloids and Surfaces B: Biointerfaces, 78(2), 351–356. https://doi.org/10.1016/j.colsurfb.2010.03.022Yin, H., Bultema, J. B., Dijkhuizen, L., & van Leeuwen, S. S. (2017). Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chemistry, 225, 230–238. https://doi.org/10.1016/j.foodchem.2017.01.030Yin, H., Dijkhuizen, L., & van Leeuwen, S. S. (2018). Synthesis of galactooligosaccharides derived from lactulose by wild-type and mutant β-galactosidase enzymes from Bacillus circulans ATCC 31382. Carbohydrate Research, 465, 58– 65. https://doi.org/10.1016/j.carres.2018.06.009Zamora, H. (2008). MÉTODOS SELECTOS DE BIOQUIMICA EXPERIMENTAL. Universidad Nacional de Colombia.Zhang, H., Ding, X., Chen, X., Ma, Y., Wang, Z., & Zhao, X. (2015). A new method of utilizing rice husk: Consecutively preparing d-xylose, organosolv lignin, ethanol and amorphous superfine silica. Journal of Hazardous Materials, 291, 65–73. https://doi.org/10.1016/j.jhazmat.2015.03.003FAO. (2006). Specific methods, Enzyme preparations. http://www.fao.org/docrep/009/a0691e/A0691E07.htmUniversidad Nacional de ColombiaAdministradoresBibliotecariosConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPadres y familiasPersonal de apoyo escolarProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosORIGINAL1053850718.2024.pdf1053850718.2024.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf3100239https://repositorio.unal.edu.co/bitstream/unal/86065/2/1053850718.2024.pdf8de68134a52b3dc9758f51a923a042f9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86065/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1053850718.2024.pdf.jpg1053850718.2024.pdf.jpgGenerated Thumbnailimage/jpeg5144https://repositorio.unal.edu.co/bitstream/unal/86065/4/1053850718.2024.pdf.jpg8b377fb19f72f07aa80906d42e146074MD54unal/86065oai:repositorio.unal.edu.co:unal/860652024-05-09 23:04:48.332Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |