Metodología para la generación de péptidos sintéticos antimicrobianos usando aprendizaje profundo y algoritmos de clasificación

La resistencia de las bacterias a los antibióticos ha generado una preocupación creciente en nuestra sociedad. En la actualidad, se estima que en el mundo se presentan alrededor de 30 millones de casos de sepsis al año, de las cuales cerca de 5 millones terminan en muertes como resultado de infeccio...

Full description

Autores:
Vélez Echeverri, Andrés
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77288
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77288
http://bdigital.unal.edu.co/74922/
Palabra clave:
Resistencia antimicrobiana
Péptidos antimicrobianos
Virtual screening
Aprendizaje profundo
Antimicrobial resistance
virtual screening
Deep learning
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:La resistencia de las bacterias a los antibióticos ha generado una preocupación creciente en nuestra sociedad. En la actualidad, se estima que en el mundo se presentan alrededor de 30 millones de casos de sepsis al año, de las cuales cerca de 5 millones terminan en muertes como resultado de infecciones que resisten los tratamientos con antibióticos tradicionales. Este panorama ha llevado a la búsqueda de nuevos antibióticos que permitan combatir las bacterias resistentes. Los péptidos antimicrobianos (o AMPs, de su sigla en inglés Antimicrobial Peptides) han tomado importancia en el desarrollo de nuevos antibióticos por su rol como agente inhibidor, no solo de bacterias sino también de virus, hongos y parásitos, entre otros. Los AMPs son parte esencial de todos los organismos vivos y configuran la primera línea de defensa contra bacterias, microbios y parásitos. Desde el descubrimiento de los AMPs, miles han sido reportados en la literatura, sin embargo, muchos de ellos no son adecuados para aplicaciones terapéuticas debido a sus largas secuencias de aminoácidos, baja potencia antimicrobiana y altos costos de producción. Con la finalidad de generar péptidos más potentes y de forma más económica, diversas aproximaciones han sido desarrolladas. Entre ellas, virtual screening se caracteriza por emplear métodos computacionales que ayudan a disminuir los costos y el tiempo de producción de AMPs. Con base en lo anterior, en este trabajo de maestría se propone una metodología para la generación de péptidos sintéticos antimicrobianos usando como referente virtual screening. La metodología propuesta involucra la evaluación de diferentes arquitecturas de aprendizaje profundo, las cuales son usadas para generar AMPs sintéticos. Los resultados muestran que las técnicas de aprendizaje profundo pueden aprender la estructura de un AMP y a partir de esta crear nuevos péptidos sintéticos con capacidad antimicrobiana.