Secado de chontaduro (Bactris gasipaes) en ventanas refractantes

Ilustraciones, fotografías, gráficos

Autores:
Peñaloza Figueroa, Jeanine Kathleen
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86736
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86736
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::664 - Tecnología de alimentos
630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
Chontaduro - Cultivo
Chontaduro - Calidad
Producción agropecuaria
Cultivos alimenticios
Agricultura - Investigaciones
Calidad de los alimentos
Alimentos - Deshidratación, secado, etc.
Ventanas refractantes
Bactris gasipaes
Betacaroteno
Modelo matemático
Carotenoides
Actividad antioxidante
Estabilidad química
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_741695f2c4a52b8e2e820bf0107cccdf
oai_identifier_str oai:repositorio.unal.edu.co:unal/86736
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Secado de chontaduro (Bactris gasipaes) en ventanas refractantes
dc.title.translated.eng.fl_str_mv Bactris gasipaes drying in refractance window
title Secado de chontaduro (Bactris gasipaes) en ventanas refractantes
spellingShingle Secado de chontaduro (Bactris gasipaes) en ventanas refractantes
660 - Ingeniería química::664 - Tecnología de alimentos
630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
Chontaduro - Cultivo
Chontaduro - Calidad
Producción agropecuaria
Cultivos alimenticios
Agricultura - Investigaciones
Calidad de los alimentos
Alimentos - Deshidratación, secado, etc.
Ventanas refractantes
Bactris gasipaes
Betacaroteno
Modelo matemático
Carotenoides
Actividad antioxidante
Estabilidad química
title_short Secado de chontaduro (Bactris gasipaes) en ventanas refractantes
title_full Secado de chontaduro (Bactris gasipaes) en ventanas refractantes
title_fullStr Secado de chontaduro (Bactris gasipaes) en ventanas refractantes
title_full_unstemmed Secado de chontaduro (Bactris gasipaes) en ventanas refractantes
title_sort Secado de chontaduro (Bactris gasipaes) en ventanas refractantes
dc.creator.fl_str_mv Peñaloza Figueroa, Jeanine Kathleen
dc.contributor.advisor.none.fl_str_mv Chejne Janna, Farid
Rojano, Benjamín Alberto
Borda Yepes, Víctor Hugo
dc.contributor.author.none.fl_str_mv Peñaloza Figueroa, Jeanine Kathleen
dc.contributor.researchgroup.spa.fl_str_mv Termodinámica Aplicada y Energías Alternativas
dc.contributor.orcid.spa.fl_str_mv Peñaloza Figueroa, Jeanine Kathleen [0000-0003-2934-749X]
dc.contributor.cvlac.spa.fl_str_mv Peñaloza Figueroa, Jeanine Kathleen
dc.contributor.researchgate.spa.fl_str_mv Peñaloza Figueroa, Jeanine Kathleen
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::664 - Tecnología de alimentos
630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
topic 660 - Ingeniería química::664 - Tecnología de alimentos
630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
Chontaduro - Cultivo
Chontaduro - Calidad
Producción agropecuaria
Cultivos alimenticios
Agricultura - Investigaciones
Calidad de los alimentos
Alimentos - Deshidratación, secado, etc.
Ventanas refractantes
Bactris gasipaes
Betacaroteno
Modelo matemático
Carotenoides
Actividad antioxidante
Estabilidad química
dc.subject.lemb.none.fl_str_mv Chontaduro - Cultivo
Chontaduro - Calidad
Producción agropecuaria
Cultivos alimenticios
Agricultura - Investigaciones
Calidad de los alimentos
Alimentos - Deshidratación, secado, etc.
dc.subject.proposal.spa.fl_str_mv Ventanas refractantes
Bactris gasipaes
Betacaroteno
Modelo matemático
Carotenoides
Actividad antioxidante
Estabilidad química
description Ilustraciones, fotografías, gráficos
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-20T12:42:52Z
dc.date.available.none.fl_str_mv 2024-08-20T12:42:52Z
dc.date.issued.none.fl_str_mv 2024-08-08
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86736
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86736
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Abadio, F., Dominguez, A., Borges, S., & Oliveira, V. (2004). Physical properties of powdered pineapple (Ananas comosus) juice: effect of malt dextrin concentration and atomization speed. Journal of Food Engineering, 64(3), 285-287.
Abonyi, B., Feng, H., Tang, J., Edwards, C., Chew, B., Mattinson, D., & Fellman, J. (2001). Quality retention in strawberry and carrot purees dried with refractance window system. Food Engineering and Physical Properties, 67(2), 1051-1056.
Abul-Fadl., M. M., & Ghanem, T. H. (2011). Effect of refractance-window (RW) drying method on quality criteria of produced tomato powder as compared to the convection drying method. World Applied Science Journal 15(7), 953-965.
Achir, N., Randrianatoandro, V., Bohuon, P., Laffargue, A., & Avallone, S. (2010). Kinetic study of β-carotene and lutein degradation in oils during heat treatment. European Journal of Lipid Science and Technology, 112, 349-361.
Akanbi, C., & Oludemi, F. (2004). Effect of processing and packaging on the lycopene content of tomato products. International Journal of Food Properties, 1(1), 139-152. https://doi.org/10.1081/JFP-120024173.
Akdaş, S., & Başlar, M. (2014). Dehydration and degradation kinetics of bioactive compounds for mandarin slices under vacuum and oven drying conditions. Journal of Food Processing and Preservation, 39(6), 1098–1107. https://doi.org/10.1111/jfpp.12324.
Al-Khusaibi, M., Gordon, M. H., Lovegrove, J. A. & Niranjan, K. (2012) Frying of Potato Chips in a Blend of Canola Oil and Palm Olein: Changes in Levels of Individual Fatty Acids and Tocols. International Journal of Food Science and Technology, 47, 1701-1709. http://dx.doi.org/10.1111/j.1365-2621.2012.03024.x.
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel), 26(4):42. https://doi.org/10.3390/plants6040042. PMID: 28937585; PMCID: PMC5750618.
Aman, R., Schieber, A., & Carle, R. (2005). Effects of heating and illumination on Trans-Cis Isomerization and degradation of β-carotene and lutein in isolated spinach chloroplasts. Journal of Agricultural and Food Chemistry, 53(24), 9512–9518. https://doi.org/10.1021/jf050926w.
Amaya, D., Kimura, M., Godoy, H., & Amaya, J. (2008). Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. Journal of Food Composition and Analysis, 21(6), 445–463. https://doi.org/10.1016/j.jfca.2008.04.001.
Armstrong, G. A., & Hearst, J. E. (1996). Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis. The FASEB Journal, 10(2), 228-37. doi 10.1096/fasebj.10.2.8641556. PMID: 8641556.
Arslan, D., & Özcan, M. (2008). Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of Rosemary leaves. Energy Conversion and Management, 49(5), 1258-1264, https://doi.org/10.1016/j.enconman.2007.08.005.
Astorg, P. (1997). Food carotenoids and cancer prevention: An overview of current research. Trends in Food Science & Technology, 8(12), 406-413. https://doi.org/10.1016/s0924-2244(97)01092-3.
Aversa, M., Curcio, S., Calabrò, V., & Iorio, G. (2007). An analysis of the transport phenomena occurring during food drying process. Journal of Food Engineering, 78(3), 922–932. https://doi.org/10.1016/j.jfoodeng.2005.12.005.
Azizi, D., Jafari, S., Mirzaei, H., & Dehnad, D. (2017). "The Influence of Refractance Window Drying on Qualitative Properties of Kiwifruit Slices". International Journal of Food Engineering, 13(2), 20160201. https://doi.org/10.1515/ijfe-2016-0201.
Baeghbali, V., Niakosari, M., & Kiani, M. (2010). Design, manufacture and investigating functionality of a new batch refractance window system. 5th Proceedings of International Conference on Innovations. Food and Bioprocess Technology, 1–7.
Baeghbali, V., Niakousari, N., & Farahnaky, A. (2016). Refractance Window drying of pomegranate juice: Quality retention and energy efficiency. LWT - Food Science and Technology, 66, 34-40, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2015.10.017.
Baeghbali, V., Ngadi, M., & Niakousari, M. (2020). Effects of ultrasound and infrared assisted conductive hydro-drying, freeze-drying and oven drying on physicochemical properties of okra slices. Innovative Food Science & Emerging Technologies, 63, 102313, ISSN 1466-8564. https://doi.org/10.1016/j.ifset.2020.102313.
Balaban, M., & Pigott, G. M. (1988). Mathematical model of simultaneous heat and mass transfer in food with dimensional changes and variable transport parameters. Journal of Food Science, 53(3), 935–939. https://doi.org/10.1111/j.1365-2621.1988.tb08990.x.
Bernardi, C., & Maday, Y. (1997). Spectral methods. En Handbook of Numerical Analysis (pp.209–485). Elsevier. https://doi.org/10.1016/s1570-8659(97)80003-8.
Berset, C., & Marty, C. (1990). Factors affecting the thermal degradation of all trans-β-carotene. Journal of Agricultural and Food Chemistry, 38(4), 1063-1067.
Betoret, E., Betoret, N., Carbonell, J. V., & Fito, P. (2009). Effects of pressure homogenization on particle size and the functional properties of citrus juices. Journal of Food Engineering, 92(1), 18–23. https://doi.org/10.1016/j.jfoodeng.2008.10.028.
Bhandari, B. R., Senoussi, A., Dumoulin, E. D., & Lebert, A. (1993). Spray drying of concentrated fruit juices. Journal Drying Technology, 11 (5), 1081-1092.
Bialik, M., Wiktor, A., Witrowa-Rajchert, D., & Gondek, E. (2020). The Influence of Osmotic Dehydration Conditions on Drying Kinetics and Total Carotenoid Content of Kiwiberry (Actinidia Arguta). International Journal of Food Engineering, 16(1-2). https://doi.org/10.1515/ijfe-2018-0328.
Biswas, A. K., Sahoo, J & Chatli, M. K. (2011). A simple UV-Vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT - Food Science and Technology, 44(8), 1809–1813. https://doi.org/10.1016/j.lwt.2011.03.017.
Bhosale, P., & Bernstein, P. (2004). β-carotene production by Flavobacterium multivorum in the presence of inorganic salts and urea. Journal of Industrial Microbiology and Biotechnology, 31(12), 565-571.
Böhm, V., Puspitasari-Nienaber, N. L., Ferruzzi, M. G., & Schwartz, S. J. (2002). Trolox equivalent antioxidant capacity of different geometrical isomers of alpha-carotene, beta-carotene, lycopene, and zeaxanthin. Journal of Agricultural and Food Chemistry, 50(1), 221-226. https://doi.org/10.1021/jf010888q. PMID: 11754571.
Boon, C., McClements, J., Weiss, J & Decker, E. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515-532.
Bondet, V., Brand-Williams, W., & Berset, C. (1997). Kinetics and mechanisms of antioxidant activity using the DPPH. Free Radical Method. LWT - Food Science and Technology, 30(6), 609-615, ISSN 0023-6438, https://doi.org/10.1006/fstl.1997.0240.
Bonilla-Ahumada, F. de J., Khandual, S., & Lugo-Cervantes, E. del C. (2018). Microencapsulation of algal biomass (Tetraselmis chuii) by spray-drying using different encapsulation materials for better preservation of beta-carotene and antioxidant compounds. Algal Research, 36, 229–238. https://doi.org/10.1016/j.algal.2018.10.006.
Bradley, D. G., & Min, D. B. (1992). Singlet oxygen oxidation of foods. Critical Reviews in Food Science and Nutrition, 31(3), 211-36. https://doi.org/10.1080/10408399209527570. PMID: 1571085.
Brennan, J. G. (1994). Water activity and food quality. In G. CampbellPlatt (Ed.), Food Dehydration. A Dictionary and Guide (pp. 129–131). Oxford: Butterworth-Heinemann Ltd. CRC Press.
Britton, G. (1995) Structure and properties of carotenoids in relation to function. The FASEB Journal, 9, 1551-1558.
Buitrago-Acosta, M. C., Montúfar, R., Guyot, R., Mariac, C., Tranbarger, T. J., Restrepo, S., & Couvreur, T. L. P. (2022). Bactris gasipaes Kunth var. gasipaes complete plastome and phylogenetic analysis. Mitochondrial DNA Part B, 7(8), 1540–1544. https://doi.org/10.1080/23802359.2022.2109437.
Buzzini, P., Martini, A., Gaetani, M., Turchetti, B., Pagnoni, M., & Davoli, P. (2005). Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface análisis. Enzyme and Microbial Technology, 36(5–6), 687-692, ISSN 0141-0229. https://doi.org/10.1016/j.enzmictec.2004.12.028.
Castoldi, M., Zotarelli, M. F., Durigon, A., Carciofi, B., & Laurindo, J. (2015). Production of tomato powder by refractance window drying. Drying Technology, 33 (12), 1463-1473.
Cadwallader, K., Moore, J., Zhang, Z., & Schmidt, S. (2010). Flavor encapsulation and flavor release. Comparison of spray drying and Refractance WindowTM drying technologies for the encapsulation of orange oil. Documento de información.
Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. Journal of Food Engineering, 111(1), 135–148. https://doi.org/10.1016/j.jfoodeng.2012.01.010.
Carnevale, J., Cole, E., Crank, G. (1979). Fluorescent light catalyzed autoxidation of betacarotene. Journal of Agricultural and Food Chemistry, 27(2). Documento de información.
Celli, G., Khattab, R., Ghanem, A., Brooks, M. (2016). Refractance Window™ drying of haskap Berry- Preliminary results on anthocyanin retention and physicochemical properties. Food Chemistry, 194, 218-221.
Cichella, A., Durigon, A., Laurindo, J. (2018). Effect of process variables on the drying of guava pulp by cast-tape drying. LWT, 96, 620-626, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2018.06.021.
Contreras, J., Calderón, L., Guerra, E., & García, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from twenty-four exotic fruits from Colombia. Food Research International, 44(7), 2047-2053.
Chai, J., Jiang, P., Wang, P., Jiang, Y., Li, D., Bao, W., Liu, B., Liu, B., Zhao, L., Norde, W., Yuan, Q., Ren, F., & Li, Y. (2018). The intelligent delivery systems for bioactive compounds in foods: Physicochemical and physiological conditions, absorption mechanisms, obstacles and responsive strategies. Trends in Food Science and Technology, 78, 144-154. https://doi.org/10.1016/j.tifs.2018.06.003.
Chen, B. H., Chen, T. M., Chien, J. T. (1994). Kinetic model for studying the isomerization of a- and ß-carotene during heating and illumination. Journal of Agricultural and Food Chemistry, 42, 2391-2397.
Chen, B. H., & Huang, J. H. (1998). Degradation and isomerization of chlorophyll and β-carotene as affected by various heating and illuminations treatments. Food chemistry, 62, 299-307.
Chen, M. L., Yang, D. J., & Liu, S. C. (2011). Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (Citrus sinensis (L.) Osbeck) peels. International Journal of Food Science & Technology, 46(6), 1179–1185. https://doi.org/10.1111/j.1365-2621.2011.02605.x.
Choudhari, S. M., Ananthanarayan, L., & Singhal, R. S. (2008). Use of metabolic stimulators and inhibitors for enhanced production of beta-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource Technology, 99(8), 3166-3173. https://doi.org/10.1016/j.biortech.2007.05.051, PMID: 17637505.
Choe, E., & Min, D. (2006). Mechanism and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety, 5(4), 169-186, https://doi.org/10.1111/j.1541-4337.2006.00009.x.
Chuyen, H. V., Nguyen, M. H., Roach, P. D., Golding, J. B., & Parks, S. E. (2017). Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Science & Nutrition, 6(1), 189–196. doi:10.1002/fsn3.546.
Colé, E. R & Kapur N. S. (1957). The stability of lycopene. I.-Degradation by oxigen. Journal of the Science of Food and Agriculture, 8, 360-365.
Cui, Z. W., Xu, S. Y., & Sun, D. W. (2004). Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of chinese chive leaves. Drying Technology, 22(3), 563–575. https://doi.org/10.1081/drt-120030001.
Curcio, S., & Aversa, M. (2014). Influence of shrinkage on convective drying of fresh vegetables: A theoretical model. Journal of Food Engineering, 123, 36–49. https://doi.org/10.1016/j.jfoodeng.2013.09.014.
Darvin, M.E., Haag, S.F., Meinke, M.C., Sterry, W., & Lademann, J. (2011c). Determination of the influence of IR radiation on the antioxidative network of the human skin. Journal of Biophotonics, 4(1–2), 21–29. https://doi.org/10.1002/jbio.200900111.
Datta, A. K., & Ni, H. (2002). Infrared and hot-air-assisted microwave heating of foods for control of surface moisture. Journal of Food Engineering, 51(4), 355–364. https://doi.org/10.1016/s0260-8774(01)00079-6.
Değirmencioğlu, N., Gürbüz, O., Herken, E., & Yurdunuseven, A. (2016). The impact of drying techniques on phenolic compound, total phenolic content and antioxidant capacity of oat flour tarhana. Food Chemistry, 194, 587-594, ISSN 0308-8146, https://doi.org/10.1016/j.foodchem.2015.08.065.
Demirhan, E., & Özbek, B. (2009). Color change kinetics of microwave-dried basil. Drying Technology, 27(1), 156–166. https://doi.org/10.1080/07373930802566101.
Demming-Adams, B., & Adams, W. W. (1992). Carotenoid composition in sun and shade leaves of plants with different life forms. Plant, Cell and Environment, 15(4), 411–419. https://doi.org/10.1111/j.1365-3040.1992.tb00991.x.
De Rosso, V.V., & Mercadante, A.Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55(13), 5062-5072. https://doi.org/10.1021/jf0705421, PMID: 17530774.
Desobry, S. A., Netto, F. M., & Labuza, T. P. (1997). Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. Journal of Food Science, 62(6), 1158–1162. https://doi.org/10.1111/j.1365-2621.1997.tb12235.x.
De Francisco, L., Pinto, D., Rosseto, H., Toledo, L., Santos, R., Tobaldini-Valério, F., Svidzinski, T., Bruschi, M., Sarmento, B., Oliveira, M., & Rodrigues, F. (2018). Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product. Food Research International, 105, 537-547. https://doi.org/10.1016/j.foodres.2017.11.046.
De Souza, L., Ventura, S., Braga, A., Pisani, L., Días, A & De Rosso, V. (2019). Ionic liquid-high performance extractive approach to recover carotenoids from Bactris gasipaes. Green Chemistry, 212, 2380-2391.
Di Pietro, N., Di Tomo, P & Pandolfi, A. (2016). Carotenoids in cardiovascular disease prevention. JSM Atherosclerosis, 1(1), 1002.
Dueik, V., Marzullo, C., & Bouchon, P. (2013). Effect of Vacuum Inclusion on the Quality and the Sensory Attributes of Carrot Snacks. LWT - Food Science and Technology, 50(1), 361–365. https://doi.org/10.1016/j.lwt.2012.05.011.
Durigon, A., Gimenez de Souza, P., Mattar, B., & Laurindo, J. (2016). Cast-tape drying of tomato juice for the production of powdered tomato. Food and Bioproducts Processing, 100(a), 145-155, ISSN 0960-3085. https://doi.org/10.1016/j.fbp.2016.06.019.
Dutta, D., Chaudhuri, U. R., & Chakraborty, R. (2005). Review. Structure, health benefi ts, antioxidant property and processing and storage of carotenoids. African Journal of Biotechnology, 4(13), 1510-1520. Recuperado de http://www.academicjournals.org/AJB.
Dutra, A., Furtado, A., Pacheco, S., Oiano Neto, J. (2012). Efeito do tratamento térmico na concentração de carotenoides, compostos fenólicos, ácido ascórbico e capacidade antioxidante do suco de tangerina murcote. Brazilian Journal of Food Technology, Campinas, 15(3), 198-207.
Eilander, A., Hundscheid, D.C., Osendarp, S.J., Transler, C y Zock, P.L. (2007). Effects of n-3 long chain polyunsaturated fatty acid supplementation on visual and cognitive development throughout childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids, 76, 189-203.
Elik, A., Yanik, D. K., & Göğüş, F. (2020). Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT, 109100. doi:10.1016/j.lwt.2020.109100.
Espinosa, P. F., Martínez J., & Martínez, H. A. (2014). Extraction of bioactive compounds from peach palm pulp (Bactris gasipaes) using supercritical CO2. The Journal of Supercritical Fluids, 93, 115-180.
Feng, H., Tang, J., & Cavalieri, R. (2002). Dielectric properties of dehydrated apples as affected by moisture and temperature. Transactions of the ASABE, 45, 129–135.
Ferrari, M. H., Souza, M., Villas, F., Lopes, C., Landi, C. M., De Souza, M., Pedrosa, M. T., Clerici, S., & Côrtes, L. M. (2020). Characterization and technological properties of peach palm (Bactris gasipaes var. gasipaes) fruit starch. Food Research International, 136, 109569, ISSN 0963-9969, https://doi.org/10.1016/j.foodres.2020.109569.
Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human Health and disease. Nutrients, 6(2), 466–488. doi:10.3390/nu6020466.
Figiel, A., Szumny, A., Gutiérrez-Ortíz, A., & Carbonell-Barrachina, A. (2010). Composition of oregano essential oil (Origanum vulgare) as affected by drying method. Journal of Food Engineering, 98(2), 240-247, ISSN 0260-8774. https://doi.org/10.1016/j.jfoodeng.2010.01.002.
Franco, S., Jaques, A., Pinto, M., Fardella, M., Valencia, P., Núñez, H., Ramírez, C., & Simpson, R. (2019). Dehydration of salmon (Atlantic salmon), beef, and apple (Granny Smith) using Refractance window™: Effect on diffusion behavior, texture, and color changes,Innovative. Food Science & Emerging Technologies, 52, 8-16, ISSN 1466-8564, https://doi.org/10.1016/j.ifset.2018.12.001.
Fratianni, A., Cinquanta, L., & Panfili, G. (2010). Degradation of carotenoids in orange juice during microwave heating. LWT - Food Science and Technology, 43(6), 867-871, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2010.01.011.
Giraldo, A., Dufour, D., Rivera, A., Sánchez, T., Scheldeman, X., González, A. (2009). Diversidad del chontaduro (Bactris gasipaes) consumido en Colombia. Alimentos Hoy (18), 6 p. Congreso Iberoamericano de Ingeniería en Alimentos. 7, Bogotá, Colombia, 6 septiembre 2009/9 septiembre 2009.
Graefe, S., Dufour, D., Zonneveld, M., Rodríguez, F., & González, A. (2013). Peach palm (Bactris gasipaes) in tropical Latin America: implications for biodiversity conservation, natural resource management and human nutrition. Biodiversity Conservation, 22, 269–300.
Goula, A., & Adamopoulos, K. (2005). Stability of lycopene during spray drying of tomato Pulp. LWT - Food Science and Technology, 38(5), 479-487. https://dx.doi.org/10.1016/j.lwt.2004.07.020.
Grabowski, J. A., Truong, V. D., & Daubert, C. R. (2008). Nutritional and rheological characterization of spray dried sweetpotato poder. LWT - Food Science and Technology, 41(2), 206-216, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2007.02.019.
Gümüşay, Ö. A., Borazan, A. A., Ercal, N., & Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173:156-62. https://doi.org/10.1016/j.foodchem.2014.09.162, PMID: 25466007.
Gupta, S., Bisnoi, J., Singh, D., & Singh, R. (2019). Effect of different drying technique on the bioactive components of Terminalia arjuna Bark. Research Journal of Pharmacy and Technology, 12, 2372.
Halder, A., Dhall, A., & Datta, A. K. (2011). Modeling transport in porous media with phase change: Applications to food processing. Journal of Heat Transfer, 133(3). https://doi.org/10.1115/1.4002463.
Haminiuk, C., Sierakowski, M., Vidal, J., & Masson, M. (2006). Influence of temperature on the rheological behavior of whole araçá pulp (Psidium cattleianum Sabine). LWT - Food Science and Technology, 39(4), 426-430.
Handelman, G., van Kuijk, F., Chatterjee, A., & Krinsky, N. (1991). Characterization of products formed during the autoxidation of β-carotene. Free Radical Biology and Medicine, 10(6), 427-437, ISSN 0891-5849. https://doi.org/10.1016/0891-5849(91)90051-4.
Halder, A., Dhall, A., & Datta, A. K. (2007). An improved, easily implementable, porous media based model for deep-fat frying. Food and Bioproducts Processing, 85(3), 209–219. https://doi.org/10.1205/fbp07033.
Hegazy, A., & Lovett-Doust, J. (2016). Human impact and plant conservation. Ahmad Hegazy & Jonathan Lovett-Doust (Eds.), Plant ecology in the middle east, (pp. 235-264). Oxford University Press.
Ho, D. G. (2003). Phosphadioxirane: A Peroxide from an-Ortho-Substituted Arylphosphine and Singlet Dioxygen. Science, 302(5643), 259–262. https://doi.org/10.1126/science.1089145.
Iqbal, J., Akbar, W., Aftab, R., Younas, I., & Jamil, U. (2019). Heat and mass transfer modelling for fruit drying: a review. MOJ Food Processing & Technology, 7(3), 69-73.
Isoe, S., Hyeon, S., & Sakan, T. (1969). Photo-oxygenation of carotenoids. I. The formation of dihydroactinidiolide and β-ionone from β-carotene. Tetrahedron Letters, 10(4), 279-281, ISSN 0040-4039. https://doi.org/10.1016/S0040-4039(01)87530-4.
İzli, N., Yıldız, G., Ünal, H., Işık, E., & Uylaşer, V. (2013). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). International Journal of Food Science & Technology, 49(1), 9–17. https://doi.org/10.1111/ijfs.12266.
Jayathilakan, K., Sharma, G., Radhakrishna, K., & Bawa, A. (2007). Antioxidant potential of synthetic and natural antioxidants and its effect on warmed-over-flavour in different species of meat. Food Chemistry, 105(3), 908–916. https://doi.org/10.1016/j.foodchem.2007.04.068.
Jeevarajan, A. S., Kispert, L. D., Chumanov, G., Zhou, C., Cotton, T. M. (1996). Resonance Raman study of carotenoid cation radicals. Chemical Physics Letters, 259(5–6), 515-522, ISSN 0009-2614. https://doi.org/10.1016/0009-2614(96)00781-6.
Jung, M. Y., Min, D. B. (1991). Effects of quenching mechanisms of carotenoids on the photosensitized oxidation of soybean oil. Journal of the American Oil Chemists' Society, 68, 653–658, https://doi.org/10.1007/BF02662288.
Karabulut, I., Topcu, A., Duran, A., & Turan, S. (2007). Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armenica L). LWT - Food Science and Technology, 40(5), 753–758. https://doi.org/10.1016/j.lwt.2006.05.001.
Kaspar, K. L., Park, J. S., Mathison, B. D., Brown, C. R., Massimino, S., & Chew, B. P. (2012). Processing of pigmented-flesh potatoes (Solanum tuberosum L.) on the retention of bioactive compounds. International Journal of Food Science & Technology, 47(2), 376–382. https://doi.org/10.1111/j.1365-2621.2011.02850.x.
Kayacan, S., Sagdic, O., & Doymaz, I. (2018). Effects of hot air and vacuum drying on drying kinetics, bioactive compounds and color of bee pollen. Journal of Food Measurement and Characterization, 12(2), 1274-1283. https://doi.org/10.1007/s11694-018-9741-4.
Kim, J., & Keasling, J. D. (2001). Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnology and Bioengineering, 72, 408-415.
Khoo, H. E., Prasad, K. N., Kong, K. W., Jiang, Y., & Ismail, A. Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules, 16(2):1710-1738. https://doi.org/10.3390/molecules16021710. PMID: 21336241; PMCID: PMC6259627.
Koca, N., Karadeniz, F., & Burdurlu, S. (2007). Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 100(2), 609-615, ISSN 0308-8146. https://doi.org/10.1016/j.foodchem.2005.09.079.
Kowsalya, K., Vidya, N., Vijayalakshmi, V & Arun, M. (2019). Super nutritive marine astaxanthin, an effectual dietary carotenoid for neurodegenerative diseases. International Research Journal of Multidisciplinary Technovation, 1(6), 115–124.
Kozempel, M. F. (1988). Modeling the kinetics of cooking and precooking potatoes. Journal of Food Science, 53(3), 753–755. https://doi.org/10.1111/j.1365-2621.1988.tb08948.x.
Krimm, S., 1960. Infrared spectra of high polymers. En: Fortschritte der Hochpolymeren- Forschung. Springer, Berlin Heidelberg, pp. 51-172.
Krinsky, N. I. & Johnson, E. J. (2005) Carotenoid actions and their relation to health and disease. molecular aspects of medicine, 26, 459-516. http://dx.doi.org/10.1016/j.mam.2005.10.00.
Kubra, I. R., & Jagan Mohan Rao, L. (2012). Microwave drying of ginger (Zingiber officinaleRoscoe) and its effects on polyphenolic content and antioxidant activity. International Journal of Food Science & Technology, 47(11), 2311–2317. https://doi.org/10.1111/j.1365-2621.2012.03104.x.
Kumar, C., Joardder, M., Farrell, T., Millar, G., & Karim, A. (2018). A porous media transport model for apple drying. Biosystems Engineering, 176, 12-25, ISSN 1537-5110, https://doi.org/10.1016/j.biosystemseng.2018.06.021.
Kumar, A., Kandasamy, P., Chakraborty, I., & Hangshing, L. (2022). Analysis of energy consumption, heat and mass transfer, drying kinetics and effective moisture diffusivity during foam-mat drying of mango in a convective hot-air dryer. Biosystems Engineering, 219, 85-102, ISSN 1537-5110. https://doi.org/10.1016/j.biosystemseng.2022.04.026.
Kuskoski, E. M., Vega, J. M., Rios, J. J., Fett, R., Troncoso, A. M., & Asuero, A. G. (2003). Characterization of anthocyanins from the fruits of baguaçu (Eugenia umbelliflora Berg). Journal of Agricultural and Food Chemistry, 51, 5450-5454.
Magoon, R. (1986). Method and Apparatus for Drying Fruit Pulp and the Like. US Patent 4, 631, 837.
Mahanti, N. K., Chakraborty, S. K., Sudhakar, A., Verma, D. K., Shankar, S., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., & Srivastav, P. P. (2021). Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods: A Dedicated Journal for Sustainability in Food Science, 3(100024), 100024. https://doi.org/10.1016/j.fufo.2021.100024.
Marinho, H. A., & Castro, J. S. (2003). Carotenóides e valor de provitamina A em frutos da região amazônica: pajurá, piquiá, tucumã e umari. Brazil: Anais do XVII Congresso Brasileiro de Fruticultura.
Maroulis, Z. B., Kiranoudis, C. T., & Marinos-Kouris, D. (1995). Heat and mass transfer modeling in air drying of foods. Journal of Food Engineering, 26(1), 113–130. https://doi.org/10.1016/0260-8774(94)00040-g.
Martínez, J., Rodríguez, X., Pinzón, L., & Ordóñez, L. (2017). Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes kunth, Arecaceae) obtenida por secado convectivo. CORPOICA Ciencia y Tecnología Agropecuaria, 18(3), 599-613, ISSN 0122-8706.
Marx, M., Stuparic, M., Schieber, A & Carle, R. (2003). Effects of thermal processing on trans-cis-isomerization of β-carotene in carrot juice and carotene-containing preparations. Food Chemistry, 83, 609–617.
Mehta, B. J., Salgado, L. M., Bejarano, E. R., & Cerdá-Olmedo, E. (1997). New mutants in Phycomyces blakesleeanus for β-carotene production. Applied and Environmental Microbiology 63, 3657-3661.
Meléndez-Martínez, A. J., Vicario, I., & Heredia, F. J. (2007). Pigmentos carotenoides: consideraciones estructurales y fisicoquímicas. Archivos Latinoamericanos de Nutrición, 57(2), 109-117. Recuperado en 08 de julio de 2022, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222007000200002&lng=es&tlng=es.
Menezes Filho, A. C. P., Ventura, M. V. A., Batista-Ventura, H. R. F., Porfiro, C. A., Teixeira, M. B., Soares, F. A. L., Taques, A. S., Alves, I., & Castro, C. F. (2022). Hydnopolyporus fimbriatus (Fr.) D.A. Reid mushroom: phytochemical screening, antioxidant activity, total flavonoid and total phenolic compounds. Brazilian Journal of Science, 1(5), 46–53. https://doi.org/10.14295/bjs.v1i5.134.
Michalska-Ciechanowska, A., Wojdyło, A., Lech, K., Łysiak, G., & Figiel, A. (2017). Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT - Food Science and Technology, 78, 114-121.
Mínguez-Mosquera, M. I. (1997). Clorofilas y carotenoides en tecnología de alimentos. Sevilla: Secretariado de publicaciones de la Universidad de Sevilla, ISBN: 978-84-472-0344-4.
M’hiri, N., Ghali, R., Nasr, B., & Boudhrioua, N. (2018). Effect of different drying processes in functional properties of industrial lemon byproduct. Process Safety and Environmental Protection, 116, 450-460. https://doi.org/10.1016/j.psep.2018.03.004.
Mogedas, B., Forján, E., Cuaresma, M., Garbayo, I., Vega, J. M., & Vílchez, C. (2009). Production of lutein-enriched microalgal biomass. New Biotechnology, 25(Suppl.), S297-S297. https://doi.org/10.1016/j.nbt.2009.06.677.
Møller, A. H., Wijaya, W., Jahangiri, A., Madsen, B., Joernsgaard, B., Vaerbak, S., Hammershøj, M., Van der Meeren, P., & Dalsgaard, T. (2020). Norbixin binding to whey protein isolate - alginate electrostatic complexes increases its solubility and stability. Food Hydrocolloids, 101, 1–8. https://doi.org/10.1016/j.foodhyd.2019.105559.
Mordi, R. (1993). Mechanism of β-carotene degradation. Biochemical Journal, 292, 310-312. http://dx.doi.org/10.1042/bj2920310.
Mordi, R. C., Ademosun, O. T., Ajanaku, C. O., Olanrewaju, I. O., & Walton, J. C. (2020). Free radical mediated oxidative degradation of carotenes and xanthophylls. Molecules, 25(5), 1038. https://doi.org/10.3390/molecules25051038. PMID: 32110916; PMCID: PMC7179097.
Mortensen, A., & Skibsted, L. (1997). Importance of carotenoid structure in radical-scavenging reactions. Journal of Agricultural and Food Chemistry, 45, 2970-2977.
Moses, J., Karthickumar, P., Sinija, V., Alagusundaram, K., & Tiwari, B. (2013). Effect of microwave treatment on drying characteristics and quality parameters of thin layer drying of coconut. Asian Journal of Food and Agro-Industry, 6(02), 72-85.
Moses, J., Norton, T., Alagusundaram, K., & Tiwari, B. (2014a). Novel drying techniques for the food industry. Food Engineering Reviews, 6(3), 43-55.
Moses, J., Esther, M., Abirami, C., Alagusundaram, K., & Tiwari, B. (2014b). Microwave drying kinetics of okara. Soybean Research Journal, 48, 104.
Mozaffarian, D., Ascherio, A., Hu, F.B., Stampfer, M., Willett, W., Sicovick, D & Eimm E. (2005). Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation, 111, 157-64.
Nadian, M., Rafiee, S., Aghbashlo, M., Hosseinpour, s., & Mohtasebi, S. (2015). Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. Food and Bioproducts Processing, 94, 263-274, ISSN 0960-3085. https://doi.org/10.1016/j.fbp.2014.03.005.
Naguib, Y. M. (2000). Antioxidant activities of astaxanthin and related carotenoids. Journal of Agricultural and Food Chemistry, 48(4), 1150-1154. https://doi.org/10.1021/jf991106k. PMID: 10775364.
Namitha, K. K., & Negi, P. S. (2010) Chemistry and biotechnology of carotenoids. Critical Reviews in Food Science and Nutrition, 8, 728-60. https://doi.org/10.1080/10408398.2010.499811. PMID: 20830634.
Nayak, B., Berrios, J. D. J., Powers, J. R., Tang, J., & JI, Y. (2011). Colored potatoes (Solanum Tuberosum L.) dried for antioxidant rich value added foods. Journal of Food Processing and Preservation, 35(5), 571–580. https://doi.org/10.1111/j.1745-4549.2010.00502.x.
Nayara, M. P., Silvano, H., Paixão, D. R., Queiroz de Oliveira, W., Pereira, G. A & Pastore, G. M. (2021). Functional and nutritional properties of selected Amazon fruits: A review. Food Research International, 147, 110520. https://doi.org/10.1016/j.foodres.2021.110520.
Nawirska-Olszańska, A., Stępień, B., Biesiada, A., Kolniak-Ostek, J., & Oziembłowski, M. (2017). Rheological, chemical and physical characteristics of golden berry (Physalis peruviana L.) after convective and microwave drying. Foods, 6(8), 60. https://doi.org/10.3390/foods6080060.
Nguyen, T. V. L., Nguyen, Q. D., & Nguyen. P. B. (2022). Drying kinetics and changes of total phenolic content, antioxidant activity and color parameters of mango and avocado pulp in refractance window drying. Polish Journal of Food and Nutrition Sciences, 72(1), 27-38.
Nindo, C., Feng, H., Shen, G., Tang, J., & Kang, D. (2003a). Energy utilization and microbial reduction in a new film drying system. Journal of Food Process Preservation, 27 (2), 117-136.
Nindo, C., Sun, T., Wang, S., Tang, J., & Powers, J. (2003b). Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis, L.). LWT-Food Science and Technology, 36 (5), 507-516.
Nindo, C. I., Powers, J. R., & Tang, J. (2007). Influence of refractance window evaporation on quality of juices from small fruits. LWT - Food Science and Technology, 40(6), 1000–1007. https://doi.org/10.1016/j.lwt.2006.07.006.
Nindo, C., & Tang, J. (2007). Refractance window dehydration technology: a novel contact drying method. Drying Technology, 25 (1), 37-48.
Nishino, H., Murakoshi, M., Li, T., Takemura, M., Kuchide, M., Kanazawa, M., Yang, X., Wada, S., Masuda, M., Ohsaka, Y., Yogosawa, S., Satomi, Y & Jinno, K. (2022). Cancer and Metastasis Reviews, 21, 257-264.
Labuza, T. P. and Dugan Jr., L. R. (1971). Kinetics of Lipid Oxidation in Foods. Critical Reviews in Food Science & Nutrition, 2, 355-405.
Laos, K., Lõugas, T., Mändmets, A., & Vokk, R. (2007). Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innovative Food Science & Emerging Technologies, 8(3), 395-398, ISSN 1466-8564, https://doi.org/10.1016/j.ifset.2007.03.013.
Lauretani, F., Semba, R. D., Bandinelli, S., Dayhoff-Brannigan, M., Giacomini, V., Corsi, A. M., Guralnik, J. M., & Ferrucci, L. (2008). Low plasma carotenoids and skeletal muscle strength decline over 6 years. The journals of gerontology. Series A, Biological sciences and medical sciences, 63(4), 376-83. https://doi.org/10.1093/gerona/63.4.376. PMID: 18426961; PMCID: PMC4101895.
Lavelli, V., Zanoni, B., & Zaniboni, A. (2007). Effect of water activity on carotenoid degradation in dehydrated carrots. Food Chemistry, 104(4), 1705–1711. https://doi.org/10.1016/j.foodchem.2007.03.033.
Leterme, P., García, M., Londoño, A., Rojas, M., Buldgen, A., & Souffrant, W. (2005). Chemical composition and nutritive value of peach palm (Bactris gasipaes Kunth) in rats. Journal of the Science of Food and Agriculture, 85(9), 1505-1512.
Li, T., Deng, Y., Liu, J., Duan, A., Liu, H., & Xiong, S. (2021). DcCCD4 catalyzes the degradation of α-carotene and β-carotene to affect carotenoids accumulation and taproot color in carrot. The Plant Journal, 108, 1116-1130.
Limbo, S., Torri, L., & Piergiovanni, L. (2007). Light induced changes in an aqueous β-carotene system stored under halogen and fluorescent lamps, affected by two oxygen partial pressures. Journal of Agricultural and Food Chemistry, 55(13), 5238–5245. https://doi.org/10.1021/jf0634348.
Lopes Aguiar, J.P., da Silva, E., Gomes da Silva, A., Sganzerla, W. G., Xiao, J., & Souza, F. (2021). Influence of freeze-drying treatment on the chemical composition of peppers (Capsicum L.) from the Brazilian Amazonia región. Biocatalysis and Agricultural Biotechnology, 38, 102220, ISSN 1878-8181. https://doi.org/10.1016/j.bcab.2021.102220.
Obara, A., Obiedziński, M., & Kołczak, T. (2006). The effect of water activity on cholesterol oxidation in spray- and freeze-dried egg powders. Food Chemistry, 95(2), 173–179. https://doi.org/10.1016/j.foodchem.2004.06.02.
Onwude, D. I., Hasrim, N., Janius, R., Nawi, N. M., & Abdan, K. (2017). Color change kinetics and total carotenoid contento f pumpkin as affected by drying temperature. Italian Journal of Food Science, 29, 1-18. Opinion paper.
Ortiz-Jerez, M. J., Gulati, T., Datta, A. K., & Ochoa-Martínez, C. I. (2015). Quantitative understanding of Refractance WindowTM drying. Food and Bioproducts Processing, 95, 237–253. https://doi.org/10.1016/j.fbp.2015.05.010.
Ötles, S., & Çagind, Ö. (2007). Carotenoids as natural colorants. In Food colorants: chemical and functional properties. (pp. 25-49). Boca Raton, USA: CRC Press.
Pasquariello, M. S., Mastrobuoni, F., Di Patre, D., Zampella, L., Capuano, L. R., Scortichini, M., & Petriccione, M. (2015). Agronomic, nutraceutical and molecular variability of feijoa (Acca sellowiana (O. Berg) Burret) germplasm. Scientia Horticulturae, 191, 1–9.
Pavón-Meléndez, G. (2002). Dimensionless analysis of the simultaneous heat and mass transfer in food drying. Journal of food engineering, 51(4), 347–353. https://doi.org/10.1016/s0260-8774(01)00077-2.
Pehrson, A. L & Sanchez, C. (2015). Altered gamma-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Design, Developing and Therapy, 9, 603-624.
Piovesana, A., & Zapata, C. (2019). Study of acidified aqueous extraction of phenolic compounds from Hibiscus sabdariffa L. calyces. The Open Food Science Journal, 11, 25-34. http://dx.doi.org/10.2174/1874256401911010025.
Polyakov, N. E., Leshina, T. V., Konovalova, T. A & Kispert, L. D. (2001). Carotenoids as scavengers of free radicals in a fenton reaction: antioxidants or pro-oxidants? Free Radical Biology & Medicine, 31(3), 398-404.
Polyakov, N. E., Kruppa, A., Leshina, T., Konovalova, T., & Kispert, l. (2001). Carotenoids as antioxidants: spin trapping EPR and optical study. Free Radical Biology and Medicine, 31(1), 43-52, ISSN 0891-5849. https://doi.org/10.1016/S0891-5849(01)00547-0.
Prieto, A., Cañavate, P., & García-González, M. (2011). Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. Journal of Biotechnology, 151(2), 180-185, ISSN 0168-1656. https://doi.org/10.1016/j.jbiotec.2010.11.011.
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. https://doi.org/10.1021/jf0502698. PMID: 15884874.
Puente, L., Vega-Gálvez, A., Ah-Hen, K. S., Rodríguez, A., Pasten, A., Poblete, J., Pardo-Orellana, C., & Muñoz, M. (2020). Refractance window drying of goldenberry (Physalis peruviana L.) pulp: A comparison of quality characteristics with respect to other drying techniques. LWT, 131, 109772, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2020.109772.
Quijano-Ortega, N., Fuenmayor, C. A., Zuluaga-Dominguez, C., Diaz-Moreno, C., Ortiz-Grisales, S., García-Mahecha, M., & Grassi, S. (2020). FTIR-ATR Spectroscopy combined with multivariate regression modeling as a preliminary approach for carotenoids determination in Cucurbita Spp. Applied Sciences, 10(11), 3722. doi:10.3390/app10113722.
Qiu, D., Chen, Z. R., & Li, H. R. (2008). Density functional theory study on thermal isomerization of β-carotene. Journal of Molecular Structure: THEOCHEM, 865(1-3), 44–48. https://doi.org/10.1016/j.theochem.2008.06.015.
Qiu, D., Chen, Z. R., & Li, H. R. (2009). Effect of heating on solid β-carotene. Food Chemistry, 112(2), 344–349. https://doi.org/10.1016/j.foodchem.2008.05.07.
Rabeta, M. S., & Lin, S. P. (2015). Effects of different methods on the antioxidant activities of leaves and berries of Cayratia trifolia. Sains Malaysiana, 44(2), 275-280. http://dx.doi.org/10.17576/jsm-2015-4402-16.
Raghavi, L. M., Moses, J., & Anandharamakrishnan, C. (2018). Refractance Windows drying of foods: A review. Journal of Food Engineering, 222, 267-275.
Rajabi, H., Ghorbani, M., Jafari, S., Mahoonak, A., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327-337, ISSN 0268-005X. https://doi.org/10.1016/j.foodhyd.2015.05.033.
Ramos-Souza, C., Nass, P., Jacob-Lopes, E., Queiroz, L., Cavalcante, A., Braga., & Vera De Rosso, V. (2023). Changing Despicable Me: Potential replacement of azo dye yellow tartrazine for pequi carotenoids employing ionic liquids as high-performance extractors. Food Research International, 174(1), 113593, ISSN 0963-9969. https://doi.org/10.1016/j.foodres.2023.113593.
Ravikumar, S., Uma, G & Gokulakrishnan, R. (2016). Antibacterial property of halobacterial carotenoids against human bacterial pathogens. Journal of Scientific and Industrial Research, 75(4), 253–257.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231-1237, ISSN 0891-5849. https://doi.org/10.1016/S0891-5849(98)00315-3.
Restrepo, M., Acosta, E., Ocampo, J., & Morales, C. (2007). Sustitución de tartrazina por β-caroteno en la elaboración de bebidas no alcohólicas. Revista Lasallista de Investigación, 3, 7-12.
Restrepo, J., & Estupiñan, J. A. (2007). Potencial del Chontaduro como Fuente Alimenticia de Alto Valor Nutricional en Países Tropicales. Revista De Ciencias, 11, 1–8. https://doi.org/10.25100/rc.v11i0.529.
Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. (2020). Encapsulation and delicery of bioactive compounds using apray and freeze drying techniques: A review. Drying Technology, 38, 235-258.
Riadh, M. H., Ahmad, S. A. B., Marhaban, M. H., & Soh, A. C. (2014). Infrared heating in food drying: An Overview. Drying Technology, 33(3), 322–335. https://doi.org/10.1080/07373937.2014.951124.
Rodriguez-Amaya D.B. (2001). A Guide to Carotenoid Analysis in Foods, OMNI Research, ILSI Human Nutrition Institute, United States of America.
Rodriguez-Amaya, D. B., Porcu, O. M., & Azevedo-Meleiro, C. H. (2007). Variation in the carotenoid composition of fruits and vegetables along the food chain. Acta Horticulturae, 744, 387–394.
Rodriguez-Amaya, D., Kimura, M., Godoy, H., & Amaya-Farfan, J. (2008). Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. Journal of Food Composition and Analysis, 21(6), 445-463, ISSN 0889-1575. https://doi.org/10.1016/j.jfca.2008.04.001.
Rodríguez-Sáiz, M., Sánchez-Porro, C., De La Fuente, J. L., Mellado, E., & Barredo, J. L. (2007). Engineering the halophilic bacterium Halomonas elongata to produce β-carotene. Applied Microbiology and Biotechnology, 77, 637–643. https://doi.org/10.1007/s00253-007-1195-2.
Rodrigues, E., Mariutti,L. R., Chisté, R. C., & Mercadante, A. Z. (2012). Development of a novel micro-assay for evaluation of peroxyl radical scavenger capacity: application to carotenoids and structure-activity relationship. Food Chemistry, 135(3), 2103-2111. https://doi.org/10.1016/j.foodchem.2012.06.074, PMID: 22953962.
Rodriguez-Amaya, D.B. (2018). Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International. https://doi.org/10.1016/j.foodres.2018.05.028.
Rojas-Garbazo, C., Pérez, A., Vaillant, F., & Pineda-Castro, M. (2016). Physicochemical and antioxidant composition of fresh peach palm (Bactris gasipaes) fruits in Costa Rica. Brazilian Journal of Food Technology, 19, ISSN 1981-6723 on-line versión.
Romero, M., Rojano, B., Mella, J., Pessoa, C. D., Lissi, E., & López, C. (2010). Antioxidant capacity of pure compounds and complex mixtures evaluated by the ORAC - Pyrogallol red assay in the presence of Triton X-100 micelles. Molecules, 15(9), 6152-6167.
Rostami, H., Dehnad, D., Jafari, S., & Tavakoli, H. (2017). Evaluation of physical, rheological, microbial and organoleptic properties of meat powder produced by refractance-window drying. Drying Technology, 36(9), 1076-1085.
Sabarez, H. (2019). Refractance WindowTM Drying: a mechanistic understanding of the drying process using modelling approach. In: Reference module in food science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21439-X.
Sabliov, C. M., Fronczek, C., Astete, C. E., Khachaturyan, M., Khachatryan, L., & Leonardi, C. (2009). Effects of temperature and UV light on degradation of α-Tocopherol in free and dissolved form. Journal of the American Oil Chemists’ Society, 86(9), 895–902. https://doi.org/10.1007/s11746-009-1411-6.
Santamaria, H., Durango, N., Bula, A., & SanJuan, M. (2011). Non dimensional analysis of cassava transient drying in packing beds. Latin American Applied Research-An International Journal, res. [online], 41(1), 87-93, ISSN 0327-0793.
Saxena, M., Saxena, J., & Pradhan, A. (2012). Flavonoids and phenolic acids as antioxidants in plants and human health. International Journal of Pharmaceutical Sciences Review and Research, 16(2), 130-134.
Seybold, C., Fröhlich, K., Bitsch, R., Otto, K & Böhm, V. (2004). Changes in contents of carotenoids and vitamin E during tomato processing. Journal of Agricultural and Food Chemistry, 52, 7005–7010.
Sham, P. W. Y., Scaman, C. H., & Durance, T. D. (2001). Texture of vacuum-microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level, and apple variety. Journal of Food Science, 66 (9), 1341–1347.
Sharma, M., & Bhat, R. (2021). Extraction of carotenoids from pumpkin peel and pulp: comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods, 10(4), 787. doi:10.3390/foods10040787.
Shi, J., Le-Maguer, M., Bryan, M & Kakuda, Y. (2003). Kinetics of lycopene degradation in tomato puree by heat and light irradiation. Journal of Food Process Engineering, 25, 485–498.
Shilton, N. (2003). Drying:Chemical changes. B. Caballero, L. Trugo, P. Finglas (Eds.), In Encyclopaedia of Food and Health (Second), Elsevier Science Ltd, Amsterdam, Netherlands, 1947-1950.
Shofian, N. M., Hamid, A. A., Osman, A., Saari, N., Anwar, F., Dek, M. S., & Hairuddin M. R. (2011). Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. International Journal of Molecular Sciences, 12(7), 4678-92. https://doi.org/10.3390/ijms12074678, PMID: 21845104; PMCID: PMC3155377.
Schieber, A & Carle, R. (2005). Ocurrence of carotenoids cis isomers in food: Technological, analytical, nutritional implications. Trends in Food Science & Technology, 16(9), 416-422.
Singleton, V., Rossi Jr., J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
Silva, C., Cabral, J. & van Keulen, F. (2004). Isolation of a β-Carotene Over-Producing Soil Bacterium, Sphingomonas sp. Biotechnology Letters, 26, 257–262. https://doi.org/10.1023/B:BILE.0000013716.20116.dc.
Scialò, F., Fernández-Ayala, D. J., & Sanz, A. (2017). Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00428.
Sogi, D.S., Siddiq, M., Greiby, I., & Dolan, K.D. (2013). Total phenolics, antioxidant activity, and functional properties of 'Tommy Atkins' mango peel and kernel as affected by drying methods. Food Chemistry, 141(3), 2649-2655. https://doi.org/ 10.1016/j.foodchem.2013.05.053.
Stratton, S., Schaefer, W., & Liebler, D. (1993). Isolation and identification of singlet oxygen oxidation of betacarotene. Chemical Research in Toxicology, 6(4), 542-547. Strumillo, C. (2009). A Review of: “Advanced Drying Technologies, 2nd ed., by T. Kudra and A.S. Mujumdar.”: CRC Press: Boca Raton, FL. Drying Technology, 27(10), 1164–1165. https://doi.org/10.1080/07373930903221846.
Suvarnakuta, P., Devahastin, S., & Mujumdar, A. S. (2005). Drying kinetics and β-carotene degradation in carrot undergoing different drying processes. Journal of Food Science, 70(8), s520–s526. https://doi.org/10.1111/j.1365-2621.2005.tb11528.x.
Surco-Laos, F., Tipiana, R., Torres, Y., Valle, M., & Panay, J. (2017). Efectos de liofilización sobre la composición química y capacidad antioxidante en pulpa de cuatro variedades de Mangífera indica. Revista de la Sociedad Química del Perú, 83(4), ISSN 1810-634X.
Tao, Y., Zhang, J., Jiang, S., Xu, Y., Show, P.-L., Han, Y., Ye, X., & Ye, M. (2018). Contacting ultrasound enhanced hot-air convective drying of garlic slices: Mass transfer modeling and quality evaluation. Journal of Food Engineering, 235, 79–88. https://doi.org/10.1016/j.jfoodeng.2018.04.028.
Tracy, M. (1996). Harina de pejibaye, una opción prometedora. Boletín Informativo RETADAR, San José, v. 23, p. 3.
Tontul, I., & Topuz, A. (2017). Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT-Food Science and Technology, 80, 294-303.
Tontul, I., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169-176, ISSN 0958-6946, https://doi.org/10.1016/j.idairyj.2018.06.002.
Topuz, A., Dincer, C., Ozdemir, K. S., Feng, H., & Kushad, M. (2011). Influence of different drying methods on carotenoids and capsaicinoids of paprika (Cv., Jalapeno). Food Chemistry,129(3):860-5. doi: 10.1016/j.foodchem.2011.05.035.
Topuz, A., Feng, H., & Kushad, M. (2009). The effect of drying method and storage on color 884 characteristics of paprika. LWT - Food Science and Technology, 42, 1667–1673.
Torrissen, O. J. (1989). Pigmentation of salmonids: Interactions of astaxanthin and canthaxanthin on pigment deposition in rainbow trout. Aquaculture, 79(1-4), 363–374. https://doi.org/10.1016/0044-8486(89)90478-x.
Tuncel, N. B., & Yılmaz, N. (2015). Optimizing the extraction of phenolics and antioxidants from feijoa (Feijoa sellowiana, Myrtaceae). Journal of Food Science and Technology, 52, 141–150. https://doi.org/10.1007/s13197-013-0968-0.
Valduga, E., Tatsch, P. O., Tiggermann, L., Treichel, H., Toniazzo, G., Zeni, J., DiLuccio, M., & Furigo, A. J. (2009a). Produção de carotenoides: microrganismos como fonte de pigmentos naturais. Química Nova, 32, 2429-2436.
Valduga, E., Tatsch, P. O., Tiggermann, L., Zeni, J., Colet, R., Cansian, J. M., Treichel, H., & DiLuccio, M.(2009b). Evaluation of conditions of carotenoids production in a synthetic médium by Sporidiobolus salmonicolor (CBS 2636) in a biorreactor. International Journal of Food Science and Technology, 44, 2445-2451.
Van‘t Land, M., & Raes, K. (2019). Refractance window drying of fish silage–an initial investigation into the effects of physicochemical properties on drying efficiency and nutritional quality. LWT-Food Science and Technology, 102, 71-74. https://doi.org/10.1016/j.lwt.2018.12.001
Van Poppel. (1993). Carotenoids and cancer: An update with emphasis on human intervention studies. European Journal of Cancer, 29(9), 1335-1344.
Vega, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez, J., García, P., Lemus, R. & Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132 (1), 51-59.
Verwaal, R., Wang, J., Meijnen, J. P., Visser, H., Sandmann, G., Van der Berg, J. A., & Van Ooyen, A. J. (2007). High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Applied and Environmental Microbiology, 73(13), 4342-4350. https://doi.org/10.1128/AEM.02759-06. Epub 2007 May 11. PMID: 17496128; PMCID: PMC1932764.
Villa-Corrales, L., Flores-Prieto, J. J., Xamán-Villaseñor, J. P., & García-Hernández, E. (2010). Numerical and experimental analysis of heat and moisture transfer during drying of Ataulfo mango. Journal of Food Engineering, 98(2), 198–206. https://doi.org/10.1016/j.jfoodeng.2009.12.026.
Wang, S., Sun, J., Han, B., & Xu, X. (2010). Optimization of betacarotene production by Rhodotorula glutinis using high hydrostatic pressure and response Surface methodology. Journal of Food Science, 72, 325-329.
Wang, Y., Chen, H., Liu, Y. X., Ren, R., & Lv, Y. K. (2016). An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater. Bioresource Technology, 211, 711-719, ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2016.03.149.
Wang, W., Jung, J., McGorrin, R., Traber, M., Leonard, S., Cherian, G., & Zhao Y. (2018). Investigation of drying conditions on bioactive compounds, lipid oxidation, and enzyme activity of Oregon hazelnuts (Corylus avellana L). LWT, 44, 281-296.
Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., & Oszmiański, J. (2014). Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology, 7, 829–841. https://doi.org/10.1007/s11947-013-1130-8.
Xu, Y., Xiao, Y., Lagnika, C., Song, J., Li, D., Liu, C., Jiang, N., Zhang, M., & Duan, X. (2019). A comparative study of drying methods on physical characteristics, nutritional properties and antioxidant capacity of broccoli. Drying Technology, 1–11. doi:10.1080/07373937.2019.1656642.
Yamaguchi, L., Martinez, G., Catalani, L., Medeiros, M., & Di Mascio P. (1999). Lycopene entrapped in human albumin protects 2'-deoxyguanosine against singlet oxygen damage. Archivos Latinoamericanos de Nutrición, 43(3 Suppl 1), 12S-20S, PMID: 10971838.
Yongsawatdigul, J., & Gunasekaran, S. (1996). Microwave vacuum drying of cranberries: Part I. Energy use and efficiency. Journal of Food Processing and Preservation, 20(2), 121-143. https://doi.org/10.1111/j.1745-4549.1996.tb00850.x.
Yokoyama, M., Origasa, H., Matsuzaki, M., Matsuzawa, Y., Saito, Y., Ishikawa, Y., Oikawa, S., Sasaki, J., Hishida, H., Itakura, H., Kita, Y., Kitabatake, A., Nakaya, N., Sakata, T., Shimada K. & Shirato K. (2007). Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet, 369, 1090-98.
Yuyama, L., Aguiar, J., Yuyama, K., Clement, C., Macedo, S., Favaro, D., Alfonso, M., Casconsellos, M., Pimentel, S., Badolato, E., & Vannucchi, H. (2003). Chemical composition of the fruit mesocarp of three peach palm (Bactris gasipaes) populations grown in Central Amazonia, Brazil. International Journal of Food Sciences and Nutrition, 54(1), 49-56.
Zhang, H., Patel, J., Bhunia, K., Al-Ghamdi, S., Sonar, C., Ross, C., Tang, J., & Sablani, S. (2019). Color, vitamin C, β-carotene and sensory quality retention in microwave-assisted thermally sterilized sweet potato puree: Effects of polymeric package gas barrier during storage. Food Packaging and Shelf Life, 21, 100324, ISSN 2214-2894. https://doi.org/10.1016/j.fpsl.2019.100324.
Zhao, Y., Wang, M., & Huang, G. (2021). Structure-activity relationship and interaction mechanism of nine structurally similar flavonoids and α-amylase. Journal of Functional Foods, 86, 104739. https://doi.org/10.1016/j.jff.2021.104739.
Zepka, L. Q., Borsarelli, C. D., Da Silva, M. A., & Mercadante, A. Z. (2009). Thermal degradation kinetics of carotenoids in a cashew apple juice model and its impact on the system color. Journal of Agricultural and Food Chemistry, 57(17), 7841-7845. https://doi.org/10.1021/jf900558a. PMID: 19663479.
Zielinska, M., & Michalska, A. (2016). Microwave-Assisted drying of blueberry (Vaccinium corymbosum L) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212, 671-680.
Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225–2253. https://doi.org/10.1080/07373939608917205.
Zotarelli, M., Carciofi, B., & Laurindo, J. (2015). Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International, 69, 410-417.
Zotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454. https://doi.org/10.1016/j.powtec.2016.10.027.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 190 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Nivel Nacional
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86736/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86736/4/60266482.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86736/5/60266482.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
5f980ff98eebf8d406736a4b7da7aeae
394776143d619fd56cb796ed9971369e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089389761888256
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chejne Janna, Farid401f8232cbbed073cf4612ce7bc3b54bRojano, Benjamín Alberto9ff6800a33d6a53c3e514a9324ad17c7Borda Yepes, Víctor Hugoe0951d5a4efb067ea861faa754335008Peñaloza Figueroa, Jeanine Kathleena91c121f84ac207750effc941bd734dbTermodinámica Aplicada y Energías AlternativasPeñaloza Figueroa, Jeanine Kathleen [0000-0003-2934-749X]Peñaloza Figueroa, Jeanine KathleenPeñaloza Figueroa, Jeanine Kathleen2024-08-20T12:42:52Z2024-08-20T12:42:52Z2024-08-08https://repositorio.unal.edu.co/handle/unal/86736Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías, gráficosEl chontaduro es una fruta con alto valor nutritivo que contiene bioactivos antioxidantes; sin embargo, se han desaprovechado sus bondades. Dentro de las moléculas de interés, sobresalen los carotenoides, compuestos a los que se les atribuyen propiedades relacionadas con la mejora de la salud cardiovascular y como agentes exógenos para la cura de algunos tipos de cáncer. No obstante, para extender la vida útil del producto, garantizar su funcionalidad y darle viabilidad comercial se deshidrató por ventanas refractantes, tecnología emergente de bajo consumo energético y de alta eficiencia térmica que permitió conservar el 88.5% del βcaroteno y la actividad antioxidante medida en términos de capacidad de absorción de radicales de oxígeno (ORAC), radical 2,2 Difenil-1-picrilhidrazilo (DPPH), radical ácido 2,2'- azino-bis-3-etilbenzotiazolina-6-sulfónico (ABTS) y capacidad de reducción de hierro (FRAP). Se identificaron los factores experimentales más incidentes dentro del proceso de deshidratación y se definieron las mejores condiciones con las cuales se garantiza la mayor estabilidad química de la molécula carotenoide de interés. Al mismo tiempo, se realizaron pruebas en equipos con capacidad industrial y de configuración dinámica, hallando reproducibilidad con los resultados obtenidos en ensayos de laboratorio. Finalmente, se desarrolló un modelo matemático que permitió conocer el comportamiento de la pérdida de agua durante el secado de chontaduro en ventanas refractantes convirtiéndose en una herramienta para el escalamiento del proceso en equipos industriales. (Tomado de la fuente)Bactris gasipaes is a fruit with high nutritional value that contains antioxidant bioactives; however, its benefits have not been exploited. Among the molecules of interest are carotenoids, compounds to which properties related to the improvement of cardiovascular health and as exogenous agents for the cure of some types of cancer have been attributed. However, to extend the shelf life of the product, guarantee its functionality and give it commercial viability, it was dehydrated by refractance windows, an emerging technology of low energy consumption and high thermal efficiency that allowed the preservation of 88.5% of β-carotene and antioxidant activity measured in terms of oxygen radical absorbance capacity (ORAC), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), 2,2'-azino-bis-3- ethylbenzothiazoline-6-sulfonic acid radical (ABTS) and iron reduction capacity (FRAP). The most relevant experimental factors in the dehydration process were identified and the best conditions were defined to guarantee the highest chemical stability of the carotenoid molecule of interest. At the same time, tests were carried out in equipment with industrial capacity and dynamic configuration, finding reproducibility with the results obtained in laboratory tests. Finally, a mathematical model was developed to determine the behavior of water loss during the drying of Bactris gasipaes by refractance windows, becoming a tool for scaling up the process in industrial equipment.DoctoradoDoctor en IngenieríaPreparación del chontaduro. El material usado fue originario del Tambo, Cauca. La fruta fue seleccionada de acuerdo con su concentración de sólidos solubles (°Brix) y el índice de maduración. El contenido de sólidos solubles osciló entre 7 a 12 °Brix y un índice de maduración entre 53 a 92%. La fruta se lavó, se desinfectó y se redujo de tamaño: para el secado por atomización se elaboró una emulsión con 25% de sólidos, para el secado por ventanas refractantes fue necesario elaborar un puré con tamaño de partícula de 0,12 a 0,2 mm en una despulpadora D1000 marca Citalsa, para el secado por bandejas, al vacío y microondas se fraccionó la fruta hasta tamaños de 2 a 4 mm empleando un procesador de vegetales CA 301 marca Sammic. Experimentos de secado. Los tratamientos se prepararon como se muestra a continuación: Para el secado por bandejas, se usó una estufa a convección natural serie BD marca Binder. Se dispusieron rodajas de fruta de 2 mm de espesor a 70°C por 13 h hasta que se alcanzaron actividades acuosas entre 0,30 y 0,40. En el secado por microondas se empleó un equipo hibrido infrarrojo/microondas marca Haceb series Assento® de 1000 W, en donde el material troceado se dispuso en el portamuestras a 70°C por 3 h. El secado al vacío se llevó a cabo en una estufa desecadora VO 200 marca Memmert en donde el material troceado se acomodó en bandejas a 70°C y presión de 0,4053 bar durante 7 h hasta lograr actividades acuosas entre 0,30 a 0,40. Para el secado por atomización se empleó un equipo piloto marca Vibrasec con capacidad de evaporación de 1,5 kg de agua/h, la pulpa de chontaduro se dispuso en el tanque de alimentación con una agitación de 800 rpm y las temperaturas de entrada y salida fueron 170°C y 80°C, respectivamente. En el secado por ventanas refractantes se empleó un equipo marca Centricol, se dispuso el puré de fruta (2 mm espesor) sobre la lámina Mylar® (membrana de poliéster transparente para radiación infrarroja), el agua se recirculó a una velocidad de 2,74 L/min y la temperatura de trabajo fue de 70°C por 60 a 80 min hasta alcanzar actividades acuosas entre 0,30 a 0,45. Microscopía de barrido electrónico (SEM). Se empleó un microscopio SEM marca JEOL 5910LV con magnificación de 300000X, resolución de 3 nm en alto vacío y energía dispersiva de rayos X (EDX) que detecta elementos con un peso atómico mayor al del berilio. Las muestras se depositaron en una cinta conductora de cobre dispuesta sobre un porta-muestras, luego se recubrió con oro en un evaporador al vacío Dentom Vacuum, 30 mA, 5 kV, 100 militorr. Las micrografías se visualizaron a 15kV por medio del software integrado al equipo. Determinación de la actividad acuosa. Se determinó a condiciones ambientales (26°C), empleando el equipo Aqualab 3TE marca Decagon. Esta técnica se basó en el punto de rocío a través del equilibrio de la muestra (fresca y deshidratada bajo las diferentes tecnologías) con el espacio de cabeza de una cámara sellada que contiene un espejo y un medio para detectar la condensación en el mismo. Las muestras se dispusieron en el porta muestras a ¾ de su capacidad máxima, trabajando en modo continuo. La detección del punto exacto en el que apareció primero la condensación se observó con una célula fotoeléctrica. El tiempo de lectura por muestra fue de 8 a 15 min y se efectuaron tres repeticiones para cada una de las mediciones. Contenido de humedad. Se empleó una balanza marca Precisa modelo XM 66 con sensibilidad de 0,001 g, rango de temperatura de 30 a 230°C, ajuste de tiempo de operación y fuente de calentamiento halógena. La temperatura programada no presentó variabilidad por ser de alta precisión. La temperatura que se usó para este análisis fue de 105ºC hasta peso constante de la muestra. La determinación se hizo tanto al chontaduro fresco como deshidratado bajo cada una de las tecnologías de secado. Contenido de carotenoides. La cuantificación de los carotenos totales se llevó a cabo según lo descrito por Biswas et al. 2011. Se tomó una muestra de 100 mg en un tubo de ensayo, al que se le agregaron 4 mL de acetona fría y, después de agitar vigorosamente durante 120 s, se dejó reposar 15 min a 4 °C. Luego, se centrifugó a 4000 rpm durante 10 min y el sobrenadante se transfirió a otro tubo de ensayo. El procedimiento anterior se repitió hasta agotar la muestra. Finalmente, ambos extractos de acetona se combinaron y filtraron. Se determinó la absorbancia de la solución a 449 nm, utilizando acetona como blanco, en un espectrofotómetro UV/Vis Multiskan Spectrum (Thermo Scientific, Waltham, Massachusetts, EE. UU.). Los resultados se expresaron en miligramos de β-caroteno por 100 g de muestra, usando una curva de calibración con estándar de β-caroteno (Sigma-Aldrich, >98%). Contenido de fenoles totales. La determinación de fenoles se realizó por el método colorimétrico de Folin-Ciocalteu descrito por Singleton y Rossi, 1965 con algunas modificaciones. A 50 μL de la muestra se adicionó 125 μL del reactivo de Folin, y 400 μL de carbonato de sodio 7,1% (p/v), ajustando con agua destilada hasta 1000 μL. Se realizó la lectura de absorbancia a 760 nm usando en espectrofotómetro marca Perkin Elmer y se comparó con la curva patrón usando como estándar ácido gálico. Los resultados fueron expresados como mg de ácido gálico equivalentes por 100 g producto seco (mg GAE/100 g producto seco). Capacidad antioxidante. Previo a las mediciones de capacidad antioxidante se prepararon las muestras de chontaduro fresco y deshidratado de la siguiente manera: 8 g de pulpa y/o polvo se mezclaron con 50 mL de agua y 50 mL de diclorometano, se llevaron a agitación constante durante 15 min. Finalizado este tiempo la mezcla fue transferida a un embudo de separación por espacio de 30 min, luego la fase acuosa y la orgánica fueron separadas. La fase en diclorometano fue rotoevaporada hasta sequedad, una porción fue redisuelta en octano y analizada por DPPH y ORAC lipofílico. La fase acuosa fue empleada para la determinación de contenido de fenoles totales y ABTS. ORAC. Se usó el método descrito por Prior et al. (2005) y Romero et al. (2010). Se adicionó 30 µL de muestra a 21 µL de fluoresceína 1x10-2 M en PBS (75 mM), 2899 µL de PBS (75 mM) y 50 µL de AAPH 0,6 M en PBS (75 mM). La temperatura se controló a 37 °C y el pH se mantuvo en 7,4. Las lecturas se hicieron a una excitación de 493 nm y un slit de excitación de 10 nm. Se comparó con la curva del patrón primario Trolox®. Los resultados se expresaron como TEAC (µmol de Trolox equivalente/L de muestra). DPPH• (1,1-difenil-2-picrilhidrazilo). A 990 μL de una solución metanólica de DPPH se adicionaron 10 μL de muestra y se evaluó la capacidad para atrapar el radical DPPH por medio de la disminución en la absorbancia a 517 nm luego de 30 minutos de reacción, y se comparó este valor con la curva de referencia construida con Trolox como patrón primario. Los resultados fueron expresados como valores TEAC (μmol Trolox/100g de producto seco) (Bondet et al., 1997). La absorbancia fue medida en un espectrofotómetro UV/Vis Perkin Elmer Lambda 35. ABTS•+. Para esta metodología, se evaluó la capacidad de la muestra para atrapar el radical catión ABTS•+, y para realizar el ensayo se probó la disminución de la absorbancia a 732 nm, leída después de 30 min de reacción. El ABTS•+ se generó durante la oxidación de ABTS inducida por persulfato de amonio en un tampón fosfato a pH 7,4 (Re et al., 1999). Se agregaron 10 μL de muestra a 990 μL de una solución ABTS•+ y la actividad antioxidante se determinó por comparación con Trolox (empleado como compuesto estándar). Los resultados se informaron como μmol de equivalentes de Trolox por 100 g de muestra (μmol TE/100 g). Color. Se llevó a cabo en un espectro fotocolorímetro Datacolor 650, con un ángulo de observador de 10°, un iluminante D65 adaptado al software de análisis de color Datacolor tools 2.0 y un diafragma de 22 mm para la determinación del grado de transmisión. El colorímetro se calibró contra una placa estándar en blanco y negro para determinar con precisión los parámetros de color. Para cada una de las muestras de chontaduro, se realizaron al menos tres mediciones en diferentes posiciones de muestra y se estimó el valor promedio. El chontaduro requirió mediciones por reflectancia y para ello se prepararon diluciones desde 0,01% hasta 1% (material fresco como deshidratado). Obtenidas estas diluciones se llevaron al equipo y las mediciones fueron representadas por las coordenadas colorimétricas L* (Luminosidad), a* (+/- rojo/verde), b* (+/- amarillo/azul), C* (Saturación), h° (tono) de la muestra. Análisis proximal del chontaduro. La composición del chontaduro se determinó de acuerdo con los métodos oficiales descritos por la AOAC: cenizas totales (método 942.05), humedad (método 930.15), proteína cruda (método 990.03), fibra cruda (método 978.10), fibra total, soluble e insoluble (método 991.43 y 993.21), grasa (método soxhlet), almidón (método 996.11), °Brix (método 932.12), acidez (método 942.15). Análisis estadístico. El análisis de varianza (ANOVA) y la prueba de rango múltiple de Duncan con un nivel de confianza del 95% (p < 0,05) se realizaron para evaluar la diferencia significativa entre muestras, empleando el software Statgraphics Centurion XVI versión 16.1.03. Materia prima. Se empleó chontaduro de tres zonas de Colombia: Cauca (Tambo), Putumayo (Villa Garzón) y Chocó (Quibdó). La fruta fue seleccionada de acuerdo con la concentración de sólidos solubles (° brix) y el índice de maduración. El contenido de sólidos solubles osciló entre 7 a 12 ° brix y el índice de maduración entre 53 a 92%. El índice de maduración se determinó con la relación entre el contenido de sólidos solubles (°Brix) y el porcentaje de acidez. Preparación de extractos de chontaduro para mediciones de cromatografía y análisis de capacidad antioxidante. Para cada una de las zonas de cultivo fueron seleccionados dos frutos de chontaduro fresco en igual estado de maduración, los cuales fueron troceados en cubos de 5 mm de lado. Se pesaron 4 g, se mezclaron con 30 mL de acetona y fueron homogenizados en Ultraturrax (IKA-Werk) a una velocidad de 15000 rpm durante 15 segundos. La mezcla fue filtrada por gravedad sobre papel cualitativo de celulosa y llevada a concentración al vacío usando un rotaevaporador Heidolph a 45 °C. Cuando el volumen de la mezcla se redujo a la mitad se adicionaron 20 mL de etanol y se procedió con la evaporación de solventes hasta tener un extracto concentrado que continuara siendo líquido y finalmente se ajustó a 100 mL en balón volumétrico. Análisis proximal. La composición del chontaduro se determinó con los métodos oficiales descritos por la AOAC: cenizas totales (método 942.05), humedad (método 930.15), proteína cruda (método 990.03), fibra cruda (método 978.10), fibra total, soluble e insoluble (método 991.43 y 993.21), grasa (método soxhlet), almidón (método 996.11), ° brix (método 932.12), acidez (método 942.15). Análisis de azúcares por HPLC. La determinación del contenido de azúcares se realizó por cromatografía líquida con detector de índice de refracción. El equipo utilizado fue un Shimadzu Prominence LC20AT con detector RID-10A. Las condiciones cromatográficas fueron las siguientes: la fase móvil estuvo compuesta por ácido sulfúrico 5 mM preparado en agua tipo I, a un flujo de 0.6 mL/min, condiciones isocráticas y una duración de corrida de 25 minutos. La fase estacionaria fue una columna Biorad HPX87H de la marca Aminex, la cual se mantuvo a una temperatura de 45 °C, el volumen de inyección fue de 20 µL y los metabolitos analizados fueron glucosa, fructosa y sacarosa. La cuantificación se realizó mediante preparación de curvas de calibración con cada uno de los estándares de alta pureza. Los resultados se expresaron en % de los analitos en la muestra (g/100 g). Composición de ácidos grasos. Se determinó en un cromatógrafo de gases Agilent 6890N acoplado a un detector selectivo MS 5973N, se empleó helio como gas de arrastre, se programó una temperatura inicial de 70°C sostenida por 2 min y posteriormente se incrementó la temperatura a razón de 8°C/min hasta los 300°C, manteniéndose por 29.25 min. Las muestras se derivatizaron acorde a la norma NTC 4967 - método de hidróxido trimetil sulfonium HTMS para facilitar su detección como ésteres metílicos (FAME) y se inyectaron automáticamente en el modo splitless. Se usó una columna HP-5-MS (5% de fenilmetilsiloxano) de 30 m, 0,25 mm, 0,25 μm de espesor de película y una temperatura máxima de 325 ºC. El software utilizado para calcular todos los parámetros fue MSD ChemStation D02.00.275 Copyright© Agilent Technologies 1989-2005 y para la determinación de ácidos grasos saturados e insaturados como metilésteres, se utilizó la base de datos NIST 2005. Reología de la pulpa de chontaduro. Se empleó un reómetro Kinexus Lab+ marca Malvern con rango de torque 5.0nNm a 200mNm. Se efectuó un barrido de amplitud y un barrido de frecuencias con el fin de identificar el comportamiento líquido y sólido a través de la determinación de los módulos elástico (G´) y viscoso (G´´). Para el barrido de amplitud se mantuvo la frecuencia constante y se varió el torque con el fin de encontrar el rango de viscoelasticidad lineal y en el barrido de frecuencias se inició desde frecuencias altas a bajas buscando con ello identificar el rango donde predomina el comportamiento sólido del sistema (G´>G´´) Evolución del contenido de β-caroteno tras incidencia de diferentes longitudes de onda. Se realizó en una cámara de luces TRU VUE-4 marca Datacolor con el fin de someter el chontaduro del Cauca a tres intensidades de luz (iluminantes): a. Luz día (6500 K). b. Luz ultravioleta A (315-400nm), c. infrarrojo. A la par, se realizaron mediciones en oscuridad con el fin de observar la influencia de la luz sobre la degradación del β-caroteno. Las muestras iniciales fueron tomadas a los 0 min, 15 min, 35 min y 60 min. Posteriormente, la frecuencia de seguimiento fue cada 60 min hasta los 600 min. La determinación del β-caroteno se hizo por espectrofotometría. Calorimetría diferencial de barrido (DSC). Se realizó en un equipo DSC 131 EVO – SETARAM. El proceso se efectuó con una temperatura inicial de 25°C y se llevó hasta 55°C con una velocidad de 5°C/min, luego de hizo otra rampa de temperatura desde 55 °C hasta 75°C a una velocidad de 1,5°C/min, por último, se trabajó desde 75°C hasta 200°C a una velocidad de 5°C/min. Detección de luteína, licopeno y betacaroteno por UHPLC-TQD. Las condiciones de separación cromatográfica de los compuestos se realizaron en una columna Acquity BEH C18 (ø: 2,1 mm por 100 mm por 1,7 mm) (Waters, Milford, MA, EE. UU.) a una temperatura de 40 °C, para el análisis de β-caroteno y licopeno las fases móviles fueron B: Acetonitrilo y C: Metanol al 0,1% de ácido fórmico, programada con un gradiente de elución: 0-5 min, 100 (B), 5-8,5 min, 100 (C) y 8,5-12 min, 100 (B) a un flujo de 0,4 mL. La muestra estuvo a 15 °C y el volumen de inyección fue de 2 μL. Para el análisis de luteína las fases móviles fueron A: Agua MílliQ al 0,1% de ácido fórmico y B: Acetonitrilo, programada con un gradiente de elución: 0-5 min, 90:10 (A: B), 5-8,5 min, 100 (B) y 8,5-12, 90:10 (A: B), a un flujo de 0,4 mL. Las condiciones de detección MS/MS se llevaron a cabo en un Espectrómetro de Masas equipado con analizador Triple Cuadrúpolo (MS/TQD) (Waters, Milford, MA, EE. UU.), utilizando una ionización por Electrospray (ESI) fuente Z-sprayTM. Para la identificación de los estándares y las muestras, la detección se realizó en modo positivo. Las transiciones se evaluaron bajo la modalidad monitoreo de múltiple reacción (multiple reaction monitoring). Determinación del tamaño de partícula. Se empleó un analizador de tamaño de partícula mastersizer 2000 marca Malvern con intervalos de medida entre 0,2 µm a 2000 µm, adaptado a la unidad Hydro. Para el análisis de las muestras (en húmedo), se seleccionó el valor óptimo de obscuración, de modo que, se garantizara la orientación óptima de los rayos difractores acordes a las características de concentración y tamaño de partícula del sistema. El tiempo de medición fue de 15 s a 30 s, el bombeo de 2000 rpm y el ultrasonido empleado de 2 µm por 30 s. Para el análisis de muestras (secas), se empleó el equipo mastersizer 2000 con la unidad Sirocco, se seleccionó un límite de obscuración entre 10 – 20, el tiempo de medición fue de 12 s y el tiempo del background fue de 12 s. La velocidad de la vibración de alimentación fue del 50% y la presión del aire 2 Bar. Los resultados obtenidos permitieron verificar el tipo de dispersión monomodal, bimodal o monodispersa, dieron información sobre el porcentaje en volumen para cada tamaño de partícula, la relación de las partículas más grandes del sistema con el valor de D[4,3], la relación de las partículas más pequeñas del sistema con el valor de D[3,2], la relación de los diámetros por debajo del cual se encuentran el 10%, 50%, 90% de las partículas con el d(0.1), d(0.5), d(0.9) e informaciones sobre áreas superficiales Aesp. Proceso de secado en ventanas refractantes. Se usaron 5 temperaturas de secado: 70, 75, 80, 85 y 90°C y cinco espesores de producto: 1, 1.5, 2, 2.5 y 3 mm. Previo a las corridas del diseño experimental, se adecuaron las condiciones del equipo: control de temperatura del medio calefactor, mínima presencia de burbujas en la interfaz agua-lámina Mylar, cambio de la lámina Mylar (nueva), uso de cámara termográfica y fabricación de accesorios requeridos para la disposición de la muestra en el equipo. De igual manera, se concibió la cantidad de pulpa que debía removerse para hacer cada una de las mediciones de interés sin alterar la aleatorización del diseño experimental. Diseño experimental (DOE) para secado en ventanas refractantes. Se planteó un diseño central compuesto ortogonal y rotable (DCC) 22+estrella para la optimización del proceso de secado. Los factores experimentales fueron: temperatura, espesor, tiempo y las variables respuesta fueron: contenido de carotenoides, ORAC, fenoles totales, FRAP y color. Los resultados se analizaron estadísticamente por medio de ANOVA en el software Statgraphics Centurion XVI versión 16.1.03 Medición de humedad. Se utilizó una balanza marca Precisa modelo XM 66. La temperatura para este análisis fue de 105°C hasta peso constante de la muestra. La determinación se realizó tanto en el chontaduro fresco como deshidratado. Medición de la temperatura del producto. Se usó una cámara termográfica Fluke Ti300+ (Emisividad: 0,96 y rango de calibración: -20°C a 100°C), las mediciones se ejecutaron con una frecuencia de un minuto para cada una de las temperaturas contempladas. Se elaboraron las gráficas de perfil de temperatura en el producto a los diferentes espesores. Cinética de pérdida de agua. Para esto se emplearon los mismos niveles de los factores experimentales contemplados en el diseño experimental: 5 temperaturas (70, 75, 80, 85 y 90°C) y 5 espesores (1, 1.5, 2, 2.5 y 3 mm). La humedad fue medida cada 5 minutos, para cada una de las relaciones temperatura/espesor y el modo de trabajo en el equipo de ventanas refractantes fue estático (sin movimiento de la lámina Mylar). ORAC. Se empleó el mismo método descrito en el capítulo 3. Se adicionó 30 µL de muestra a 21 µL de fluoresceína en PBS (75 mM), 2899 µL de PBS (75 mM) y 50 µL de AAPH 0,6 M en PBS (75 mM). La temperatura se controló a 37 °C y el pH se mantuvo en 7,4. Las lecturas se hicieron a una excitación de 493 nm y un slit de excitación de 10 nm. Se comparó con la curva del patrón primario Trolox®. Los resultados se expresaron como TEAC, µmol de Trolox equivalente/L. La fluorescencia se midió en un espectrofotómetro de fluorescencia PerkinElmer® LS55. Medición de los polifenoles totales. La cuantificación de los fenoles totales está basada en el método de Folin-Ciocalteu (FC), donde el reactivo FC está compuesto por un conjunto de complejos ácidos de fosfotungsteno y fosfomolibdato. El método se basa en la capacidad de los polifenoles de reducir el Molibdeno (VI) a Molibdeno (V) en medio básico. La reacción ocurre a través de un mecanismo de transferencia de electrones y es caracterizada por el cambio de color del reactivo de amarillo a azul. Las lecturas se llevaron a cabo en espectrofotómetro UV Vis Lambda 35 marca Perkin Elmer a una longitud de onda de 760 nm. Para las muestras sólidas se pesó en una probeta graduada de plástico una cantidad de muestra representativa (2 – 10 g) y se adicionó entre 20 – 40 mL de solvente. Luego, se realizó un proceso de homogenización en ultraturrax durante 30 segundos y se separó por centrifugación. Finalmente se recolectó el líquido sobrenadante para realizar el ensayo. Cada ensayo se evaluó por triplicado, siendo necesario realizar un blanco que no incluyera el reactivo de Folin-Ciocalteu y un blanco muestra que permitiera eliminar las interferencias de estos en la determinación. Medición de la capacidad reductora FRAP (Ferric Reducing Antioxidant Power). Se pesó en una probeta graduada de plástico una cantidad de muestra representativa (2 – 10 g) y se adicionó entre 20 – 40 mL de solvente. Luego, se realizó un proceso de homogenización en ultraturrax durante 30 segundos y se separó por centrifugación. Finalmente se recolectó el líquido sobrenadante para realizar el ensayo. Cada ensayo se evaluó por triplicado, además fue necesario realizar un blanco que no incluyera el reactivo FRAP y un blanco de muestra que permitiera eliminar las interferencias de estos en la determinación. El color azul resultante fue medido por espectrofotometría a λ=590 nm. Microscopía de barrido de emisión de campo (FESEM). Se empleó un microscopio FESEM marca Thermo Fisher Scientific modelo Apreo 2 S LoVac, detector UltraDry EDS modelo ANAX-30P-B y pulverizador catódico Denton vacuum desk V. Las muestras fueron fijadas en una cinta de grafito para sujetarlas al portamuestra del instrumento, se les aplicó un recubrimiento delgado de oro con un espesor ~ 10 nm. Luego se analizaron en el microscopio electrónico de barrido en alto vacío mediante el detector de electrones retrodispersados (T1) a 1kV de voltaje de aceleración, con el fin de evaluar la superficie y morfología de las muestras. Seguimiento del secado con las condiciones óptimas de proceso. Se realizó la visualización de la muestra en el microscopio óptico marca Nikon eclipse Ci-L en modo de transmisión y el calentamiento se efectuó en una platina Linkam Scientific Instruments modelo LTS120 con un rango de temperatura de 25°C-120°C, en una rampa de calentamiento de 10°C/min. La temperatura final de secado fue de 85°C y el espesor del producto fue de 2 mm. FTIR. Como el β-caroteno es la molécula de interés, se verificó el efecto de la temperatura sobre su estructura a través del seguimiento de los grupos funcionales. Para ello, un espectrómetro IR Tracer-100 marca Shimadzu adaptado a una celda de alta presión y temperatura HTHP Specac (presión máxima de 1000 psi y vacío de 4*10-3 mbar) fue usado. Las muestras fueron mezcladas con KBr y empastilladas para su medición. Se empleó un rango espectral de 600 a 4000 cm-1, una resolución de 4 cm-1 y un promedio de 35 scans por muestra. Las mediciones se realizaron por absorbancia. De igual manera, se tomaron los espectros de las muestras deshidratadas a las 5 temperaturas planteadas en el diseño experimental (70, 75, 80, 85 y 90°C) manteniendo constante el espesor optimizado en el diseño experimental, buscando con ello identificar posibles cambios atribuidos a la temperatura. Degradación del β-caroteno. Se identificaron por literatura las moléculas de degradación más probables de presentarse durante procesos de secado de productos con alto contenido de carotenoides. Se dibujaron las estructuras químicas con el uso del software Spartan 14 versión 1.1.0, se distinguieron las conformaciones más estables del β-caroteno, se optimizó la geometría del isómero más susceptible de generarse con el método B3LYP/6-31G(d) basado en la teoría funcional de la densidad (DFT) y se determinaron sus energías mediante cálculos computacionales usando el software Gaussian 16. Determinación de carbonilos. Esta medición se hizo con las condiciones óptimas del proceso de secado. Se midió según el método propuesto por Kang et al. (2016). Se homogenizó 1 g de muestra de pulpa CHT con 10 ml de una mezcla de tampón fosfato 20 mM y NaCl 0,6 M, y luego se separó en dos porciones iguales. Se trató una alícuota con 2 mL de HCl 2.0 N (control) y la otra con 2.0 mL de 2,4-dinitrofenilhidrazina (DNPH) 10 mM en HCl 2.0 M, y se dejaron 1 h a temperatura ambiente. Después de la incubación, las dos fracciones fueron precipitada con 2 mL de ácido tricloroacético (20% w/v) y centrifugado a 5000 RPM por 30 min. El precipitado obtenido se lavó dos veces con 5 ml de solución de etanol/acetato de etilo (1:1, v/v) para eliminar el exceso de DNPH. Finalmente, el precipitado se disolvió en 1,5 ml de clorhidrato de guanidina 6,0 M con tampón de fosfato de potasio 20 mM. Se midió la absorbancia a 370 nm en un espectrofotómetro Multiskan Spectrum. El contenido de carbonilos se expresó como nmol de carbonilos por mg de proteína utilizando el coeficiente de absorción molar de 2,2 x 104 M-1 cm-1.Modelamiento matemático para procesos de deshidrataciónIngeniería Química E Ingeniería De Petróleos.Sede Medellín190 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Nivel Nacional660 - Ingeniería química::664 - Tecnología de alimentos630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silviculturaChontaduro - CultivoChontaduro - CalidadProducción agropecuariaCultivos alimenticiosAgricultura - InvestigacionesCalidad de los alimentosAlimentos - Deshidratación, secado, etc.Ventanas refractantesBactris gasipaesBetacarotenoModelo matemáticoCarotenoidesActividad antioxidanteEstabilidad químicaSecado de chontaduro (Bactris gasipaes) en ventanas refractantesBactris gasipaes drying in refractance windowTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDLaReferenciaAbadio, F., Dominguez, A., Borges, S., & Oliveira, V. (2004). Physical properties of powdered pineapple (Ananas comosus) juice: effect of malt dextrin concentration and atomization speed. Journal of Food Engineering, 64(3), 285-287.Abonyi, B., Feng, H., Tang, J., Edwards, C., Chew, B., Mattinson, D., & Fellman, J. (2001). Quality retention in strawberry and carrot purees dried with refractance window system. Food Engineering and Physical Properties, 67(2), 1051-1056.Abul-Fadl., M. M., & Ghanem, T. H. (2011). Effect of refractance-window (RW) drying method on quality criteria of produced tomato powder as compared to the convection drying method. World Applied Science Journal 15(7), 953-965.Achir, N., Randrianatoandro, V., Bohuon, P., Laffargue, A., & Avallone, S. (2010). Kinetic study of β-carotene and lutein degradation in oils during heat treatment. European Journal of Lipid Science and Technology, 112, 349-361.Akanbi, C., & Oludemi, F. (2004). Effect of processing and packaging on the lycopene content of tomato products. International Journal of Food Properties, 1(1), 139-152. https://doi.org/10.1081/JFP-120024173.Akdaş, S., & Başlar, M. (2014). Dehydration and degradation kinetics of bioactive compounds for mandarin slices under vacuum and oven drying conditions. Journal of Food Processing and Preservation, 39(6), 1098–1107. https://doi.org/10.1111/jfpp.12324.Al-Khusaibi, M., Gordon, M. H., Lovegrove, J. A. & Niranjan, K. (2012) Frying of Potato Chips in a Blend of Canola Oil and Palm Olein: Changes in Levels of Individual Fatty Acids and Tocols. International Journal of Food Science and Technology, 47, 1701-1709. http://dx.doi.org/10.1111/j.1365-2621.2012.03024.x.Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel), 26(4):42. https://doi.org/10.3390/plants6040042. PMID: 28937585; PMCID: PMC5750618.Aman, R., Schieber, A., & Carle, R. (2005). Effects of heating and illumination on Trans-Cis Isomerization and degradation of β-carotene and lutein in isolated spinach chloroplasts. Journal of Agricultural and Food Chemistry, 53(24), 9512–9518. https://doi.org/10.1021/jf050926w.Amaya, D., Kimura, M., Godoy, H., & Amaya, J. (2008). Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. Journal of Food Composition and Analysis, 21(6), 445–463. https://doi.org/10.1016/j.jfca.2008.04.001.Armstrong, G. A., & Hearst, J. E. (1996). Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis. The FASEB Journal, 10(2), 228-37. doi 10.1096/fasebj.10.2.8641556. PMID: 8641556.Arslan, D., & Özcan, M. (2008). Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of Rosemary leaves. Energy Conversion and Management, 49(5), 1258-1264, https://doi.org/10.1016/j.enconman.2007.08.005.Astorg, P. (1997). Food carotenoids and cancer prevention: An overview of current research. Trends in Food Science & Technology, 8(12), 406-413. https://doi.org/10.1016/s0924-2244(97)01092-3.Aversa, M., Curcio, S., Calabrò, V., & Iorio, G. (2007). An analysis of the transport phenomena occurring during food drying process. Journal of Food Engineering, 78(3), 922–932. https://doi.org/10.1016/j.jfoodeng.2005.12.005.Azizi, D., Jafari, S., Mirzaei, H., & Dehnad, D. (2017). "The Influence of Refractance Window Drying on Qualitative Properties of Kiwifruit Slices". International Journal of Food Engineering, 13(2), 20160201. https://doi.org/10.1515/ijfe-2016-0201.Baeghbali, V., Niakosari, M., & Kiani, M. (2010). Design, manufacture and investigating functionality of a new batch refractance window system. 5th Proceedings of International Conference on Innovations. Food and Bioprocess Technology, 1–7.Baeghbali, V., Niakousari, N., & Farahnaky, A. (2016). Refractance Window drying of pomegranate juice: Quality retention and energy efficiency. LWT - Food Science and Technology, 66, 34-40, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2015.10.017.Baeghbali, V., Ngadi, M., & Niakousari, M. (2020). Effects of ultrasound and infrared assisted conductive hydro-drying, freeze-drying and oven drying on physicochemical properties of okra slices. Innovative Food Science & Emerging Technologies, 63, 102313, ISSN 1466-8564. https://doi.org/10.1016/j.ifset.2020.102313.Balaban, M., & Pigott, G. M. (1988). Mathematical model of simultaneous heat and mass transfer in food with dimensional changes and variable transport parameters. Journal of Food Science, 53(3), 935–939. https://doi.org/10.1111/j.1365-2621.1988.tb08990.x.Bernardi, C., & Maday, Y. (1997). Spectral methods. En Handbook of Numerical Analysis (pp.209–485). Elsevier. https://doi.org/10.1016/s1570-8659(97)80003-8.Berset, C., & Marty, C. (1990). Factors affecting the thermal degradation of all trans-β-carotene. Journal of Agricultural and Food Chemistry, 38(4), 1063-1067.Betoret, E., Betoret, N., Carbonell, J. V., & Fito, P. (2009). Effects of pressure homogenization on particle size and the functional properties of citrus juices. Journal of Food Engineering, 92(1), 18–23. https://doi.org/10.1016/j.jfoodeng.2008.10.028.Bhandari, B. R., Senoussi, A., Dumoulin, E. D., & Lebert, A. (1993). Spray drying of concentrated fruit juices. Journal Drying Technology, 11 (5), 1081-1092.Bialik, M., Wiktor, A., Witrowa-Rajchert, D., & Gondek, E. (2020). The Influence of Osmotic Dehydration Conditions on Drying Kinetics and Total Carotenoid Content of Kiwiberry (Actinidia Arguta). International Journal of Food Engineering, 16(1-2). https://doi.org/10.1515/ijfe-2018-0328.Biswas, A. K., Sahoo, J & Chatli, M. K. (2011). A simple UV-Vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT - Food Science and Technology, 44(8), 1809–1813. https://doi.org/10.1016/j.lwt.2011.03.017.Bhosale, P., & Bernstein, P. (2004). β-carotene production by Flavobacterium multivorum in the presence of inorganic salts and urea. Journal of Industrial Microbiology and Biotechnology, 31(12), 565-571.Böhm, V., Puspitasari-Nienaber, N. L., Ferruzzi, M. G., & Schwartz, S. J. (2002). Trolox equivalent antioxidant capacity of different geometrical isomers of alpha-carotene, beta-carotene, lycopene, and zeaxanthin. Journal of Agricultural and Food Chemistry, 50(1), 221-226. https://doi.org/10.1021/jf010888q. PMID: 11754571.Boon, C., McClements, J., Weiss, J & Decker, E. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515-532.Bondet, V., Brand-Williams, W., & Berset, C. (1997). Kinetics and mechanisms of antioxidant activity using the DPPH. Free Radical Method. LWT - Food Science and Technology, 30(6), 609-615, ISSN 0023-6438, https://doi.org/10.1006/fstl.1997.0240.Bonilla-Ahumada, F. de J., Khandual, S., & Lugo-Cervantes, E. del C. (2018). Microencapsulation of algal biomass (Tetraselmis chuii) by spray-drying using different encapsulation materials for better preservation of beta-carotene and antioxidant compounds. Algal Research, 36, 229–238. https://doi.org/10.1016/j.algal.2018.10.006.Bradley, D. G., & Min, D. B. (1992). Singlet oxygen oxidation of foods. Critical Reviews in Food Science and Nutrition, 31(3), 211-36. https://doi.org/10.1080/10408399209527570. PMID: 1571085.Brennan, J. G. (1994). Water activity and food quality. In G. CampbellPlatt (Ed.), Food Dehydration. A Dictionary and Guide (pp. 129–131). Oxford: Butterworth-Heinemann Ltd. CRC Press.Britton, G. (1995) Structure and properties of carotenoids in relation to function. The FASEB Journal, 9, 1551-1558.Buitrago-Acosta, M. C., Montúfar, R., Guyot, R., Mariac, C., Tranbarger, T. J., Restrepo, S., & Couvreur, T. L. P. (2022). Bactris gasipaes Kunth var. gasipaes complete plastome and phylogenetic analysis. Mitochondrial DNA Part B, 7(8), 1540–1544. https://doi.org/10.1080/23802359.2022.2109437.Buzzini, P., Martini, A., Gaetani, M., Turchetti, B., Pagnoni, M., & Davoli, P. (2005). Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface análisis. Enzyme and Microbial Technology, 36(5–6), 687-692, ISSN 0141-0229. https://doi.org/10.1016/j.enzmictec.2004.12.028.Castoldi, M., Zotarelli, M. F., Durigon, A., Carciofi, B., & Laurindo, J. (2015). Production of tomato powder by refractance window drying. Drying Technology, 33 (12), 1463-1473.Cadwallader, K., Moore, J., Zhang, Z., & Schmidt, S. (2010). Flavor encapsulation and flavor release. Comparison of spray drying and Refractance WindowTM drying technologies for the encapsulation of orange oil. Documento de información.Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. Journal of Food Engineering, 111(1), 135–148. https://doi.org/10.1016/j.jfoodeng.2012.01.010.Carnevale, J., Cole, E., Crank, G. (1979). Fluorescent light catalyzed autoxidation of betacarotene. Journal of Agricultural and Food Chemistry, 27(2). Documento de información.Celli, G., Khattab, R., Ghanem, A., Brooks, M. (2016). Refractance Window™ drying of haskap Berry- Preliminary results on anthocyanin retention and physicochemical properties. Food Chemistry, 194, 218-221.Cichella, A., Durigon, A., Laurindo, J. (2018). Effect of process variables on the drying of guava pulp by cast-tape drying. LWT, 96, 620-626, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2018.06.021.Contreras, J., Calderón, L., Guerra, E., & García, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from twenty-four exotic fruits from Colombia. Food Research International, 44(7), 2047-2053.Chai, J., Jiang, P., Wang, P., Jiang, Y., Li, D., Bao, W., Liu, B., Liu, B., Zhao, L., Norde, W., Yuan, Q., Ren, F., & Li, Y. (2018). The intelligent delivery systems for bioactive compounds in foods: Physicochemical and physiological conditions, absorption mechanisms, obstacles and responsive strategies. Trends in Food Science and Technology, 78, 144-154. https://doi.org/10.1016/j.tifs.2018.06.003.Chen, B. H., Chen, T. M., Chien, J. T. (1994). Kinetic model for studying the isomerization of a- and ß-carotene during heating and illumination. Journal of Agricultural and Food Chemistry, 42, 2391-2397.Chen, B. H., & Huang, J. H. (1998). Degradation and isomerization of chlorophyll and β-carotene as affected by various heating and illuminations treatments. Food chemistry, 62, 299-307.Chen, M. L., Yang, D. J., & Liu, S. C. (2011). Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (Citrus sinensis (L.) Osbeck) peels. International Journal of Food Science & Technology, 46(6), 1179–1185. https://doi.org/10.1111/j.1365-2621.2011.02605.x.Choudhari, S. M., Ananthanarayan, L., & Singhal, R. S. (2008). Use of metabolic stimulators and inhibitors for enhanced production of beta-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource Technology, 99(8), 3166-3173. https://doi.org/10.1016/j.biortech.2007.05.051, PMID: 17637505.Choe, E., & Min, D. (2006). Mechanism and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety, 5(4), 169-186, https://doi.org/10.1111/j.1541-4337.2006.00009.x.Chuyen, H. V., Nguyen, M. H., Roach, P. D., Golding, J. B., & Parks, S. E. (2017). Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Science & Nutrition, 6(1), 189–196. doi:10.1002/fsn3.546.Colé, E. R & Kapur N. S. (1957). The stability of lycopene. I.-Degradation by oxigen. Journal of the Science of Food and Agriculture, 8, 360-365.Cui, Z. W., Xu, S. Y., & Sun, D. W. (2004). Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of chinese chive leaves. Drying Technology, 22(3), 563–575. https://doi.org/10.1081/drt-120030001.Curcio, S., & Aversa, M. (2014). Influence of shrinkage on convective drying of fresh vegetables: A theoretical model. Journal of Food Engineering, 123, 36–49. https://doi.org/10.1016/j.jfoodeng.2013.09.014.Darvin, M.E., Haag, S.F., Meinke, M.C., Sterry, W., & Lademann, J. (2011c). Determination of the influence of IR radiation on the antioxidative network of the human skin. Journal of Biophotonics, 4(1–2), 21–29. https://doi.org/10.1002/jbio.200900111.Datta, A. K., & Ni, H. (2002). Infrared and hot-air-assisted microwave heating of foods for control of surface moisture. Journal of Food Engineering, 51(4), 355–364. https://doi.org/10.1016/s0260-8774(01)00079-6.Değirmencioğlu, N., Gürbüz, O., Herken, E., & Yurdunuseven, A. (2016). The impact of drying techniques on phenolic compound, total phenolic content and antioxidant capacity of oat flour tarhana. Food Chemistry, 194, 587-594, ISSN 0308-8146, https://doi.org/10.1016/j.foodchem.2015.08.065.Demirhan, E., & Özbek, B. (2009). Color change kinetics of microwave-dried basil. Drying Technology, 27(1), 156–166. https://doi.org/10.1080/07373930802566101.Demming-Adams, B., & Adams, W. W. (1992). Carotenoid composition in sun and shade leaves of plants with different life forms. Plant, Cell and Environment, 15(4), 411–419. https://doi.org/10.1111/j.1365-3040.1992.tb00991.x.De Rosso, V.V., & Mercadante, A.Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55(13), 5062-5072. https://doi.org/10.1021/jf0705421, PMID: 17530774.Desobry, S. A., Netto, F. M., & Labuza, T. P. (1997). Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. Journal of Food Science, 62(6), 1158–1162. https://doi.org/10.1111/j.1365-2621.1997.tb12235.x.De Francisco, L., Pinto, D., Rosseto, H., Toledo, L., Santos, R., Tobaldini-Valério, F., Svidzinski, T., Bruschi, M., Sarmento, B., Oliveira, M., & Rodrigues, F. (2018). Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product. Food Research International, 105, 537-547. https://doi.org/10.1016/j.foodres.2017.11.046.De Souza, L., Ventura, S., Braga, A., Pisani, L., Días, A & De Rosso, V. (2019). Ionic liquid-high performance extractive approach to recover carotenoids from Bactris gasipaes. Green Chemistry, 212, 2380-2391.Di Pietro, N., Di Tomo, P & Pandolfi, A. (2016). Carotenoids in cardiovascular disease prevention. JSM Atherosclerosis, 1(1), 1002.Dueik, V., Marzullo, C., & Bouchon, P. (2013). Effect of Vacuum Inclusion on the Quality and the Sensory Attributes of Carrot Snacks. LWT - Food Science and Technology, 50(1), 361–365. https://doi.org/10.1016/j.lwt.2012.05.011.Durigon, A., Gimenez de Souza, P., Mattar, B., & Laurindo, J. (2016). Cast-tape drying of tomato juice for the production of powdered tomato. Food and Bioproducts Processing, 100(a), 145-155, ISSN 0960-3085. https://doi.org/10.1016/j.fbp.2016.06.019.Dutta, D., Chaudhuri, U. R., & Chakraborty, R. (2005). Review. Structure, health benefi ts, antioxidant property and processing and storage of carotenoids. African Journal of Biotechnology, 4(13), 1510-1520. Recuperado de http://www.academicjournals.org/AJB.Dutra, A., Furtado, A., Pacheco, S., Oiano Neto, J. (2012). Efeito do tratamento térmico na concentração de carotenoides, compostos fenólicos, ácido ascórbico e capacidade antioxidante do suco de tangerina murcote. Brazilian Journal of Food Technology, Campinas, 15(3), 198-207.Eilander, A., Hundscheid, D.C., Osendarp, S.J., Transler, C y Zock, P.L. (2007). Effects of n-3 long chain polyunsaturated fatty acid supplementation on visual and cognitive development throughout childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids, 76, 189-203.Elik, A., Yanik, D. K., & Göğüş, F. (2020). Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT, 109100. doi:10.1016/j.lwt.2020.109100.Espinosa, P. F., Martínez J., & Martínez, H. A. (2014). Extraction of bioactive compounds from peach palm pulp (Bactris gasipaes) using supercritical CO2. The Journal of Supercritical Fluids, 93, 115-180.Feng, H., Tang, J., & Cavalieri, R. (2002). Dielectric properties of dehydrated apples as affected by moisture and temperature. Transactions of the ASABE, 45, 129–135.Ferrari, M. H., Souza, M., Villas, F., Lopes, C., Landi, C. M., De Souza, M., Pedrosa, M. T., Clerici, S., & Côrtes, L. M. (2020). Characterization and technological properties of peach palm (Bactris gasipaes var. gasipaes) fruit starch. Food Research International, 136, 109569, ISSN 0963-9969, https://doi.org/10.1016/j.foodres.2020.109569.Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human Health and disease. Nutrients, 6(2), 466–488. doi:10.3390/nu6020466.Figiel, A., Szumny, A., Gutiérrez-Ortíz, A., & Carbonell-Barrachina, A. (2010). Composition of oregano essential oil (Origanum vulgare) as affected by drying method. Journal of Food Engineering, 98(2), 240-247, ISSN 0260-8774. https://doi.org/10.1016/j.jfoodeng.2010.01.002.Franco, S., Jaques, A., Pinto, M., Fardella, M., Valencia, P., Núñez, H., Ramírez, C., & Simpson, R. (2019). Dehydration of salmon (Atlantic salmon), beef, and apple (Granny Smith) using Refractance window™: Effect on diffusion behavior, texture, and color changes,Innovative. Food Science & Emerging Technologies, 52, 8-16, ISSN 1466-8564, https://doi.org/10.1016/j.ifset.2018.12.001.Fratianni, A., Cinquanta, L., & Panfili, G. (2010). Degradation of carotenoids in orange juice during microwave heating. LWT - Food Science and Technology, 43(6), 867-871, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2010.01.011.Giraldo, A., Dufour, D., Rivera, A., Sánchez, T., Scheldeman, X., González, A. (2009). Diversidad del chontaduro (Bactris gasipaes) consumido en Colombia. Alimentos Hoy (18), 6 p. Congreso Iberoamericano de Ingeniería en Alimentos. 7, Bogotá, Colombia, 6 septiembre 2009/9 septiembre 2009.Graefe, S., Dufour, D., Zonneveld, M., Rodríguez, F., & González, A. (2013). Peach palm (Bactris gasipaes) in tropical Latin America: implications for biodiversity conservation, natural resource management and human nutrition. Biodiversity Conservation, 22, 269–300.Goula, A., & Adamopoulos, K. (2005). Stability of lycopene during spray drying of tomato Pulp. LWT - Food Science and Technology, 38(5), 479-487. https://dx.doi.org/10.1016/j.lwt.2004.07.020.Grabowski, J. A., Truong, V. D., & Daubert, C. R. (2008). Nutritional and rheological characterization of spray dried sweetpotato poder. LWT - Food Science and Technology, 41(2), 206-216, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2007.02.019.Gümüşay, Ö. A., Borazan, A. A., Ercal, N., & Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173:156-62. https://doi.org/10.1016/j.foodchem.2014.09.162, PMID: 25466007.Gupta, S., Bisnoi, J., Singh, D., & Singh, R. (2019). Effect of different drying technique on the bioactive components of Terminalia arjuna Bark. Research Journal of Pharmacy and Technology, 12, 2372.Halder, A., Dhall, A., & Datta, A. K. (2011). Modeling transport in porous media with phase change: Applications to food processing. Journal of Heat Transfer, 133(3). https://doi.org/10.1115/1.4002463.Haminiuk, C., Sierakowski, M., Vidal, J., & Masson, M. (2006). Influence of temperature on the rheological behavior of whole araçá pulp (Psidium cattleianum Sabine). LWT - Food Science and Technology, 39(4), 426-430.Handelman, G., van Kuijk, F., Chatterjee, A., & Krinsky, N. (1991). Characterization of products formed during the autoxidation of β-carotene. Free Radical Biology and Medicine, 10(6), 427-437, ISSN 0891-5849. https://doi.org/10.1016/0891-5849(91)90051-4.Halder, A., Dhall, A., & Datta, A. K. (2007). An improved, easily implementable, porous media based model for deep-fat frying. Food and Bioproducts Processing, 85(3), 209–219. https://doi.org/10.1205/fbp07033.Hegazy, A., & Lovett-Doust, J. (2016). Human impact and plant conservation. Ahmad Hegazy & Jonathan Lovett-Doust (Eds.), Plant ecology in the middle east, (pp. 235-264). Oxford University Press.Ho, D. G. (2003). Phosphadioxirane: A Peroxide from an-Ortho-Substituted Arylphosphine and Singlet Dioxygen. Science, 302(5643), 259–262. https://doi.org/10.1126/science.1089145.Iqbal, J., Akbar, W., Aftab, R., Younas, I., & Jamil, U. (2019). Heat and mass transfer modelling for fruit drying: a review. MOJ Food Processing & Technology, 7(3), 69-73.Isoe, S., Hyeon, S., & Sakan, T. (1969). Photo-oxygenation of carotenoids. I. The formation of dihydroactinidiolide and β-ionone from β-carotene. Tetrahedron Letters, 10(4), 279-281, ISSN 0040-4039. https://doi.org/10.1016/S0040-4039(01)87530-4.İzli, N., Yıldız, G., Ünal, H., Işık, E., & Uylaşer, V. (2013). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). International Journal of Food Science & Technology, 49(1), 9–17. https://doi.org/10.1111/ijfs.12266.Jayathilakan, K., Sharma, G., Radhakrishna, K., & Bawa, A. (2007). Antioxidant potential of synthetic and natural antioxidants and its effect on warmed-over-flavour in different species of meat. Food Chemistry, 105(3), 908–916. https://doi.org/10.1016/j.foodchem.2007.04.068.Jeevarajan, A. S., Kispert, L. D., Chumanov, G., Zhou, C., Cotton, T. M. (1996). Resonance Raman study of carotenoid cation radicals. Chemical Physics Letters, 259(5–6), 515-522, ISSN 0009-2614. https://doi.org/10.1016/0009-2614(96)00781-6.Jung, M. Y., Min, D. B. (1991). Effects of quenching mechanisms of carotenoids on the photosensitized oxidation of soybean oil. Journal of the American Oil Chemists' Society, 68, 653–658, https://doi.org/10.1007/BF02662288.Karabulut, I., Topcu, A., Duran, A., & Turan, S. (2007). Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armenica L). LWT - Food Science and Technology, 40(5), 753–758. https://doi.org/10.1016/j.lwt.2006.05.001.Kaspar, K. L., Park, J. S., Mathison, B. D., Brown, C. R., Massimino, S., & Chew, B. P. (2012). Processing of pigmented-flesh potatoes (Solanum tuberosum L.) on the retention of bioactive compounds. International Journal of Food Science & Technology, 47(2), 376–382. https://doi.org/10.1111/j.1365-2621.2011.02850.x.Kayacan, S., Sagdic, O., & Doymaz, I. (2018). Effects of hot air and vacuum drying on drying kinetics, bioactive compounds and color of bee pollen. Journal of Food Measurement and Characterization, 12(2), 1274-1283. https://doi.org/10.1007/s11694-018-9741-4.Kim, J., & Keasling, J. D. (2001). Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnology and Bioengineering, 72, 408-415.Khoo, H. E., Prasad, K. N., Kong, K. W., Jiang, Y., & Ismail, A. Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules, 16(2):1710-1738. https://doi.org/10.3390/molecules16021710. PMID: 21336241; PMCID: PMC6259627.Koca, N., Karadeniz, F., & Burdurlu, S. (2007). Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 100(2), 609-615, ISSN 0308-8146. https://doi.org/10.1016/j.foodchem.2005.09.079.Kowsalya, K., Vidya, N., Vijayalakshmi, V & Arun, M. (2019). Super nutritive marine astaxanthin, an effectual dietary carotenoid for neurodegenerative diseases. International Research Journal of Multidisciplinary Technovation, 1(6), 115–124.Kozempel, M. F. (1988). Modeling the kinetics of cooking and precooking potatoes. Journal of Food Science, 53(3), 753–755. https://doi.org/10.1111/j.1365-2621.1988.tb08948.x.Krimm, S., 1960. Infrared spectra of high polymers. En: Fortschritte der Hochpolymeren- Forschung. Springer, Berlin Heidelberg, pp. 51-172.Krinsky, N. I. & Johnson, E. J. (2005) Carotenoid actions and their relation to health and disease. molecular aspects of medicine, 26, 459-516. http://dx.doi.org/10.1016/j.mam.2005.10.00.Kubra, I. R., & Jagan Mohan Rao, L. (2012). Microwave drying of ginger (Zingiber officinaleRoscoe) and its effects on polyphenolic content and antioxidant activity. International Journal of Food Science & Technology, 47(11), 2311–2317. https://doi.org/10.1111/j.1365-2621.2012.03104.x.Kumar, C., Joardder, M., Farrell, T., Millar, G., & Karim, A. (2018). A porous media transport model for apple drying. Biosystems Engineering, 176, 12-25, ISSN 1537-5110, https://doi.org/10.1016/j.biosystemseng.2018.06.021.Kumar, A., Kandasamy, P., Chakraborty, I., & Hangshing, L. (2022). Analysis of energy consumption, heat and mass transfer, drying kinetics and effective moisture diffusivity during foam-mat drying of mango in a convective hot-air dryer. Biosystems Engineering, 219, 85-102, ISSN 1537-5110. https://doi.org/10.1016/j.biosystemseng.2022.04.026.Kuskoski, E. M., Vega, J. M., Rios, J. J., Fett, R., Troncoso, A. M., & Asuero, A. G. (2003). Characterization of anthocyanins from the fruits of baguaçu (Eugenia umbelliflora Berg). Journal of Agricultural and Food Chemistry, 51, 5450-5454.Magoon, R. (1986). Method and Apparatus for Drying Fruit Pulp and the Like. US Patent 4, 631, 837.Mahanti, N. K., Chakraborty, S. K., Sudhakar, A., Verma, D. K., Shankar, S., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., & Srivastav, P. P. (2021). Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods: A Dedicated Journal for Sustainability in Food Science, 3(100024), 100024. https://doi.org/10.1016/j.fufo.2021.100024.Marinho, H. A., & Castro, J. S. (2003). Carotenóides e valor de provitamina A em frutos da região amazônica: pajurá, piquiá, tucumã e umari. Brazil: Anais do XVII Congresso Brasileiro de Fruticultura.Maroulis, Z. B., Kiranoudis, C. T., & Marinos-Kouris, D. (1995). Heat and mass transfer modeling in air drying of foods. Journal of Food Engineering, 26(1), 113–130. https://doi.org/10.1016/0260-8774(94)00040-g.Martínez, J., Rodríguez, X., Pinzón, L., & Ordóñez, L. (2017). Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes kunth, Arecaceae) obtenida por secado convectivo. CORPOICA Ciencia y Tecnología Agropecuaria, 18(3), 599-613, ISSN 0122-8706.Marx, M., Stuparic, M., Schieber, A & Carle, R. (2003). Effects of thermal processing on trans-cis-isomerization of β-carotene in carrot juice and carotene-containing preparations. Food Chemistry, 83, 609–617.Mehta, B. J., Salgado, L. M., Bejarano, E. R., & Cerdá-Olmedo, E. (1997). New mutants in Phycomyces blakesleeanus for β-carotene production. Applied and Environmental Microbiology 63, 3657-3661.Meléndez-Martínez, A. J., Vicario, I., & Heredia, F. J. (2007). Pigmentos carotenoides: consideraciones estructurales y fisicoquímicas. Archivos Latinoamericanos de Nutrición, 57(2), 109-117. Recuperado en 08 de julio de 2022, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222007000200002&lng=es&tlng=es.Menezes Filho, A. C. P., Ventura, M. V. A., Batista-Ventura, H. R. F., Porfiro, C. A., Teixeira, M. B., Soares, F. A. L., Taques, A. S., Alves, I., & Castro, C. F. (2022). Hydnopolyporus fimbriatus (Fr.) D.A. Reid mushroom: phytochemical screening, antioxidant activity, total flavonoid and total phenolic compounds. Brazilian Journal of Science, 1(5), 46–53. https://doi.org/10.14295/bjs.v1i5.134.Michalska-Ciechanowska, A., Wojdyło, A., Lech, K., Łysiak, G., & Figiel, A. (2017). Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT - Food Science and Technology, 78, 114-121.Mínguez-Mosquera, M. I. (1997). Clorofilas y carotenoides en tecnología de alimentos. Sevilla: Secretariado de publicaciones de la Universidad de Sevilla, ISBN: 978-84-472-0344-4.M’hiri, N., Ghali, R., Nasr, B., & Boudhrioua, N. (2018). Effect of different drying processes in functional properties of industrial lemon byproduct. Process Safety and Environmental Protection, 116, 450-460. https://doi.org/10.1016/j.psep.2018.03.004.Mogedas, B., Forján, E., Cuaresma, M., Garbayo, I., Vega, J. M., & Vílchez, C. (2009). Production of lutein-enriched microalgal biomass. New Biotechnology, 25(Suppl.), S297-S297. https://doi.org/10.1016/j.nbt.2009.06.677.Møller, A. H., Wijaya, W., Jahangiri, A., Madsen, B., Joernsgaard, B., Vaerbak, S., Hammershøj, M., Van der Meeren, P., & Dalsgaard, T. (2020). Norbixin binding to whey protein isolate - alginate electrostatic complexes increases its solubility and stability. Food Hydrocolloids, 101, 1–8. https://doi.org/10.1016/j.foodhyd.2019.105559.Mordi, R. (1993). Mechanism of β-carotene degradation. Biochemical Journal, 292, 310-312. http://dx.doi.org/10.1042/bj2920310.Mordi, R. C., Ademosun, O. T., Ajanaku, C. O., Olanrewaju, I. O., & Walton, J. C. (2020). Free radical mediated oxidative degradation of carotenes and xanthophylls. Molecules, 25(5), 1038. https://doi.org/10.3390/molecules25051038. PMID: 32110916; PMCID: PMC7179097.Mortensen, A., & Skibsted, L. (1997). Importance of carotenoid structure in radical-scavenging reactions. Journal of Agricultural and Food Chemistry, 45, 2970-2977.Moses, J., Karthickumar, P., Sinija, V., Alagusundaram, K., & Tiwari, B. (2013). Effect of microwave treatment on drying characteristics and quality parameters of thin layer drying of coconut. Asian Journal of Food and Agro-Industry, 6(02), 72-85.Moses, J., Norton, T., Alagusundaram, K., & Tiwari, B. (2014a). Novel drying techniques for the food industry. Food Engineering Reviews, 6(3), 43-55.Moses, J., Esther, M., Abirami, C., Alagusundaram, K., & Tiwari, B. (2014b). Microwave drying kinetics of okara. Soybean Research Journal, 48, 104.Mozaffarian, D., Ascherio, A., Hu, F.B., Stampfer, M., Willett, W., Sicovick, D & Eimm E. (2005). Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation, 111, 157-64.Nadian, M., Rafiee, S., Aghbashlo, M., Hosseinpour, s., & Mohtasebi, S. (2015). Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. Food and Bioproducts Processing, 94, 263-274, ISSN 0960-3085. https://doi.org/10.1016/j.fbp.2014.03.005.Naguib, Y. M. (2000). Antioxidant activities of astaxanthin and related carotenoids. Journal of Agricultural and Food Chemistry, 48(4), 1150-1154. https://doi.org/10.1021/jf991106k. PMID: 10775364.Namitha, K. K., & Negi, P. S. (2010) Chemistry and biotechnology of carotenoids. Critical Reviews in Food Science and Nutrition, 8, 728-60. https://doi.org/10.1080/10408398.2010.499811. PMID: 20830634.Nayak, B., Berrios, J. D. J., Powers, J. R., Tang, J., & JI, Y. (2011). Colored potatoes (Solanum Tuberosum L.) dried for antioxidant rich value added foods. Journal of Food Processing and Preservation, 35(5), 571–580. https://doi.org/10.1111/j.1745-4549.2010.00502.x.Nayara, M. P., Silvano, H., Paixão, D. R., Queiroz de Oliveira, W., Pereira, G. A & Pastore, G. M. (2021). Functional and nutritional properties of selected Amazon fruits: A review. Food Research International, 147, 110520. https://doi.org/10.1016/j.foodres.2021.110520.Nawirska-Olszańska, A., Stępień, B., Biesiada, A., Kolniak-Ostek, J., & Oziembłowski, M. (2017). Rheological, chemical and physical characteristics of golden berry (Physalis peruviana L.) after convective and microwave drying. Foods, 6(8), 60. https://doi.org/10.3390/foods6080060.Nguyen, T. V. L., Nguyen, Q. D., & Nguyen. P. B. (2022). Drying kinetics and changes of total phenolic content, antioxidant activity and color parameters of mango and avocado pulp in refractance window drying. Polish Journal of Food and Nutrition Sciences, 72(1), 27-38.Nindo, C., Feng, H., Shen, G., Tang, J., & Kang, D. (2003a). Energy utilization and microbial reduction in a new film drying system. Journal of Food Process Preservation, 27 (2), 117-136.Nindo, C., Sun, T., Wang, S., Tang, J., & Powers, J. (2003b). Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis, L.). LWT-Food Science and Technology, 36 (5), 507-516.Nindo, C. I., Powers, J. R., & Tang, J. (2007). Influence of refractance window evaporation on quality of juices from small fruits. LWT - Food Science and Technology, 40(6), 1000–1007. https://doi.org/10.1016/j.lwt.2006.07.006.Nindo, C., & Tang, J. (2007). Refractance window dehydration technology: a novel contact drying method. Drying Technology, 25 (1), 37-48.Nishino, H., Murakoshi, M., Li, T., Takemura, M., Kuchide, M., Kanazawa, M., Yang, X., Wada, S., Masuda, M., Ohsaka, Y., Yogosawa, S., Satomi, Y & Jinno, K. (2022). Cancer and Metastasis Reviews, 21, 257-264.Labuza, T. P. and Dugan Jr., L. R. (1971). Kinetics of Lipid Oxidation in Foods. Critical Reviews in Food Science & Nutrition, 2, 355-405.Laos, K., Lõugas, T., Mändmets, A., & Vokk, R. (2007). Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innovative Food Science & Emerging Technologies, 8(3), 395-398, ISSN 1466-8564, https://doi.org/10.1016/j.ifset.2007.03.013.Lauretani, F., Semba, R. D., Bandinelli, S., Dayhoff-Brannigan, M., Giacomini, V., Corsi, A. M., Guralnik, J. M., & Ferrucci, L. (2008). Low plasma carotenoids and skeletal muscle strength decline over 6 years. The journals of gerontology. Series A, Biological sciences and medical sciences, 63(4), 376-83. https://doi.org/10.1093/gerona/63.4.376. PMID: 18426961; PMCID: PMC4101895.Lavelli, V., Zanoni, B., & Zaniboni, A. (2007). Effect of water activity on carotenoid degradation in dehydrated carrots. Food Chemistry, 104(4), 1705–1711. https://doi.org/10.1016/j.foodchem.2007.03.033.Leterme, P., García, M., Londoño, A., Rojas, M., Buldgen, A., & Souffrant, W. (2005). Chemical composition and nutritive value of peach palm (Bactris gasipaes Kunth) in rats. Journal of the Science of Food and Agriculture, 85(9), 1505-1512.Li, T., Deng, Y., Liu, J., Duan, A., Liu, H., & Xiong, S. (2021). DcCCD4 catalyzes the degradation of α-carotene and β-carotene to affect carotenoids accumulation and taproot color in carrot. The Plant Journal, 108, 1116-1130.Limbo, S., Torri, L., & Piergiovanni, L. (2007). Light induced changes in an aqueous β-carotene system stored under halogen and fluorescent lamps, affected by two oxygen partial pressures. Journal of Agricultural and Food Chemistry, 55(13), 5238–5245. https://doi.org/10.1021/jf0634348.Lopes Aguiar, J.P., da Silva, E., Gomes da Silva, A., Sganzerla, W. G., Xiao, J., & Souza, F. (2021). Influence of freeze-drying treatment on the chemical composition of peppers (Capsicum L.) from the Brazilian Amazonia región. Biocatalysis and Agricultural Biotechnology, 38, 102220, ISSN 1878-8181. https://doi.org/10.1016/j.bcab.2021.102220.Obara, A., Obiedziński, M., & Kołczak, T. (2006). The effect of water activity on cholesterol oxidation in spray- and freeze-dried egg powders. Food Chemistry, 95(2), 173–179. https://doi.org/10.1016/j.foodchem.2004.06.02.Onwude, D. I., Hasrim, N., Janius, R., Nawi, N. M., & Abdan, K. (2017). Color change kinetics and total carotenoid contento f pumpkin as affected by drying temperature. Italian Journal of Food Science, 29, 1-18. Opinion paper.Ortiz-Jerez, M. J., Gulati, T., Datta, A. K., & Ochoa-Martínez, C. I. (2015). Quantitative understanding of Refractance WindowTM drying. Food and Bioproducts Processing, 95, 237–253. https://doi.org/10.1016/j.fbp.2015.05.010.Ötles, S., & Çagind, Ö. (2007). Carotenoids as natural colorants. In Food colorants: chemical and functional properties. (pp. 25-49). Boca Raton, USA: CRC Press.Pasquariello, M. S., Mastrobuoni, F., Di Patre, D., Zampella, L., Capuano, L. R., Scortichini, M., & Petriccione, M. (2015). Agronomic, nutraceutical and molecular variability of feijoa (Acca sellowiana (O. Berg) Burret) germplasm. Scientia Horticulturae, 191, 1–9.Pavón-Meléndez, G. (2002). Dimensionless analysis of the simultaneous heat and mass transfer in food drying. Journal of food engineering, 51(4), 347–353. https://doi.org/10.1016/s0260-8774(01)00077-2.Pehrson, A. L & Sanchez, C. (2015). Altered gamma-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Design, Developing and Therapy, 9, 603-624.Piovesana, A., & Zapata, C. (2019). Study of acidified aqueous extraction of phenolic compounds from Hibiscus sabdariffa L. calyces. The Open Food Science Journal, 11, 25-34. http://dx.doi.org/10.2174/1874256401911010025.Polyakov, N. E., Leshina, T. V., Konovalova, T. A & Kispert, L. D. (2001). Carotenoids as scavengers of free radicals in a fenton reaction: antioxidants or pro-oxidants? Free Radical Biology & Medicine, 31(3), 398-404.Polyakov, N. E., Kruppa, A., Leshina, T., Konovalova, T., & Kispert, l. (2001). Carotenoids as antioxidants: spin trapping EPR and optical study. Free Radical Biology and Medicine, 31(1), 43-52, ISSN 0891-5849. https://doi.org/10.1016/S0891-5849(01)00547-0.Prieto, A., Cañavate, P., & García-González, M. (2011). Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. Journal of Biotechnology, 151(2), 180-185, ISSN 0168-1656. https://doi.org/10.1016/j.jbiotec.2010.11.011.Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. https://doi.org/10.1021/jf0502698. PMID: 15884874.Puente, L., Vega-Gálvez, A., Ah-Hen, K. S., Rodríguez, A., Pasten, A., Poblete, J., Pardo-Orellana, C., & Muñoz, M. (2020). Refractance window drying of goldenberry (Physalis peruviana L.) pulp: A comparison of quality characteristics with respect to other drying techniques. LWT, 131, 109772, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2020.109772.Quijano-Ortega, N., Fuenmayor, C. A., Zuluaga-Dominguez, C., Diaz-Moreno, C., Ortiz-Grisales, S., García-Mahecha, M., & Grassi, S. (2020). FTIR-ATR Spectroscopy combined with multivariate regression modeling as a preliminary approach for carotenoids determination in Cucurbita Spp. Applied Sciences, 10(11), 3722. doi:10.3390/app10113722.Qiu, D., Chen, Z. R., & Li, H. R. (2008). Density functional theory study on thermal isomerization of β-carotene. Journal of Molecular Structure: THEOCHEM, 865(1-3), 44–48. https://doi.org/10.1016/j.theochem.2008.06.015.Qiu, D., Chen, Z. R., & Li, H. R. (2009). Effect of heating on solid β-carotene. Food Chemistry, 112(2), 344–349. https://doi.org/10.1016/j.foodchem.2008.05.07.Rabeta, M. S., & Lin, S. P. (2015). Effects of different methods on the antioxidant activities of leaves and berries of Cayratia trifolia. Sains Malaysiana, 44(2), 275-280. http://dx.doi.org/10.17576/jsm-2015-4402-16.Raghavi, L. M., Moses, J., & Anandharamakrishnan, C. (2018). Refractance Windows drying of foods: A review. Journal of Food Engineering, 222, 267-275.Rajabi, H., Ghorbani, M., Jafari, S., Mahoonak, A., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327-337, ISSN 0268-005X. https://doi.org/10.1016/j.foodhyd.2015.05.033.Ramos-Souza, C., Nass, P., Jacob-Lopes, E., Queiroz, L., Cavalcante, A., Braga., & Vera De Rosso, V. (2023). Changing Despicable Me: Potential replacement of azo dye yellow tartrazine for pequi carotenoids employing ionic liquids as high-performance extractors. Food Research International, 174(1), 113593, ISSN 0963-9969. https://doi.org/10.1016/j.foodres.2023.113593.Ravikumar, S., Uma, G & Gokulakrishnan, R. (2016). Antibacterial property of halobacterial carotenoids against human bacterial pathogens. Journal of Scientific and Industrial Research, 75(4), 253–257.Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231-1237, ISSN 0891-5849. https://doi.org/10.1016/S0891-5849(98)00315-3.Restrepo, M., Acosta, E., Ocampo, J., & Morales, C. (2007). Sustitución de tartrazina por β-caroteno en la elaboración de bebidas no alcohólicas. Revista Lasallista de Investigación, 3, 7-12.Restrepo, J., & Estupiñan, J. A. (2007). Potencial del Chontaduro como Fuente Alimenticia de Alto Valor Nutricional en Países Tropicales. Revista De Ciencias, 11, 1–8. https://doi.org/10.25100/rc.v11i0.529.Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. (2020). Encapsulation and delicery of bioactive compounds using apray and freeze drying techniques: A review. Drying Technology, 38, 235-258.Riadh, M. H., Ahmad, S. A. B., Marhaban, M. H., & Soh, A. C. (2014). Infrared heating in food drying: An Overview. Drying Technology, 33(3), 322–335. https://doi.org/10.1080/07373937.2014.951124.Rodriguez-Amaya D.B. (2001). A Guide to Carotenoid Analysis in Foods, OMNI Research, ILSI Human Nutrition Institute, United States of America.Rodriguez-Amaya, D. B., Porcu, O. M., & Azevedo-Meleiro, C. H. (2007). Variation in the carotenoid composition of fruits and vegetables along the food chain. Acta Horticulturae, 744, 387–394.Rodriguez-Amaya, D., Kimura, M., Godoy, H., & Amaya-Farfan, J. (2008). Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. Journal of Food Composition and Analysis, 21(6), 445-463, ISSN 0889-1575. https://doi.org/10.1016/j.jfca.2008.04.001.Rodríguez-Sáiz, M., Sánchez-Porro, C., De La Fuente, J. L., Mellado, E., & Barredo, J. L. (2007). Engineering the halophilic bacterium Halomonas elongata to produce β-carotene. Applied Microbiology and Biotechnology, 77, 637–643. https://doi.org/10.1007/s00253-007-1195-2.Rodrigues, E., Mariutti,L. R., Chisté, R. C., & Mercadante, A. Z. (2012). Development of a novel micro-assay for evaluation of peroxyl radical scavenger capacity: application to carotenoids and structure-activity relationship. Food Chemistry, 135(3), 2103-2111. https://doi.org/10.1016/j.foodchem.2012.06.074, PMID: 22953962.Rodriguez-Amaya, D.B. (2018). Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International. https://doi.org/10.1016/j.foodres.2018.05.028.Rojas-Garbazo, C., Pérez, A., Vaillant, F., & Pineda-Castro, M. (2016). Physicochemical and antioxidant composition of fresh peach palm (Bactris gasipaes) fruits in Costa Rica. Brazilian Journal of Food Technology, 19, ISSN 1981-6723 on-line versión.Romero, M., Rojano, B., Mella, J., Pessoa, C. D., Lissi, E., & López, C. (2010). Antioxidant capacity of pure compounds and complex mixtures evaluated by the ORAC - Pyrogallol red assay in the presence of Triton X-100 micelles. Molecules, 15(9), 6152-6167.Rostami, H., Dehnad, D., Jafari, S., & Tavakoli, H. (2017). Evaluation of physical, rheological, microbial and organoleptic properties of meat powder produced by refractance-window drying. Drying Technology, 36(9), 1076-1085.Sabarez, H. (2019). Refractance WindowTM Drying: a mechanistic understanding of the drying process using modelling approach. In: Reference module in food science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21439-X.Sabliov, C. M., Fronczek, C., Astete, C. E., Khachaturyan, M., Khachatryan, L., & Leonardi, C. (2009). Effects of temperature and UV light on degradation of α-Tocopherol in free and dissolved form. Journal of the American Oil Chemists’ Society, 86(9), 895–902. https://doi.org/10.1007/s11746-009-1411-6.Santamaria, H., Durango, N., Bula, A., & SanJuan, M. (2011). Non dimensional analysis of cassava transient drying in packing beds. Latin American Applied Research-An International Journal, res. [online], 41(1), 87-93, ISSN 0327-0793.Saxena, M., Saxena, J., & Pradhan, A. (2012). Flavonoids and phenolic acids as antioxidants in plants and human health. International Journal of Pharmaceutical Sciences Review and Research, 16(2), 130-134.Seybold, C., Fröhlich, K., Bitsch, R., Otto, K & Böhm, V. (2004). Changes in contents of carotenoids and vitamin E during tomato processing. Journal of Agricultural and Food Chemistry, 52, 7005–7010.Sham, P. W. Y., Scaman, C. H., & Durance, T. D. (2001). Texture of vacuum-microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level, and apple variety. Journal of Food Science, 66 (9), 1341–1347.Sharma, M., & Bhat, R. (2021). Extraction of carotenoids from pumpkin peel and pulp: comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods, 10(4), 787. doi:10.3390/foods10040787.Shi, J., Le-Maguer, M., Bryan, M & Kakuda, Y. (2003). Kinetics of lycopene degradation in tomato puree by heat and light irradiation. Journal of Food Process Engineering, 25, 485–498.Shilton, N. (2003). Drying:Chemical changes. B. Caballero, L. Trugo, P. Finglas (Eds.), In Encyclopaedia of Food and Health (Second), Elsevier Science Ltd, Amsterdam, Netherlands, 1947-1950.Shofian, N. M., Hamid, A. A., Osman, A., Saari, N., Anwar, F., Dek, M. S., & Hairuddin M. R. (2011). Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. International Journal of Molecular Sciences, 12(7), 4678-92. https://doi.org/10.3390/ijms12074678, PMID: 21845104; PMCID: PMC3155377.Schieber, A & Carle, R. (2005). Ocurrence of carotenoids cis isomers in food: Technological, analytical, nutritional implications. Trends in Food Science & Technology, 16(9), 416-422.Singleton, V., Rossi Jr., J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.Silva, C., Cabral, J. & van Keulen, F. (2004). Isolation of a β-Carotene Over-Producing Soil Bacterium, Sphingomonas sp. Biotechnology Letters, 26, 257–262. https://doi.org/10.1023/B:BILE.0000013716.20116.dc.Scialò, F., Fernández-Ayala, D. J., & Sanz, A. (2017). Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00428.Sogi, D.S., Siddiq, M., Greiby, I., & Dolan, K.D. (2013). Total phenolics, antioxidant activity, and functional properties of 'Tommy Atkins' mango peel and kernel as affected by drying methods. Food Chemistry, 141(3), 2649-2655. https://doi.org/ 10.1016/j.foodchem.2013.05.053.Stratton, S., Schaefer, W., & Liebler, D. (1993). Isolation and identification of singlet oxygen oxidation of betacarotene. Chemical Research in Toxicology, 6(4), 542-547. Strumillo, C. (2009). A Review of: “Advanced Drying Technologies, 2nd ed., by T. Kudra and A.S. Mujumdar.”: CRC Press: Boca Raton, FL. Drying Technology, 27(10), 1164–1165. https://doi.org/10.1080/07373930903221846.Suvarnakuta, P., Devahastin, S., & Mujumdar, A. S. (2005). Drying kinetics and β-carotene degradation in carrot undergoing different drying processes. Journal of Food Science, 70(8), s520–s526. https://doi.org/10.1111/j.1365-2621.2005.tb11528.x.Surco-Laos, F., Tipiana, R., Torres, Y., Valle, M., & Panay, J. (2017). Efectos de liofilización sobre la composición química y capacidad antioxidante en pulpa de cuatro variedades de Mangífera indica. Revista de la Sociedad Química del Perú, 83(4), ISSN 1810-634X.Tao, Y., Zhang, J., Jiang, S., Xu, Y., Show, P.-L., Han, Y., Ye, X., & Ye, M. (2018). Contacting ultrasound enhanced hot-air convective drying of garlic slices: Mass transfer modeling and quality evaluation. Journal of Food Engineering, 235, 79–88. https://doi.org/10.1016/j.jfoodeng.2018.04.028.Tracy, M. (1996). Harina de pejibaye, una opción prometedora. Boletín Informativo RETADAR, San José, v. 23, p. 3.Tontul, I., & Topuz, A. (2017). Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT-Food Science and Technology, 80, 294-303.Tontul, I., Ergin, F., Eroğlu, E., Küçükçetin, A., & Topuz, A. (2018). Physical and microbiological properties of yoghurt powder produced by refractance window drying. International Dairy Journal, 85, 169-176, ISSN 0958-6946, https://doi.org/10.1016/j.idairyj.2018.06.002.Topuz, A., Dincer, C., Ozdemir, K. S., Feng, H., & Kushad, M. (2011). Influence of different drying methods on carotenoids and capsaicinoids of paprika (Cv., Jalapeno). Food Chemistry,129(3):860-5. doi: 10.1016/j.foodchem.2011.05.035.Topuz, A., Feng, H., & Kushad, M. (2009). The effect of drying method and storage on color 884 characteristics of paprika. LWT - Food Science and Technology, 42, 1667–1673.Torrissen, O. J. (1989). Pigmentation of salmonids: Interactions of astaxanthin and canthaxanthin on pigment deposition in rainbow trout. Aquaculture, 79(1-4), 363–374. https://doi.org/10.1016/0044-8486(89)90478-x.Tuncel, N. B., & Yılmaz, N. (2015). Optimizing the extraction of phenolics and antioxidants from feijoa (Feijoa sellowiana, Myrtaceae). Journal of Food Science and Technology, 52, 141–150. https://doi.org/10.1007/s13197-013-0968-0.Valduga, E., Tatsch, P. O., Tiggermann, L., Treichel, H., Toniazzo, G., Zeni, J., DiLuccio, M., & Furigo, A. J. (2009a). Produção de carotenoides: microrganismos como fonte de pigmentos naturais. Química Nova, 32, 2429-2436.Valduga, E., Tatsch, P. O., Tiggermann, L., Zeni, J., Colet, R., Cansian, J. M., Treichel, H., & DiLuccio, M.(2009b). Evaluation of conditions of carotenoids production in a synthetic médium by Sporidiobolus salmonicolor (CBS 2636) in a biorreactor. International Journal of Food Science and Technology, 44, 2445-2451.Van‘t Land, M., & Raes, K. (2019). Refractance window drying of fish silage–an initial investigation into the effects of physicochemical properties on drying efficiency and nutritional quality. LWT-Food Science and Technology, 102, 71-74. https://doi.org/10.1016/j.lwt.2018.12.001Van Poppel. (1993). Carotenoids and cancer: An update with emphasis on human intervention studies. European Journal of Cancer, 29(9), 1335-1344.Vega, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez, J., García, P., Lemus, R. & Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132 (1), 51-59.Verwaal, R., Wang, J., Meijnen, J. P., Visser, H., Sandmann, G., Van der Berg, J. A., & Van Ooyen, A. J. (2007). High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Applied and Environmental Microbiology, 73(13), 4342-4350. https://doi.org/10.1128/AEM.02759-06. Epub 2007 May 11. PMID: 17496128; PMCID: PMC1932764.Villa-Corrales, L., Flores-Prieto, J. J., Xamán-Villaseñor, J. P., & García-Hernández, E. (2010). Numerical and experimental analysis of heat and moisture transfer during drying of Ataulfo mango. Journal of Food Engineering, 98(2), 198–206. https://doi.org/10.1016/j.jfoodeng.2009.12.026.Wang, S., Sun, J., Han, B., & Xu, X. (2010). Optimization of betacarotene production by Rhodotorula glutinis using high hydrostatic pressure and response Surface methodology. Journal of Food Science, 72, 325-329.Wang, Y., Chen, H., Liu, Y. X., Ren, R., & Lv, Y. K. (2016). An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater. Bioresource Technology, 211, 711-719, ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2016.03.149.Wang, W., Jung, J., McGorrin, R., Traber, M., Leonard, S., Cherian, G., & Zhao Y. (2018). Investigation of drying conditions on bioactive compounds, lipid oxidation, and enzyme activity of Oregon hazelnuts (Corylus avellana L). LWT, 44, 281-296.Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., & Oszmiański, J. (2014). Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology, 7, 829–841. https://doi.org/10.1007/s11947-013-1130-8.Xu, Y., Xiao, Y., Lagnika, C., Song, J., Li, D., Liu, C., Jiang, N., Zhang, M., & Duan, X. (2019). A comparative study of drying methods on physical characteristics, nutritional properties and antioxidant capacity of broccoli. Drying Technology, 1–11. doi:10.1080/07373937.2019.1656642.Yamaguchi, L., Martinez, G., Catalani, L., Medeiros, M., & Di Mascio P. (1999). Lycopene entrapped in human albumin protects 2'-deoxyguanosine against singlet oxygen damage. Archivos Latinoamericanos de Nutrición, 43(3 Suppl 1), 12S-20S, PMID: 10971838.Yongsawatdigul, J., & Gunasekaran, S. (1996). Microwave vacuum drying of cranberries: Part I. Energy use and efficiency. Journal of Food Processing and Preservation, 20(2), 121-143. https://doi.org/10.1111/j.1745-4549.1996.tb00850.x.Yokoyama, M., Origasa, H., Matsuzaki, M., Matsuzawa, Y., Saito, Y., Ishikawa, Y., Oikawa, S., Sasaki, J., Hishida, H., Itakura, H., Kita, Y., Kitabatake, A., Nakaya, N., Sakata, T., Shimada K. & Shirato K. (2007). Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet, 369, 1090-98.Yuyama, L., Aguiar, J., Yuyama, K., Clement, C., Macedo, S., Favaro, D., Alfonso, M., Casconsellos, M., Pimentel, S., Badolato, E., & Vannucchi, H. (2003). Chemical composition of the fruit mesocarp of three peach palm (Bactris gasipaes) populations grown in Central Amazonia, Brazil. International Journal of Food Sciences and Nutrition, 54(1), 49-56.Zhang, H., Patel, J., Bhunia, K., Al-Ghamdi, S., Sonar, C., Ross, C., Tang, J., & Sablani, S. (2019). Color, vitamin C, β-carotene and sensory quality retention in microwave-assisted thermally sterilized sweet potato puree: Effects of polymeric package gas barrier during storage. Food Packaging and Shelf Life, 21, 100324, ISSN 2214-2894. https://doi.org/10.1016/j.fpsl.2019.100324.Zhao, Y., Wang, M., & Huang, G. (2021). Structure-activity relationship and interaction mechanism of nine structurally similar flavonoids and α-amylase. Journal of Functional Foods, 86, 104739. https://doi.org/10.1016/j.jff.2021.104739.Zepka, L. Q., Borsarelli, C. D., Da Silva, M. A., & Mercadante, A. Z. (2009). Thermal degradation kinetics of carotenoids in a cashew apple juice model and its impact on the system color. Journal of Agricultural and Food Chemistry, 57(17), 7841-7845. https://doi.org/10.1021/jf900558a. PMID: 19663479.Zielinska, M., & Michalska, A. (2016). Microwave-Assisted drying of blueberry (Vaccinium corymbosum L) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212, 671-680.Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225–2253. https://doi.org/10.1080/07373939608917205.Zotarelli, M., Carciofi, B., & Laurindo, J. (2015). Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International, 69, 410-417.Zotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454. https://doi.org/10.1016/j.powtec.2016.10.027.InvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86736/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL60266482.2024.pdf60266482.2024.pdfTesis de Doctorado en Ingeniería - Sistemas Energéticosapplication/pdf4543401https://repositorio.unal.edu.co/bitstream/unal/86736/4/60266482.2024.pdf5f980ff98eebf8d406736a4b7da7aeaeMD54THUMBNAIL60266482.2024.pdf.jpg60266482.2024.pdf.jpgGenerated Thumbnailimage/jpeg4589https://repositorio.unal.edu.co/bitstream/unal/86736/5/60266482.2024.pdf.jpg394776143d619fd56cb796ed9971369eMD55unal/86736oai:repositorio.unal.edu.co:unal/867362024-08-27 23:11:20.771Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=