Modelado CFD de un horno de cocción continua de arepas de Maíz

ilustraciones (principalmente a color), diagramas

Autores:
Zambrano Páez, Diego Alejandro
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86483
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86483
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Stoves
Dinámica de fluidos
Hornos de cocina
Arepas de maiz
Fluid dynamics
Corn Griddle cake
Horno de arepas
Horno continuo
Vorticidad
Curvas de velocidad
Curvas de temperatura
Caracterización de procesos de alimentos
CFD
Arepas oven
Continuous oven
Vorticity
Velocity curves
Temperature curves
Food process characterization
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_71d54f834c2da31f8441990120695b2c
oai_identifier_str oai:repositorio.unal.edu.co:unal/86483
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelado CFD de un horno de cocción continua de arepas de Maíz
dc.title.translated.eng.fl_str_mv CFD modeling of a continuous cooking oven for corn arepas
title Modelado CFD de un horno de cocción continua de arepas de Maíz
spellingShingle Modelado CFD de un horno de cocción continua de arepas de Maíz
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Stoves
Dinámica de fluidos
Hornos de cocina
Arepas de maiz
Fluid dynamics
Corn Griddle cake
Horno de arepas
Horno continuo
Vorticidad
Curvas de velocidad
Curvas de temperatura
Caracterización de procesos de alimentos
CFD
Arepas oven
Continuous oven
Vorticity
Velocity curves
Temperature curves
Food process characterization
title_short Modelado CFD de un horno de cocción continua de arepas de Maíz
title_full Modelado CFD de un horno de cocción continua de arepas de Maíz
title_fullStr Modelado CFD de un horno de cocción continua de arepas de Maíz
title_full_unstemmed Modelado CFD de un horno de cocción continua de arepas de Maíz
title_sort Modelado CFD de un horno de cocción continua de arepas de Maíz
dc.creator.fl_str_mv Zambrano Páez, Diego Alejandro
dc.contributor.advisor.none.fl_str_mv Duque-Daza, Carlos
dc.contributor.author.none.fl_str_mv Zambrano Páez, Diego Alejandro
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Stoves
Dinámica de fluidos
Hornos de cocina
Arepas de maiz
Fluid dynamics
Corn Griddle cake
Horno de arepas
Horno continuo
Vorticidad
Curvas de velocidad
Curvas de temperatura
Caracterización de procesos de alimentos
CFD
Arepas oven
Continuous oven
Vorticity
Velocity curves
Temperature curves
Food process characterization
dc.subject.lcc.eng.fl_str_mv Stoves
dc.subject.lemb.spa.fl_str_mv Dinámica de fluidos
Hornos de cocina
Arepas de maiz
dc.subject.lemb.eng.fl_str_mv Fluid dynamics
Corn Griddle cake
dc.subject.proposal.spa.fl_str_mv Horno de arepas
Horno continuo
Vorticidad
Curvas de velocidad
Curvas de temperatura
Caracterización de procesos de alimentos
dc.subject.proposal.none.fl_str_mv CFD
dc.subject.proposal.eng.fl_str_mv Arepas oven
Continuous oven
Vorticity
Velocity curves
Temperature curves
Food process characterization
description ilustraciones (principalmente a color), diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-16T20:34:31Z
dc.date.available.none.fl_str_mv 2024-07-16T20:34:31Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86483
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86483
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv OpenFOAM Guide/The PIMPLE Algorithm in OpenFOAM - OpenFOAMWiki.
M Al-Nasser, I Fayssal, and F Moukalled. Numerical simulation of bread baking in a convection oven. Applied Thermal Engineering, 184:116252, 2021.
N Chhanwal, D Indrani, KSMS Raghavarao, and C Anandharamakrishnan. Computational fluid dynamics modeling of bread baking process. Food Research International, 44(4):978--983, 2011.
Marwan Darwish and Fadl Moukalled. The finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM® and Matlab®. Springer, 2016.
Paul Dillon. A dual-solver cfd model for conjugate heat transfer in continuous thermal processing. Case Studies in Thermal Engineering, 49:103337, 2023.
Aberham Hailu Feyissa, KV Gernaey, Saranya Ashokkumar, and Jens Adler-Nissen. Modelling of coupled heat and mass transfer during a contact baking process. Journal of food engineering, 106(3):228--235, 2011.
Christopher J Greenshields and Henry G Weller. Notes on computational fluid dynamics: General principles. (No Title), 2022.
My Lan Hoang, Pieter Verboven, Josse De Baerdemaeker, and BM Nicolaı. Analysis of the air flow in a cold store by means of computational fluid dynamics. International Journal of Refrigeration, 23(2):127--140, 2000.
Shabani Nejad Hoda, Seyyed Abdolreza Gandjalikhan Nassab, and Jahanshahi Javaran Ebrahim. Three dimensional numerical simulation of combustion and heat transfer in porous radiant burners. international journal of thermal sciences, 145:106024, 2019.
Uroš Kokolj, Leopold Škerget, and Jure Ravnik. A numerical model of the shortbread baking process in a forced convection oven. Applied Thermal Engineering, 111:1304--1311, 2017.
Yuchuan Lei and Zhenqian Chen. Numerical study of condensation heat transfer in curved triangle microchannels. Procedia Engineering, 205:64--70, 2017.
Yves Mansour, Olivier Rouaud, Rayan Slim, and Pierre Rahmé. Thermal characterization of a high-temperature industrial bread-baking oven: A comprehensive experimental and numerical study. Applied Thermal Engineering, 236:121467, 2024.
Edxon Meneses, Julian E Jaramillo, and Elisabet Mas de les Valls. Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production. Inge Cuc, 15(1):133--141, 2019.
Arpita Mondal and AK Datta. Two-dimensional cfd modeling and simulation of crustless bread baking process. Journal of food Engineering, 99(2):166--174, 2010.
Michele Pinelli and Alessio Suman. Thermal and fluid dynamic analysis of an air-forced convection rotary bread-baking oven by means of an experimental and numerical approach. Applied Thermal Engineering, 117:330--342, 2017.
Emmanuel Purlis and Viviana O Salvadori. Bread baking as a moving boundary problem. part 2: Model validation and numerical simulation. Journal of food engineering, 91(3):434--442, 2009.
Ravula Sudharshan Reddy, Divyasree Arepally, and Ashis K Datta. Estimation of heat flux in bread baking by inverse problem. Journal of Food Engineering, 271:109774, 2020.
Paola Elizabeth Rodríguez-Ocampo, Juan Carlos Alcérreca-Huerta, Rodolfo Silva Casarín, and Edgar Mendoza. Modelo numérico cfd para el análisis termodinámico en aplicaciones de ingeniería costera.
Nantawan Therdthai, Weibiao Zhou, and Thomas Adamczak. Three-dimensional cfd modelling and simulation of the temperature profiles and airflow patterns during a continuous industrial baking process. Journal of Food Engineering, 65(4):599--608, 2004.
Shin-Yee Wong, Weibiao Zhou, and Jinsong Hua. Cfd modeling of an industrial continuous bread-baking process involving u-movement. Journal of Food Engineering, 78(3):888--896, 2007.
J Zhang, AK Datta, and S Mukherjee. Transport processes and large deformation during baking of bread. AIChE Journal, 51(9):2569--2580, 2005.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 61 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86483/2/1072700305.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86483/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86483/3/1072700305.2024.pdf.jpg
bitstream.checksum.fl_str_mv 219374ccce7ab0551b7ef318de8a6c76
eb34b1cf90b7e1103fc9dfd26be24b4a
71b3c8a4c5c1046155f01eece38b2e1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886052842962944
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque-Daza, Carlos6df5376a1aebab9f682db25ff876b63b600Zambrano Páez, Diego Alejandro7bd37b6fbb76ae7e2520ab2a0320fee72024-07-16T20:34:31Z2024-07-16T20:34:31Z2024https://repositorio.unal.edu.co/handle/unal/86483Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (principalmente a color), diagramasPara la industria de las Arepas en Colombia el desarrollo tecnológico viene dado por conocimiento empírico, familias por décadas realizando el mismo proceso con las mismas herramientas, proceso muy natural en el país, es por lo cual que surge la necesidad de lograr dar inicio a la caracterización de los procesos, esto mediante el entendimiento de cada dispositivo por separado. El presente trabajo se enfatizó en los hornos, cuya función en el proceso de fabricación de arepas es la eliminación de carga microbiana, función indispensable en este sector. Mediante un modelo CFD en el software de código abierto OpenFoam se realizó la caracterización del proceso de horneado, definiendo en primera medida las condiciones de cocción y geometrías generales, posteriormente se genera un modelo geométrico y mediante los solucionadores del sofware se resolvieron las ecuaciones de Navier-Stokes . Los resultados obtenidos permitieron evidenciar una fuerte presciencia de vórtices en las zonas entre los quemadores y una rata de crecimiento de la temperatura en pocos pasos de tiempo elevada, con esto se logra comprender las posibles zonas de acumulación de calor ineficientes. A partir de estos hallazgos el presente trabajo intenta incentivar en la investigación de este tipo de hornos, como variantes se podría sugerir para trabajos futuros revisar una posible re-circulación de aire limpio en el interior del horno, incorporación de un modelo de transferencia de masa al producto, entre otros (Texto tomado de la fuente).For the Arepas industry in Colombia, technological development is given by empirical knowledge, families for decades performing the same process with the same tools, a very natural process in the country, which is why the need arises to achieve the beginning of the characterization of the processes, this by understanding each device separately. The present work was emphasized in the ovens, whose function in the arepas manufacturing process is the elimination of microbial load, an indispensable function in this sector. By means of a CFD model in the open source software OpenFoam, the characterization of the baking process was carried out, first defining the baking conditions and general geometries, then a geometric model was generated and the Navier-Stokes equations were solved by means of the software solvers. The results obtained showed a strong presence of vortices in the zones between the burners and a high temperature growth rate in a few time steps, thus understanding the possible inefficient heat accumulation zones. From these findings, the present work tries to encourage the research of this type of furnaces, as variants it could be suggested for future works to review a possible re-circulation of clean air inside the furnace, incorporation of a model of mass transfer to the product, among others.MaestríaMagíster en Ingeniería Mecánicax, 61 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaStovesDinámica de fluidosHornos de cocinaArepas de maizFluid dynamicsCorn Griddle cakeHorno de arepasHorno continuoVorticidadCurvas de velocidadCurvas de temperaturaCaracterización de procesos de alimentosCFDArepas ovenContinuous ovenVorticityVelocity curvesTemperature curvesFood process characterizationModelado CFD de un horno de cocción continua de arepas de MaízCFD modeling of a continuous cooking oven for corn arepasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMOpenFOAM Guide/The PIMPLE Algorithm in OpenFOAM - OpenFOAMWiki.M Al-Nasser, I Fayssal, and F Moukalled. Numerical simulation of bread baking in a convection oven. Applied Thermal Engineering, 184:116252, 2021.N Chhanwal, D Indrani, KSMS Raghavarao, and C Anandharamakrishnan. Computational fluid dynamics modeling of bread baking process. Food Research International, 44(4):978--983, 2011.Marwan Darwish and Fadl Moukalled. The finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM® and Matlab®. Springer, 2016.Paul Dillon. A dual-solver cfd model for conjugate heat transfer in continuous thermal processing. Case Studies in Thermal Engineering, 49:103337, 2023.Aberham Hailu Feyissa, KV Gernaey, Saranya Ashokkumar, and Jens Adler-Nissen. Modelling of coupled heat and mass transfer during a contact baking process. Journal of food engineering, 106(3):228--235, 2011.Christopher J Greenshields and Henry G Weller. Notes on computational fluid dynamics: General principles. (No Title), 2022.My Lan Hoang, Pieter Verboven, Josse De Baerdemaeker, and BM Nicolaı. Analysis of the air flow in a cold store by means of computational fluid dynamics. International Journal of Refrigeration, 23(2):127--140, 2000.Shabani Nejad Hoda, Seyyed Abdolreza Gandjalikhan Nassab, and Jahanshahi Javaran Ebrahim. Three dimensional numerical simulation of combustion and heat transfer in porous radiant burners. international journal of thermal sciences, 145:106024, 2019.Uroš Kokolj, Leopold Škerget, and Jure Ravnik. A numerical model of the shortbread baking process in a forced convection oven. Applied Thermal Engineering, 111:1304--1311, 2017.Yuchuan Lei and Zhenqian Chen. Numerical study of condensation heat transfer in curved triangle microchannels. Procedia Engineering, 205:64--70, 2017.Yves Mansour, Olivier Rouaud, Rayan Slim, and Pierre Rahmé. Thermal characterization of a high-temperature industrial bread-baking oven: A comprehensive experimental and numerical study. Applied Thermal Engineering, 236:121467, 2024.Edxon Meneses, Julian E Jaramillo, and Elisabet Mas de les Valls. Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production. Inge Cuc, 15(1):133--141, 2019.Arpita Mondal and AK Datta. Two-dimensional cfd modeling and simulation of crustless bread baking process. Journal of food Engineering, 99(2):166--174, 2010.Michele Pinelli and Alessio Suman. Thermal and fluid dynamic analysis of an air-forced convection rotary bread-baking oven by means of an experimental and numerical approach. Applied Thermal Engineering, 117:330--342, 2017.Emmanuel Purlis and Viviana O Salvadori. Bread baking as a moving boundary problem. part 2: Model validation and numerical simulation. Journal of food engineering, 91(3):434--442, 2009.Ravula Sudharshan Reddy, Divyasree Arepally, and Ashis K Datta. Estimation of heat flux in bread baking by inverse problem. Journal of Food Engineering, 271:109774, 2020.Paola Elizabeth Rodríguez-Ocampo, Juan Carlos Alcérreca-Huerta, Rodolfo Silva Casarín, and Edgar Mendoza. Modelo numérico cfd para el análisis termodinámico en aplicaciones de ingeniería costera.Nantawan Therdthai, Weibiao Zhou, and Thomas Adamczak. Three-dimensional cfd modelling and simulation of the temperature profiles and airflow patterns during a continuous industrial baking process. Journal of Food Engineering, 65(4):599--608, 2004.Shin-Yee Wong, Weibiao Zhou, and Jinsong Hua. Cfd modeling of an industrial continuous bread-baking process involving u-movement. Journal of Food Engineering, 78(3):888--896, 2007.J Zhang, AK Datta, and S Mukherjee. Transport processes and large deformation during baking of bread. AIChE Journal, 51(9):2569--2580, 2005.BibliotecariosEstudiantesGrupos comunitariosInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesORIGINAL1072700305.2024.pdf1072700305.2024.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf7194314https://repositorio.unal.edu.co/bitstream/unal/86483/2/1072700305.2024.pdf219374ccce7ab0551b7ef318de8a6c76MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86483/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1072700305.2024.pdf.jpg1072700305.2024.pdf.jpgGenerated Thumbnailimage/jpeg4556https://repositorio.unal.edu.co/bitstream/unal/86483/3/1072700305.2024.pdf.jpg71b3c8a4c5c1046155f01eece38b2e1dMD53unal/86483oai:repositorio.unal.edu.co:unal/864832024-07-16 23:05:15.319Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=