Modelado CFD de un horno de cocción continua de arepas de Maíz
ilustraciones (principalmente a color), diagramas
- Autores:
-
Zambrano Páez, Diego Alejandro
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86483
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Stoves
Dinámica de fluidos
Hornos de cocina
Arepas de maiz
Fluid dynamics
Corn Griddle cake
Horno de arepas
Horno continuo
Vorticidad
Curvas de velocidad
Curvas de temperatura
Caracterización de procesos de alimentos
CFD
Arepas oven
Continuous oven
Vorticity
Velocity curves
Temperature curves
Food process characterization
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_71d54f834c2da31f8441990120695b2c |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86483 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelado CFD de un horno de cocción continua de arepas de Maíz |
dc.title.translated.eng.fl_str_mv |
CFD modeling of a continuous cooking oven for corn arepas |
title |
Modelado CFD de un horno de cocción continua de arepas de Maíz |
spellingShingle |
Modelado CFD de un horno de cocción continua de arepas de Maíz 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Stoves Dinámica de fluidos Hornos de cocina Arepas de maiz Fluid dynamics Corn Griddle cake Horno de arepas Horno continuo Vorticidad Curvas de velocidad Curvas de temperatura Caracterización de procesos de alimentos CFD Arepas oven Continuous oven Vorticity Velocity curves Temperature curves Food process characterization |
title_short |
Modelado CFD de un horno de cocción continua de arepas de Maíz |
title_full |
Modelado CFD de un horno de cocción continua de arepas de Maíz |
title_fullStr |
Modelado CFD de un horno de cocción continua de arepas de Maíz |
title_full_unstemmed |
Modelado CFD de un horno de cocción continua de arepas de Maíz |
title_sort |
Modelado CFD de un horno de cocción continua de arepas de Maíz |
dc.creator.fl_str_mv |
Zambrano Páez, Diego Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Duque-Daza, Carlos |
dc.contributor.author.none.fl_str_mv |
Zambrano Páez, Diego Alejandro |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Stoves Dinámica de fluidos Hornos de cocina Arepas de maiz Fluid dynamics Corn Griddle cake Horno de arepas Horno continuo Vorticidad Curvas de velocidad Curvas de temperatura Caracterización de procesos de alimentos CFD Arepas oven Continuous oven Vorticity Velocity curves Temperature curves Food process characterization |
dc.subject.lcc.eng.fl_str_mv |
Stoves |
dc.subject.lemb.spa.fl_str_mv |
Dinámica de fluidos Hornos de cocina Arepas de maiz |
dc.subject.lemb.eng.fl_str_mv |
Fluid dynamics Corn Griddle cake |
dc.subject.proposal.spa.fl_str_mv |
Horno de arepas Horno continuo Vorticidad Curvas de velocidad Curvas de temperatura Caracterización de procesos de alimentos |
dc.subject.proposal.none.fl_str_mv |
CFD |
dc.subject.proposal.eng.fl_str_mv |
Arepas oven Continuous oven Vorticity Velocity curves Temperature curves Food process characterization |
description |
ilustraciones (principalmente a color), diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-16T20:34:31Z |
dc.date.available.none.fl_str_mv |
2024-07-16T20:34:31Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86483 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86483 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
OpenFOAM Guide/The PIMPLE Algorithm in OpenFOAM - OpenFOAMWiki. M Al-Nasser, I Fayssal, and F Moukalled. Numerical simulation of bread baking in a convection oven. Applied Thermal Engineering, 184:116252, 2021. N Chhanwal, D Indrani, KSMS Raghavarao, and C Anandharamakrishnan. Computational fluid dynamics modeling of bread baking process. Food Research International, 44(4):978--983, 2011. Marwan Darwish and Fadl Moukalled. The finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM® and Matlab®. Springer, 2016. Paul Dillon. A dual-solver cfd model for conjugate heat transfer in continuous thermal processing. Case Studies in Thermal Engineering, 49:103337, 2023. Aberham Hailu Feyissa, KV Gernaey, Saranya Ashokkumar, and Jens Adler-Nissen. Modelling of coupled heat and mass transfer during a contact baking process. Journal of food engineering, 106(3):228--235, 2011. Christopher J Greenshields and Henry G Weller. Notes on computational fluid dynamics: General principles. (No Title), 2022. My Lan Hoang, Pieter Verboven, Josse De Baerdemaeker, and BM Nicolaı. Analysis of the air flow in a cold store by means of computational fluid dynamics. International Journal of Refrigeration, 23(2):127--140, 2000. Shabani Nejad Hoda, Seyyed Abdolreza Gandjalikhan Nassab, and Jahanshahi Javaran Ebrahim. Three dimensional numerical simulation of combustion and heat transfer in porous radiant burners. international journal of thermal sciences, 145:106024, 2019. Uroš Kokolj, Leopold Škerget, and Jure Ravnik. A numerical model of the shortbread baking process in a forced convection oven. Applied Thermal Engineering, 111:1304--1311, 2017. Yuchuan Lei and Zhenqian Chen. Numerical study of condensation heat transfer in curved triangle microchannels. Procedia Engineering, 205:64--70, 2017. Yves Mansour, Olivier Rouaud, Rayan Slim, and Pierre Rahmé. Thermal characterization of a high-temperature industrial bread-baking oven: A comprehensive experimental and numerical study. Applied Thermal Engineering, 236:121467, 2024. Edxon Meneses, Julian E Jaramillo, and Elisabet Mas de les Valls. Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production. Inge Cuc, 15(1):133--141, 2019. Arpita Mondal and AK Datta. Two-dimensional cfd modeling and simulation of crustless bread baking process. Journal of food Engineering, 99(2):166--174, 2010. Michele Pinelli and Alessio Suman. Thermal and fluid dynamic analysis of an air-forced convection rotary bread-baking oven by means of an experimental and numerical approach. Applied Thermal Engineering, 117:330--342, 2017. Emmanuel Purlis and Viviana O Salvadori. Bread baking as a moving boundary problem. part 2: Model validation and numerical simulation. Journal of food engineering, 91(3):434--442, 2009. Ravula Sudharshan Reddy, Divyasree Arepally, and Ashis K Datta. Estimation of heat flux in bread baking by inverse problem. Journal of Food Engineering, 271:109774, 2020. Paola Elizabeth Rodríguez-Ocampo, Juan Carlos Alcérreca-Huerta, Rodolfo Silva Casarín, and Edgar Mendoza. Modelo numérico cfd para el análisis termodinámico en aplicaciones de ingeniería costera. Nantawan Therdthai, Weibiao Zhou, and Thomas Adamczak. Three-dimensional cfd modelling and simulation of the temperature profiles and airflow patterns during a continuous industrial baking process. Journal of Food Engineering, 65(4):599--608, 2004. Shin-Yee Wong, Weibiao Zhou, and Jinsong Hua. Cfd modeling of an industrial continuous bread-baking process involving u-movement. Journal of Food Engineering, 78(3):888--896, 2007. J Zhang, AK Datta, and S Mukherjee. Transport processes and large deformation during baking of bread. AIChE Journal, 51(9):2569--2580, 2005. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
x, 61 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86483/2/1072700305.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86483/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86483/3/1072700305.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
219374ccce7ab0551b7ef318de8a6c76 eb34b1cf90b7e1103fc9dfd26be24b4a 71b3c8a4c5c1046155f01eece38b2e1d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089363909246976 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque-Daza, Carlos6df5376a1aebab9f682db25ff876b63b600Zambrano Páez, Diego Alejandro7bd37b6fbb76ae7e2520ab2a0320fee72024-07-16T20:34:31Z2024-07-16T20:34:31Z2024https://repositorio.unal.edu.co/handle/unal/86483Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (principalmente a color), diagramasPara la industria de las Arepas en Colombia el desarrollo tecnológico viene dado por conocimiento empírico, familias por décadas realizando el mismo proceso con las mismas herramientas, proceso muy natural en el país, es por lo cual que surge la necesidad de lograr dar inicio a la caracterización de los procesos, esto mediante el entendimiento de cada dispositivo por separado. El presente trabajo se enfatizó en los hornos, cuya función en el proceso de fabricación de arepas es la eliminación de carga microbiana, función indispensable en este sector. Mediante un modelo CFD en el software de código abierto OpenFoam se realizó la caracterización del proceso de horneado, definiendo en primera medida las condiciones de cocción y geometrías generales, posteriormente se genera un modelo geométrico y mediante los solucionadores del sofware se resolvieron las ecuaciones de Navier-Stokes . Los resultados obtenidos permitieron evidenciar una fuerte presciencia de vórtices en las zonas entre los quemadores y una rata de crecimiento de la temperatura en pocos pasos de tiempo elevada, con esto se logra comprender las posibles zonas de acumulación de calor ineficientes. A partir de estos hallazgos el presente trabajo intenta incentivar en la investigación de este tipo de hornos, como variantes se podría sugerir para trabajos futuros revisar una posible re-circulación de aire limpio en el interior del horno, incorporación de un modelo de transferencia de masa al producto, entre otros (Texto tomado de la fuente).For the Arepas industry in Colombia, technological development is given by empirical knowledge, families for decades performing the same process with the same tools, a very natural process in the country, which is why the need arises to achieve the beginning of the characterization of the processes, this by understanding each device separately. The present work was emphasized in the ovens, whose function in the arepas manufacturing process is the elimination of microbial load, an indispensable function in this sector. By means of a CFD model in the open source software OpenFoam, the characterization of the baking process was carried out, first defining the baking conditions and general geometries, then a geometric model was generated and the Navier-Stokes equations were solved by means of the software solvers. The results obtained showed a strong presence of vortices in the zones between the burners and a high temperature growth rate in a few time steps, thus understanding the possible inefficient heat accumulation zones. From these findings, the present work tries to encourage the research of this type of furnaces, as variants it could be suggested for future works to review a possible re-circulation of clean air inside the furnace, incorporation of a model of mass transfer to the product, among others.MaestríaMagíster en Ingeniería Mecánicax, 61 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaStovesDinámica de fluidosHornos de cocinaArepas de maizFluid dynamicsCorn Griddle cakeHorno de arepasHorno continuoVorticidadCurvas de velocidadCurvas de temperaturaCaracterización de procesos de alimentosCFDArepas ovenContinuous ovenVorticityVelocity curvesTemperature curvesFood process characterizationModelado CFD de un horno de cocción continua de arepas de MaízCFD modeling of a continuous cooking oven for corn arepasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMOpenFOAM Guide/The PIMPLE Algorithm in OpenFOAM - OpenFOAMWiki.M Al-Nasser, I Fayssal, and F Moukalled. Numerical simulation of bread baking in a convection oven. Applied Thermal Engineering, 184:116252, 2021.N Chhanwal, D Indrani, KSMS Raghavarao, and C Anandharamakrishnan. Computational fluid dynamics modeling of bread baking process. Food Research International, 44(4):978--983, 2011.Marwan Darwish and Fadl Moukalled. The finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM® and Matlab®. Springer, 2016.Paul Dillon. A dual-solver cfd model for conjugate heat transfer in continuous thermal processing. Case Studies in Thermal Engineering, 49:103337, 2023.Aberham Hailu Feyissa, KV Gernaey, Saranya Ashokkumar, and Jens Adler-Nissen. Modelling of coupled heat and mass transfer during a contact baking process. Journal of food engineering, 106(3):228--235, 2011.Christopher J Greenshields and Henry G Weller. Notes on computational fluid dynamics: General principles. (No Title), 2022.My Lan Hoang, Pieter Verboven, Josse De Baerdemaeker, and BM Nicolaı. Analysis of the air flow in a cold store by means of computational fluid dynamics. International Journal of Refrigeration, 23(2):127--140, 2000.Shabani Nejad Hoda, Seyyed Abdolreza Gandjalikhan Nassab, and Jahanshahi Javaran Ebrahim. Three dimensional numerical simulation of combustion and heat transfer in porous radiant burners. international journal of thermal sciences, 145:106024, 2019.Uroš Kokolj, Leopold Škerget, and Jure Ravnik. A numerical model of the shortbread baking process in a forced convection oven. Applied Thermal Engineering, 111:1304--1311, 2017.Yuchuan Lei and Zhenqian Chen. Numerical study of condensation heat transfer in curved triangle microchannels. Procedia Engineering, 205:64--70, 2017.Yves Mansour, Olivier Rouaud, Rayan Slim, and Pierre Rahmé. Thermal characterization of a high-temperature industrial bread-baking oven: A comprehensive experimental and numerical study. Applied Thermal Engineering, 236:121467, 2024.Edxon Meneses, Julian E Jaramillo, and Elisabet Mas de les Valls. Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production. Inge Cuc, 15(1):133--141, 2019.Arpita Mondal and AK Datta. Two-dimensional cfd modeling and simulation of crustless bread baking process. Journal of food Engineering, 99(2):166--174, 2010.Michele Pinelli and Alessio Suman. Thermal and fluid dynamic analysis of an air-forced convection rotary bread-baking oven by means of an experimental and numerical approach. Applied Thermal Engineering, 117:330--342, 2017.Emmanuel Purlis and Viviana O Salvadori. Bread baking as a moving boundary problem. part 2: Model validation and numerical simulation. Journal of food engineering, 91(3):434--442, 2009.Ravula Sudharshan Reddy, Divyasree Arepally, and Ashis K Datta. Estimation of heat flux in bread baking by inverse problem. Journal of Food Engineering, 271:109774, 2020.Paola Elizabeth Rodríguez-Ocampo, Juan Carlos Alcérreca-Huerta, Rodolfo Silva Casarín, and Edgar Mendoza. Modelo numérico cfd para el análisis termodinámico en aplicaciones de ingeniería costera.Nantawan Therdthai, Weibiao Zhou, and Thomas Adamczak. Three-dimensional cfd modelling and simulation of the temperature profiles and airflow patterns during a continuous industrial baking process. Journal of Food Engineering, 65(4):599--608, 2004.Shin-Yee Wong, Weibiao Zhou, and Jinsong Hua. Cfd modeling of an industrial continuous bread-baking process involving u-movement. Journal of Food Engineering, 78(3):888--896, 2007.J Zhang, AK Datta, and S Mukherjee. Transport processes and large deformation during baking of bread. AIChE Journal, 51(9):2569--2580, 2005.BibliotecariosEstudiantesGrupos comunitariosInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesORIGINAL1072700305.2024.pdf1072700305.2024.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf7194314https://repositorio.unal.edu.co/bitstream/unal/86483/2/1072700305.2024.pdf219374ccce7ab0551b7ef318de8a6c76MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86483/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1072700305.2024.pdf.jpg1072700305.2024.pdf.jpgGenerated Thumbnailimage/jpeg4556https://repositorio.unal.edu.co/bitstream/unal/86483/3/1072700305.2024.pdf.jpg71b3c8a4c5c1046155f01eece38b2e1dMD53unal/86483oai:repositorio.unal.edu.co:unal/864832024-07-16 23:05:15.319Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |