Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante
ilustraciones. diagramas, tablas
- Autores:
-
Eraso Grisales, Soany
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81633
- Palabra clave:
- 640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidas
660 - Ingeniería química::664 - Tecnología de alimentos
Frutas Deshidratadas
Uchuvas deshidratadas
Dried fruit
Antioxidantes
Sistemas coloidales
Deshidratación de alimentos
Granulación de polvos de frutas
Physalis peruviana L.
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_6dfd4a691805333fd3700bc4f5cba2c8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81633 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante |
dc.title.translated.eng.fl_str_mv |
Development of an agglomerated cape gooseberry (Physalis peruviana L.) product with instantaneous characteristics and potential antioxidant effect |
title |
Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante |
spellingShingle |
Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante 640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidas 660 - Ingeniería química::664 - Tecnología de alimentos Frutas Deshidratadas Uchuvas deshidratadas Dried fruit Antioxidantes Sistemas coloidales Deshidratación de alimentos Granulación de polvos de frutas Physalis peruviana L. |
title_short |
Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante |
title_full |
Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante |
title_fullStr |
Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante |
title_full_unstemmed |
Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante |
title_sort |
Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante |
dc.creator.fl_str_mv |
Eraso Grisales, Soany |
dc.contributor.advisor.none.fl_str_mv |
Cortés Rodríguez, Misael Hurtado Benavides, Andrés Mauricio |
dc.contributor.author.none.fl_str_mv |
Eraso Grisales, Soany |
dc.contributor.researchgroup.spa.fl_str_mv |
Alimentos y Nutraceuticos Gaf (Grupo de Alimentos Funcionales) Tecnologías Emergentes en Agroindustria (TEA) - UDENAR |
dc.subject.ddc.spa.fl_str_mv |
640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidas 660 - Ingeniería química::664 - Tecnología de alimentos |
topic |
640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidas 660 - Ingeniería química::664 - Tecnología de alimentos Frutas Deshidratadas Uchuvas deshidratadas Dried fruit Antioxidantes Sistemas coloidales Deshidratación de alimentos Granulación de polvos de frutas Physalis peruviana L. |
dc.subject.lemb.spa.fl_str_mv |
Frutas Deshidratadas Uchuvas deshidratadas |
dc.subject.lemb.eng.fl_str_mv |
Dried fruit |
dc.subject.proposal.spa.fl_str_mv |
Antioxidantes Sistemas coloidales Deshidratación de alimentos Granulación de polvos de frutas Physalis peruviana L. |
description |
ilustraciones. diagramas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-28T15:47:17Z |
dc.date.available.none.fl_str_mv |
2022-06-28T15:47:17Z |
dc.date.issued.none.fl_str_mv |
2022-06-28 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81633 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81633 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abberger, T., Seo, A., & Schæfer, T. (2002). The effect of droplet size and powder particle size on the mechanisms of nucleation and growth in fluid bed melt agglomeration. 249, 185–197. Agarwal, R., & Bosco, S. (2014). Optimization of Viscozyme-L assisted extraction of coconut milk and virgin coconut oil. Asian Journal of Dairy and Food Research, 33(4), 276–284. https://doi.org/10.5958/0976-0563.2014.00617.4 Agronet. (2021). Estadísticas home. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 Ahmad, S., Malik, A., Yasmin, R., Ullah, N., Gul, W., Muhammad, P., Nawaz, R., & Afza, N. (1999). Withanolides from Physalis peruviana. Phytochemistry, 50, 647–651. Akhavan, S., Mahdi, S., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin , gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011 Alcantara, Y., Alcantara, Y., Tejada, A., & Ros, G. (2018). Effect of different concentrations of pulverized mesocarp of Citrus paradisi Macf. on the bromatological characteristics of spray-dried lemon juice powder. Food Science and Nutrition, 6(5), 1261–1268. https://doi.org/10.1002/fsn3.679 Álvarez García, C. (2018). Application of Enzymes for Fruit Juice Processing. In G. Rajauria & B. Tiwari (Eds.), Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 201–216). Academic Press. https://doi.org/10.1016/B978-0-12-802230-6.00011-4 Amao, I. (2016). Health Benefits of Fruits and Vegetables: Review from Sub-Saharan Africa. In M. Asaduzzaman & T. Asao (Eds.), Vegetables. Importance of Quality Vegetables to Human Health: Vol. i (1st ed., p. 13). IntechOpen. https://doi.org/10.5772/intechopen.74472 Abstract Analdex, A. N. de C. E. (2019). Comportamiento de la uchuva. 2018–2020. Analdex, A. N. de C. E. (2021). Informe de las exportaciones de uchuva. In Analdex.org (Issue 13). AOAC, A. of O. A. C. (2012). Official Methods of Analysis (K. Helrich (ed.); 19th ed.). Araujo, H. C. S., Jesus, M. S., Leite Neta, M. T. S., Gualberto, N. C., Matos, C. M. S., Rajan, M., Rajkumar, G., Nogueira, J. P., & Narain, N. (2020). Effect of maltodextrin and gum arabic on antioxidant activity and phytochemical profiles of spray-dried powders of sapota (Manilkara zapota) fruit juice. Drying Technology, 39(3), 392–404. https://doi.org/10.1080/07373937.2020.1839487 Arias, F., & Rendón, S. (2015). Inteligencia de mercados para la cadena del lulo (Solanum quitoense). Journal of Agricultural and Animal Science, 3(2), 38–47. Areiza, N., Robles, J., Zamudio, J., Giraldez, L., Echeverria, V., Barrera, B., Aliev, G., Sahebkar, A., Ashraf, G., & Barreto, G. (2018). Extracts of Physalis peruviana protect astrocytic cells under oxidative stress with rotenone. Frontiers in Chemistry, 6(276), 1–13. https://doi.org/10.3389/fchem.2018.00276 Atalar, I., Kurt, A., Saricaoğlu, F., Gül, O., & Gençcelep, H. (2021). Agglomerated mushroom (Agaricus bisporus) powder: Optimization of top spray fluidized bed agglomeration conditions. Journal of Food Process Engineering, 44(6), 1–12. https://doi.org/10.1111/jfpe.13687 Atalar, I., & Yazici, F. (2018). Influence of top spray fluidized bed agglomeration conditions on the reconstitution property and structure modification of skim yoghurt powder. Journal of Food Processing and Preservation, 42(1), 1–10. https://doi.org/10.1111/jfpp.13414 Atalar, I., & Yazici, F. (2019). Effect of different binders on reconstitution behaviors and physical, structural, and morphological properties of fluidized bed agglomerated yoghurt powder. Drying Technology, 37(13), 1656–1664. https://doi.org/10.1080/07373937.2018.1529038 Atalar, I., & Yazici, F. (2021). Top-Spray Agglomeration Process Applications in Food Powders : A Review of Recent Research Applications in Food Products. European Food Science and Engineering, 2(1), 18–25. Augusto, P. E. D., Ibarz, A., & Cristianini, M. (2012). Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: Time-dependent and steady-state shear. Journal of Food Engineering, 111(4), 570–579. https://doi.org/10.1016/j.jfoodeng.2012.03.015 Balaguera, H., Martínez, C., & Herrera, A. (2016). Comportamiento poscosecha de frutos de uchuva (Physalis peruviana L.): Efecto de diferentes dosis y tiempos de exposición al 1-metilciclopropeno. Bioagro, 28(1), 21–28. Bazaria, B., & Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi Society of Agricultural Sciences, 17(4), 408–415. https://doi.org/10.1016/j.jssas.2016.09.007 Barkouti, A., Turchiuli, C., Carcel, J. A., & Dumoulin, E. (2013). Milk powder agglomerate growth and properties in fluidized bed agglomeration. Dairy Science and Technology, 93(4–5), 523–535. https://doi.org/10.1007/s13594-013-0132-7 Bernal, C. A., Castellanos, L., Aragón, D. M., Martínez-Matamoros, D., Jiménez, C., Baena, Y., & Ramos, F. A. (2018). Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydrate Research, 461, 4–10. https://doi.org/10.1016/j.carres.2018.03.003 Bhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of Food Powders: Processes and Properties. In Handbook of Food Powders: Processes and Properties. https://doi.org/10.1533/9780857098672 Bhusari, S. N., Muzaffar, K., & Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, 266, 354–364. https://doi.org/10.1016/j.powtec.2014.06.038 Borchani, M., Masmoudi, M., Ben Amira, A., Abbès, F., Yaich, H., Besbes, S., Blecker, C., Garvin, A., Ibarz, A., & Attia, H. (2019). Effect of enzymatic treatment and concentration method on chemical, rheological, microstructure and thermal properties of prickly pear syrup. LWT, 113, 108314. https://doi.org/10.1016/j.lwt.2019.108314 Braga, V., Guidi, L. R., de Santana, R. C., & Zotarelli, M. F. (2020). Production and characterization of pineapple-mint juice by spray drying. Powder Technology, 375, 409–419. https://doi.org/10.1016/j.powtec.2020.08.012 Bravo, K., & Osorio, E. (2016). Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit. Food Chemistry, 197, 185–190. https://doi.org/10.1016/j.foodchem.2015.10.126 Bravo, K., Sepulveda-Ortega, S., Lara-Guzman, O., Navas-Arboleda, A. A., & Osorio, E. (2015). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.). Journal of the Science of Food and Agriculture, 95(7), 1562–1569. https://doi.org/10.1002/jsfa.6866 Cabrera O, Y. A., Estrada M, E. M., & Cortés R, M. (2017). The influence of drying on the physiological quality of cape gooseberry (Physalis peruviana L.) fruits added with active components. Acta Agronomica, 66(4), 512–518. https://doi.org/10.15446/acag.v66n4.59507 Cal, K., & Sollohub, K. (2010). Spray Drying Technique . I : Hardware and Process Parameters. Journal of Pharmaceutical Sciences, 99(2), 575–586. https://doi.org/10.1002/jps Cano-Sarmiento, C., Téllez-Medina, D., Viveros-Contreras, R., Cornejo-Mazón, M., Figueroa-Hernández, C., García-Armenta, E., Alamilla-Beltrán, L., García, H., & Gutiérrez-López, G. (2018). Zeta Potential of Food Matrices. Food Engineering Reviews, 10(3), 113–138. https://doi.org/10.1007/s12393-018-9176-z Castro Sánchez, A. M., Puentes Montañez, G. A., & Botía Rodríguez, Y. (2017). Alternativas de procesamiento de uchuva (Physalis peruviana L) para el aprovechamiento de frutos no aptos para la comercialización en fresco. Revista de Investigación Agraria y Ambiental, 5(1), 121. https://doi.org/10.22490/21456453.939 Cerreti, M., Liburdi, K., Benucci, I., & Esti, M. (2016). The effect of pectinase and protease treatment on turbidity and on haze active molecules in pomegranate juice. LWT - Food Science and Technology, 73, 326–333. https://doi.org/10.1016/j.lwt.2016.06.030 Chang, L., Karim, R., Sabo, A., & Mohd, H. (2018). Characterization of enzyme-liquefied soursop (Annona muricata L.) puree. LWT - Food Science and Technology, 94, 40–49. https://doi.org/10.1016/j.lwt.2018.04.027 Chen, Q., Bi, J., Zhou, Y., Liu, X., Wu, X., & Chen, R. (2014). Multi-objective Optimization of Spray Drying of Jujube (Zizyphus jujuba Miller) Powder Using Response Surface Methodology. Food and Bioprocess Technology, 7(6), 1807–1818. https://doi.org/10.1007/s11947-013-1171-z Cheng, Y., Lan, H., Zhao, L., Wang, K., & Hu, Z. (2018). Characterization and Prebiotic Potential of Longan Juice Obtained by Enzymatic Conversion of Constituent Sucrose into Fructo-Oligosaccharides. Molecules, 23(10), 2596. https://doi.org/10.3390/molecules23102596 Corazza, G. O., Bilibio, D., Zanella, O., Nunes, A. L., Bender, J. P., Carniel, N., dos Santos, P. P., & Priamo, W. L. (2018). Pressurized liquid extraction of polyphenols from Goldenberry: Influence on antioxidant activity and chemical composition. Food and Bioproducts Processing, 112, 63–68. https://doi.org/10.1016/j.fbp.2018.09.001 Cortés, M., Hernández, G., & Estrada, E. (2017). Optimization of the spray drying process for obtaining cape gooseberry powder: an innovative and promising functional food. VITAE, 24(1), 59–67. Cortés R, M., Estrada M, E. M., & Hernández, G. (2017). Optimization of the Spray Drying Process for Obtaining Cape Gooseberry Powder: an Innovative and Promising Functional Food. Revista Vitae, 24(1), 59–67. https://doi.org/10.17533/udea.vitae.v24n1a07 Cortés, M., Herrera, E. A., & Gil, J. (2016). Impregnación de uchuva Impregnación de uchuva (Physalis peruviana L.) de forma semiesférica con una emulsión fortificante. Biotecnología En El Sector Agropecuario y Agroindustrial, 14(1), 27–36. Cuq, B., Mandato, S., Jeantet, R., Saleh, K., & Ruiz, T. (2013). Agglomeration/granulation in food powder production. In Handbook of Food Powders: Processes and Properties. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672.1.150 Dacanal, G. C., & Menegalli, F. C. (2010). Selection of operational parameters for the production of instant soy protein isolate by pulsed fluid bed agglomeration. Powder Technology, 203(3), 565–573. https://doi.org/10.1016/j.powtec.2010.06.023 Dag, D., Kilercioglu, M., & Oztop, M. H. (2017). Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT - Food Science and Technology, 83, 86–94. https://doi.org/10.1016/j.lwt.2017.05.007 Dahdouh, L., Delalonde, M., Ricci, J., Ruiz, E., & Wisnewski, C. (2018). Influence of high shear rate on particles size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies, 48(March), 304–312. https://doi.org/10.1016/j.ifset.2018.07.006 Dahdouh, L., Wisniewski, C., Ricci, J., Vachoud, L., Dornier, M., & Delalonde, M. (2016). Rheological study of orange juices for a better knowledge of their suspended solids interactions at low and high concentration. Journal of Food Engineering, 174, 15–20. https://doi.org/10.1016/j.jfoodeng.2015.11.008 Daza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20–29. https://doi.org/10.1016/j.fbp.2015.10.001 Decco, N. P. (2019). Claves para reducir las pérdidas poscosecha. Claves Para Reducir Las Pérdidas Poscosecha. https://www.deccoiberica.es/claves-para-reducir-las-perdidas-poscosecha/ de Figueiredo, V., Yamashita, F., Vanzela, A., Ida, E., & Kurozawa, L. (2018). Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. Journal of Food Science and Technology, 55(4), 1508–1517. https://doi.org/10.1007/s13197-018-3067-4 De la Vega, J., Cañarejo, M., Cabascango, O., & Lara, M. (2019). Dehydrated Physalis peruviana L. In Two Ripening States and its Effect on Total Phenolic Compounds, Antioxidant Capacity, Carotenes, Color and Ascorbic acid. Informacion Tecnologica, 30(5), 91–100. https://doi.org/10.4067/S0718-07642019000500091 de los Rios, C., Cortés, M., & Arango, J. (2021). Physicochemical quality and antioxidant activity of blackberry suspensions: Compositional and process effects. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.15498 de Moraes Crizel, T., Jablonski, A., de Oliveira Rios, A., Rech, R., & Flôres, S. (2013). Dietary fiber from orange byproducts as a potential fat replacer. LWT - Food Science and Technology, 53(1), 9–14. https://doi.org/10.1016/j.lwt.2013.02.002 de Souza, M. M. B., Santos, A. M. P., Converti, A., & Maciel, M. I. S. (2020). Optimisation of umbu juice spray drying, and physicochemical, microbiological and sensory evaluation of atomised powder. Journal of Microencapsulation, 37(3), 230–241. https://doi.org/10.1080/02652048.2020.1720031 Dewhirst, R. A., & Fry, S. C. (2018). The oxidation of dehydroascorbic acid and 2 , 3- diketogulonate by distinct reactive oxygen species. 0, 3451–3470. Dhanalakshmi, K., Ghosal, S., & Bhattacharya, S. (2011). Agglomeration of food powder and applications. Critical Reviews in Food Science and Nutrition, 51(5), 432–441. https://doi.org/10.1080/10408391003646270 Diab, M. M. S., Aref, A. M., Othman, M. S., Al-Quraishy, S., Abdel Moneim, A. E., & Dkhil, M. A. (2014). The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity. Food and Chemical Toxicology, 74, 98–106. https://doi.org/10.1016/j.fct.2014.09.013 Duque, A., Giraldo, G., & Quintero, V. (2018). Caracterización de la fruta, pulpa y concentrado de uchuva (Physalis peruviana L.). Temas Agrarios, 16(1), 75. https://doi.org/10.21897/rta.v16i1.686 El Sheikha, A. F., Mohammed S, Z., Bakr, A. A., El Habashy, M. M., & Montet, D. (2010). Biochemical and sensory quality of physalis (physalis pubescens l.) juice. Journal of Food Processing and Preservation, 34(3), 541–555. https://doi.org/10.1111/j.1745-4549.2009.00382.x Elahi Jan, N., & Kawabata, S. (2011). Relationship between fruit soluble solid content and the sucrose concentration of the phloem sap at different leaf to fruit ratios in tomato. J. Japan. Soc. Hort. Sci, 80(3), 314–321. www.jstage.jst.go.jp/browse/jjshs1JSHS Ellong, E. N., Billard, C., Adenet, S., & Rochefort, K. (2015). Polyphenols, Carotenoids, Vitamin C Content in Tropical Fruits and Vegetables and Impact of Processing Methods. Food and Nutrition Sciences, 06(03), 299–313. https://doi.org/10.4236/fns.2015.63030 Ermiş, E. (2015). Food Powders: Properties and Characterization. In E. Ermiş (Ed.), Food Engineering Series. https://doi.org/https://doi.org/10.1007/978-3-030-48908-3 Estrada, M., Cortés, M., & Gil, J. (2017). Guacamole powder: Standardization of the spray drying process. Vitae, 24(2), 102–112. https://doi.org/10.17533/udea.vitae.v24n2a03 Etzbach, L., Meinert, M., Faber, T., Klein, C., Schieber, A., & Weber, F. (2020). Effects of carrier agents on powder properties, stability of carotenoids, and encapsulation efficiency of goldenberry (Physalis peruviana L.) powder produced by co-current spray drying. Current Research in Food Science, 3(November 2019), 73–81. https://doi.org/10.1016/j.crfs.2020.03.002 Etzbach, L., Pfeiffer, A., Schieber, A., & Weber, F. (2019). Effects of thermal pasteurization and ultrasound treatment on the peroxidase activity, carotenoid composition, and physicochemical properties of goldenberry (Physalis peruviana L.) puree. LWT - Food Science and Technology, 100, 69–74. https://doi.org/10.1016/j.lwt.2018.10.032 Eun, J. B., Maruf, A., Das, P. R., & Nam, S. H. (2020). A review of encapsulation of carotenoids using spray drying and freeze drying. Critical Reviews in Food Science and Nutrition, 60(21), 3547–3572. https://doi.org/10.1080/10408398.2019.1698511 FAO. (1995). Codex Alimentarius : Food Additives. In General standard for food additives (p. 480). https://sis.binus.ac.id/2016/12/15/pasar-monopoli/ FAO, F. and A. O. of the U. N. (2003). Food energy – methods of analysis and conversion factors. In FOOD AND NUTRITION PAPER 77. Favaro, R., Gomes, J., Andreola, K., & Pereira, O. (2020). Wettability improvement of pea protein isolate agglomerated in pulsed fluid bed. Particulate Science and Technology, 38(4), 511–521. https://doi.org/10.1080/02726351.2019.1574940 Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667–675. https://doi.org/10.1016/j.fbp.2012.04.006 Fennema, O., & Tannenbaum, S. (2010). Introducción a la química de los alimentos. Quimica de Los Alimentos, 3–27. Ferrari, C., Marconi, S., Alvim, I., & de Aguirre, J. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Drying Technology, 31(4), 470–478. https://doi.org/10.1080/07373937.2012.742103 Ferrari, C., Marconi, S., Alvim, I., Vissotto, F., & de Aguirre, J. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology, 47(6), 1237–1245. https://doi.org/10.1111/j.1365-2621.2012.02964.x Figueroa, P. M., Ceballos, M. A., & Hurtado, A. M. (2016). Microencapsulação por secagem por atomização de óleo de amora (Rubus glaucus) extraído com CO2 supercrítico. Revista Colombiana de Quimica, 45(2), 39–47. https://doi.org/10.15446/rev.colomb.quim.v45n2.57481 FINAGRO. (2014). Perspectiva del sector agropecuario Colombiano. Fondo Para El Finanaciamiento Del Sector Agropecuario, 28. https://www.finagro.com.co/sites/default/files/2014_09_09_perspectivas_agropecuarias.pdf Fischer, G., Almanza-Merchán, P., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 40. https://doi.org/10.1590/0100-2945-441/13 Fischer, G., Herrera, A., & Almanza, P. (2011). Cape gooseberry ( Physalis peruviana L.). In Elsevier (Ed.), Postharvest Biology and Technology of Tropical and Subtropical Fruits (pp. 374-397e). Woodhead Publishing Limited. https://doi.org/10.1533/9780857092762.374 Fischer, Gerhard, Almanza-merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la Uchuva ( Physalis peruviana L .). Scielo, 36(1), 1–15. https://doi.org/10.1590/0100-2945-441/13 Fischer, Gerhard, Miranda, D., Piedrahita, W., & Romero, J. (2005). Avances en cultivo, poscosecha y exportación de la uchuva en Colombia. Universidad Nacional de Colombia, Unibiblos. Fitzpatrick, J., Salmon, J., Ji, J., & Miao, S. (2017). Characterisation of the wetting behaviour of poor wetting food powders and the influence of temperature and film formation. KONA Powder and Particle Journal, 34(34), 282–289. https://doi.org/10.14356/kona.2017019 Flórez, V., Fischer, G., & Sora, Á. (2000). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Universidad Nacional de Colombia, Unibiblos. Fuente, F., Nocetti, D., Sacristán, C., Ruiz, P., Guerrero, J., Jorquera, G., Uribe, E., Bucarey, J. L., Espinosa, A., & Puente, L. (2020). Physalis peruviana l. Pulp prevents liver inflammation and insulin resistance in skeletal muscles of diet-induced obese mice. Nutrients, 12(3), 700. https://doi.org/10.3390/nu12030700 Fustier, P., Taherian, A. R., & Ramaswamy, H. S. (2010). Emulsion delivery systems for functional foods. In J. Smith & E. Charter (Eds.), Functional Food Product Development (pp. 79–97). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444323351.ch4 Gallón, M., Cortés, M., & Gil, J. (2020). Physicochemical stability of colloidal systems using the cape gooseberry, strawberry, and blackberry for spray drying. Journal of Food Processing and Preservation, 44(9), 1–10. https://doi.org/10.1111/jfpp.14705 García, J., Giuffrida, D., Dugo, P., Mondello, L., & Osorio, C. (2018). Development and characterisation of carotenoid-rich microencapsulates from tropical fruit by-products and yellow tamarillo (Solanum betaceum Cav.). Powder Technology, 339, 702–709. https://doi.org/10.1016/j.powtec.2018.08.061 Garofulic, I. E., Zoric, Z., Pedisic, S., & Dragovic-Uzelac, V. (2016). Optimization of sour cherry juice spray drying as affected by carrier material and temperature. Food Technology and Biotechnology, 54(4), 441–449. https://doi.org/10.17113/ft b.54.04.16.4601 Genovese, D., & Lozano, J. (2006). Contribution of colloidal forces to the viscosity and stability of cloudy apple juice. Food Hydrocolloids 20, 20, 767–773. https://doi.org/10.1016/j.foodhyd.2005.07.003 Ghosal, S., Indira, T. N., & Bhattacharya, S. (2010). Agglomeration of a model food powder: Effect of maltodextrin and gum Arabic dispersions on flow behavior and compacted mass. Journal of Food Engineering, 96(2), 222–228. https://doi.org/10.1016/j.jfoodeng.2009.07.016 Gomes, W. F., França, F. R. M., Denadai, M., Andrade, J. K. S., da Silva Oliveira, E. M., de Brito, E. S., Rodrigues, S., & Narain, N. (2018). Effect of freeze- and spray-drying on physico-chemical characteristics, phenolic compounds and antioxidant activity of papaya pulp. Journal of Food Science and Technology, 55(6), 2095–2102. https://doi.org/10.1007/s13197-018-3124-z Gouvêa, R. F., Ribeiro, L. O., Souza, É. F., Penha, E. M., Matta, V. M., & Freitas, S. P. (2017). Effect of enzymatic treatment on the rheological behavior and vitamin C content of Spondias tuberosa (umbu) pulp. Journal of Food Science and Technology, 54(7), 2176–2180. https://doi.org/10.1007/s13197-017-2630-8 Granados, W., Muñoz, C., & Aguillón, D. (2019). Cadena de la uchuva. In Ministerio de agricultura. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2019-06-30 Cifras Sectoriales UCHUVA.pdf Gülçin, I. (2012). Antioxidant activity of food constituents: An overview. Archives of Toxicology, 86(3), 345–391. https://doi.org/10.1007/s00204-011-0774-2 Haas, K., Dohnal, T., Andreu, P., Zehetner, E., Kiesslich, A., Volkert, M., Fryer, P., & Jaeger, H. (2020). Particle engineering for improved stability and handling properties of carrot concentrate powders using fluidized bed granulation and agglomeration. Powder Technology, 370, 104–115. https://doi.org/10.1016/j.powtec.2020.04.065 Handique, J., Bora, S., & Sit, N. (2019). Optimization of banana juice extraction using combination of enzymes. Journal of Food Science and Technology, 56(8), 3732–3743. https://doi.org/10.1007/s13197-019-03845-z Hassan, H. A., Serag, H. M., Qadir, M. S., & Ramadan, M. F. (2017). Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomedicine and Pharmacotherapy, 94(2017), 1129–1137. https://doi.org/10.1016/j.biopha.2017.08.014 Hennart, S., Wildeboer, W., van Hee, P., & Meesters, G. (2010). Stability of particle suspensions after fine grinding. Powder Technology, 199(3), 226–231. https://doi.org/10.1016/j.powtec.2010.01.010 Hincapié, M. A., & Zapata, J. E. (2019). Study of the dehydration kinetics of uchuva (physalis peruviana l.) in a fluidized bed dryer. Informacion Tecnológica, 30(2), 115–124. https://doi.org/10.4067/S0718-07642019000200115 Hirata, T. A. M., Dacanal, G. C., & Menegalli, F. C. (2013). Effect of operational conditions on the properties of pectin powder agglomerated in pulsed fluid bed. Powder Technology, 245, 174–181. https://doi.org/10.1016/j.powtec.2013.04.047 Horie, K., Tanaka, S., & Akabori, T. (1976). Determination of Emulsion Stability by Spectal Absorption; Part 1. Journal of Society of Cosmetic Chemists of Japan, 10(1–2), 28–33. https://doi.org/10.5107/sccj1976.10.28 Hua, X., Xu, S., Wang, M., Chen, Y., Yang, H., & Yang, R. (2017). Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chemistry, 232, 443–449. https://doi.org/10.1016/j.foodchem.2017.04.003 Huang, X., Liu, Q., Yang, Y., & He, W. Q. (2020). Effect of high pressure homogenization on sugar beet pulp: Rheological and microstructural properties. LWT, 125, 109245. https://doi.org/10.1016/j.lwt.2020.109245 ICONTEC. (1999). Fresh fruits. Cape gooseberry. Specifications. In Norma técnica colombiana (p. 17). https://repository.agrosavia.co/bitstream/handle/20.500.12324/1271/81660_58968.pdf?sequence=1&isAllowed=y Igual, M., Contreras, C., Camacho, M. M., & Martínez-Navarrete, N. (2014). Effect of Thermal Treatment and Storage Conditions on the Physical and Sensory Properties of Grapefruit Juice. Food and Bioprocess Technology, 7(1), 191–203. https://doi.org/10.1007/s11947-013-1088-6 Islam, M. Z., Kitamura, Y., Kokawa, M., Monalisa, K., Tsai, F. H., & Miyamura, S. (2017). Effects of micro wet milling and vacuum spray drying on the physicochemical and antioxidant properties of orange (Citrus unshiu) juice with pulp powder. Food and Bioproducts Processing, 101(2012), 132–144. https://doi.org/10.1016/j.fbp.2016.11.002 Izli, N., Yildiz, G., Ünal, H., Işik, E., & Uylaşer, V. (2014). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). International Journal of Food Science and Technology, 49(1), 9–17. https://doi.org/10.1111/ijfs.12266 Jafari, S. M., Ghalegi Ghalenoei, M., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59–65. https://doi.org/10.1016/j.powtec.2017.01.070 Janiszewska, E. (2017). Carotenoids microencapsulation by spray drying method and supercritical micronization. Food Research International, 99, 891–901. https://doi.org/10.1016/j.foodres.2017.02.001 Jeoh, T., Cardona, M. J., Karuna, N., Mudinoor, A. R., & Nill, J. (2017). Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review. Biotechnology and Bioengineering, 114(7), 1369–1385. https://doi.org/10.1002/bit.26277 Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205. https://doi.org/10.1016/j.jfoodeng.2007.04.032 Juarez, E., Olivas, G., Zamudio, P., Ortega, E., Perez, S., & Sepulveda, D. (2017). Effect of water content on the flowability of hygroscopic powders. Journal of Food Engineering, 205, 12–17. https://doi.org/10.1016/j.jfoodeng.2017.02.024 Junqueira, J. R. de J., Corrêa, J. L. G., de Oliveira, H. M., Ivo Soares Avelar, R., & Salles Pio, L. A. (2017). Convective drying of cape gooseberry fruits: Effect of pretreatments on kinetics and quality parameters. LWT - Food Science and Technology, 82, 404–410. https://doi.org/10.1016/j.lwt.2017.04.072 Jurado, T. B., Aparcana Ataurima, I., Villarreal Inca, L., Ramos Llica, E., Calixto Cotos, M., Hurtado Manrique, P., & Acosta Alfaro, K. (2016). Evaluación del contenido de polifenoles totales y la capacidad antioxidante de los extractos etanólicos de los frutos de aguaymanto (Physalis peruviana L.) de diferentes lugares del Perú. Revista de La Sociedad Química Del Perú, 82(3), 272–279. https://doi.org/10.1016/j.jadohealth.2005.06.010 Kaderides, K., & Goula, A. M. (2017). Development and characterization of a new encapsulating agent from orange juice by-products. Food Research International, 100(July), 612–622. https://doi.org/10.1016/j.foodres.2017.07.057 Kaufman, V., & Garti, N. (1981). Spectral absorption measurements for determination of ease of formation and stability of oil in water emulsions. Journal of Dispersion Science and Technology, 2(4), 475–490. https://doi.org/10.1080/01932698108943925 Khazraji, A. C., & Robert, S. (2013). Interaction Effects between Cellulose and Water in Nanocrystalline and Amorphous Regions: A Novel Approach Using Molecular Modeling. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/409676 Khenpet, u K., Charoenjarasrerk, N., Jaijit, S., Arayapoonpong, S., & Jittanit, W. (2016). Investigation of suitable spray drying conditions for sugarcane juice powder production with an energy consumption study. Agriculture and Natural Resources, 50(2), 139–145. https://doi.org/10.1016/j.anres.2015.08.003 Kitrytė, V., Kraujalienė, V., Šulniūtė, V., Pukalskas, A., & Venskutonis, P. R. (2017). Chokeberry pomace valorization into food ingredients by enzyme-assisted extraction: Process optimization and product characterization. Food and Bioproducts Processing, 105, 36–50. https://doi.org/10.1016/j.fbp.2017.06.001 Koley, T. K., Walia, S., Nath, P., Awasthi, O. P., & Kaur, C. (2011). Nutraceutical composition of Zizyphus mauritiana Lamk (Indian ber ): effect of enzyme-assisted processing. International Journal of Food Sciences and Nutrition, 62(3), 276–279. https://doi.org/10.3109/09637486.2010.526930 Lan, Y., Chang, F., Pan, M., Wu, C., Wu, S., Chen, S., Wang, S., Wu, M., & Wu, Y. (2009). New cytotoxic withanolides from Physalis peruviana. Food Chemistry, 116(2), 462–469. https://doi.org/10.1016/j.foodchem.2009.02.061 Lanchero, O., Velandia, G., Fischer, G., Varela, N., & García, H. (2007). Comportamiento de la uchuva (Physalis peruviana L.) en poscosecha bajo condiciones de atmósfera modificada activa. Revista Corpoica - Ciencia y Tecnologiía Agropecuaria, 8(1), 61–68. Largo, E., Cortés, M., & Ciro, H. (2015). Influence of Maltodextrin and Spray Drying Process Conditions on Sugarcane Juice Powder Quality. Revista Facultad Nacional de Agronomía Medellín, 68(1), 7509–7520. https://doi.org/10.15446/rfnam.v68n1.47839 Lee, K., Eun, J., & Hwang, J. (2016). Physicochemical properties and sensory evaluation of mandarin (Citrus unshiu) beverage powder spray-dried at different inlet air temperatures with different amounts of a mixture of maltodextrin and corn syrup. Food Science and Biotechnology, 25(5), 1345–1351. https://doi.org/10.1007/s10068-016-0211-7 Lee, K., Yoon, S., Li, F., & Eun, J. (2017). Effects of inlet air temperature and concentration of carrier agents on physicochemical properties , sensory evaluation of spray-dried mandarin ( Citrus unshiu ) beverage powder. Applied Biological Chemistry, 60(33–40). https://doi.org/10.1007/s13765-016-0246-8 Leite, T., Augusto, P., & Cristianini, M. (2015). Using High Pressure Homogenization (HPH) to Change the Physical Properties of Cashew Apple Juice. Food Biophysics, 10(2), 169–180. https://doi.org/10.1007/s11483-014-9385-9 Liu, Y., Chen, F., & Guo, H. (2017). Optimization of bayberry juice spray drying process using response surface methodology. Food Science and Biotechnology, 26(5), 1235–1244. https://doi.org/10.1007/s10068-017-0169-0 Loan, N. T. ., Hoa, N. D. ., & Ha, N. V. . (2016). Effects of Spray-Drying Conditions on Antioxidant Properties of Mango. Journal of Biotechnology, 14(1A), 427–438. López-Esparza, R., Balderas, M., Pérez, E., & Goicochea, A. G. (2015). Importance of Molecular Interactions in Colloidal Dispersions. Advances in Condensed Matter Physics, 2015, 1–8. https://doi.org/10.1155/2015/683716 López, V. (2017). Vista de La uchuva en el contexto de la producción agrícola colombiana y los TLC’s. Ensayos, 10(10), 131–144. https://revistas.unal.edu.co/index.php/ensayos/article/view/72501/66251 López-Gaytán, E., Ayala-Hernández, J. J., Ponce-Aguirre, D., Mora-Aguilar, R., & Peña-Lomelí, A. (2006). Agrofenología de Physalis peruviana L. en invernadero y fertirriego. Revista Chapingo Serie Horticultura, 12(1), 57–63. https://doi.org/10.5154/r.rchsh.2005.10.011 Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2020). Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and Arabic gum as wall matrices. Foods, 9(6), 1–17. https://doi.org/10.3390/FOODS9060718 Lucas, J. C., Tobon, C., & Cortes, M. (2018). Influence of the Composition of Coconut-Based Emulsions on the Stability of the Colloidal System. Advance Journal of Food Science and Technology, 14(3), 77–92. https://doi.org/10.19026/ajfst.14.5841 Luchese, C. L., Gurak, P. D., & Marczak, L. D. F. (2015). Osmotic dehydration of physalis (Physalis peruviana L.): Evaluation ofwater loss and sucrose incorporation and the quantification ofcarotenoids. LWT - Food Science and Technology, 63(2), 1128–1136. https://doi.org/10.1016/j.lwt.2015.04.060 Machado, B., Costa, A., Oliveira, R., Barreto, G., Silva, R., & Umsza-Guez, M. (2016). Effect of applying pectinolytic enzymes in Spondias tuberosa Arr. Cam. Pulp. Revista Virtual de Quimica, 8(4), 1067–1078. https://doi.org/10.21577/1984-6835.20160076 Machado, V. G., Hirata, T. A. M., & Menegalli, F. C. (2014). Agglomeration of soy protein isolate in a pulsed fluidized bed: Experimental study and process optimization. Powder Technology, 254, 248–255. https://doi.org/10.1016/j.powtec.2014.01.040 Maktouf, S., Neifar, M., Drira, S. J., Baklouti, S., Fendri, M., & Châabouni, S. E. (2014). Lemon juice clarification using fungal pectinolytic enzymes coupled to membrane ultrafiltration. Food and Bioproducts Processing, 92(1), 14–19. https://doi.org/10.1016/j.fbp.2013.07.003 Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., & Cerkal, R. (2017). ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science, 73, 40–45. https://doi.org/10.1016/j.jcs.2016.11.004 Marín, Z., Cortés, M., & Montoya, O. (2010). Capegooseberry (Physalis peruvian L.) Colombian ecotype, minimally processed inoculated with native strain lactobacillus plantarum lpbm10 by means of vaccum impregnation technique. Revista Chilena de Nutricion, 37(4), 461–472. https://doi.org/10.4067/s0717-75182010000400007 Matusiak, J., & Grządka, E. (2017). Stability of colloidal systems - a review of the stability measurements methods. Annales Universitatis Mariae Curie-Sklodowska, Sectio AA – Chemia, 72(1), 33. https://doi.org/10.17951/aa.2017.72.1.33 Mathlouthi, M. (2001). Water content, water activity, water structure and the stability of foodstuffs. Food Control, 12(7), 409–417. https://doi.org/10.1016/S0956-7135(01)00032-9 Mehr, H. M., Elahi, M., & Razavi, S. M. A. (2012). Experimental Study on Optimization of the Agglomeration Process for Producing Instant Sugar by Conical Fluidized Bed Agglomerator. Drying Technology, 30(5), 505–515. https://doi.org/10.1080/07373937.2011.647995 Mendoza, H., Rodriguez, A., & Millán, P. (2012). Caracterización físico química de la uchuva (physalis peruviana) en la región de Silvia Cauca. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA, 10(2), 188–196. Mettler Toledo. (2014). Brix - Sugar determination by density and refractometry. In Density and Refractometry. https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/technical-bulletins/mettler-toledo-brix-sugar-determination-techinical-bulletin.pdf Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503–1513. https://doi.org/10.1081/DRT-120005864 MinSalud, M. de salud y protección social. (2021). Resolución No. 810 de 2021 (p. 50). Mirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2008). Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315(1–3), 47–56. https://doi.org/10.1016/j.colsurfa.2007.07.007 Mishra, P., Mishra, S., & Mahanta, C. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252–258. https://doi.org/10.1016/j.fbp.2013.08.003 Mishra, Poonam, Mishra, S., & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252–258. https://doi.org/10.1016/j.fbp.2013.08.003 Moelants, K., Cardinaels, R., Jolie, R., Verrijssen, T., Van Buggenhout, S., Zumalacarregui, L., Van Loey, A., Moldenaers, P., & Hendrickx, M. (2013). Relation Between Particle Properties and Rheological Characteristics of Carrot-derived Suspensions. Food and Bioprocess Technology, 6(5), 1127–1143. https://doi.org/10.1007/s11947-011-0718-0 Moghaddam, A. D., Pero, M., & Askari, G. R. (2017). Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM). Journal of Food Science and Technology, 54(1), 174–184. https://doi.org/10.1007/s13197-016-2449-8 Mokhtar, S. M., Swailam, H. M., & Embaby, H. E. S. (2018). Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste. Food Chemistry, 248, 1–7. https://doi.org/10.1016/j.foodchem.2017.11.117 Muzaffar, K., Nayik, A., & Kumar, P. (2018). Production of Fruit Juice Powders by Spray Drying Technology. International Journal of Advance Research in Science and Engineering, 7(3), 59–67. Muzaffar, K., & Kumar, P. (2015). Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Technology, 279, 179–184. https://doi.org/10.1016/j.powtec.2015.04.010 Muzaffar, K., Nayik, G. A., & Kumar, P. (2015). Stickiness Problem Associated with Spray Drying of Sugar and Acid Rich Foods: A Mini Review. https://doi.org/10.4172/2155-9600.1000S12003 Muzaffar, K., Wani, S. A., Dinkarrao, B. V., & Kumar, P. (2016). Determination of production efficiency, color, glass transition, and sticky point temperature of spray-dried pomegranate juice powder. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1144444 Narváez, C., Mateus, Á., & Restrepo, L. (2014). Antioxidant capacity and total phenolic content of air-dried cape gooseberry (Physalis peruviana L.) at different ripeness stages. In Agronomía Colombiana (Vol. 32, Issue 2). Neikov, O. (2019). Safety Engineering in the Production of Powders. In O. Neikov, S. Naboychenko, & N. Yefimov (Eds.), Handbook of Non-Ferrous Metal Powders (2nd ed., pp. 865–928). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100543-9.00027-0 Nishad, J., Selvan, C. J., Mir, S. A., & Bosco, S. J. D. (2017). Effect of spray drying on physical properties of sugarcane juice powder (Saccharum officinarum L.). Journal of Food Science and Technology, 54(3), 687–697. https://doi.org/10.1007/s13197-017-2507-x Nocetti, D., Núñez, H., Puente, L., Espinosa, A., & Romero, F. (2020). Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture, 100(12), 4335–4346. https://doi.org/10.1002/jsfa.10386 Novozymes. (2001). Product Sheet Viscozyme ® L Description. www.novozymes.com Ojovan, M. I. (2004). Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects. JETP Letters, 79(12), 632–634. https://doi.org/10.1134/1.1790021 Olivares, M., Dekker, M., Verkerk, R., & van Boekel, M. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57(Part A), 83–92. https://doi.org/10.1016/j.tifs.2016.09.009 Olivares, M. (2017). Exploring The Potential of An Andean fruit: An Interdisciplinary Study On The Cape Gooseberry (Physalis peruviana L.) Value Chain [Wageningen University by]. https://doi.org/10.18174/393622 Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100. https://doi.org/10.1016/j.foodchem.2017.04.114 Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(August 2018), 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205 Ozyurt, V. H., & Ötles, S. (2016). Effect of food processing on the physicochemical properties of dietary fibre. Acta Scientiarum Polonorum, Technologia Alimentaria, 15(3), 233–245. https://doi.org/10.17306/J.AFS.2016.3.23 Patil, V., Chauhan, A. K., & Singh, R. P. (2014). Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technology, 253, 230–236. https://doi.org/10.1016/j.powtec.2013.11.033 Palzer, S. (2007). Chapter 13 Agglomeration of dehydrated consumer foods. Handbook of Powder Technology, 11, 591–671. https://doi.org/10.1016/S0167-3785(07)80048-0 Patiño, D., Garcia, E., Barrera, E., Quejada, O., Rodriguez, H., & Arroyave, I. (2014). Manual del Cultivo de Técnico Uchuva Buenas Prácticas. In Fransiscovelez (Vol. 0, Issue colombia). file:///C:/Users/USUARIO/Documents/cultivo de zona de origen/CULTIVO DE UCHUVA/cartilla de uchuva.pdf Pérez, A., Martínez, G., León, F., & Sánchez, M. (2020). The effect of the presence of seeds on the nutraceutical, sensory and rheological properties of Physalis spp. Fruits jam: A comparative analysis. Food Chemistry, 302(July 2019), 125141. https://doi.org/10.1016/j.foodchem.2019.125141 Phisut, N. (2012). Spray drying technique of fruit juice powder: some factors influencing the properties of product. In International Food Research Journal (Vol. 19, Issue 4). Phuong, N., & Tuan, Q. (2016). Application of hydrolytic enzymes for improvement of red dragon fruit juice processing. Asia Pacific Journal of Sustainable Agriculture Food and Energy (APJSAFE), 4(1), 1–4. Pragati, S., & Preeti, B. (2014). Technological Revolution in Drying of Fruit and Vegetables. International Hournal of Science and Research, 3(10), 705–711. Procolombia. (2020). Uchuva. Procolombia, 2. Puente, L., Pinto, C., Castro, E., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733–1740. https://doi.org/10.1016/j.foodres.2010.09.034 Puente, L., Spolmann, O., Nocetti, D., Zura, L., & Lemus, R. (2020). Effects of infrared-assisted refractance windowTM drying on the drying kinetics, microstructure, and color of Physalis fruit purée. Foods, 9(343). https://doi.org/10.3390/foods9030343 Quek, S., Chok, N., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386–392. https://doi.org/10.1016/j.cep.2006.06.020 Quirino, E., De Araújo, V., Monteiro, M., Finotelli, V., Guedes, A., & Perrone, D. (2016). Starch , inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/j.carbpol.2016.05.093 Ramadan, M., & Morsel, J. (2003). Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 51(4), 969–974. https://doi.org/10.1021/jf020778z Ramadan, M., & Moersel, J. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 87(3), 452–460. https://doi.org/10.1002/jsfa.2728 Ramadan, M., & Morsel, J. (2003). Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 51(4), 969–974. https://doi.org/10.1021/jf020778z Ramadan, M. (2011a). Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Reviews International, 27(3), 259–273. https://doi.org/10.1080/87559129.2011.563391 Ramadan, M. (2011a). Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Reviews International, 27(3), 259–273. https://doi.org/10.1080/87559129.2011.563391 Ramadan, M., Sitohy, M., & Moersel, J. (2008). Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: Impact of processing on composition and quality of oil and meal. European Food Research and Technology, 226(6), 1445–1458. https://doi.org/10.1007/s00217-007-0676-y Ramadan, M. (2011b). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44(7), 1830–1836. https://doi.org/10.1016/j.foodres.2010.12.042 Ramadan, M. (2018). Enzymes in fruit juice processing. In M. Kuddus (Ed.), Enzymes in Food Biotechnology: Production, Applications, and Future Prospects (pp. 45–59). Elsevier. https://doi.org/10.1016/B978-0-12-813280-7.00004-9 Ramakrishnan, Y., Adzahan, N. M., Yusof, Y. A., & Muhammad, K. (2018). Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology, 328, 406–414. https://doi.org/10.1016/j.powtec.2017.12.018 Ramírez, M., Giraldo, G., & Orrego, C. (2015). Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technology, 277, 89–96. https://doi.org/10.1016/j.powtec.2015.02.060 Rayo, L., Chaguri, L., Sardá, F., Dacanal, G., Menezes, E., & Tadini, C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed- fluidized bed agglomeration. LWT - Food Science and Technology, 63, 461–469. https://doi.org/10.1016/j.lwt.2015.03.059 Restrepo, A., Cortés, M., & Márquez, C. (2009). Uchuvas (Physalis peruviana L.) mínimamente procesadas fortificadas con vitamina E. VITAE, 16(1), 19–30. http://www.scielo.org.co/pdf/vitae/v16n1/v16n1a03 Reyes-Medina, A. J., Pinzón, E. H., & Álvarez-Herrera, J. G. (2017). Effect of calcium chloride and refrigeration on the quality and organoleptic characteristics o Reyes, M. E. D., Guanilo, C. K., Ibáñez, M. W., García, C. E., Idrogo, J. J., & Huamán, J. J. (2015). Efecto del conumo de Physalis peruviana L. (aguaymanto) sobre el pérfil lípido de pacientes con hiperemia. Acta Médica Peruana, 32(4), 195–201. Rieck, C., Bück, A., & Tsotsas, E. (2020). Estimation of the dominant size enlargement mechanism in spray fluidized bed processes. AIChE Journal, 66(January), 1–18. https://doi.org/10.1002/aic.16920 Rigon, R., & Zapata, C. (2016). Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (rubus fruticosus). Journal of Food Science and Technology, 53(3), 1515–1524. https://doi.org/10.1007/s13197-015-2111-x Ríos, E. V, Giraldo G, G. A., & Lucia Duque, A. C. (2007). Predicción de la Actividad de Agua en Frutas Tropicales. In Revista de Investigaciones (Issue 17). Rondet, E., Cuq, B., Cassan, D., & Ruiz, T. (2016). Agglomeration of wheat powders by a novel reverse wet agglomeration process. Journal of Food Engineering, 173, 92–105. https://doi.org/10.1016/j.jfoodeng.2015.10.046 Rodrigues, G., Gomes, L., Nitz, M., & Andreola, K. (2020). A protein powder agglomeration process using açaí pulp as the binder: An analysis of the process parameters. Advanced Powder Technology, 31(8), 3551–3561. https://doi.org/10.1016/j.apt.2020.07.001 Rodríguez, N., & Bueno, M. (2006). Study of the cytogenetic diversity of physalis peruviana L. (Solanaceae). Acta Biológica Colombiana, 11(2), 75–85. Roos, Y., & Drusch, S. (2015). Phase Transitions in Foods (Academic Press (ed.); Second Edi). Elsevier Inc. https://doi.org/10.1016/C2012-0-06577-5 Saad, M. M., Barkouti, A., Rondet, E., Ruiz, T., & Cuq, B. (2011). Study of agglomeration mechanisms of food powders: Application to durum wheat semolina. Powder Technology, 208(2), 399–408. https://doi.org/10.1016/j.powtec.2010.08.035 Sablani, S. S., Kasapis, S., & Rahman, M. S. (2007). Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering, 78(1), 266–271. https://doi.org/10.1016/j.jfoodeng.2005.09.025 Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. In Bioresources and Bioprocessing (Vol. 5, Issue 1, p. 1). Springer. https://doi.org/10.1186/s40643-017-0187-z Sagar, V. R., & Suresh, P. (2010). Recent advances in drying and dehydration of fruits and vegetables: A review. Journal of Food Science and Technology, 47(1), 15–26. https://doi.org/10.1007/s13197-010-0010-8 Samborska, K., Boostani, S., Geranpour, M., Hosseini, H., Dima, C., Khoshnoudi-Nia, S., Rostamabadi, H., Falsafi, S. R., Shaddel, R., Akbari-Alavijeh, S., & Jafari, S. M. (2021). Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends in Food Science and Technology, 108(January), 297–325. https://doi.org/10.1016/j.tifs.2021.01.008 Santhalakshmy, S., Don Bosco, S. J., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37–43. https://doi.org/10.1016/j.powtec.2015.01.016 Sang-Ngern, M., Youn, U. J., Park, E. J., Kondratyuk, T. P., Simmons, C. J., Wall, M. M., Ruf, M., Lorch, S. E., Leong, E., Pezzuto, J. M., & Chang, L. C. (2016). Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 26(12), 2755–2759. https://doi.org/10.1016/j.bmcl.2016.04.077 Santos, D., Maurício, A., Sencadas, V., Santos, J., Fernandes, M., & Gomes, P. (2018). Spray Drying: An Overview. In Biomaterials - Physics and Chemistry - New Edition. InTech. https://doi.org/10.5772/intechopen.72247 Sarabandi, K., Jafari, S., Mahoonak, A., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of egg plant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133 Sathyashree, H., Ramachandra, C., Udaykumar, N., Mathad, P., & Nagaraj, N. (2018). Rehydration properties of spray dried sweet orange juice. ~ 120 ~ Journal of Pharmacognosy and Phytochemistry, 7(3), 120–124. Schuck, P. (2011). Dehydrated Dairy Products: Milk Powder: Physical and Functional Properties of Milk Powders. Encyclopedia of Dairy Sciences: Second Edition, 117–124. https://doi.org/10.1016/B978-0-12-374407-4.00122-9 Selvamuthukumaran, M., & Khanum, F. (2014). Optimization of spray drying process for developing seabuckthorn fruit juice powder using response surface methodology. Journal of Food Science and Technology, 51(12), 3731–3739. https://doi.org/10.1007/s13197-012-0901-y Shishir, M., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006 Shittu, T. A., & Lawal, M. O. (2007). Factors affecting instant properties of powdered cocoa beverages. Food Chemistry, 100(1), 91–98. https://doi.org/10.1016/j.foodchem.2005.09.013 Shofinita, D., Feng, S., & Langrish, T. A. G. (2015). Comparing yields from the extraction of different citrus peels and spray drying of the extracts. Advanced Powder Technology, 26(6), 1633–1638. https://doi.org/10.1016/j.apt.2015.09.007 Shrivastava, A., Tripathi, A. D., Paul, V., & Chandra Rai, D. (2021). Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. Lwt, 151(May), 112091. https://doi.org/10.1016/j.lwt.2021.112091 Silva, V. M., Sato, A. C. K., Barbosa, G., Dacanal, G., Ciro-Velásquez, H. J., & Cunha, R. L. (2010). The effect of homogenisation on the stability of pineapple pulp. International Journal of Food Science & Technology, 45(10), 2127–2133. https://doi.org/10.1111/j.1365-2621.2010.02386.x Sobulska, M., & Zbicinski, I. (2020). Advances in spray drying of sugar-rich products. Drying Technology, 0(0), 1–26. https://doi.org/10.1080/07373937.2020.1832513 Sonam, K. S., & Guleria, S. (2017). Synergistic antioxidant activity of natural products. Annals of Pharmacology and Pharmaceutics, 2(8), 1–6. Suescún, L., Erika, P., Betancourt, S., Gómez, M., Francy, M., García, L., Víctor, A., & Zarantes, M. N. (2011). Physalis peruviana. www.kimpres.com.co Sun, T., Powers, J. R., & Tang, J. (2007). Effect of Enzymatic Macerate Treatment on Rutin Content, Antioxidant Activity, Yield, and Physical Properties of Asparagus Juice. Journal of Food Science, 72(4), S267–S271. https://doi.org/10.1111/j.1750-3841.2007.00345.x Strenzke, G., Dürr, R., Bück, A., & Tsotsas, E. (2020). Influence of operating parameters on process behavior and product quality in continuous spray fluidized bed agglomeration. Powder Technology, 375, 210–220. https://doi.org/10.1016/j.powtec.2020.07.083 Szulc, K., & Lenart, A. (2013). Surface modification of dairy powders : Effects of fluid-bed agglomeration and coating. International Dairy Journal, 33(1), 55–61. https://doi.org/10.1016/j.idairyj.2013.05.021 Tamnak, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., & Muhammad, K. (2016). Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids, 56, 405–416. https://doi.org/10.1016/j.foodhyd.2015.12.033 Tan, H. S., Salman, A. D., & Hounslow, M. J. (2006). Kinetics of fluidised bed melt granulation I : The effect of process variables. Chemical Engineering Science, 61, 1585–1601. https://doi.org/10.1016/j.ces.2005.09.012 Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology, 63, 91–102. https://doi.org/10.1016/j.tifs.2017.03.009 Torres-Ossandón, M. J., Vega-Gálvez, A., López, J., Stucken, K., Romero, J., & Di Scala, K. (2018). Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). Journal of Supercritical Fluids, 138(March), 215–220. https://doi.org/10.1016/j.supflu.2018.05.005 Uzuner, S., & Cekmecelioglu, D. (2018). Enzymes in the beverage industry. In M. Kuddus (Ed.), Enzymes in Food Biotechnology: Production, Applications, and Future Prospects (pp. 29–43). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813280-7.00003-7 Valenzuela, A., & Ronco, A. (2004). Fitoesteroles y fitoestanoles: aliados naturales para la protección de la salud cardiovascular. Revista Chilena de Nutrición, 21(1), 161–169. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-75182004031100003&lng=es&nrm=iso&tlng=es Vásquez, J., Ochoa, C., & Bustos, M. (2013). Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). Journal of Food Engineering, 119(3), 648–654. https://doi.org/10.1016/j.jfoodeng.2013.06.037 Vengateson, U., & Mohan, R. (2016). Experimental and modeling study of fluidized bed granulation: Effect of binder flow rate and fluidizing air velocity. Resource-Efficient Technologies, 2, S124–S135. https://doi.org/10.1016/j.reffit.2016.10.003 Vega-Gálvez, A., Díaz, R., López, J., Galotto, M. J., Reyes, J. E., Perez-Won, M., Puente-Díaz, L., & Di Scala, K. (2016). Assessment of quality parameters and microbial characteristics of Cape gooseberry pulp (Physalis peruviana L.) subjected to high hydrostatic pressure treatment. Food and Bioproducts Processing, 97, 30–40. https://doi.org/10.1016/j.fbp.2015.09.008 Verma, A., & Singh, S. V. (2015). Spray Drying of Fruit and Vegetable Juices—A Review. Critical Reviews in Food Science and Nutrition, 55(5), 701–719. https://doi.org/10.1080/10408398.2012.672939 Vijayanand, P., Kulkarni, S. G., & Prathibha, G. V. (2010). Effect of pectinase treatment and concentration of litchi juice on quality characteristics of litchi juice. Journal of Food Science and Technology, 47(2), 235–239. https://doi.org/10.1007/s13197-010-0023-3 Vidović, S. S., Vladić, J. Z., Vaštag, Ž. G., Zeković, Z. P., & Popović, L. M. (2014). Maltodextrin as a carrier of health benefit compounds in Satureja montana dry powder extract obtained by spray drying technique. Powder Technology, 258, 209–215. https://doi.org/10.1016/j.powtec.2014.03.038 Vong, W. C., & Liu, S. Q. (2019). The effects of carbohydrase, probiotic Lactobacillus paracasei and yeast Lindnera saturnus on the composition of a novel okara (soybean residue) functional beverage. LWT, 100, 196–204. https://doi.org/10.1016/j.lwt.2018.10.059 Wan, Y.-J., Xu, M.-M., Gilbert, R. G., Yin, J.-Y., Huang, X.-J., Xiong, T., & Xie, M.-Y. (2018). Colloid chemistry approach to understand the storage stability of fermented carrot juice. https://doi.org/10.1016/j.foodhyd.2018.11.017 Wan, Y., Xu, M., Gilbert, R., Yin, J., Huang, X., Xiong, T., & Xie, M. (2019). Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocolloids, 89, 623–630. https://doi.org/10.1016/j.foodhyd.2018.11.017 Wardy, W., Pujols, K., Xu, Z., No, H., & Prinyawiwatkul, W. (2014). Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology, 55(1), 67–73. https://doi.org/10.1016/j.lwt.2013.07.013 Wellala, C. K. D., Bi, J., Liu, X., Liu, J., Lyu, J., Zhou, M., Marszałek, K., & Trych, U. (2020). Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innovative Food Science and Emerging Technologies, 60, 102279. https://doi.org/10.1016/j.ifset.2019.102279 Wu, D., & Sun, D. (2013). Colour measurements by computer vision for food quality control e A review. Trends in Food Science & Technology, 29, 5–20. https://doi.org/10.1016/j.tifs.2012.08.004 Yıldız, G., İzli, N., Ünal, H., & Uylaşer, V. (2015). Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Technology, 52(4), 2320–2327. https://doi.org/10.1007/s13197-014-1280-3 Yu, Z., Jiang, S., Cao, X., Jiang, S., & Pan, L. (2016). Effect of high pressure homogenization (HPH) on the physical properties of taro (Colocasia esculenta (L). Schott) pulp. Journal of Food Engineering, 177, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.10.042 Yüksel, H., Çalışkan Koç, G., & Dirim, S. N. (2019). Physical characterization of spray-dried milk powders and their agglomerates with the addition of carob, cinnamon, and ginger powders. Pamukkale University Journal of Engineering Sciences, 25(7), 824–833. https://doi.org/10.5505/pajes.2019.56798 Yuksel, H., & Dirim, N. (2018). Agglomeration process in the fluidized bed, the effecting parameters and some applications. Hrvatski Časopis Za Prehrambenu Tehnologiju, Biotehnologiju i Nutricionizam, 13(3–4), 159–163. https://doi.org/10.31895/hcptbn.13.3-4.10 Yuksel, H., & Dirim, S. N. (2021). Application of the agglomeration process on spinach juice powders obtained using spray drying method. Drying Technology, 39(1), 19–34. https://doi.org/10.1080/07373937.2020.1832515 Zapata, J., Ciro, G., & Marulanda, P. (2016). Optimization of pulsed vacuum osmotic dehydration of the cape gooseberry (Physalis peruviana L.) using the response surface methodology. Agronomia Colombiana, 34(2), 228–238. https://doi.org/10.15446/agron.colomb.v34n2.54920 Zhang, J., Zhang, C., Chen, X., & Quek, S. Y. (2020). Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. Journal of Food Engineering, 269(October 2019), 109744. https://doi.org/10.1016/j.jfoodeng.2019.109744 Zhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S., & Wang, Y. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, 57(6), 1239–1255. https://doi.org/10.1080/10408398.2014.97928 Zhou, L., Guan, Y., Bi, J., Liu, X., Yi, J., Chen, Q., Wu, X., & Zhou, M. (2017). Change of the rheological properties of mango juice by high pressure homogenization. LWT - Food Science and Technology, 82, 121–130. https://doi.org/10.1016/j.lwt.2017.04.038 Zhu, D., Shen, Y., Wei, L., Xu, L., Cao, X., Liu, H., & Li, J. (2020). Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry, 126967. https://doi.org/10.1016/j.foodchem.2020.126967 Ziyani, L., & Fatah, N. (2014). Use of experimental designs to optimize fluidized bed granulation of maltodextrin. Advanced Powder Technology, 25(3), 1069–1075. https://doi.org/10.1016/j.apt.2014.02.013 Zotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454. https://doi.org/10.1016/j.powtec.2016.10.027 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 113 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Agrícola y Alimentos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81633/3/1085289304.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81633/6/license.txt https://repositorio.unal.edu.co/bitstream/unal/81633/7/Eraso%20Grisales%20Soany%20Karola%20_licencia_cap_1.pdf https://repositorio.unal.edu.co/bitstream/unal/81633/9/Eraso%20Grisales%20Soany%20Karola_licencia_cap_3.pdf https://repositorio.unal.edu.co/bitstream/unal/81633/10/1085289304.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
e2d19bba24935672c5860345d58e1aaf 8153f7789df02f0a4c9e079953658ab2 7460d92de7760a17f0e7db1e90015417 83533e93cebfb6fb9d383007f58c8324 7478c45222572642619b4fb4ef878424 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089443737337856 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Rodríguez, Misael9f1493f5d014b108368000a4b02a8f78600Hurtado Benavides, Andrés Mauriciob906e0e69e1a7da0fc65acf0df4a12ce300Eraso Grisales, Soanya89053e854d1dc0b207c793f22495234600Alimentos y NutraceuticosGaf (Grupo de Alimentos Funcionales)Tecnologías Emergentes en Agroindustria (TEA) - UDENAR2022-06-28T15:47:17Z2022-06-28T15:47:17Z2022-06-28https://repositorio.unal.edu.co/handle/unal/81633Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones. diagramas, tablasLa uchuva (Physalis peruviana L.), es una fruta exótica de la región Andina, la cual presenta una demanda creciente debido a que posee características aromáticas y propiedades nutricionales favoreciendo su uso como alimento funcional. Colombia está entre los principales productores y exportadores de fruta exótica del mundo, principalmente gulupa y uchuva, por consiguiente, es la quinta fruta con mayor mercado después del banano en términos de exportación. La generación de nuevos productos, con sabores innovadores y con mejores características fisicoquímicas ha permitido el desarrollo y la implementación de nuevas metodologías para su obtención. Una alternativa a este contexto es el secado de la pulpa con el fin de obtener un producto en polvo, conservando las propiedades de la fruta. Algunos métodos de secado resultan inapropiados por afectar fuertemente las características sensoriales y las propiedades nutricionales de las frutas. El secado por aspersión, es un método usado en pulpas de frutas que son sensibles al calor, siendo sus principales ventajas el alto rendimiento y la reducción del daño térmico. El objetivo de la investigación fue desarrollar un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante, contribuyendo a mejorar la competitividad de la agrocadena. En este contexto, la investigación se planteó en tres etapas: En la 1ª etapa se realizó la evaluación de la influencia del proceso de hidrólisis enzimática sobre la estabilidad fisicoquímica de un sistema coloidal a base de pulpa, piel y semilla de uchuva (CSU), con fines a ser utilizado en secado por aspersión. La pulpa con semilla y piel fue homogenizada inicialmente por cizalla en un sistema rotor-estator a 10000 rpm durante 10 minutos y para la evaluación enzimática, se empleó el complejo multienzimático Viscozyme L y se utilizó un diseño factorial completamente aleatorizado, considerando las variables independientes: concentración de enzima [Enzima] (50, 125 y 200 ppm) y tiempo de hidrólisis (TH) (0, 30, 60, 90 y 120 minutos), y las variables dependientes: viscosidad (), potencial zeta (ζ), tamaño de partícula (percentiles D10, D50 y D90), Span, índice de absorción espectral (R) y sólidos solubles (SS). La [Enzima] tuvo un efecto significativo (p < 0.05) sobre la μ, SS, D50, D90 y R, el TH sobre la μ, SS y D10; además, existe un efecto de la interacción [Enzima]-HT sobre el aumento de la μ y los SS. La optimización de la formulación presentó una deseabilidad del 74.2%, con una [Enzima] = 78.5 ppm y TH = 120 minutos; siendo las variables dependientes calculadas por un modelo cuadrático: µ = 356.9 cP, SS = 15.5, = -18.5 mV, D10 = 3.2 m, D50 = 118.2 m; D90 = 480.8 m; Span = 4.1, R = 0.605. La combinación de procesos de homogenización por cizalla y el tratamiento enzimático aplicado, contribuyeron a la obtención de sistema coloidal estable fisicoquímicamente, sin embargo, se pretendía obtener una mayor reducción de tamaños de partícula, lo cual se logra mediante un proceso de homogenización de alta presión y adición de hidrocoloides que favorecieron la estabilidad de la suspensión. En la 2ª etapa se planteó la evaluación del proceso de secado por aspersión y la composición de la alimentación sobre los atributos de calidad de las microcápsulas de uchuva. El secado por aspersión operó en condiciones subatmosféricas a 0.37 kPa (1.5” H2O) y utilizando el equipo Vibrasec SA, referencia PASLAB1.5, con una capacidad de evaporación de 1.5L/h. El proceso de secado por aspersión se optimizó utilizando la metodología de superficie de respuesta, con un diseño experimental central compuesto cara centrada, teniendo en cuanta las variables independientes: goma arábiga (AG) (1 - 3%), maltodextrina (MD) (9.5 – 13.5%), temperatura de entrada de aire (TEA) (130-160°C), temperatura del aire de salida (TSA) (75-85°C) y velocidad del disco atomizador (VDA) (18000-22000 rpm), las variables dependientes evaluadas fueron: humedad (Xw), solubilidad (S), higroscopicidad (H), humectabilidad (Hu), coordenadas de color L* y b*, fenoles totales (FT), capacidad antioxidante (DPPH y ABTS) y rendimiento (Y). La optimización experimental de múltiples respuestas presentó una deseabilidad del 68.4%, definiendo las variables independientes: GA = 2.2%, MD = 10.1%, TEA = 160 °C, TSA = 77.8 °C y VDA = 21450 rpm, y las variables dependientes: Xw = 2.7±0.1%,.S = 86.2±2.3%, H = 16.2±0.0%, Hu = 4.0±013 s, L* = 43.9±0.1, b* = 35.7±0.9, TP = 284.2±1.8 mg AGE/100 g bs, DPPH = 99.8±2.5 mg TE/100 g bs, ABTS = 158.5±0.1 mg TE/100 g bs y Y = 56.1±1.6%. El secado por aspersión como proceso de microencapsulación del extracto de uchuva, fue una tecnología efectiva que permitió la obtención microcápsulas de uchuva con excelentes atributos de calidad. En el proceso se dio un mayor aprovechamiento de la estructura de la uchuva (pulpa, semilla y cáscara), que otorgó un alto contenido de solidos de uchuva al producto obtenido. En la 3ª etapa se evaluó el sistema de aglomeración por lecho fluidizado, el cual se optimizó utilizando la metodología de superficie de respuesta, con diseño experimental central compuesto cara centrada, teniendo en cuenta las variables independientes: temperatura del aire de fluidización (T) (50 – 70 °C), presión de atomización de la solución ligante (P) (1.0 – 2.0 bar) y tiempo de aglomeración (t) (20 – 40 min), y como variables dependientes: humedad (Xw), solubilidad (S), humectabilidad (Hu), higroscopicidad (H), densidad aparente (a), índice de Carr (IC), relación de Hausner (RH), tamaño de partícula D[4,3], fenoles totales (FT), flavonoides totales (FLT), capacidad antioxidante (DPPH y ABTS), vitamina C (Vit.C), -caroteno (-car) y el rendimiento (Y). La optimización experimental de múltiples repuestas presentó una deseabilidad del 63.8%, definiendo las variables independientes: T = 68.4 °C, P = 1.1 bar, t = 36.5 min, y las variables dependientes: Xw (4.3±0.1%), S (80.5±0.8%), H (14.4±0.5%), Hu (2.3±0.1 s), a (0.588±0.021 g/mL), IC (11.9 ± 2.5%), RH (1.11±0.02), D[4,3] (136.0 2.2 µm), FT (366.7±2.5 mg AGE/100 g bs), FLT (26.5±0.9 mg QE/100 g bs), DPPH (163.5±2.6 mg TE/100 g bs) y ABTS (133.0±1.1 mg TE/100 g bs), Vit.C (42.2±2.5 mg/100 g bs), -car (72.4±2.1 mg/100 g bs) y Y (62.5±3.3%). El proceso de aglomeración por lecho fluidizado del polvo de uchuva, fue efectivo, resultando en la mejora de las propiedades físicas relacionadas con las características funcionales de instantanización y fluidez. (Texto tomado de la fuente)The cape gooseberry (Physalis peruviana L.) is an exotic fruit from the Andean region, growing demand due to its aromatic characteristics and nutritional properties that favor its use as a functional food. Colombia is among the primary producers and exporters of exotic fruit globally, mainly purple passion fruit and cape gooseberry, and is, therefore, the fifth fruit with the largest market after bananas in terms of exports. The generation of new products with innovative flavors and better physicochemical characteristics has allowed the development and implementation of new methodologies. An alternative to this context is the drying of the pulp to obtain a powdered product, preserving the properties of the fruit. Some drying methods are inappropriate because they strongly affect its sensory characteristics and nutritional properties. Spray drying is a method used for fruit pulps that are sensitive to heat, its main advantages being high yield and reduction of thermal damage. The objective of the research was to develop an agglomerated cape gooseberry (Physalis peruviana L.) product with instantaneous characteristics and potential antioxidant effect, contributing to improving the competitiveness of the agribusiness chain. In this context, the research was carried out in three stages: In the first stage, the influence of the enzymatic hydrolysis process on the physicochemical stability of a colloidal system based on cape gooseberry pulp, skin, and seed (CSU), is to be used in spray drying, was evaluated. The pulp with seed and skin was initially homogenized by shearing in a rotor-stator system at 10000 rpm for 10 minutes. For the enzymatic evaluation, the multi-enzyme complex Viscozyme L and a completely randomized factorial design were used, considering the independent variables: [Enzyme] enzyme concentration (50, 125, and 200 ppm) and hydrolysis time (HT) (0, 30, 60, 90 and 120 minutes), and the dependent variables: viscosity (μ), zeta potential (ζ), particle size (percentiles D10, D50, and D90), Span, spectral absorption index (R) and soluble solids (SS). Enzyme] had a significant effect (p <0.05) on μ, SS, D50, D90 and R, HT on μ, SS and D10; furthermore, there is an effect of [Enzyme]-HT interaction on the increase of μ and SS. The formulation optimization presented a desirability of 74.2%, with [Enzyme] = 78.5 ppm and TH = 120 min; being the dependent variables calculated by a quadratic model: µ = 356.9 cP, SS = 15.5, ζ = -18.5 mV, D10 = 3.2 μm, D50 = 118.2 μm; D90 = 480.8 μm; Span = 4.1, R = 0.605. The combination of shear homogenization processes and the enzymatic treatment applied contributed to obtaining a physicochemically stable colloidal system; however, it was intended to reduce particle size, which is achieved through a high-pressure homogenization process and addition of hydrocolloids that favored the stability of the suspension. In the second stage, the evaluation of the spray drying process and the composition of the feed on the quality attributes of the cape gooseberry microcapsules was proposed. The spray drying process operated under subatmospheric conditions at 0.37 kPa (1.5" H2O) and using the Vibrasec SA equipment, reference PASLAB1.5, with an evaporation capacity of 1.5L/h. The spray drying process was optimized using the response surface methodology, with a face-centered central composite experimental design, taking into account the independent variables: gum arabic (GA) (1 - 3%), maltodextrin (MD) (9.5 - 13. 5%), air inlet temperature (AIT) (130 - 160°C), air outlet temperature (AOT) (75-85°C) and atomizing disk speed (ADS) (18000-22000 rpm), the dependent variables evaluated were: moisture (Xw), solubility (S), hygroscopicity (H), wettability (We), color coordinates L* and b*, total phenols (TP), antioxidant capacity (DPPH and ABTS) and yield (Y). The experimental optimization of multiple responses presented a desirability of 68.4%, defining the independent variables: GA = 2.2%, MD = 10.1%, AIT = 160 °C, AOT = 77.8 °C and ADS = 21450 rpm, and the dependent variables: Xw = 2.7±0.1%, S = 86.2±2.3%, H = 16.2±0.0%, We = 4.0±013 s, L* = 43.9±0.1, b* = 35.7±0.9, TP = 284.2±1.8 mg GAE/100 g bs, DPPH = 99.8±2.5 mg TE/100 g bs, ABTS = 158.5±0.1 mg TE/100 g bs and Y = 56.1±1.6%. Spray drying is a process of microencapsulation of cape gooseberry extract was an effective technology that allowed obtaining cape gooseberry microcapsules with excellent quality attributes. In the process, greater use was made of the structure of the cape gooseberry (pulp, seed, and peel), which gave a high content of cape gooseberry solids to the product obtained. In the third stage, the fluidized bed agglomeration system was evaluated, which was optimized using the response surface methodology, with face-centered central composite experimental design, taking into account the independent variables: fluidization air temperature (T) (50 - 70 °C), binder solution atomization pressure (P) (1.0 - 2. 0 bar) and agglomeration time (t) (20 - 40 min), and as dependent variables: moisture (Xw), solubility (S), wettability (We), hygroscopicity (H), bulk density (ρa), Carr's index (CI), Hausner's ratio (RH), particle size D[4,3], total phenols (TP), total flavonoids (TFL), antioxidant capacity (DPPH and ABTS), vitamin C (Vit.C), β-carotene (β-car) and yield (Y). The multiple-response experimental optimization presented a desirability of 63.8%, defining the independent variables: T = 68.4 °C, P = 1.1 bar, t = 36.5 min, and the dependent variables: Xw (4.3±0.1%), S (80.5±0.8%), H (14.4±0.5%), We (2.3±0.1 s), ρa (0.588±0.021 g/mL), CI (11.9±2.5%), RH (1.11±0.02), D[4,3] (136.0±2.2 µm), TP (366.7±2.5 mg GAE/100 g db), TFL (26.5±0.9 mg QE/100 g db), DPPH (163.5±2.6 mg TE/100 g db) and ABTS (133.0±1.1 mg TE/100 g db), Vit.C (42.2±2.5 mg/100 g db), β-car (72.4±2.1 mg/100 g db) and Y (62.5±3.3%). The fluidized bed agglomeration process of cape gooseberry powder was effective, resulting in improved physical properties related to the functional characteristics of instantaneousness and flowability.PROEXCAR SASMaestríaMagíster en Ciencia y Tecnología de AlimentosÁrea Curricular en Ingeniería Agrícola y Alimentosxviii, 113 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosDepartamento de Ingeniería Agrícola y AlimentosFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidas660 - Ingeniería química::664 - Tecnología de alimentosFrutas DeshidratadasUchuvas deshidratadasDried fruitAntioxidantesSistemas coloidalesDeshidratación de alimentosGranulación de polvos de frutasPhysalis peruviana L.Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidanteDevelopment of an agglomerated cape gooseberry (Physalis peruviana L.) product with instantaneous characteristics and potential antioxidant effectTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAbberger, T., Seo, A., & Schæfer, T. (2002). The effect of droplet size and powder particle size on the mechanisms of nucleation and growth in fluid bed melt agglomeration. 249, 185–197.Agarwal, R., & Bosco, S. (2014). Optimization of Viscozyme-L assisted extraction of coconut milk and virgin coconut oil. Asian Journal of Dairy and Food Research, 33(4), 276–284. https://doi.org/10.5958/0976-0563.2014.00617.4Agronet. (2021). Estadísticas home. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1Ahmad, S., Malik, A., Yasmin, R., Ullah, N., Gul, W., Muhammad, P., Nawaz, R., & Afza, N. (1999). Withanolides from Physalis peruviana. Phytochemistry, 50, 647–651.Akhavan, S., Mahdi, S., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin , gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011Alcantara, Y., Alcantara, Y., Tejada, A., & Ros, G. (2018). Effect of different concentrations of pulverized mesocarp of Citrus paradisi Macf. on the bromatological characteristics of spray-dried lemon juice powder. Food Science and Nutrition, 6(5), 1261–1268. https://doi.org/10.1002/fsn3.679Álvarez García, C. (2018). Application of Enzymes for Fruit Juice Processing. In G. Rajauria & B. Tiwari (Eds.), Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 201–216). Academic Press. https://doi.org/10.1016/B978-0-12-802230-6.00011-4Amao, I. (2016). Health Benefits of Fruits and Vegetables: Review from Sub-Saharan Africa. In M. Asaduzzaman & T. Asao (Eds.), Vegetables. Importance of Quality Vegetables to Human Health: Vol. i (1st ed., p. 13). IntechOpen. https://doi.org/10.5772/intechopen.74472 AbstractAnaldex, A. N. de C. E. (2019). Comportamiento de la uchuva. 2018–2020.Analdex, A. N. de C. E. (2021). Informe de las exportaciones de uchuva. In Analdex.org (Issue 13).AOAC, A. of O. A. C. (2012). Official Methods of Analysis (K. Helrich (ed.); 19th ed.).Araujo, H. C. S., Jesus, M. S., Leite Neta, M. T. S., Gualberto, N. C., Matos, C. M. S., Rajan, M., Rajkumar, G., Nogueira, J. P., & Narain, N. (2020). Effect of maltodextrin and gum arabic on antioxidant activity and phytochemical profiles of spray-dried powders of sapota (Manilkara zapota) fruit juice. Drying Technology, 39(3), 392–404. https://doi.org/10.1080/07373937.2020.1839487Arias, F., & Rendón, S. (2015). Inteligencia de mercados para la cadena del lulo (Solanum quitoense). Journal of Agricultural and Animal Science, 3(2), 38–47.Areiza, N., Robles, J., Zamudio, J., Giraldez, L., Echeverria, V., Barrera, B., Aliev, G., Sahebkar, A., Ashraf, G., & Barreto, G. (2018). Extracts of Physalis peruviana protect astrocytic cells under oxidative stress with rotenone. Frontiers in Chemistry, 6(276), 1–13. https://doi.org/10.3389/fchem.2018.00276Atalar, I., Kurt, A., Saricaoğlu, F., Gül, O., & Gençcelep, H. (2021). Agglomerated mushroom (Agaricus bisporus) powder: Optimization of top spray fluidized bed agglomeration conditions. Journal of Food Process Engineering, 44(6), 1–12. https://doi.org/10.1111/jfpe.13687Atalar, I., & Yazici, F. (2018). Influence of top spray fluidized bed agglomeration conditions on the reconstitution property and structure modification of skim yoghurt powder. Journal of Food Processing and Preservation, 42(1), 1–10. https://doi.org/10.1111/jfpp.13414Atalar, I., & Yazici, F. (2019). Effect of different binders on reconstitution behaviors and physical, structural, and morphological properties of fluidized bed agglomerated yoghurt powder. Drying Technology, 37(13), 1656–1664. https://doi.org/10.1080/07373937.2018.1529038Atalar, I., & Yazici, F. (2021). Top-Spray Agglomeration Process Applications in Food Powders : A Review of Recent Research Applications in Food Products. European Food Science and Engineering, 2(1), 18–25.Augusto, P. E. D., Ibarz, A., & Cristianini, M. (2012). Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: Time-dependent and steady-state shear. Journal of Food Engineering, 111(4), 570–579. https://doi.org/10.1016/j.jfoodeng.2012.03.015Balaguera, H., Martínez, C., & Herrera, A. (2016). Comportamiento poscosecha de frutos de uchuva (Physalis peruviana L.): Efecto de diferentes dosis y tiempos de exposición al 1-metilciclopropeno. Bioagro, 28(1), 21–28.Bazaria, B., & Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi Society of Agricultural Sciences, 17(4), 408–415. https://doi.org/10.1016/j.jssas.2016.09.007Barkouti, A., Turchiuli, C., Carcel, J. A., & Dumoulin, E. (2013). Milk powder agglomerate growth and properties in fluidized bed agglomeration. Dairy Science and Technology, 93(4–5), 523–535. https://doi.org/10.1007/s13594-013-0132-7Bernal, C. A., Castellanos, L., Aragón, D. M., Martínez-Matamoros, D., Jiménez, C., Baena, Y., & Ramos, F. A. (2018). Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydrate Research, 461, 4–10. https://doi.org/10.1016/j.carres.2018.03.003Bhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of Food Powders: Processes and Properties. In Handbook of Food Powders: Processes and Properties. https://doi.org/10.1533/9780857098672Bhusari, S. N., Muzaffar, K., & Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, 266, 354–364. https://doi.org/10.1016/j.powtec.2014.06.038Borchani, M., Masmoudi, M., Ben Amira, A., Abbès, F., Yaich, H., Besbes, S., Blecker, C., Garvin, A., Ibarz, A., & Attia, H. (2019). Effect of enzymatic treatment and concentration method on chemical, rheological, microstructure and thermal properties of prickly pear syrup. LWT, 113, 108314. https://doi.org/10.1016/j.lwt.2019.108314Braga, V., Guidi, L. R., de Santana, R. C., & Zotarelli, M. F. (2020). Production and characterization of pineapple-mint juice by spray drying. Powder Technology, 375, 409–419. https://doi.org/10.1016/j.powtec.2020.08.012Bravo, K., & Osorio, E. (2016). Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit. Food Chemistry, 197, 185–190. https://doi.org/10.1016/j.foodchem.2015.10.126Bravo, K., Sepulveda-Ortega, S., Lara-Guzman, O., Navas-Arboleda, A. A., & Osorio, E. (2015). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.). Journal of the Science of Food and Agriculture, 95(7), 1562–1569. https://doi.org/10.1002/jsfa.6866Cabrera O, Y. A., Estrada M, E. M., & Cortés R, M. (2017). The influence of drying on the physiological quality of cape gooseberry (Physalis peruviana L.) fruits added with active components. Acta Agronomica, 66(4), 512–518. https://doi.org/10.15446/acag.v66n4.59507Cal, K., & Sollohub, K. (2010). Spray Drying Technique . I : Hardware and Process Parameters. Journal of Pharmaceutical Sciences, 99(2), 575–586. https://doi.org/10.1002/jpsCano-Sarmiento, C., Téllez-Medina, D., Viveros-Contreras, R., Cornejo-Mazón, M., Figueroa-Hernández, C., García-Armenta, E., Alamilla-Beltrán, L., García, H., & Gutiérrez-López, G. (2018). Zeta Potential of Food Matrices. Food Engineering Reviews, 10(3), 113–138. https://doi.org/10.1007/s12393-018-9176-zCastro Sánchez, A. M., Puentes Montañez, G. A., & Botía Rodríguez, Y. (2017). Alternativas de procesamiento de uchuva (Physalis peruviana L) para el aprovechamiento de frutos no aptos para la comercialización en fresco. Revista de Investigación Agraria y Ambiental, 5(1), 121. https://doi.org/10.22490/21456453.939Cerreti, M., Liburdi, K., Benucci, I., & Esti, M. (2016). The effect of pectinase and protease treatment on turbidity and on haze active molecules in pomegranate juice. LWT - Food Science and Technology, 73, 326–333. https://doi.org/10.1016/j.lwt.2016.06.030Chang, L., Karim, R., Sabo, A., & Mohd, H. (2018). Characterization of enzyme-liquefied soursop (Annona muricata L.) puree. LWT - Food Science and Technology, 94, 40–49. https://doi.org/10.1016/j.lwt.2018.04.027Chen, Q., Bi, J., Zhou, Y., Liu, X., Wu, X., & Chen, R. (2014). Multi-objective Optimization of Spray Drying of Jujube (Zizyphus jujuba Miller) Powder Using Response Surface Methodology. Food and Bioprocess Technology, 7(6), 1807–1818. https://doi.org/10.1007/s11947-013-1171-zCheng, Y., Lan, H., Zhao, L., Wang, K., & Hu, Z. (2018). Characterization and Prebiotic Potential of Longan Juice Obtained by Enzymatic Conversion of Constituent Sucrose into Fructo-Oligosaccharides. Molecules, 23(10), 2596. https://doi.org/10.3390/molecules23102596Corazza, G. O., Bilibio, D., Zanella, O., Nunes, A. L., Bender, J. P., Carniel, N., dos Santos, P. P., & Priamo, W. L. (2018). Pressurized liquid extraction of polyphenols from Goldenberry: Influence on antioxidant activity and chemical composition. Food and Bioproducts Processing, 112, 63–68. https://doi.org/10.1016/j.fbp.2018.09.001Cortés, M., Hernández, G., & Estrada, E. (2017). Optimization of the spray drying process for obtaining cape gooseberry powder: an innovative and promising functional food. VITAE, 24(1), 59–67.Cortés R, M., Estrada M, E. M., & Hernández, G. (2017). Optimization of the Spray Drying Process for Obtaining Cape Gooseberry Powder: an Innovative and Promising Functional Food. Revista Vitae, 24(1), 59–67. https://doi.org/10.17533/udea.vitae.v24n1a07Cortés, M., Herrera, E. A., & Gil, J. (2016). Impregnación de uchuva Impregnación de uchuva (Physalis peruviana L.) de forma semiesférica con una emulsión fortificante. Biotecnología En El Sector Agropecuario y Agroindustrial, 14(1), 27–36.Cuq, B., Mandato, S., Jeantet, R., Saleh, K., & Ruiz, T. (2013). Agglomeration/granulation in food powder production. In Handbook of Food Powders: Processes and Properties. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672.1.150Dacanal, G. C., & Menegalli, F. C. (2010). Selection of operational parameters for the production of instant soy protein isolate by pulsed fluid bed agglomeration. Powder Technology, 203(3), 565–573. https://doi.org/10.1016/j.powtec.2010.06.023Dag, D., Kilercioglu, M., & Oztop, M. H. (2017). Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT - Food Science and Technology, 83, 86–94. https://doi.org/10.1016/j.lwt.2017.05.007Dahdouh, L., Delalonde, M., Ricci, J., Ruiz, E., & Wisnewski, C. (2018). Influence of high shear rate on particles size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies, 48(March), 304–312. https://doi.org/10.1016/j.ifset.2018.07.006Dahdouh, L., Wisniewski, C., Ricci, J., Vachoud, L., Dornier, M., & Delalonde, M. (2016). Rheological study of orange juices for a better knowledge of their suspended solids interactions at low and high concentration. Journal of Food Engineering, 174, 15–20. https://doi.org/10.1016/j.jfoodeng.2015.11.008Daza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20–29. https://doi.org/10.1016/j.fbp.2015.10.001Decco, N. P. (2019). Claves para reducir las pérdidas poscosecha. Claves Para Reducir Las Pérdidas Poscosecha. https://www.deccoiberica.es/claves-para-reducir-las-perdidas-poscosecha/de Figueiredo, V., Yamashita, F., Vanzela, A., Ida, E., & Kurozawa, L. (2018). Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. Journal of Food Science and Technology, 55(4), 1508–1517. https://doi.org/10.1007/s13197-018-3067-4De la Vega, J., Cañarejo, M., Cabascango, O., & Lara, M. (2019). Dehydrated Physalis peruviana L. In Two Ripening States and its Effect on Total Phenolic Compounds, Antioxidant Capacity, Carotenes, Color and Ascorbic acid. Informacion Tecnologica, 30(5), 91–100. https://doi.org/10.4067/S0718-07642019000500091de los Rios, C., Cortés, M., & Arango, J. (2021). Physicochemical quality and antioxidant activity of blackberry suspensions: Compositional and process effects. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.15498de Moraes Crizel, T., Jablonski, A., de Oliveira Rios, A., Rech, R., & Flôres, S. (2013). Dietary fiber from orange byproducts as a potential fat replacer. LWT - Food Science and Technology, 53(1), 9–14. https://doi.org/10.1016/j.lwt.2013.02.002de Souza, M. M. B., Santos, A. M. P., Converti, A., & Maciel, M. I. S. (2020). Optimisation of umbu juice spray drying, and physicochemical, microbiological and sensory evaluation of atomised powder. Journal of Microencapsulation, 37(3), 230–241. https://doi.org/10.1080/02652048.2020.1720031Dewhirst, R. A., & Fry, S. C. (2018). The oxidation of dehydroascorbic acid and 2 , 3- diketogulonate by distinct reactive oxygen species. 0, 3451–3470.Dhanalakshmi, K., Ghosal, S., & Bhattacharya, S. (2011). Agglomeration of food powder and applications. Critical Reviews in Food Science and Nutrition, 51(5), 432–441. https://doi.org/10.1080/10408391003646270Diab, M. M. S., Aref, A. M., Othman, M. S., Al-Quraishy, S., Abdel Moneim, A. E., & Dkhil, M. A. (2014). The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity. Food and Chemical Toxicology, 74, 98–106. https://doi.org/10.1016/j.fct.2014.09.013Duque, A., Giraldo, G., & Quintero, V. (2018). Caracterización de la fruta, pulpa y concentrado de uchuva (Physalis peruviana L.). Temas Agrarios, 16(1), 75. https://doi.org/10.21897/rta.v16i1.686El Sheikha, A. F., Mohammed S, Z., Bakr, A. A., El Habashy, M. M., & Montet, D. (2010). Biochemical and sensory quality of physalis (physalis pubescens l.) juice. Journal of Food Processing and Preservation, 34(3), 541–555. https://doi.org/10.1111/j.1745-4549.2009.00382.xElahi Jan, N., & Kawabata, S. (2011). Relationship between fruit soluble solid content and the sucrose concentration of the phloem sap at different leaf to fruit ratios in tomato. J. Japan. Soc. Hort. Sci, 80(3), 314–321. www.jstage.jst.go.jp/browse/jjshs1JSHSEllong, E. N., Billard, C., Adenet, S., & Rochefort, K. (2015). Polyphenols, Carotenoids, Vitamin C Content in Tropical Fruits and Vegetables and Impact of Processing Methods. Food and Nutrition Sciences, 06(03), 299–313. https://doi.org/10.4236/fns.2015.63030Ermiş, E. (2015). Food Powders: Properties and Characterization. In E. Ermiş (Ed.), Food Engineering Series. https://doi.org/https://doi.org/10.1007/978-3-030-48908-3Estrada, M., Cortés, M., & Gil, J. (2017). Guacamole powder: Standardization of the spray drying process. Vitae, 24(2), 102–112. https://doi.org/10.17533/udea.vitae.v24n2a03Etzbach, L., Meinert, M., Faber, T., Klein, C., Schieber, A., & Weber, F. (2020). Effects of carrier agents on powder properties, stability of carotenoids, and encapsulation efficiency of goldenberry (Physalis peruviana L.) powder produced by co-current spray drying. Current Research in Food Science, 3(November 2019), 73–81. https://doi.org/10.1016/j.crfs.2020.03.002Etzbach, L., Pfeiffer, A., Schieber, A., & Weber, F. (2019). Effects of thermal pasteurization and ultrasound treatment on the peroxidase activity, carotenoid composition, and physicochemical properties of goldenberry (Physalis peruviana L.) puree. LWT - Food Science and Technology, 100, 69–74. https://doi.org/10.1016/j.lwt.2018.10.032Eun, J. B., Maruf, A., Das, P. R., & Nam, S. H. (2020). A review of encapsulation of carotenoids using spray drying and freeze drying. Critical Reviews in Food Science and Nutrition, 60(21), 3547–3572. https://doi.org/10.1080/10408398.2019.1698511FAO. (1995). Codex Alimentarius : Food Additives. In General standard for food additives (p. 480). https://sis.binus.ac.id/2016/12/15/pasar-monopoli/FAO, F. and A. O. of the U. N. (2003). Food energy – methods of analysis and conversion factors. In FOOD AND NUTRITION PAPER 77.Favaro, R., Gomes, J., Andreola, K., & Pereira, O. (2020). Wettability improvement of pea protein isolate agglomerated in pulsed fluid bed. Particulate Science and Technology, 38(4), 511–521. https://doi.org/10.1080/02726351.2019.1574940Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667–675. https://doi.org/10.1016/j.fbp.2012.04.006Fennema, O., & Tannenbaum, S. (2010). Introducción a la química de los alimentos. Quimica de Los Alimentos, 3–27.Ferrari, C., Marconi, S., Alvim, I., & de Aguirre, J. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Drying Technology, 31(4), 470–478. https://doi.org/10.1080/07373937.2012.742103Ferrari, C., Marconi, S., Alvim, I., Vissotto, F., & de Aguirre, J. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology, 47(6), 1237–1245. https://doi.org/10.1111/j.1365-2621.2012.02964.xFigueroa, P. M., Ceballos, M. A., & Hurtado, A. M. (2016). Microencapsulação por secagem por atomização de óleo de amora (Rubus glaucus) extraído com CO2 supercrítico. Revista Colombiana de Quimica, 45(2), 39–47. https://doi.org/10.15446/rev.colomb.quim.v45n2.57481FINAGRO. (2014). Perspectiva del sector agropecuario Colombiano. Fondo Para El Finanaciamiento Del Sector Agropecuario, 28. https://www.finagro.com.co/sites/default/files/2014_09_09_perspectivas_agropecuarias.pdfFischer, G., Almanza-Merchán, P., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 40. https://doi.org/10.1590/0100-2945-441/13Fischer, G., Herrera, A., & Almanza, P. (2011). Cape gooseberry ( Physalis peruviana L.). In Elsevier (Ed.), Postharvest Biology and Technology of Tropical and Subtropical Fruits (pp. 374-397e). Woodhead Publishing Limited. https://doi.org/10.1533/9780857092762.374Fischer, Gerhard, Almanza-merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la Uchuva ( Physalis peruviana L .). Scielo, 36(1), 1–15. https://doi.org/10.1590/0100-2945-441/13Fischer, Gerhard, Miranda, D., Piedrahita, W., & Romero, J. (2005). Avances en cultivo, poscosecha y exportación de la uchuva en Colombia. Universidad Nacional de Colombia, Unibiblos.Fitzpatrick, J., Salmon, J., Ji, J., & Miao, S. (2017). Characterisation of the wetting behaviour of poor wetting food powders and the influence of temperature and film formation. KONA Powder and Particle Journal, 34(34), 282–289. https://doi.org/10.14356/kona.2017019Flórez, V., Fischer, G., & Sora, Á. (2000). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Universidad Nacional de Colombia, Unibiblos.Fuente, F., Nocetti, D., Sacristán, C., Ruiz, P., Guerrero, J., Jorquera, G., Uribe, E., Bucarey, J. L., Espinosa, A., & Puente, L. (2020). Physalis peruviana l. Pulp prevents liver inflammation and insulin resistance in skeletal muscles of diet-induced obese mice. Nutrients, 12(3), 700. https://doi.org/10.3390/nu12030700Fustier, P., Taherian, A. R., & Ramaswamy, H. S. (2010). Emulsion delivery systems for functional foods. In J. Smith & E. Charter (Eds.), Functional Food Product Development (pp. 79–97). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444323351.ch4Gallón, M., Cortés, M., & Gil, J. (2020). Physicochemical stability of colloidal systems using the cape gooseberry, strawberry, and blackberry for spray drying. Journal of Food Processing and Preservation, 44(9), 1–10. https://doi.org/10.1111/jfpp.14705García, J., Giuffrida, D., Dugo, P., Mondello, L., & Osorio, C. (2018). Development and characterisation of carotenoid-rich microencapsulates from tropical fruit by-products and yellow tamarillo (Solanum betaceum Cav.). Powder Technology, 339, 702–709. https://doi.org/10.1016/j.powtec.2018.08.061Garofulic, I. E., Zoric, Z., Pedisic, S., & Dragovic-Uzelac, V. (2016). Optimization of sour cherry juice spray drying as affected by carrier material and temperature. Food Technology and Biotechnology, 54(4), 441–449. https://doi.org/10.17113/ft b.54.04.16.4601Genovese, D., & Lozano, J. (2006). Contribution of colloidal forces to the viscosity and stability of cloudy apple juice. Food Hydrocolloids 20, 20, 767–773. https://doi.org/10.1016/j.foodhyd.2005.07.003Ghosal, S., Indira, T. N., & Bhattacharya, S. (2010). Agglomeration of a model food powder: Effect of maltodextrin and gum Arabic dispersions on flow behavior and compacted mass. Journal of Food Engineering, 96(2), 222–228. https://doi.org/10.1016/j.jfoodeng.2009.07.016Gomes, W. F., França, F. R. M., Denadai, M., Andrade, J. K. S., da Silva Oliveira, E. M., de Brito, E. S., Rodrigues, S., & Narain, N. (2018). Effect of freeze- and spray-drying on physico-chemical characteristics, phenolic compounds and antioxidant activity of papaya pulp. Journal of Food Science and Technology, 55(6), 2095–2102. https://doi.org/10.1007/s13197-018-3124-zGouvêa, R. F., Ribeiro, L. O., Souza, É. F., Penha, E. M., Matta, V. M., & Freitas, S. P. (2017). Effect of enzymatic treatment on the rheological behavior and vitamin C content of Spondias tuberosa (umbu) pulp. Journal of Food Science and Technology, 54(7), 2176–2180. https://doi.org/10.1007/s13197-017-2630-8Granados, W., Muñoz, C., & Aguillón, D. (2019). Cadena de la uchuva. In Ministerio de agricultura. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2019-06-30 Cifras Sectoriales UCHUVA.pdfGülçin, I. (2012). Antioxidant activity of food constituents: An overview. Archives of Toxicology, 86(3), 345–391. https://doi.org/10.1007/s00204-011-0774-2Haas, K., Dohnal, T., Andreu, P., Zehetner, E., Kiesslich, A., Volkert, M., Fryer, P., & Jaeger, H. (2020). Particle engineering for improved stability and handling properties of carrot concentrate powders using fluidized bed granulation and agglomeration. Powder Technology, 370, 104–115. https://doi.org/10.1016/j.powtec.2020.04.065Handique, J., Bora, S., & Sit, N. (2019). Optimization of banana juice extraction using combination of enzymes. Journal of Food Science and Technology, 56(8), 3732–3743. https://doi.org/10.1007/s13197-019-03845-zHassan, H. A., Serag, H. M., Qadir, M. S., & Ramadan, M. F. (2017). Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomedicine and Pharmacotherapy, 94(2017), 1129–1137. https://doi.org/10.1016/j.biopha.2017.08.014Hennart, S., Wildeboer, W., van Hee, P., & Meesters, G. (2010). Stability of particle suspensions after fine grinding. Powder Technology, 199(3), 226–231. https://doi.org/10.1016/j.powtec.2010.01.010Hincapié, M. A., & Zapata, J. E. (2019). Study of the dehydration kinetics of uchuva (physalis peruviana l.) in a fluidized bed dryer. Informacion Tecnológica, 30(2), 115–124. https://doi.org/10.4067/S0718-07642019000200115Hirata, T. A. M., Dacanal, G. C., & Menegalli, F. C. (2013). Effect of operational conditions on the properties of pectin powder agglomerated in pulsed fluid bed. Powder Technology, 245, 174–181. https://doi.org/10.1016/j.powtec.2013.04.047Horie, K., Tanaka, S., & Akabori, T. (1976). Determination of Emulsion Stability by Spectal Absorption; Part 1. Journal of Society of Cosmetic Chemists of Japan, 10(1–2), 28–33. https://doi.org/10.5107/sccj1976.10.28Hua, X., Xu, S., Wang, M., Chen, Y., Yang, H., & Yang, R. (2017). Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chemistry, 232, 443–449. https://doi.org/10.1016/j.foodchem.2017.04.003Huang, X., Liu, Q., Yang, Y., & He, W. Q. (2020). Effect of high pressure homogenization on sugar beet pulp: Rheological and microstructural properties. LWT, 125, 109245. https://doi.org/10.1016/j.lwt.2020.109245ICONTEC. (1999). Fresh fruits. Cape gooseberry. Specifications. In Norma técnica colombiana (p. 17). https://repository.agrosavia.co/bitstream/handle/20.500.12324/1271/81660_58968.pdf?sequence=1&isAllowed=yIgual, M., Contreras, C., Camacho, M. M., & Martínez-Navarrete, N. (2014). Effect of Thermal Treatment and Storage Conditions on the Physical and Sensory Properties of Grapefruit Juice. Food and Bioprocess Technology, 7(1), 191–203. https://doi.org/10.1007/s11947-013-1088-6Islam, M. Z., Kitamura, Y., Kokawa, M., Monalisa, K., Tsai, F. H., & Miyamura, S. (2017). Effects of micro wet milling and vacuum spray drying on the physicochemical and antioxidant properties of orange (Citrus unshiu) juice with pulp powder. Food and Bioproducts Processing, 101(2012), 132–144. https://doi.org/10.1016/j.fbp.2016.11.002Izli, N., Yildiz, G., Ünal, H., Işik, E., & Uylaşer, V. (2014). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). International Journal of Food Science and Technology, 49(1), 9–17. https://doi.org/10.1111/ijfs.12266Jafari, S. M., Ghalegi Ghalenoei, M., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59–65. https://doi.org/10.1016/j.powtec.2017.01.070Janiszewska, E. (2017). Carotenoids microencapsulation by spray drying method and supercritical micronization. Food Research International, 99, 891–901. https://doi.org/10.1016/j.foodres.2017.02.001Jeoh, T., Cardona, M. J., Karuna, N., Mudinoor, A. R., & Nill, J. (2017). Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review. Biotechnology and Bioengineering, 114(7), 1369–1385. https://doi.org/10.1002/bit.26277Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205. https://doi.org/10.1016/j.jfoodeng.2007.04.032Juarez, E., Olivas, G., Zamudio, P., Ortega, E., Perez, S., & Sepulveda, D. (2017). Effect of water content on the flowability of hygroscopic powders. Journal of Food Engineering, 205, 12–17. https://doi.org/10.1016/j.jfoodeng.2017.02.024Junqueira, J. R. de J., Corrêa, J. L. G., de Oliveira, H. M., Ivo Soares Avelar, R., & Salles Pio, L. A. (2017). Convective drying of cape gooseberry fruits: Effect of pretreatments on kinetics and quality parameters. LWT - Food Science and Technology, 82, 404–410. https://doi.org/10.1016/j.lwt.2017.04.072Jurado, T. B., Aparcana Ataurima, I., Villarreal Inca, L., Ramos Llica, E., Calixto Cotos, M., Hurtado Manrique, P., & Acosta Alfaro, K. (2016). Evaluación del contenido de polifenoles totales y la capacidad antioxidante de los extractos etanólicos de los frutos de aguaymanto (Physalis peruviana L.) de diferentes lugares del Perú. Revista de La Sociedad Química Del Perú, 82(3), 272–279. https://doi.org/10.1016/j.jadohealth.2005.06.010Kaderides, K., & Goula, A. M. (2017). Development and characterization of a new encapsulating agent from orange juice by-products. Food Research International, 100(July), 612–622. https://doi.org/10.1016/j.foodres.2017.07.057Kaufman, V., & Garti, N. (1981). Spectral absorption measurements for determination of ease of formation and stability of oil in water emulsions. Journal of Dispersion Science and Technology, 2(4), 475–490. https://doi.org/10.1080/01932698108943925Khazraji, A. C., & Robert, S. (2013). Interaction Effects between Cellulose and Water in Nanocrystalline and Amorphous Regions: A Novel Approach Using Molecular Modeling. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/409676Khenpet, u K., Charoenjarasrerk, N., Jaijit, S., Arayapoonpong, S., & Jittanit, W. (2016). Investigation of suitable spray drying conditions for sugarcane juice powder production with an energy consumption study. Agriculture and Natural Resources, 50(2), 139–145. https://doi.org/10.1016/j.anres.2015.08.003Kitrytė, V., Kraujalienė, V., Šulniūtė, V., Pukalskas, A., & Venskutonis, P. R. (2017). Chokeberry pomace valorization into food ingredients by enzyme-assisted extraction: Process optimization and product characterization. Food and Bioproducts Processing, 105, 36–50. https://doi.org/10.1016/j.fbp.2017.06.001Koley, T. K., Walia, S., Nath, P., Awasthi, O. P., & Kaur, C. (2011). Nutraceutical composition of Zizyphus mauritiana Lamk (Indian ber ): effect of enzyme-assisted processing. International Journal of Food Sciences and Nutrition, 62(3), 276–279. https://doi.org/10.3109/09637486.2010.526930Lan, Y., Chang, F., Pan, M., Wu, C., Wu, S., Chen, S., Wang, S., Wu, M., & Wu, Y. (2009). New cytotoxic withanolides from Physalis peruviana. Food Chemistry, 116(2), 462–469. https://doi.org/10.1016/j.foodchem.2009.02.061Lanchero, O., Velandia, G., Fischer, G., Varela, N., & García, H. (2007). Comportamiento de la uchuva (Physalis peruviana L.) en poscosecha bajo condiciones de atmósfera modificada activa. Revista Corpoica - Ciencia y Tecnologiía Agropecuaria, 8(1), 61–68.Largo, E., Cortés, M., & Ciro, H. (2015). Influence of Maltodextrin and Spray Drying Process Conditions on Sugarcane Juice Powder Quality. Revista Facultad Nacional de Agronomía Medellín, 68(1), 7509–7520. https://doi.org/10.15446/rfnam.v68n1.47839Lee, K., Eun, J., & Hwang, J. (2016). Physicochemical properties and sensory evaluation of mandarin (Citrus unshiu) beverage powder spray-dried at different inlet air temperatures with different amounts of a mixture of maltodextrin and corn syrup. Food Science and Biotechnology, 25(5), 1345–1351. https://doi.org/10.1007/s10068-016-0211-7Lee, K., Yoon, S., Li, F., & Eun, J. (2017). Effects of inlet air temperature and concentration of carrier agents on physicochemical properties , sensory evaluation of spray-dried mandarin ( Citrus unshiu ) beverage powder. Applied Biological Chemistry, 60(33–40). https://doi.org/10.1007/s13765-016-0246-8Leite, T., Augusto, P., & Cristianini, M. (2015). Using High Pressure Homogenization (HPH) to Change the Physical Properties of Cashew Apple Juice. Food Biophysics, 10(2), 169–180. https://doi.org/10.1007/s11483-014-9385-9Liu, Y., Chen, F., & Guo, H. (2017). Optimization of bayberry juice spray drying process using response surface methodology. Food Science and Biotechnology, 26(5), 1235–1244. https://doi.org/10.1007/s10068-017-0169-0Loan, N. T. ., Hoa, N. D. ., & Ha, N. V. . (2016). Effects of Spray-Drying Conditions on Antioxidant Properties of Mango. Journal of Biotechnology, 14(1A), 427–438.López-Esparza, R., Balderas, M., Pérez, E., & Goicochea, A. G. (2015). Importance of Molecular Interactions in Colloidal Dispersions. Advances in Condensed Matter Physics, 2015, 1–8. https://doi.org/10.1155/2015/683716López, V. (2017). Vista de La uchuva en el contexto de la producción agrícola colombiana y los TLC’s. Ensayos, 10(10), 131–144. https://revistas.unal.edu.co/index.php/ensayos/article/view/72501/66251López-Gaytán, E., Ayala-Hernández, J. J., Ponce-Aguirre, D., Mora-Aguilar, R., & Peña-Lomelí, A. (2006). Agrofenología de Physalis peruviana L. en invernadero y fertirriego. Revista Chapingo Serie Horticultura, 12(1), 57–63. https://doi.org/10.5154/r.rchsh.2005.10.011Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2020). Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and Arabic gum as wall matrices. Foods, 9(6), 1–17. https://doi.org/10.3390/FOODS9060718Lucas, J. C., Tobon, C., & Cortes, M. (2018). Influence of the Composition of Coconut-Based Emulsions on the Stability of the Colloidal System. Advance Journal of Food Science and Technology, 14(3), 77–92. https://doi.org/10.19026/ajfst.14.5841Luchese, C. L., Gurak, P. D., & Marczak, L. D. F. (2015). Osmotic dehydration of physalis (Physalis peruviana L.): Evaluation ofwater loss and sucrose incorporation and the quantification ofcarotenoids. LWT - Food Science and Technology, 63(2), 1128–1136. https://doi.org/10.1016/j.lwt.2015.04.060Machado, B., Costa, A., Oliveira, R., Barreto, G., Silva, R., & Umsza-Guez, M. (2016). Effect of applying pectinolytic enzymes in Spondias tuberosa Arr. Cam. Pulp. Revista Virtual de Quimica, 8(4), 1067–1078. https://doi.org/10.21577/1984-6835.20160076Machado, V. G., Hirata, T. A. M., & Menegalli, F. C. (2014). Agglomeration of soy protein isolate in a pulsed fluidized bed: Experimental study and process optimization. Powder Technology, 254, 248–255. https://doi.org/10.1016/j.powtec.2014.01.040Maktouf, S., Neifar, M., Drira, S. J., Baklouti, S., Fendri, M., & Châabouni, S. E. (2014). Lemon juice clarification using fungal pectinolytic enzymes coupled to membrane ultrafiltration. Food and Bioproducts Processing, 92(1), 14–19. https://doi.org/10.1016/j.fbp.2013.07.003Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., & Cerkal, R. (2017). ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science, 73, 40–45. https://doi.org/10.1016/j.jcs.2016.11.004Marín, Z., Cortés, M., & Montoya, O. (2010). Capegooseberry (Physalis peruvian L.) Colombian ecotype, minimally processed inoculated with native strain lactobacillus plantarum lpbm10 by means of vaccum impregnation technique. Revista Chilena de Nutricion, 37(4), 461–472. https://doi.org/10.4067/s0717-75182010000400007Matusiak, J., & Grządka, E. (2017). Stability of colloidal systems - a review of the stability measurements methods. Annales Universitatis Mariae Curie-Sklodowska, Sectio AA – Chemia, 72(1), 33. https://doi.org/10.17951/aa.2017.72.1.33Mathlouthi, M. (2001). Water content, water activity, water structure and the stability of foodstuffs. Food Control, 12(7), 409–417. https://doi.org/10.1016/S0956-7135(01)00032-9Mehr, H. M., Elahi, M., & Razavi, S. M. A. (2012). Experimental Study on Optimization of the Agglomeration Process for Producing Instant Sugar by Conical Fluidized Bed Agglomerator. Drying Technology, 30(5), 505–515. https://doi.org/10.1080/07373937.2011.647995Mendoza, H., Rodriguez, A., & Millán, P. (2012). Caracterización físico química de la uchuva (physalis peruviana) en la región de Silvia Cauca. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA, 10(2), 188–196.Mettler Toledo. (2014). Brix - Sugar determination by density and refractometry. In Density and Refractometry. https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/technical-bulletins/mettler-toledo-brix-sugar-determination-techinical-bulletin.pdfMidilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503–1513. https://doi.org/10.1081/DRT-120005864MinSalud, M. de salud y protección social. (2021). Resolución No. 810 de 2021 (p. 50).Mirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2008). Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315(1–3), 47–56. https://doi.org/10.1016/j.colsurfa.2007.07.007Mishra, P., Mishra, S., & Mahanta, C. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252–258. https://doi.org/10.1016/j.fbp.2013.08.003Mishra, Poonam, Mishra, S., & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252–258. https://doi.org/10.1016/j.fbp.2013.08.003Moelants, K., Cardinaels, R., Jolie, R., Verrijssen, T., Van Buggenhout, S., Zumalacarregui, L., Van Loey, A., Moldenaers, P., & Hendrickx, M. (2013). Relation Between Particle Properties and Rheological Characteristics of Carrot-derived Suspensions. Food and Bioprocess Technology, 6(5), 1127–1143. https://doi.org/10.1007/s11947-011-0718-0Moghaddam, A. D., Pero, M., & Askari, G. R. (2017). Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM). Journal of Food Science and Technology, 54(1), 174–184. https://doi.org/10.1007/s13197-016-2449-8Mokhtar, S. M., Swailam, H. M., & Embaby, H. E. S. (2018). Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste. Food Chemistry, 248, 1–7. https://doi.org/10.1016/j.foodchem.2017.11.117Muzaffar, K., Nayik, A., & Kumar, P. (2018). Production of Fruit Juice Powders by Spray Drying Technology. International Journal of Advance Research in Science and Engineering, 7(3), 59–67.Muzaffar, K., & Kumar, P. (2015). Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Technology, 279, 179–184. https://doi.org/10.1016/j.powtec.2015.04.010Muzaffar, K., Nayik, G. A., & Kumar, P. (2015). Stickiness Problem Associated with Spray Drying of Sugar and Acid Rich Foods: A Mini Review. https://doi.org/10.4172/2155-9600.1000S12003Muzaffar, K., Wani, S. A., Dinkarrao, B. V., & Kumar, P. (2016). Determination of production efficiency, color, glass transition, and sticky point temperature of spray-dried pomegranate juice powder. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1144444Narváez, C., Mateus, Á., & Restrepo, L. (2014). Antioxidant capacity and total phenolic content of air-dried cape gooseberry (Physalis peruviana L.) at different ripeness stages. In Agronomía Colombiana (Vol. 32, Issue 2).Neikov, O. (2019). Safety Engineering in the Production of Powders. In O. Neikov, S. Naboychenko, & N. Yefimov (Eds.), Handbook of Non-Ferrous Metal Powders (2nd ed., pp. 865–928). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100543-9.00027-0Nishad, J., Selvan, C. J., Mir, S. A., & Bosco, S. J. D. (2017). Effect of spray drying on physical properties of sugarcane juice powder (Saccharum officinarum L.). Journal of Food Science and Technology, 54(3), 687–697. https://doi.org/10.1007/s13197-017-2507-xNocetti, D., Núñez, H., Puente, L., Espinosa, A., & Romero, F. (2020). Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture, 100(12), 4335–4346. https://doi.org/10.1002/jsfa.10386Novozymes. (2001). Product Sheet Viscozyme ® L Description. www.novozymes.comOjovan, M. I. (2004). Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects. JETP Letters, 79(12), 632–634. https://doi.org/10.1134/1.1790021Olivares, M., Dekker, M., Verkerk, R., & van Boekel, M. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57(Part A), 83–92. https://doi.org/10.1016/j.tifs.2016.09.009Olivares, M. (2017). Exploring The Potential of An Andean fruit: An Interdisciplinary Study On The Cape Gooseberry (Physalis peruviana L.) Value Chain [Wageningen University by]. https://doi.org/10.18174/393622Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100. https://doi.org/10.1016/j.foodchem.2017.04.114Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(August 2018), 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205Ozyurt, V. H., & Ötles, S. (2016). Effect of food processing on the physicochemical properties of dietary fibre. Acta Scientiarum Polonorum, Technologia Alimentaria, 15(3), 233–245. https://doi.org/10.17306/J.AFS.2016.3.23Patil, V., Chauhan, A. K., & Singh, R. P. (2014). Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technology, 253, 230–236. https://doi.org/10.1016/j.powtec.2013.11.033Palzer, S. (2007). Chapter 13 Agglomeration of dehydrated consumer foods. Handbook of Powder Technology, 11, 591–671. https://doi.org/10.1016/S0167-3785(07)80048-0Patiño, D., Garcia, E., Barrera, E., Quejada, O., Rodriguez, H., & Arroyave, I. (2014). Manual del Cultivo de Técnico Uchuva Buenas Prácticas. In Fransiscovelez (Vol. 0, Issue colombia). file:///C:/Users/USUARIO/Documents/cultivo de zona de origen/CULTIVO DE UCHUVA/cartilla de uchuva.pdfPérez, A., Martínez, G., León, F., & Sánchez, M. (2020). The effect of the presence of seeds on the nutraceutical, sensory and rheological properties of Physalis spp. Fruits jam: A comparative analysis. Food Chemistry, 302(July 2019), 125141. https://doi.org/10.1016/j.foodchem.2019.125141Phisut, N. (2012). Spray drying technique of fruit juice powder: some factors influencing the properties of product. In International Food Research Journal (Vol. 19, Issue 4).Phuong, N., & Tuan, Q. (2016). Application of hydrolytic enzymes for improvement of red dragon fruit juice processing. Asia Pacific Journal of Sustainable Agriculture Food and Energy (APJSAFE), 4(1), 1–4.Pragati, S., & Preeti, B. (2014). Technological Revolution in Drying of Fruit and Vegetables. International Hournal of Science and Research, 3(10), 705–711.Procolombia. (2020). Uchuva. Procolombia, 2.Puente, L., Pinto, C., Castro, E., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733–1740. https://doi.org/10.1016/j.foodres.2010.09.034Puente, L., Spolmann, O., Nocetti, D., Zura, L., & Lemus, R. (2020). Effects of infrared-assisted refractance windowTM drying on the drying kinetics, microstructure, and color of Physalis fruit purée. Foods, 9(343). https://doi.org/10.3390/foods9030343Quek, S., Chok, N., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386–392. https://doi.org/10.1016/j.cep.2006.06.020Quirino, E., De Araújo, V., Monteiro, M., Finotelli, V., Guedes, A., & Perrone, D. (2016). Starch , inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/j.carbpol.2016.05.093Ramadan, M., & Morsel, J. (2003). Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 51(4), 969–974. https://doi.org/10.1021/jf020778zRamadan, M., & Moersel, J. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 87(3), 452–460. https://doi.org/10.1002/jsfa.2728Ramadan, M., & Morsel, J. (2003). Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 51(4), 969–974. https://doi.org/10.1021/jf020778zRamadan, M. (2011a). Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Reviews International, 27(3), 259–273. https://doi.org/10.1080/87559129.2011.563391Ramadan, M. (2011a). Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Reviews International, 27(3), 259–273. https://doi.org/10.1080/87559129.2011.563391Ramadan, M., Sitohy, M., & Moersel, J. (2008). Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: Impact of processing on composition and quality of oil and meal. European Food Research and Technology, 226(6), 1445–1458. https://doi.org/10.1007/s00217-007-0676-yRamadan, M. (2011b). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44(7), 1830–1836. https://doi.org/10.1016/j.foodres.2010.12.042Ramadan, M. (2018). Enzymes in fruit juice processing. In M. Kuddus (Ed.), Enzymes in Food Biotechnology: Production, Applications, and Future Prospects (pp. 45–59). Elsevier. https://doi.org/10.1016/B978-0-12-813280-7.00004-9Ramakrishnan, Y., Adzahan, N. M., Yusof, Y. A., & Muhammad, K. (2018). Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology, 328, 406–414. https://doi.org/10.1016/j.powtec.2017.12.018Ramírez, M., Giraldo, G., & Orrego, C. (2015). Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technology, 277, 89–96. https://doi.org/10.1016/j.powtec.2015.02.060Rayo, L., Chaguri, L., Sardá, F., Dacanal, G., Menezes, E., & Tadini, C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed- fluidized bed agglomeration. LWT - Food Science and Technology, 63, 461–469. https://doi.org/10.1016/j.lwt.2015.03.059Restrepo, A., Cortés, M., & Márquez, C. (2009). Uchuvas (Physalis peruviana L.) mínimamente procesadas fortificadas con vitamina E. VITAE, 16(1), 19–30. http://www.scielo.org.co/pdf/vitae/v16n1/v16n1a03Reyes-Medina, A. J., Pinzón, E. H., & Álvarez-Herrera, J. G. (2017). Effect of calcium chloride and refrigeration on the quality and organoleptic characteristics oReyes, M. E. D., Guanilo, C. K., Ibáñez, M. W., García, C. E., Idrogo, J. J., & Huamán, J. J. (2015). Efecto del conumo de Physalis peruviana L. (aguaymanto) sobre el pérfil lípido de pacientes con hiperemia. Acta Médica Peruana, 32(4), 195–201.Rieck, C., Bück, A., & Tsotsas, E. (2020). Estimation of the dominant size enlargement mechanism in spray fluidized bed processes. AIChE Journal, 66(January), 1–18. https://doi.org/10.1002/aic.16920Rigon, R., & Zapata, C. (2016). Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (rubus fruticosus). Journal of Food Science and Technology, 53(3), 1515–1524. https://doi.org/10.1007/s13197-015-2111-xRíos, E. V, Giraldo G, G. A., & Lucia Duque, A. C. (2007). Predicción de la Actividad de Agua en Frutas Tropicales. In Revista de Investigaciones (Issue 17).Rondet, E., Cuq, B., Cassan, D., & Ruiz, T. (2016). Agglomeration of wheat powders by a novel reverse wet agglomeration process. Journal of Food Engineering, 173, 92–105. https://doi.org/10.1016/j.jfoodeng.2015.10.046Rodrigues, G., Gomes, L., Nitz, M., & Andreola, K. (2020). A protein powder agglomeration process using açaí pulp as the binder: An analysis of the process parameters. Advanced Powder Technology, 31(8), 3551–3561. https://doi.org/10.1016/j.apt.2020.07.001Rodríguez, N., & Bueno, M. (2006). Study of the cytogenetic diversity of physalis peruviana L. (Solanaceae). Acta Biológica Colombiana, 11(2), 75–85.Roos, Y., & Drusch, S. (2015). Phase Transitions in Foods (Academic Press (ed.); Second Edi). Elsevier Inc. https://doi.org/10.1016/C2012-0-06577-5Saad, M. M., Barkouti, A., Rondet, E., Ruiz, T., & Cuq, B. (2011). Study of agglomeration mechanisms of food powders: Application to durum wheat semolina. Powder Technology, 208(2), 399–408. https://doi.org/10.1016/j.powtec.2010.08.035Sablani, S. S., Kasapis, S., & Rahman, M. S. (2007). Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering, 78(1), 266–271. https://doi.org/10.1016/j.jfoodeng.2005.09.025Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. In Bioresources and Bioprocessing (Vol. 5, Issue 1, p. 1). Springer. https://doi.org/10.1186/s40643-017-0187-zSagar, V. R., & Suresh, P. (2010). Recent advances in drying and dehydration of fruits and vegetables: A review. Journal of Food Science and Technology, 47(1), 15–26. https://doi.org/10.1007/s13197-010-0010-8Samborska, K., Boostani, S., Geranpour, M., Hosseini, H., Dima, C., Khoshnoudi-Nia, S., Rostamabadi, H., Falsafi, S. R., Shaddel, R., Akbari-Alavijeh, S., & Jafari, S. M. (2021). Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends in Food Science and Technology, 108(January), 297–325. https://doi.org/10.1016/j.tifs.2021.01.008Santhalakshmy, S., Don Bosco, S. J., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37–43. https://doi.org/10.1016/j.powtec.2015.01.016Sang-Ngern, M., Youn, U. J., Park, E. J., Kondratyuk, T. P., Simmons, C. J., Wall, M. M., Ruf, M., Lorch, S. E., Leong, E., Pezzuto, J. M., & Chang, L. C. (2016). Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 26(12), 2755–2759. https://doi.org/10.1016/j.bmcl.2016.04.077Santos, D., Maurício, A., Sencadas, V., Santos, J., Fernandes, M., & Gomes, P. (2018). Spray Drying: An Overview. In Biomaterials - Physics and Chemistry - New Edition. InTech. https://doi.org/10.5772/intechopen.72247Sarabandi, K., Jafari, S., Mahoonak, A., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of egg plant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133Sathyashree, H., Ramachandra, C., Udaykumar, N., Mathad, P., & Nagaraj, N. (2018). Rehydration properties of spray dried sweet orange juice. ~ 120 ~ Journal of Pharmacognosy and Phytochemistry, 7(3), 120–124.Schuck, P. (2011). Dehydrated Dairy Products: Milk Powder: Physical and Functional Properties of Milk Powders. Encyclopedia of Dairy Sciences: Second Edition, 117–124. https://doi.org/10.1016/B978-0-12-374407-4.00122-9Selvamuthukumaran, M., & Khanum, F. (2014). Optimization of spray drying process for developing seabuckthorn fruit juice powder using response surface methodology. Journal of Food Science and Technology, 51(12), 3731–3739. https://doi.org/10.1007/s13197-012-0901-yShishir, M., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006Shittu, T. A., & Lawal, M. O. (2007). Factors affecting instant properties of powdered cocoa beverages. Food Chemistry, 100(1), 91–98. https://doi.org/10.1016/j.foodchem.2005.09.013Shofinita, D., Feng, S., & Langrish, T. A. G. (2015). Comparing yields from the extraction of different citrus peels and spray drying of the extracts. Advanced Powder Technology, 26(6), 1633–1638. https://doi.org/10.1016/j.apt.2015.09.007Shrivastava, A., Tripathi, A. D., Paul, V., & Chandra Rai, D. (2021). Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. Lwt, 151(May), 112091. https://doi.org/10.1016/j.lwt.2021.112091Silva, V. M., Sato, A. C. K., Barbosa, G., Dacanal, G., Ciro-Velásquez, H. J., & Cunha, R. L. (2010). The effect of homogenisation on the stability of pineapple pulp. International Journal of Food Science & Technology, 45(10), 2127–2133. https://doi.org/10.1111/j.1365-2621.2010.02386.xSobulska, M., & Zbicinski, I. (2020). Advances in spray drying of sugar-rich products. Drying Technology, 0(0), 1–26. https://doi.org/10.1080/07373937.2020.1832513Sonam, K. S., & Guleria, S. (2017). Synergistic antioxidant activity of natural products. Annals of Pharmacology and Pharmaceutics, 2(8), 1–6.Suescún, L., Erika, P., Betancourt, S., Gómez, M., Francy, M., García, L., Víctor, A., & Zarantes, M. N. (2011). Physalis peruviana. www.kimpres.com.coSun, T., Powers, J. R., & Tang, J. (2007). Effect of Enzymatic Macerate Treatment on Rutin Content, Antioxidant Activity, Yield, and Physical Properties of Asparagus Juice. Journal of Food Science, 72(4), S267–S271. https://doi.org/10.1111/j.1750-3841.2007.00345.xStrenzke, G., Dürr, R., Bück, A., & Tsotsas, E. (2020). Influence of operating parameters on process behavior and product quality in continuous spray fluidized bed agglomeration. Powder Technology, 375, 210–220. https://doi.org/10.1016/j.powtec.2020.07.083Szulc, K., & Lenart, A. (2013). Surface modification of dairy powders : Effects of fluid-bed agglomeration and coating. International Dairy Journal, 33(1), 55–61. https://doi.org/10.1016/j.idairyj.2013.05.021Tamnak, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., & Muhammad, K. (2016). Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids, 56, 405–416. https://doi.org/10.1016/j.foodhyd.2015.12.033Tan, H. S., Salman, A. D., & Hounslow, M. J. (2006). Kinetics of fluidised bed melt granulation I : The effect of process variables. Chemical Engineering Science, 61, 1585–1601. https://doi.org/10.1016/j.ces.2005.09.012Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology, 63, 91–102. https://doi.org/10.1016/j.tifs.2017.03.009Torres-Ossandón, M. J., Vega-Gálvez, A., López, J., Stucken, K., Romero, J., & Di Scala, K. (2018). Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). Journal of Supercritical Fluids, 138(March), 215–220. https://doi.org/10.1016/j.supflu.2018.05.005Uzuner, S., & Cekmecelioglu, D. (2018). Enzymes in the beverage industry. In M. Kuddus (Ed.), Enzymes in Food Biotechnology: Production, Applications, and Future Prospects (pp. 29–43). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813280-7.00003-7Valenzuela, A., & Ronco, A. (2004). Fitoesteroles y fitoestanoles: aliados naturales para la protección de la salud cardiovascular. Revista Chilena de Nutrición, 21(1), 161–169. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-75182004031100003&lng=es&nrm=iso&tlng=esVásquez, J., Ochoa, C., & Bustos, M. (2013). Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). Journal of Food Engineering, 119(3), 648–654. https://doi.org/10.1016/j.jfoodeng.2013.06.037Vengateson, U., & Mohan, R. (2016). Experimental and modeling study of fluidized bed granulation: Effect of binder flow rate and fluidizing air velocity. Resource-Efficient Technologies, 2, S124–S135. https://doi.org/10.1016/j.reffit.2016.10.003Vega-Gálvez, A., Díaz, R., López, J., Galotto, M. J., Reyes, J. E., Perez-Won, M., Puente-Díaz, L., & Di Scala, K. (2016). Assessment of quality parameters and microbial characteristics of Cape gooseberry pulp (Physalis peruviana L.) subjected to high hydrostatic pressure treatment. Food and Bioproducts Processing, 97, 30–40. https://doi.org/10.1016/j.fbp.2015.09.008Verma, A., & Singh, S. V. (2015). Spray Drying of Fruit and Vegetable Juices—A Review. Critical Reviews in Food Science and Nutrition, 55(5), 701–719. https://doi.org/10.1080/10408398.2012.672939Vijayanand, P., Kulkarni, S. G., & Prathibha, G. V. (2010). Effect of pectinase treatment and concentration of litchi juice on quality characteristics of litchi juice. Journal of Food Science and Technology, 47(2), 235–239. https://doi.org/10.1007/s13197-010-0023-3Vidović, S. S., Vladić, J. Z., Vaštag, Ž. G., Zeković, Z. P., & Popović, L. M. (2014). Maltodextrin as a carrier of health benefit compounds in Satureja montana dry powder extract obtained by spray drying technique. Powder Technology, 258, 209–215. https://doi.org/10.1016/j.powtec.2014.03.038Vong, W. C., & Liu, S. Q. (2019). The effects of carbohydrase, probiotic Lactobacillus paracasei and yeast Lindnera saturnus on the composition of a novel okara (soybean residue) functional beverage. LWT, 100, 196–204. https://doi.org/10.1016/j.lwt.2018.10.059Wan, Y.-J., Xu, M.-M., Gilbert, R. G., Yin, J.-Y., Huang, X.-J., Xiong, T., & Xie, M.-Y. (2018). Colloid chemistry approach to understand the storage stability of fermented carrot juice. https://doi.org/10.1016/j.foodhyd.2018.11.017Wan, Y., Xu, M., Gilbert, R., Yin, J., Huang, X., Xiong, T., & Xie, M. (2019). Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocolloids, 89, 623–630. https://doi.org/10.1016/j.foodhyd.2018.11.017Wardy, W., Pujols, K., Xu, Z., No, H., & Prinyawiwatkul, W. (2014). Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology, 55(1), 67–73. https://doi.org/10.1016/j.lwt.2013.07.013Wellala, C. K. D., Bi, J., Liu, X., Liu, J., Lyu, J., Zhou, M., Marszałek, K., & Trych, U. (2020). Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innovative Food Science and Emerging Technologies, 60, 102279. https://doi.org/10.1016/j.ifset.2019.102279Wu, D., & Sun, D. (2013). Colour measurements by computer vision for food quality control e A review. Trends in Food Science & Technology, 29, 5–20. https://doi.org/10.1016/j.tifs.2012.08.004Yıldız, G., İzli, N., Ünal, H., & Uylaşer, V. (2015). Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Technology, 52(4), 2320–2327. https://doi.org/10.1007/s13197-014-1280-3Yu, Z., Jiang, S., Cao, X., Jiang, S., & Pan, L. (2016). Effect of high pressure homogenization (HPH) on the physical properties of taro (Colocasia esculenta (L). Schott) pulp. Journal of Food Engineering, 177, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.10.042Yüksel, H., Çalışkan Koç, G., & Dirim, S. N. (2019). Physical characterization of spray-dried milk powders and their agglomerates with the addition of carob, cinnamon, and ginger powders. Pamukkale University Journal of Engineering Sciences, 25(7), 824–833. https://doi.org/10.5505/pajes.2019.56798Yuksel, H., & Dirim, N. (2018). Agglomeration process in the fluidized bed, the effecting parameters and some applications. Hrvatski Časopis Za Prehrambenu Tehnologiju, Biotehnologiju i Nutricionizam, 13(3–4), 159–163. https://doi.org/10.31895/hcptbn.13.3-4.10Yuksel, H., & Dirim, S. N. (2021). Application of the agglomeration process on spinach juice powders obtained using spray drying method. Drying Technology, 39(1), 19–34. https://doi.org/10.1080/07373937.2020.1832515Zapata, J., Ciro, G., & Marulanda, P. (2016). Optimization of pulsed vacuum osmotic dehydration of the cape gooseberry (Physalis peruviana L.) using the response surface methodology. Agronomia Colombiana, 34(2), 228–238. https://doi.org/10.15446/agron.colomb.v34n2.54920Zhang, J., Zhang, C., Chen, X., & Quek, S. Y. (2020). Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. Journal of Food Engineering, 269(October 2019), 109744. https://doi.org/10.1016/j.jfoodeng.2019.109744Zhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S., & Wang, Y. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, 57(6), 1239–1255. https://doi.org/10.1080/10408398.2014.97928Zhou, L., Guan, Y., Bi, J., Liu, X., Yi, J., Chen, Q., Wu, X., & Zhou, M. (2017). Change of the rheological properties of mango juice by high pressure homogenization. LWT - Food Science and Technology, 82, 121–130. https://doi.org/10.1016/j.lwt.2017.04.038Zhu, D., Shen, Y., Wei, L., Xu, L., Cao, X., Liu, H., & Li, J. (2020). Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry, 126967. https://doi.org/10.1016/j.foodchem.2020.126967Ziyani, L., & Fatah, N. (2014). Use of experimental designs to optimize fluidized bed granulation of maltodextrin. Advanced Powder Technology, 25(3), 1069–1075. https://doi.org/10.1016/j.apt.2014.02.013Zotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454. https://doi.org/10.1016/j.powtec.2016.10.027Macroproyecto Fortalecimiento de la competitividad de las cadenas productivas de mora, fresa y uchuva en el departamento de Antioquia, mediante el desarrollo y escalamiento industrial de alimentos funcionales aglomerados con potencial efecto antioxidante.Ministerio de Ciencia Tecnología e InnovaciónBibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1085289304.2022.pdf1085289304.2022.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf4325010https://repositorio.unal.edu.co/bitstream/unal/81633/3/1085289304.2022.pdfe2d19bba24935672c5860345d58e1aafMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81633/6/license.txt8153f7789df02f0a4c9e079953658ab2MD56CC-LICENSEEraso Grisales Soany Karola _licencia_cap_1.pdfEraso Grisales Soany Karola _licencia_cap_1.pdfLicencia capitulo 3application/pdf310638https://repositorio.unal.edu.co/bitstream/unal/81633/7/Eraso%20Grisales%20Soany%20Karola%20_licencia_cap_1.pdf7460d92de7760a17f0e7db1e90015417MD57Eraso Grisales Soany Karola_licencia_cap_3.pdfEraso Grisales Soany Karola_licencia_cap_3.pdfLicencia capitulo 4application/pdf327246https://repositorio.unal.edu.co/bitstream/unal/81633/9/Eraso%20Grisales%20Soany%20Karola_licencia_cap_3.pdf83533e93cebfb6fb9d383007f58c8324MD59THUMBNAIL1085289304.2022.pdf.jpg1085289304.2022.pdf.jpgGenerated Thumbnailimage/jpeg5259https://repositorio.unal.edu.co/bitstream/unal/81633/10/1085289304.2022.pdf.jpg7478c45222572642619b4fb4ef878424MD510unal/81633oai:repositorio.unal.edu.co:unal/816332024-01-02 08:10:16.478Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |