Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera

ilustraciones, gráficas, tablas

Autores:
Niño Casallas, Jorge Andrei
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81026
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81026
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Brewing industry
Energy efficiency
Efficiency
Industria cervecera
Rendimiento energético
Eficiencia
Maltería
Cebada
Malta
Tostación
Emergía
Ecoeficiencia
Malt plant
Barley
Malt
Kilning
Emergy
Eco-efficiency
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6a48c14443ec0162729eec64a71aa0ff
oai_identifier_str oai:repositorio.unal.edu.co:unal/81026
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera
dc.title.translated.eng.fl_str_mv Implementation of emergy method for eco-efficiency analysis in kilning process of a brewing malt production plant
title Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera
spellingShingle Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera
620 - Ingeniería y operaciones afines
Brewing industry
Energy efficiency
Efficiency
Industria cervecera
Rendimiento energético
Eficiencia
Maltería
Cebada
Malta
Tostación
Emergía
Ecoeficiencia
Malt plant
Barley
Malt
Kilning
Emergy
Eco-efficiency
title_short Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera
title_full Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera
title_fullStr Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera
title_full_unstemmed Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera
title_sort Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera
dc.creator.fl_str_mv Niño Casallas, Jorge Andrei
dc.contributor.advisor.spa.fl_str_mv Moreno Mantilla, Carlos Eduardo
Narváez Rincón, Paulo César
dc.contributor.author.spa.fl_str_mv Niño Casallas, Jorge Andrei
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Brewing industry
Energy efficiency
Efficiency
Industria cervecera
Rendimiento energético
Eficiencia
Maltería
Cebada
Malta
Tostación
Emergía
Ecoeficiencia
Malt plant
Barley
Malt
Kilning
Emergy
Eco-efficiency
dc.subject.lemb.eng.fl_str_mv Brewing industry
Energy efficiency
Efficiency
dc.subject.lemb.spa.fl_str_mv Industria cervecera
Rendimiento energético
Eficiencia
dc.subject.proposal.spa.fl_str_mv Maltería
Cebada
Malta
Tostación
Emergía
Ecoeficiencia
dc.subject.proposal.eng.fl_str_mv Malt plant
Barley
Malt
Kilning
Emergy
Eco-efficiency
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-10-14
dc.date.accessioned.none.fl_str_mv 2022-02-21T18:00:21Z
dc.date.available.none.fl_str_mv 2022-02-21T18:00:21Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81026
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81026
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ACCEFYN. (2003). Factores de emisión de los combustibles colombianos. Informe final, presentado a UPME
Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V., & Forero, J. D. (2020). Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03758
Alizadeh, S., Zafari-koloukhi, H., Rostami, F., Rouhbakhsh, M., & Avami, A. (2020). The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses. Journal of Cleaner Production, 249, 119327. https://doi.org/10.1016/j.jclepro.2019.119327
Alkhuzaim, L., Zhu, Q., & Sarkis, J. (2021). Evaluating Emergy Analysis at the Nexus of Circular Economy and Sustainable Supply Chain Management. Sustainable Production and Consumption, 25, 413–424. https://doi.org/10.1016/j.spc.2020.11.022
Álvarez, S., Lomas, P. L., Martín, B., Rodríguez, M., & Montes, C. (2005). El Sistema de Evaluación Emergética (Emergy Synthesis). Integrando Energía, Ecología y Economía. February 2015.
Arnold, M., & Osorio, F. (1998). Introduccion a los conceptos basicos de la teoria general de sistemas. Cinta de Moebio, 27, 157–159. https://www.redalyc.org/pdf/101/10100306.pdf
Bakshi, B. R. (2002). A thermodynamic framework for ecologically conscious process systems engineering. Computers and Chemical Engineering, 26(2), 269–282. https://doi.org/10.1016/S0098-1354(01)00745-1
Bakshi, B. R. (2014). Methods and tools for sustainable process design. Current Opinion in Chemical Engineering, 6, 69–74. https://doi.org/10.1016/j.coche.2014.09.005
Bakshi, B. R. (2019). Sustainable Engineering principles and practice. Cambridge University Press. https://doi.org/10.1017/9781108333726
Bleier, F. P. (1997). Fan Handbook: Selection, Application, and Design. McGraw-Hill Book Company.
Bolanakis, D. E., Kotsis, K. T., & Laopoulos, T. (2015). Temperature influence on differential barometric altitude measurements. Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2015, 1(September), 120–124. https://doi.org/10.1109/IDAACS.2015.7340711
Breedveld, L., Timellini, G., Casoni, G., Fregni, A., & Busani, G. (2007). Eco-efficiency of fabric filters in the Italian ceramic tile industry. Journal of Cleaner Production, 15(1), 86–93. https://doi.org/10.1016/j.jclepro.2005.08.015
Briggs, D. E. (1998). Malts and Malting (1st ed.). Springer US.
Brown, M. T., & Ulgiati, S. (2002). Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production, 10(4), 321–334. https://doi.org/10.1016/S0959-6526(01)00043-9
Brown, Mark T. (2004). A picture is worth a thousand words: Energy systems language and simulation. Ecological Modelling, 178(1–2), 83–100. https://doi.org/10.1016/j.ecolmodel.2003.12.008
Brown, Mark T., Campbell, D. E., De Vilbiss, C., & Ulgiati, S. (2016). The geobiosphere emergy baseline: A synthesis. Ecological Modelling, 339, 92–95. https://doi.org/10.1016/j.ecolmodel.2016.03.018
Brown, Mark T., Raugei, M., & Ulgiati, S. (2012). On boundaries and “investments” in Emergy Synthesis and LCA: A case study on thermal vs. photovoltaic electricity. Ecological Indicators, 15(1), 227–235. https://doi.org/10.1016/j.ecolind.2011.09.021
Brown, Mark T., & Ulgiati, S. (2016). Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline. Ecological Modelling, 339, 126–132. https://doi.org/10.1016/j.ecolmodel.2016.03.017
Cangrejo Castro, N. (2020). Integración de Economía Circular en la industria química colombiana: Propuesta de un sistema de indicadores de desempeño ambiental para medir la circularidad en empresas del sector. Universidad Nacional de Colombia.
Cano. (2018). Sustainability Assessment of Alluvial and Open Pit Mining Systems in Colombia : Life Cycle Assessment , Exergy Analysis , and Emergy Accounting Evaluación de sostenibilidad de los sistemas de extracción aluvial y a cielo abierto en Colombia . Análisis Eme.
Cano Londoño, N. A. (2012). Análisis mediante el método emergético de la disposición de los lodos producidos en una planta de tratamiento de aguas residuales. (Aplicación a una PTAR en el Área Metropolitana del Valle de Aburrá). http://www.bdigital.unal.edu.co/8652/1/tesisnataliacano.pdf
Cano, N. A., Velásquez, H. I., & McIntyre, N. (2019). Comparing the environmental sustainability of two gold production methods using integrated Emergy and Life Cycle Assessment. Ecological Indicators, 107(July), 105600. https://doi.org/10.1016/j.ecolind.2019.105600
Cao, K., & Feng, X. (2007). The emergy analysis of multi-product systems. Process Safety and Environmental Protection, 85(5 B), 494–500. https://doi.org/10.1205/psep07007
Cao, L., Zhou, Z., Wu, Y., Huang, Y., & Cao, G. (2019). Is metabolism in all regions of China performing well? – Evidence from a new DEA-Malmquist productivity approach. Ecological Indicators, 106. https://doi.org/10.1016/j.ecolind.2019.105487
CELSIA. (2020). Sistema Interconectado de Energía. https://www.celsia.com/wp-content/uploads/2020/09/Documento-de-trabajo-sobre-el-Sistema-Interconectado-Nacional.pdf
Chang, C. S., Ni, S. H., Yang, H. S., & Chou, C. T. (2021). Simulation study of separating oxygen from air by pressure swing adsorption process with semicylindrical adsorber. Journal of the Taiwan Institute of Chemical Engineers, 120, 67–76. https://doi.org/10.1016/j.jtice.2021.03.027
Chapman, S. J. (2012). Máquinas eléctricas (5ta ed.). McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.
Chen, D., Li, X. C., Luo, Z. H., & Chen, J. (2019). Ecological and economic feasibility analysis of irrigation engineering projects. Applied Ecology and Environmental Research, 17(1), 781–793. https://doi.org/10.15666/aeer/1701_781793
Corcelli, F., Ripa, M., & Ulgiati, S. (2018). Efficiency and sustainability indicators for papermaking from virgin pulp—An emergy-based case study. Resources, Conservation and Recycling, 131, 313–328. https://doi.org/10.1016/j.resconrec.2017.11.028
Creswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (4th ed.). SAGE.
Daly, H. E., & Farley, J. (2011). Ecological economics : principles and applications (2nd Editio). Island Press.
De Clerck, J. (1957). A textbook of brewing: Vol. One. Chapman & Hall LTDA.
de Souza Junior, H. R. A., Dantas, T. E. T., Zanghelini, G. M., Cherubini, E., & Soares, S. R. (2020). Measuring the environmental performance of a circular system: Emergy and LCA approach on a recycle polystyrene system. Science of the Total Environment, 726, 138111. https://doi.org/10.1016/j.scitotenv.2020.138111
dos Reis, J. C., Rodrigues, G. S., de Barros, I., Ribeiro Rodrigues, R. de A., Garrett, R. D., Valentim, J. F., Kamoi, M. Y. T., Michetti, M., Wruck, F. J., Rodrigues-Filho, S., Pimentel, P. E. O., & Smukler, S. (2021). Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. Journal of Cleaner Production, 283. https://doi.org/10.1016/j.jclepro.2020.124580
Dyllick, T., & Hockerts, K. (2002). BEYOND THE BUSINESS CASE FOR CORPORATE. 141, 130–141.
Energy Technology Support Unit. (1986). Heat recovery from a boiler exhaust to pre-heat air to a spray dryer: A Demonstration Project at BIP Chemicals Ltd. Journal of Heat Recovery Systems, 6(1), 25–31.
Fan, Y., & Fang, C. (2020). Assessing environmental performance of eco-industrial development in industrial parks. Waste Management, 107, 219–226. https://doi.org/10.1016/j.wasman.2020.04.008
Field, B. C., & Field, M. K. (2016). Environmental Economics: An Introduction (Seventh Ed). McGraw-Hill Education.
Flucorrex AG. (2018). Maltings: Heat-Exchanger. https://www.flucorrex.ch/heat-exchanger-e.html
Geng, Y., Liu, Z., Xue, B., Dong, H., Fujita, T., & Chiu, A. (2014). Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone. Environmental Science and Pollution Research, 21(23), 13572–13587. https://doi.org/10.1007/s11356-014-3287-8
Geng, Y., Zhang, P., Ulgiati, S., & Sarkis, J. (2010). Emergy analysis of an industrial park: The case of Dalian, China. Science of the Total Environment, 408(22), 5273–5283. https://doi.org/10.1016/j.scitotenv.2010.07.081
Giannetti, B. F. B. F., Agostinho, F., Moraes, L. C., Almeida, C. M. V. B. C. M. V. B., & Ulgiati, S. (2015). Multicriteria cost-benefit assessment of tannery production: The need for breakthrough process alternatives beyond conventional technology optimization. Environmental Impact Assessment Review, 54, 22–38. https://doi.org/10.1016/j.eiar.2015.04.006
Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565–573. https://doi.org/10.1016/j.ecolind.2015.08.003
Hau, J. L., & Bakshi, B. R. (2004). Promise and problems of emergy analysis. Ecological Modelling, 178(1–2), 215–225. https://doi.org/10.1016/j.ecolmodel.2003.12.016
He, C. (2011). Eco-efficiency evaluation of the water conservancy and hydropower project based on emergy analysis theory. 2011 International Conference on Multimedia Technology, ICMT 2011, 4389–4393. https://doi.org/10.1109/ICMT.2011.6002980
Hellström, D. (1997). An exergy analysis for a wastewater treatment plant-an estimation of the consumption of physical resources. Water Environment Research, 69(1), 44–51. https://doi.org/10.2175/106143097x125173
Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. del P. (2014). Metodologia de la Investigacion (I. EDITORES (ed.); 6th ed.). McGRAW-HILL.
Huguet, J., Woodbury, K., & Taylor, R. (2008). Development of excel add-in modules for use in thermodynamics curriculum: steam and ideal gas properties. ASEE Annual Conference and Exposition, Conference Proceedings. https://doi.org/10.18260/1-2--4023
Huppes, G., & Ishikawa, M. (2007). Eco-efficiency in industry and science (G. Huppes & M. Ishikawa (eds.); 22nd ed.).
IDEAM. (2014). Consulta y Descarga de Datos Hidrometeorológicos. http://dhime.ideam.gov.co/atencionciudadano/
ISO. (2006). ISO 14040:2006. https://www.iso.org/obp/
Kamp, A., Ambye-Jensen, M., & Østergård, H. (2019). Modelling matter and energy flows of local, refined grass-clover protein feed as alternative to imported soy meal. Ecological Modelling, 410(September 2018), 108738. https://doi.org/10.1016/j.ecolmodel.2019.108738
Kamp, A., Morandi, F., & Estergård, H. (2016). Development of concepts for human labour accounting in Emergy Assessment and other Environmental Sustainability Assessment methods. Ecological Indicators, 60, 884–892. https://doi.org/10.1016/j.ecolind.2015.08.011
Kunze, W. (2019). Technology Brewing and Malting (O. Hendel (ed.); 6th ed.).
Li, D., Zhu, J., Hui, E. C. M., Leung, B. Y. P., & Li, Q. (2011). An emergy analysis-based methodology for eco-efficiency evaluation of building manufacturing. Ecological Indicators, 11(5), 1419–1425. https://doi.org/10.1016/j.ecolind.2011.03.004
Li, H., Yao, X., Tachega, M. A., Ahmed, D., & Ismaail, M. G. A. (2021). Technology selection for hydrogen production in China by integrating emergy into life cycle sustainability assessment. Journal of Cleaner Production, 294, 126303. https://doi.org/10.1016/j.jclepro.2021.126303
Li, T., Song, Y. M., Li, A., Shen, J., Liang, C., & Gao, M. (2020). Research on green power dispatching based on an emergy-based life cycle assessment. Processes, 8(1). https://doi.org/10.3390/pr8010114
Liu, C., Cai, W., Jia, S., Zhang, M., Guo, H., Hu, L., & Jiang, Z. (2018). Emergy-based evaluation and improvement for sustainable manufacturing systems considering resource efficiency and environment performance. Energy Conversion and Management, 177, 176–189. https://doi.org/10.1016/j.enconman.2018.09.039
Liu, Conghu, Gao, M., Zhu, G., Zhang, C., Zhang, P., Chen, J., & Cai, W. (2021). Data driven eco-efficiency evaluation and optimization in industrial production. Energy, 224, 120170. https://doi.org/10.1016/j.energy.2021.120170
Liu, W., Zhan, J., Li, Z., Jia, S., Zhang, F., & Li, Y. (2018). Eco-efficiency evaluation of regional circular economy: A case study in Zengcheng, Guangzhou. Sustainability (Switzerland), 10(2). https://doi.org/10.3390/su10020453
Liu, X., Guo, P., & Guo, S. (2019). Assessing the eco-efficiency of a circular economy system in China’s coal mining areas: Emergy and data envelopment analysis. Journal of Cleaner Production, 206, 1101–1109. https://doi.org/10.1016/j.jclepro.2018.09.218
Lu, F., Ming, Q. Z., Liu, H. F., & Luo, W. H. (2014). Applying eco-efficiency and emergy theory to the quantitative evaluation of tourism industry ecologicalization. In Advanced Materials Research (Vols. 1010–1012). https://doi.org/10.4028/www.scientific.net/AMR.1010-1012.2025
Lu, H., Bai, Y., Ren, H., & Campbell, D. E. (2010). Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: Implications for agricultural policy in China. Journal of Environmental Management, 91(12), 2727–2735. https://doi.org/10.1016/j.jenvman.2010.07.025
Lu, H., Xu, F. Y., Liu, H., Wang, J., Campbell, D. E., & Ren, H. (2019). Emergy-based analysis of the energy security of China. Energy, 181, 123–135. https://doi.org/10.1016/j.energy.2019.05.170
Mallett, J. (2014). Malt: A Practical Guide from Field to Brewhouse. Brewer publications.
Marchettini, N., Ridolfi, R., & Rustici, M. (2007). An environmental analysis for comparing waste management options and strategies. Waste Management, 27(4), 562–571. https://doi.org/10.1016/j.wasman.2006.04.007
Mars, A. (2018). Psychro-chart2d. https://drajmarsh.bitbucket.io/psychro-chart2d.html
Mcbride, B., & Gordon, S. (1992). Computer program for calculating and fitting thermodynamic functions. NASA Reference Publication 1271.
Merlin, G., & Boileau, H. (2017). Eco-efficiency and entropy generation evaluation based on emergy analysis: Application to two small biogas plants. Journal of Cleaner Production, 143, 257–268. https://doi.org/10.1016/j.jclepro.2016.12.117
Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2014). Fundamentals Of Engineering Thermodynamics (8th ed.). John Wiley & Sons, Inc.
Natural Resources Canada. (2016). INCREASING THE ENERGY EFFICIENCY OF BOILER AND HEATER INSTALLATIONS. https://www.nrcan.gc.ca/energy/publications/efficiency/industrial/cipec/6699
Nielsen, S. N., & Bastianoni, S. (2007). A common framework for emergy and exergy based LCA in accordance with environ theory. International Journal of Ecodynamics, 2(3), 170–185. https://doi.org/10.2495/ECO-V2-N3-170-185
Nikodinoska, N., Buonocore, E., Paletto, A., & Franzese, P. P. (2017). Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework. Applied Energy, 186, 197–210. https://doi.org/10.1016/j.apenergy.2016.04.073
Nimmanterdwong, P., Chalermsinsuwan, B., Østergård, H., & Piumsomboon, P. (2017). Environmental performance assessment of Napier grass for bioenergy production. Journal of Cleaner Production, 165, 645–655. https://doi.org/10.1016/j.jclepro.2017.07.126
Odum, E. C., Odum, H. T., Fe, S., & College, C. (1980). ENERGY SYSTEMS AND ENVIRONMENTAL EDUCATION Elisabeth C. Odum and Howard T. Odum Santa Fe Community College, Gainesville, FL 32602, U.S.A. University of Florida, Gainesville, FL 32611, U.S.A.
Odum, E. P. (1976). Energy, Ecosystem Development and Environmental Risk. The Journal of Risk and Insurance, 43(1), 1. https://doi.org/10.2307/251605
Odum, H. (1988). Self-Organization, Transformity, and Information. SCIENCE, 24–2.
Odum, H.T. (2002). Folio #2 Emergy global Processes. Handbook of Emergy Evaluation, 4(September), 1–40.
Odum, Howard T. (1995). Environmental Accounting: Emergy and Environmental Decision Making.
Odum, Howard T, Brown, M. T., & Brandt-Williams, S. (2000). Folio #1 Introduction and Global Budget. Handbook of Emergy Evaluation, May, 16. http://www.cep.ees.ufl.edu/emergy/documents/folios/Folio_01.pdf
Oficina Económica y Comercial de la Embajada de España en Bogotá. (2020). El mercado de las bebidas alcohólicas en Colombia. http://colombia.oficinascomerciales.es/
Oggioni, G., Riccardi, R., & Toninelli, R. (2011). Eco-efficiency of the world cement industry: A data envelopment analysis. Energy Policy, 39(5), 2842–2854. https://doi.org/10.1016/j.enpol.2011.02.057
Panzieri, M., Marchettini, N., & Bastianoni, S. (2002). A thermodynamic methodology to assess how different cultivation methods affect sustainability of agricultural systems. International Journal of Sustainable Development and World Ecology, 9(1), 1–8. https://doi.org/10.1080/13504500209470097
Porter, M. E., Linde, C. Van Der, & Porter, M. E. (1995). Green and Competitive : Ending the Stalemate Green and Competitive :
Rafat, E., Babaelahi, M., & Mofidipour, E. (2019). Sustainability analysis of low temperature solar-driven kalina power plant using emergy concept. International Journal of Thermodynamics, 22(3), 118–126. https://doi.org/10.5541/ijot.552938
Ren, S., Feng, X., & Yang, M. (2020). Emergy evaluation of power generation systems. Energy Conversion and Management, 211(December 2019), 112749. https://doi.org/10.1016/j.enconman.2020.112749
Rodríguez-Ortega, T., Bernués, A., Olaizola, A. M., & Brown, M. T. (2017). Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. Journal of Cleaner Production, 144, 171–179. https://doi.org/10.1016/j.jclepro.2016.12.089
Smirnov, V. N. (2020). Calculation of strong-collision dissociation rate constants from NASA thermodynamic polynomials. International Journal of Chemical Kinetics, 52(9), 559–579. https://doi.org/10.1002/kin.21369
Song, Q., Wang, Z., Li, J., & Duan, H. (2012). Sustainability evaluation of an e-waste treatment enterprise based on emergy analysis in China. Ecological Engineering, 42, 223–231. https://doi.org/10.1016/j.ecoleng.2012.02.016
Su, Y., He, S., Wang, K., Shahtahmassebi, A. R., Zhang, L., Zhang, J., Zhang, M., & Gan, M. (2020). Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production, 252. https://doi.org/10.1016/j.jclepro.2019.119650
Tang, M., Hong, J., Wang, X., & He, R. (2020). Sustainability accounting of neighborhood metabolism and its applications for urban renewal based on emergy analysis and SBM-DEA. Journal of Environmental Management, 275(April), 111177. https://doi.org/10.1016/j.jenvman.2020.111177
Thiel, D. (2014). Research methods for engineers. Cambridge University Press.
Tilley, D. R. (1999). Emergy Basis of Forest Systems. Ph.D., 296. internal-pdf://tilley1999-1031041536/Tilley1999.pdf
UPME. (2021). BALANCE ENERGETICO COLOMBIANO - BECO. https://www1.upme.gov.co/informacioncifras/paginas/balanceenergetico.aspx
Vanti, G. (2020). ¿Quiénes somos? https://www.grupovanti.com/conocenos/
Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., & Verbruggen, A. (2014). Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability (Switzerland), 6(9), 5512–5534. https://doi.org/10.3390/su6095512
Wagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Maresˇ, R., Oguchi, K., Sato, H., Sto¨cker, I., Sˇifner, O., Takaishi, Y., Tanishita, I., Tru¨benbach, J., & Willkommen, T. (2000). The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam . Journal of Engineering for Gas Turbines and Power, 122(1), 150–184. https://doi.org/10.1115/1.483186
Xu, Z., Tang, Y., Wang, Q., Xu, Y., Yuan, X., Ma, Q., Wang, G., Liu, M., & Hao, H. (2021). Emergy based optimization of regional straw comprehensive utilization scheme. Journal of Cleaner Production, 297, 126638. https://doi.org/10.1016/j.jclepro.2021.126638
Yazdani, S., Salimipour, E., & Moghaddam, M. S. (2020). A comparison between a natural gas power plant and a municipal solid waste incineration power plant based on an emergy analysis. Journal of Cleaner Production, 274, 123158. https://doi.org/10.1016/j.jclepro.2020.123158
Zhang, J., Ma, L., & Yan, Y. (2020). A dynamic comparison sustainability study of standard wastewater treatment system in the straw pulp papermaking process and printing & dyeing papermaking process based on the hybrid neural network and emergy framework. Water (Switzerland), 12(6). https://doi.org/10.3390/w12061781
Zhang, X. H., Zhang, R., Wu, J., Zhang, Y. Z., Lin, L. L., Deng, S. H., Li, L., Yang, G., Yu, X. Y., Qi, H., & Peng, H. (2016). An emergy evaluation of the sustainability of Chinese crop production system during 2000-2010. Ecological Indicators, 60, 622–633. https://doi.org/10.1016/j.ecolind.2015.08.004
Zhang, X., Wei, Y., Pan, H., Xiao, H., Wu, J., & Zhang, Y. (2015). The comparison of performances of a sewage treatment system before and after implementing the cleaner production measure. Journal of Cleaner Production, 91, 216–228. https://doi.org/10.1016/j.jclepro.2014.12.025
Zhao, Z., Chen, J., Bai, Y., & Wang, P. (2020). Assessing the sustainability of grass-based livestock husbandry in Hulun Buir, China. Physics and Chemistry of the Earth, 120(July), 102907. https://doi.org/10.1016/j.pce.2020.102907
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxi, 100 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81026/1/1014262421.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81026/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81026/3/1014262421.2021.pdf.jpg
bitstream.checksum.fl_str_mv 98fd757914f1c0e25884a489dec9b180
8153f7789df02f0a4c9e079953658ab2
13d792d54abca84c66ffc6da304890ee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089891989946368
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Mantilla, Carlos Eduardo9a83dab60a1ef046e31ee1f9d6aa9a3a600Narváez Rincón, Paulo César1424150a73b4193d8936a493fb231fd5Niño Casallas, Jorge Andreib5e30f8373cdb653d1d2142dbbb463502022-02-21T18:00:21Z2022-02-21T18:00:21Z2021-10-14https://repositorio.unal.edu.co/handle/unal/81026Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLa ecoeficiencia se define como una relación entre el beneficio económico percibido por un sistema productivo y el impacto ambiental generado. Dentro de las metodologías disponibles para el cálculo de este último, está el análisis emergético el cual cuantifica la cantidad de energía directa e indirecta usada para crear un bien o un servicio bajo una misma unidad, evidenciando la inversión hecha por el ecosistema en aquel producto o servicio, lo cual permite integrarse con el análisis de ecoeficiencia. De esta forma, el propósito del presente estudio es implementar el análisis emergético para el cálculo de ecoeficiencia en el proceso de tostación de una planta productora de malta cervecera, donde el consumo energético es considerable. Para el desarrollo se realizó un análisis de entradas y salidas del sistema, se aplicaron transformicidades en cada entrada y se calcularon indicadores emergéticos que caracterizan el sistema. Con estos datos, se cuantificó la emergía total requerida por el sistema y se halló la ecoeficiencia con referencia al ingreso económico, obteniendo un valor de 2.90x10-13 USD/sej, y de 6.43x10-16 ton/sej respecto a la cantidad de malta producida. Con los resultados obtenidos se sugiere reusar la energía en el proceso de calderas y tostación, disminuir el consumo de fuentes no renovables, y disminuir las pérdidas de energía del sistema, en busca de generar un mejor comportamiento ambiental. De acuerdo con esto la implementación del método emergético en el análisis de ecoeficiencia, permite identificar puntos de mejora en la relación económica y ambiental de un sistema industrial. (Texto tomado de la fuente).Eco-efficiency is defined as a relationship between economic benefit perceived by a production system and the environmental impact generated. Into the methodologies available for calculating the environmental impact, there is the emergy analysis which quantifies the amount of direct and indirect energy used to create a good or a service under the same unit, determining the investment made by the ecosystem in that product or service, which allows integration with the eco-efficiency analysis. In this way, the purpose of this study is to implement emergy analysis for the calculation of eco-efficiency in the kilning process of a brewing malt production plant, where energy consumption is considerable. For that development, an analysis of inputs and outputs of the system was carried out, transformities were applied in each input and emergy indicators were calculated to characterize the system. With these data, total emergy required by the system was quantified and eco-efficiency was found with reference to economic income, obtaining a value of 2.90x10-13 USD/sej, and 6.43x10-16 ton/sej regarding the quantity of malt produced. According with that, it is suggested to reuse the energy in the boiler and kilning process, reduce the consumption of non-renewable sources, and reduce the energy losses of the system, to generate a better environmental behavior. In this way, the implementation of the emergy method in the eco-efficiency analysis, allows to identify points of improvement in the economic and environmental relationship of an industrial system.MaestríaMagíster en Ingeniería - Ingeniería IndustrialIngeniería de la productividadxxi, 100 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería IndustrialDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesBrewing industryEnergy efficiencyEfficiencyIndustria cerveceraRendimiento energéticoEficienciaMalteríaCebadaMaltaTostaciónEmergíaEcoeficienciaMalt plantBarleyMaltKilningEmergyEco-efficiencyImplementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cerveceraImplementation of emergy method for eco-efficiency analysis in kilning process of a brewing malt production plantTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMACCEFYN. (2003). Factores de emisión de los combustibles colombianos. Informe final, presentado a UPMEAlibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V., & Forero, J. D. (2020). Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03758Alizadeh, S., Zafari-koloukhi, H., Rostami, F., Rouhbakhsh, M., & Avami, A. (2020). The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses. Journal of Cleaner Production, 249, 119327. https://doi.org/10.1016/j.jclepro.2019.119327Alkhuzaim, L., Zhu, Q., & Sarkis, J. (2021). Evaluating Emergy Analysis at the Nexus of Circular Economy and Sustainable Supply Chain Management. Sustainable Production and Consumption, 25, 413–424. https://doi.org/10.1016/j.spc.2020.11.022Álvarez, S., Lomas, P. L., Martín, B., Rodríguez, M., & Montes, C. (2005). El Sistema de Evaluación Emergética (Emergy Synthesis). Integrando Energía, Ecología y Economía. February 2015.Arnold, M., & Osorio, F. (1998). Introduccion a los conceptos basicos de la teoria general de sistemas. Cinta de Moebio, 27, 157–159. https://www.redalyc.org/pdf/101/10100306.pdfBakshi, B. R. (2002). A thermodynamic framework for ecologically conscious process systems engineering. Computers and Chemical Engineering, 26(2), 269–282. https://doi.org/10.1016/S0098-1354(01)00745-1Bakshi, B. R. (2014). Methods and tools for sustainable process design. Current Opinion in Chemical Engineering, 6, 69–74. https://doi.org/10.1016/j.coche.2014.09.005Bakshi, B. R. (2019). Sustainable Engineering principles and practice. Cambridge University Press. https://doi.org/10.1017/9781108333726Bleier, F. P. (1997). Fan Handbook: Selection, Application, and Design. McGraw-Hill Book Company.Bolanakis, D. E., Kotsis, K. T., & Laopoulos, T. (2015). Temperature influence on differential barometric altitude measurements. Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2015, 1(September), 120–124. https://doi.org/10.1109/IDAACS.2015.7340711Breedveld, L., Timellini, G., Casoni, G., Fregni, A., & Busani, G. (2007). Eco-efficiency of fabric filters in the Italian ceramic tile industry. Journal of Cleaner Production, 15(1), 86–93. https://doi.org/10.1016/j.jclepro.2005.08.015Briggs, D. E. (1998). Malts and Malting (1st ed.). Springer US.Brown, M. T., & Ulgiati, S. (2002). Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production, 10(4), 321–334. https://doi.org/10.1016/S0959-6526(01)00043-9Brown, Mark T. (2004). A picture is worth a thousand words: Energy systems language and simulation. Ecological Modelling, 178(1–2), 83–100. https://doi.org/10.1016/j.ecolmodel.2003.12.008Brown, Mark T., Campbell, D. E., De Vilbiss, C., & Ulgiati, S. (2016). The geobiosphere emergy baseline: A synthesis. Ecological Modelling, 339, 92–95. https://doi.org/10.1016/j.ecolmodel.2016.03.018Brown, Mark T., Raugei, M., & Ulgiati, S. (2012). On boundaries and “investments” in Emergy Synthesis and LCA: A case study on thermal vs. photovoltaic electricity. Ecological Indicators, 15(1), 227–235. https://doi.org/10.1016/j.ecolind.2011.09.021Brown, Mark T., & Ulgiati, S. (2016). Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline. Ecological Modelling, 339, 126–132. https://doi.org/10.1016/j.ecolmodel.2016.03.017Cangrejo Castro, N. (2020). Integración de Economía Circular en la industria química colombiana: Propuesta de un sistema de indicadores de desempeño ambiental para medir la circularidad en empresas del sector. Universidad Nacional de Colombia.Cano. (2018). Sustainability Assessment of Alluvial and Open Pit Mining Systems in Colombia : Life Cycle Assessment , Exergy Analysis , and Emergy Accounting Evaluación de sostenibilidad de los sistemas de extracción aluvial y a cielo abierto en Colombia . Análisis Eme.Cano Londoño, N. A. (2012). Análisis mediante el método emergético de la disposición de los lodos producidos en una planta de tratamiento de aguas residuales. (Aplicación a una PTAR en el Área Metropolitana del Valle de Aburrá). http://www.bdigital.unal.edu.co/8652/1/tesisnataliacano.pdfCano, N. A., Velásquez, H. I., & McIntyre, N. (2019). Comparing the environmental sustainability of two gold production methods using integrated Emergy and Life Cycle Assessment. Ecological Indicators, 107(July), 105600. https://doi.org/10.1016/j.ecolind.2019.105600Cao, K., & Feng, X. (2007). The emergy analysis of multi-product systems. Process Safety and Environmental Protection, 85(5 B), 494–500. https://doi.org/10.1205/psep07007Cao, L., Zhou, Z., Wu, Y., Huang, Y., & Cao, G. (2019). Is metabolism in all regions of China performing well? – Evidence from a new DEA-Malmquist productivity approach. Ecological Indicators, 106. https://doi.org/10.1016/j.ecolind.2019.105487CELSIA. (2020). Sistema Interconectado de Energía. https://www.celsia.com/wp-content/uploads/2020/09/Documento-de-trabajo-sobre-el-Sistema-Interconectado-Nacional.pdfChang, C. S., Ni, S. H., Yang, H. S., & Chou, C. T. (2021). Simulation study of separating oxygen from air by pressure swing adsorption process with semicylindrical adsorber. Journal of the Taiwan Institute of Chemical Engineers, 120, 67–76. https://doi.org/10.1016/j.jtice.2021.03.027Chapman, S. J. (2012). Máquinas eléctricas (5ta ed.). McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.Chen, D., Li, X. C., Luo, Z. H., & Chen, J. (2019). Ecological and economic feasibility analysis of irrigation engineering projects. Applied Ecology and Environmental Research, 17(1), 781–793. https://doi.org/10.15666/aeer/1701_781793Corcelli, F., Ripa, M., & Ulgiati, S. (2018). Efficiency and sustainability indicators for papermaking from virgin pulp—An emergy-based case study. Resources, Conservation and Recycling, 131, 313–328. https://doi.org/10.1016/j.resconrec.2017.11.028Creswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (4th ed.). SAGE.Daly, H. E., & Farley, J. (2011). Ecological economics : principles and applications (2nd Editio). Island Press.De Clerck, J. (1957). A textbook of brewing: Vol. One. Chapman & Hall LTDA.de Souza Junior, H. R. A., Dantas, T. E. T., Zanghelini, G. M., Cherubini, E., & Soares, S. R. (2020). Measuring the environmental performance of a circular system: Emergy and LCA approach on a recycle polystyrene system. Science of the Total Environment, 726, 138111. https://doi.org/10.1016/j.scitotenv.2020.138111dos Reis, J. C., Rodrigues, G. S., de Barros, I., Ribeiro Rodrigues, R. de A., Garrett, R. D., Valentim, J. F., Kamoi, M. Y. T., Michetti, M., Wruck, F. J., Rodrigues-Filho, S., Pimentel, P. E. O., & Smukler, S. (2021). Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. Journal of Cleaner Production, 283. https://doi.org/10.1016/j.jclepro.2020.124580Dyllick, T., & Hockerts, K. (2002). BEYOND THE BUSINESS CASE FOR CORPORATE. 141, 130–141.Energy Technology Support Unit. (1986). Heat recovery from a boiler exhaust to pre-heat air to a spray dryer: A Demonstration Project at BIP Chemicals Ltd. Journal of Heat Recovery Systems, 6(1), 25–31.Fan, Y., & Fang, C. (2020). Assessing environmental performance of eco-industrial development in industrial parks. Waste Management, 107, 219–226. https://doi.org/10.1016/j.wasman.2020.04.008Field, B. C., & Field, M. K. (2016). Environmental Economics: An Introduction (Seventh Ed). McGraw-Hill Education.Flucorrex AG. (2018). Maltings: Heat-Exchanger. https://www.flucorrex.ch/heat-exchanger-e.htmlGeng, Y., Liu, Z., Xue, B., Dong, H., Fujita, T., & Chiu, A. (2014). Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone. Environmental Science and Pollution Research, 21(23), 13572–13587. https://doi.org/10.1007/s11356-014-3287-8Geng, Y., Zhang, P., Ulgiati, S., & Sarkis, J. (2010). Emergy analysis of an industrial park: The case of Dalian, China. Science of the Total Environment, 408(22), 5273–5283. https://doi.org/10.1016/j.scitotenv.2010.07.081Giannetti, B. F. B. F., Agostinho, F., Moraes, L. C., Almeida, C. M. V. B. C. M. V. B., & Ulgiati, S. (2015). Multicriteria cost-benefit assessment of tannery production: The need for breakthrough process alternatives beyond conventional technology optimization. Environmental Impact Assessment Review, 54, 22–38. https://doi.org/10.1016/j.eiar.2015.04.006Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565–573. https://doi.org/10.1016/j.ecolind.2015.08.003Hau, J. L., & Bakshi, B. R. (2004). Promise and problems of emergy analysis. Ecological Modelling, 178(1–2), 215–225. https://doi.org/10.1016/j.ecolmodel.2003.12.016He, C. (2011). Eco-efficiency evaluation of the water conservancy and hydropower project based on emergy analysis theory. 2011 International Conference on Multimedia Technology, ICMT 2011, 4389–4393. https://doi.org/10.1109/ICMT.2011.6002980Hellström, D. (1997). An exergy analysis for a wastewater treatment plant-an estimation of the consumption of physical resources. Water Environment Research, 69(1), 44–51. https://doi.org/10.2175/106143097x125173Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. del P. (2014). Metodologia de la Investigacion (I. EDITORES (ed.); 6th ed.). McGRAW-HILL.Huguet, J., Woodbury, K., & Taylor, R. (2008). Development of excel add-in modules for use in thermodynamics curriculum: steam and ideal gas properties. ASEE Annual Conference and Exposition, Conference Proceedings. https://doi.org/10.18260/1-2--4023Huppes, G., & Ishikawa, M. (2007). Eco-efficiency in industry and science (G. Huppes & M. Ishikawa (eds.); 22nd ed.).IDEAM. (2014). Consulta y Descarga de Datos Hidrometeorológicos. http://dhime.ideam.gov.co/atencionciudadano/ISO. (2006). ISO 14040:2006. https://www.iso.org/obp/Kamp, A., Ambye-Jensen, M., & Østergård, H. (2019). Modelling matter and energy flows of local, refined grass-clover protein feed as alternative to imported soy meal. Ecological Modelling, 410(September 2018), 108738. https://doi.org/10.1016/j.ecolmodel.2019.108738Kamp, A., Morandi, F., & Estergård, H. (2016). Development of concepts for human labour accounting in Emergy Assessment and other Environmental Sustainability Assessment methods. Ecological Indicators, 60, 884–892. https://doi.org/10.1016/j.ecolind.2015.08.011Kunze, W. (2019). Technology Brewing and Malting (O. Hendel (ed.); 6th ed.).Li, D., Zhu, J., Hui, E. C. M., Leung, B. Y. P., & Li, Q. (2011). An emergy analysis-based methodology for eco-efficiency evaluation of building manufacturing. Ecological Indicators, 11(5), 1419–1425. https://doi.org/10.1016/j.ecolind.2011.03.004Li, H., Yao, X., Tachega, M. A., Ahmed, D., & Ismaail, M. G. A. (2021). Technology selection for hydrogen production in China by integrating emergy into life cycle sustainability assessment. Journal of Cleaner Production, 294, 126303. https://doi.org/10.1016/j.jclepro.2021.126303Li, T., Song, Y. M., Li, A., Shen, J., Liang, C., & Gao, M. (2020). Research on green power dispatching based on an emergy-based life cycle assessment. Processes, 8(1). https://doi.org/10.3390/pr8010114Liu, C., Cai, W., Jia, S., Zhang, M., Guo, H., Hu, L., & Jiang, Z. (2018). Emergy-based evaluation and improvement for sustainable manufacturing systems considering resource efficiency and environment performance. Energy Conversion and Management, 177, 176–189. https://doi.org/10.1016/j.enconman.2018.09.039Liu, Conghu, Gao, M., Zhu, G., Zhang, C., Zhang, P., Chen, J., & Cai, W. (2021). Data driven eco-efficiency evaluation and optimization in industrial production. Energy, 224, 120170. https://doi.org/10.1016/j.energy.2021.120170Liu, W., Zhan, J., Li, Z., Jia, S., Zhang, F., & Li, Y. (2018). Eco-efficiency evaluation of regional circular economy: A case study in Zengcheng, Guangzhou. Sustainability (Switzerland), 10(2). https://doi.org/10.3390/su10020453Liu, X., Guo, P., & Guo, S. (2019). Assessing the eco-efficiency of a circular economy system in China’s coal mining areas: Emergy and data envelopment analysis. Journal of Cleaner Production, 206, 1101–1109. https://doi.org/10.1016/j.jclepro.2018.09.218Lu, F., Ming, Q. Z., Liu, H. F., & Luo, W. H. (2014). Applying eco-efficiency and emergy theory to the quantitative evaluation of tourism industry ecologicalization. In Advanced Materials Research (Vols. 1010–1012). https://doi.org/10.4028/www.scientific.net/AMR.1010-1012.2025Lu, H., Bai, Y., Ren, H., & Campbell, D. E. (2010). Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: Implications for agricultural policy in China. Journal of Environmental Management, 91(12), 2727–2735. https://doi.org/10.1016/j.jenvman.2010.07.025Lu, H., Xu, F. Y., Liu, H., Wang, J., Campbell, D. E., & Ren, H. (2019). Emergy-based analysis of the energy security of China. Energy, 181, 123–135. https://doi.org/10.1016/j.energy.2019.05.170Mallett, J. (2014). Malt: A Practical Guide from Field to Brewhouse. Brewer publications.Marchettini, N., Ridolfi, R., & Rustici, M. (2007). An environmental analysis for comparing waste management options and strategies. Waste Management, 27(4), 562–571. https://doi.org/10.1016/j.wasman.2006.04.007Mars, A. (2018). Psychro-chart2d. https://drajmarsh.bitbucket.io/psychro-chart2d.htmlMcbride, B., & Gordon, S. (1992). Computer program for calculating and fitting thermodynamic functions. NASA Reference Publication 1271.Merlin, G., & Boileau, H. (2017). Eco-efficiency and entropy generation evaluation based on emergy analysis: Application to two small biogas plants. Journal of Cleaner Production, 143, 257–268. https://doi.org/10.1016/j.jclepro.2016.12.117Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2014). Fundamentals Of Engineering Thermodynamics (8th ed.). John Wiley & Sons, Inc.Natural Resources Canada. (2016). INCREASING THE ENERGY EFFICIENCY OF BOILER AND HEATER INSTALLATIONS. https://www.nrcan.gc.ca/energy/publications/efficiency/industrial/cipec/6699Nielsen, S. N., & Bastianoni, S. (2007). A common framework for emergy and exergy based LCA in accordance with environ theory. International Journal of Ecodynamics, 2(3), 170–185. https://doi.org/10.2495/ECO-V2-N3-170-185Nikodinoska, N., Buonocore, E., Paletto, A., & Franzese, P. P. (2017). Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework. Applied Energy, 186, 197–210. https://doi.org/10.1016/j.apenergy.2016.04.073Nimmanterdwong, P., Chalermsinsuwan, B., Østergård, H., & Piumsomboon, P. (2017). Environmental performance assessment of Napier grass for bioenergy production. Journal of Cleaner Production, 165, 645–655. https://doi.org/10.1016/j.jclepro.2017.07.126Odum, E. C., Odum, H. T., Fe, S., & College, C. (1980). ENERGY SYSTEMS AND ENVIRONMENTAL EDUCATION Elisabeth C. Odum and Howard T. Odum Santa Fe Community College, Gainesville, FL 32602, U.S.A. University of Florida, Gainesville, FL 32611, U.S.A.Odum, E. P. (1976). Energy, Ecosystem Development and Environmental Risk. The Journal of Risk and Insurance, 43(1), 1. https://doi.org/10.2307/251605Odum, H. (1988). Self-Organization, Transformity, and Information. SCIENCE, 24–2.Odum, H.T. (2002). Folio #2 Emergy global Processes. Handbook of Emergy Evaluation, 4(September), 1–40.Odum, Howard T. (1995). Environmental Accounting: Emergy and Environmental Decision Making.Odum, Howard T, Brown, M. T., & Brandt-Williams, S. (2000). Folio #1 Introduction and Global Budget. Handbook of Emergy Evaluation, May, 16. http://www.cep.ees.ufl.edu/emergy/documents/folios/Folio_01.pdfOficina Económica y Comercial de la Embajada de España en Bogotá. (2020). El mercado de las bebidas alcohólicas en Colombia. http://colombia.oficinascomerciales.es/Oggioni, G., Riccardi, R., & Toninelli, R. (2011). Eco-efficiency of the world cement industry: A data envelopment analysis. Energy Policy, 39(5), 2842–2854. https://doi.org/10.1016/j.enpol.2011.02.057Panzieri, M., Marchettini, N., & Bastianoni, S. (2002). A thermodynamic methodology to assess how different cultivation methods affect sustainability of agricultural systems. International Journal of Sustainable Development and World Ecology, 9(1), 1–8. https://doi.org/10.1080/13504500209470097Porter, M. E., Linde, C. Van Der, & Porter, M. E. (1995). Green and Competitive : Ending the Stalemate Green and Competitive :Rafat, E., Babaelahi, M., & Mofidipour, E. (2019). Sustainability analysis of low temperature solar-driven kalina power plant using emergy concept. International Journal of Thermodynamics, 22(3), 118–126. https://doi.org/10.5541/ijot.552938Ren, S., Feng, X., & Yang, M. (2020). Emergy evaluation of power generation systems. Energy Conversion and Management, 211(December 2019), 112749. https://doi.org/10.1016/j.enconman.2020.112749Rodríguez-Ortega, T., Bernués, A., Olaizola, A. M., & Brown, M. T. (2017). Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. Journal of Cleaner Production, 144, 171–179. https://doi.org/10.1016/j.jclepro.2016.12.089Smirnov, V. N. (2020). Calculation of strong-collision dissociation rate constants from NASA thermodynamic polynomials. International Journal of Chemical Kinetics, 52(9), 559–579. https://doi.org/10.1002/kin.21369Song, Q., Wang, Z., Li, J., & Duan, H. (2012). Sustainability evaluation of an e-waste treatment enterprise based on emergy analysis in China. Ecological Engineering, 42, 223–231. https://doi.org/10.1016/j.ecoleng.2012.02.016Su, Y., He, S., Wang, K., Shahtahmassebi, A. R., Zhang, L., Zhang, J., Zhang, M., & Gan, M. (2020). Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production, 252. https://doi.org/10.1016/j.jclepro.2019.119650Tang, M., Hong, J., Wang, X., & He, R. (2020). Sustainability accounting of neighborhood metabolism and its applications for urban renewal based on emergy analysis and SBM-DEA. Journal of Environmental Management, 275(April), 111177. https://doi.org/10.1016/j.jenvman.2020.111177Thiel, D. (2014). Research methods for engineers. Cambridge University Press.Tilley, D. R. (1999). Emergy Basis of Forest Systems. Ph.D., 296. internal-pdf://tilley1999-1031041536/Tilley1999.pdfUPME. (2021). BALANCE ENERGETICO COLOMBIANO - BECO. https://www1.upme.gov.co/informacioncifras/paginas/balanceenergetico.aspxVanti, G. (2020). ¿Quiénes somos? https://www.grupovanti.com/conocenos/Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., & Verbruggen, A. (2014). Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability (Switzerland), 6(9), 5512–5534. https://doi.org/10.3390/su6095512Wagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Maresˇ, R., Oguchi, K., Sato, H., Sto¨cker, I., Sˇifner, O., Takaishi, Y., Tanishita, I., Tru¨benbach, J., & Willkommen, T. (2000). The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam . Journal of Engineering for Gas Turbines and Power, 122(1), 150–184. https://doi.org/10.1115/1.483186Xu, Z., Tang, Y., Wang, Q., Xu, Y., Yuan, X., Ma, Q., Wang, G., Liu, M., & Hao, H. (2021). Emergy based optimization of regional straw comprehensive utilization scheme. Journal of Cleaner Production, 297, 126638. https://doi.org/10.1016/j.jclepro.2021.126638Yazdani, S., Salimipour, E., & Moghaddam, M. S. (2020). A comparison between a natural gas power plant and a municipal solid waste incineration power plant based on an emergy analysis. Journal of Cleaner Production, 274, 123158. https://doi.org/10.1016/j.jclepro.2020.123158Zhang, J., Ma, L., & Yan, Y. (2020). A dynamic comparison sustainability study of standard wastewater treatment system in the straw pulp papermaking process and printing & dyeing papermaking process based on the hybrid neural network and emergy framework. Water (Switzerland), 12(6). https://doi.org/10.3390/w12061781Zhang, X. H., Zhang, R., Wu, J., Zhang, Y. Z., Lin, L. L., Deng, S. H., Li, L., Yang, G., Yu, X. Y., Qi, H., & Peng, H. (2016). An emergy evaluation of the sustainability of Chinese crop production system during 2000-2010. Ecological Indicators, 60, 622–633. https://doi.org/10.1016/j.ecolind.2015.08.004Zhang, X., Wei, Y., Pan, H., Xiao, H., Wu, J., & Zhang, Y. (2015). The comparison of performances of a sewage treatment system before and after implementing the cleaner production measure. Journal of Cleaner Production, 91, 216–228. https://doi.org/10.1016/j.jclepro.2014.12.025Zhao, Z., Chen, J., Bai, Y., & Wang, P. (2020). Assessing the sustainability of grass-based livestock husbandry in Hulun Buir, China. Physics and Chemistry of the Earth, 120(July), 102907. https://doi.org/10.1016/j.pce.2020.102907EstudiantesInvestigadoresMaestrosPersonal de apoyo escolarORIGINAL1014262421.2021.pdf1014262421.2021.pdfTesis de Maestría en Ingeniería - Ingeniería Industrialapplication/pdf1613849https://repositorio.unal.edu.co/bitstream/unal/81026/1/1014262421.2021.pdf98fd757914f1c0e25884a489dec9b180MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81026/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1014262421.2021.pdf.jpg1014262421.2021.pdf.jpgGenerated Thumbnailimage/jpeg5162https://repositorio.unal.edu.co/bitstream/unal/81026/3/1014262421.2021.pdf.jpg13d792d54abca84c66ffc6da304890eeMD53unal/81026oai:repositorio.unal.edu.co:unal/810262024-08-03 23:10:12.318Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK