Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera
ilustraciones, gráficas, tablas
- Autores:
-
Niño Casallas, Jorge Andrei
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81026
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Brewing industry
Energy efficiency
Efficiency
Industria cervecera
Rendimiento energético
Eficiencia
Maltería
Cebada
Malta
Tostación
Emergía
Ecoeficiencia
Malt plant
Barley
Malt
Kilning
Emergy
Eco-efficiency
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_6a48c14443ec0162729eec64a71aa0ff |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81026 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera |
dc.title.translated.eng.fl_str_mv |
Implementation of emergy method for eco-efficiency analysis in kilning process of a brewing malt production plant |
title |
Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera |
spellingShingle |
Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera 620 - Ingeniería y operaciones afines Brewing industry Energy efficiency Efficiency Industria cervecera Rendimiento energético Eficiencia Maltería Cebada Malta Tostación Emergía Ecoeficiencia Malt plant Barley Malt Kilning Emergy Eco-efficiency |
title_short |
Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera |
title_full |
Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera |
title_fullStr |
Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera |
title_full_unstemmed |
Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera |
title_sort |
Implementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera |
dc.creator.fl_str_mv |
Niño Casallas, Jorge Andrei |
dc.contributor.advisor.spa.fl_str_mv |
Moreno Mantilla, Carlos Eduardo Narváez Rincón, Paulo César |
dc.contributor.author.spa.fl_str_mv |
Niño Casallas, Jorge Andrei |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Brewing industry Energy efficiency Efficiency Industria cervecera Rendimiento energético Eficiencia Maltería Cebada Malta Tostación Emergía Ecoeficiencia Malt plant Barley Malt Kilning Emergy Eco-efficiency |
dc.subject.lemb.eng.fl_str_mv |
Brewing industry Energy efficiency Efficiency |
dc.subject.lemb.spa.fl_str_mv |
Industria cervecera Rendimiento energético Eficiencia |
dc.subject.proposal.spa.fl_str_mv |
Maltería Cebada Malta Tostación Emergía Ecoeficiencia |
dc.subject.proposal.eng.fl_str_mv |
Malt plant Barley Malt Kilning Emergy Eco-efficiency |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-10-14 |
dc.date.accessioned.none.fl_str_mv |
2022-02-21T18:00:21Z |
dc.date.available.none.fl_str_mv |
2022-02-21T18:00:21Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81026 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81026 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
ACCEFYN. (2003). Factores de emisión de los combustibles colombianos. Informe final, presentado a UPME Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V., & Forero, J. D. (2020). Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03758 Alizadeh, S., Zafari-koloukhi, H., Rostami, F., Rouhbakhsh, M., & Avami, A. (2020). The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses. Journal of Cleaner Production, 249, 119327. https://doi.org/10.1016/j.jclepro.2019.119327 Alkhuzaim, L., Zhu, Q., & Sarkis, J. (2021). Evaluating Emergy Analysis at the Nexus of Circular Economy and Sustainable Supply Chain Management. Sustainable Production and Consumption, 25, 413–424. https://doi.org/10.1016/j.spc.2020.11.022 Álvarez, S., Lomas, P. L., Martín, B., Rodríguez, M., & Montes, C. (2005). El Sistema de Evaluación Emergética (Emergy Synthesis). Integrando Energía, Ecología y Economía. February 2015. Arnold, M., & Osorio, F. (1998). Introduccion a los conceptos basicos de la teoria general de sistemas. Cinta de Moebio, 27, 157–159. https://www.redalyc.org/pdf/101/10100306.pdf Bakshi, B. R. (2002). A thermodynamic framework for ecologically conscious process systems engineering. Computers and Chemical Engineering, 26(2), 269–282. https://doi.org/10.1016/S0098-1354(01)00745-1 Bakshi, B. R. (2014). Methods and tools for sustainable process design. Current Opinion in Chemical Engineering, 6, 69–74. https://doi.org/10.1016/j.coche.2014.09.005 Bakshi, B. R. (2019). Sustainable Engineering principles and practice. Cambridge University Press. https://doi.org/10.1017/9781108333726 Bleier, F. P. (1997). Fan Handbook: Selection, Application, and Design. McGraw-Hill Book Company. Bolanakis, D. E., Kotsis, K. T., & Laopoulos, T. (2015). Temperature influence on differential barometric altitude measurements. Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2015, 1(September), 120–124. https://doi.org/10.1109/IDAACS.2015.7340711 Breedveld, L., Timellini, G., Casoni, G., Fregni, A., & Busani, G. (2007). Eco-efficiency of fabric filters in the Italian ceramic tile industry. Journal of Cleaner Production, 15(1), 86–93. https://doi.org/10.1016/j.jclepro.2005.08.015 Briggs, D. E. (1998). Malts and Malting (1st ed.). Springer US. Brown, M. T., & Ulgiati, S. (2002). Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production, 10(4), 321–334. https://doi.org/10.1016/S0959-6526(01)00043-9 Brown, Mark T. (2004). A picture is worth a thousand words: Energy systems language and simulation. Ecological Modelling, 178(1–2), 83–100. https://doi.org/10.1016/j.ecolmodel.2003.12.008 Brown, Mark T., Campbell, D. E., De Vilbiss, C., & Ulgiati, S. (2016). The geobiosphere emergy baseline: A synthesis. Ecological Modelling, 339, 92–95. https://doi.org/10.1016/j.ecolmodel.2016.03.018 Brown, Mark T., Raugei, M., & Ulgiati, S. (2012). On boundaries and “investments” in Emergy Synthesis and LCA: A case study on thermal vs. photovoltaic electricity. Ecological Indicators, 15(1), 227–235. https://doi.org/10.1016/j.ecolind.2011.09.021 Brown, Mark T., & Ulgiati, S. (2016). Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline. Ecological Modelling, 339, 126–132. https://doi.org/10.1016/j.ecolmodel.2016.03.017 Cangrejo Castro, N. (2020). Integración de Economía Circular en la industria química colombiana: Propuesta de un sistema de indicadores de desempeño ambiental para medir la circularidad en empresas del sector. Universidad Nacional de Colombia. Cano. (2018). Sustainability Assessment of Alluvial and Open Pit Mining Systems in Colombia : Life Cycle Assessment , Exergy Analysis , and Emergy Accounting Evaluación de sostenibilidad de los sistemas de extracción aluvial y a cielo abierto en Colombia . Análisis Eme. Cano Londoño, N. A. (2012). Análisis mediante el método emergético de la disposición de los lodos producidos en una planta de tratamiento de aguas residuales. (Aplicación a una PTAR en el Área Metropolitana del Valle de Aburrá). http://www.bdigital.unal.edu.co/8652/1/tesisnataliacano.pdf Cano, N. A., Velásquez, H. I., & McIntyre, N. (2019). Comparing the environmental sustainability of two gold production methods using integrated Emergy and Life Cycle Assessment. Ecological Indicators, 107(July), 105600. https://doi.org/10.1016/j.ecolind.2019.105600 Cao, K., & Feng, X. (2007). The emergy analysis of multi-product systems. Process Safety and Environmental Protection, 85(5 B), 494–500. https://doi.org/10.1205/psep07007 Cao, L., Zhou, Z., Wu, Y., Huang, Y., & Cao, G. (2019). Is metabolism in all regions of China performing well? – Evidence from a new DEA-Malmquist productivity approach. Ecological Indicators, 106. https://doi.org/10.1016/j.ecolind.2019.105487 CELSIA. (2020). Sistema Interconectado de Energía. https://www.celsia.com/wp-content/uploads/2020/09/Documento-de-trabajo-sobre-el-Sistema-Interconectado-Nacional.pdf Chang, C. S., Ni, S. H., Yang, H. S., & Chou, C. T. (2021). Simulation study of separating oxygen from air by pressure swing adsorption process with semicylindrical adsorber. Journal of the Taiwan Institute of Chemical Engineers, 120, 67–76. https://doi.org/10.1016/j.jtice.2021.03.027 Chapman, S. J. (2012). Máquinas eléctricas (5ta ed.). McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V. Chen, D., Li, X. C., Luo, Z. H., & Chen, J. (2019). Ecological and economic feasibility analysis of irrigation engineering projects. Applied Ecology and Environmental Research, 17(1), 781–793. https://doi.org/10.15666/aeer/1701_781793 Corcelli, F., Ripa, M., & Ulgiati, S. (2018). Efficiency and sustainability indicators for papermaking from virgin pulp—An emergy-based case study. Resources, Conservation and Recycling, 131, 313–328. https://doi.org/10.1016/j.resconrec.2017.11.028 Creswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (4th ed.). SAGE. Daly, H. E., & Farley, J. (2011). Ecological economics : principles and applications (2nd Editio). Island Press. De Clerck, J. (1957). A textbook of brewing: Vol. One. Chapman & Hall LTDA. de Souza Junior, H. R. A., Dantas, T. E. T., Zanghelini, G. M., Cherubini, E., & Soares, S. R. (2020). Measuring the environmental performance of a circular system: Emergy and LCA approach on a recycle polystyrene system. Science of the Total Environment, 726, 138111. https://doi.org/10.1016/j.scitotenv.2020.138111 dos Reis, J. C., Rodrigues, G. S., de Barros, I., Ribeiro Rodrigues, R. de A., Garrett, R. D., Valentim, J. F., Kamoi, M. Y. T., Michetti, M., Wruck, F. J., Rodrigues-Filho, S., Pimentel, P. E. O., & Smukler, S. (2021). Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. Journal of Cleaner Production, 283. https://doi.org/10.1016/j.jclepro.2020.124580 Dyllick, T., & Hockerts, K. (2002). BEYOND THE BUSINESS CASE FOR CORPORATE. 141, 130–141. Energy Technology Support Unit. (1986). Heat recovery from a boiler exhaust to pre-heat air to a spray dryer: A Demonstration Project at BIP Chemicals Ltd. Journal of Heat Recovery Systems, 6(1), 25–31. Fan, Y., & Fang, C. (2020). Assessing environmental performance of eco-industrial development in industrial parks. Waste Management, 107, 219–226. https://doi.org/10.1016/j.wasman.2020.04.008 Field, B. C., & Field, M. K. (2016). Environmental Economics: An Introduction (Seventh Ed). McGraw-Hill Education. Flucorrex AG. (2018). Maltings: Heat-Exchanger. https://www.flucorrex.ch/heat-exchanger-e.html Geng, Y., Liu, Z., Xue, B., Dong, H., Fujita, T., & Chiu, A. (2014). Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone. Environmental Science and Pollution Research, 21(23), 13572–13587. https://doi.org/10.1007/s11356-014-3287-8 Geng, Y., Zhang, P., Ulgiati, S., & Sarkis, J. (2010). Emergy analysis of an industrial park: The case of Dalian, China. Science of the Total Environment, 408(22), 5273–5283. https://doi.org/10.1016/j.scitotenv.2010.07.081 Giannetti, B. F. B. F., Agostinho, F., Moraes, L. C., Almeida, C. M. V. B. C. M. V. B., & Ulgiati, S. (2015). Multicriteria cost-benefit assessment of tannery production: The need for breakthrough process alternatives beyond conventional technology optimization. Environmental Impact Assessment Review, 54, 22–38. https://doi.org/10.1016/j.eiar.2015.04.006 Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565–573. https://doi.org/10.1016/j.ecolind.2015.08.003 Hau, J. L., & Bakshi, B. R. (2004). Promise and problems of emergy analysis. Ecological Modelling, 178(1–2), 215–225. https://doi.org/10.1016/j.ecolmodel.2003.12.016 He, C. (2011). Eco-efficiency evaluation of the water conservancy and hydropower project based on emergy analysis theory. 2011 International Conference on Multimedia Technology, ICMT 2011, 4389–4393. https://doi.org/10.1109/ICMT.2011.6002980 Hellström, D. (1997). An exergy analysis for a wastewater treatment plant-an estimation of the consumption of physical resources. Water Environment Research, 69(1), 44–51. https://doi.org/10.2175/106143097x125173 Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. del P. (2014). Metodologia de la Investigacion (I. EDITORES (ed.); 6th ed.). McGRAW-HILL. Huguet, J., Woodbury, K., & Taylor, R. (2008). Development of excel add-in modules for use in thermodynamics curriculum: steam and ideal gas properties. ASEE Annual Conference and Exposition, Conference Proceedings. https://doi.org/10.18260/1-2--4023 Huppes, G., & Ishikawa, M. (2007). Eco-efficiency in industry and science (G. Huppes & M. Ishikawa (eds.); 22nd ed.). IDEAM. (2014). Consulta y Descarga de Datos Hidrometeorológicos. http://dhime.ideam.gov.co/atencionciudadano/ ISO. (2006). ISO 14040:2006. https://www.iso.org/obp/ Kamp, A., Ambye-Jensen, M., & Østergård, H. (2019). Modelling matter and energy flows of local, refined grass-clover protein feed as alternative to imported soy meal. Ecological Modelling, 410(September 2018), 108738. https://doi.org/10.1016/j.ecolmodel.2019.108738 Kamp, A., Morandi, F., & Estergård, H. (2016). Development of concepts for human labour accounting in Emergy Assessment and other Environmental Sustainability Assessment methods. Ecological Indicators, 60, 884–892. https://doi.org/10.1016/j.ecolind.2015.08.011 Kunze, W. (2019). Technology Brewing and Malting (O. Hendel (ed.); 6th ed.). Li, D., Zhu, J., Hui, E. C. M., Leung, B. Y. P., & Li, Q. (2011). An emergy analysis-based methodology for eco-efficiency evaluation of building manufacturing. Ecological Indicators, 11(5), 1419–1425. https://doi.org/10.1016/j.ecolind.2011.03.004 Li, H., Yao, X., Tachega, M. A., Ahmed, D., & Ismaail, M. G. A. (2021). Technology selection for hydrogen production in China by integrating emergy into life cycle sustainability assessment. Journal of Cleaner Production, 294, 126303. https://doi.org/10.1016/j.jclepro.2021.126303 Li, T., Song, Y. M., Li, A., Shen, J., Liang, C., & Gao, M. (2020). Research on green power dispatching based on an emergy-based life cycle assessment. Processes, 8(1). https://doi.org/10.3390/pr8010114 Liu, C., Cai, W., Jia, S., Zhang, M., Guo, H., Hu, L., & Jiang, Z. (2018). Emergy-based evaluation and improvement for sustainable manufacturing systems considering resource efficiency and environment performance. Energy Conversion and Management, 177, 176–189. https://doi.org/10.1016/j.enconman.2018.09.039 Liu, Conghu, Gao, M., Zhu, G., Zhang, C., Zhang, P., Chen, J., & Cai, W. (2021). Data driven eco-efficiency evaluation and optimization in industrial production. Energy, 224, 120170. https://doi.org/10.1016/j.energy.2021.120170 Liu, W., Zhan, J., Li, Z., Jia, S., Zhang, F., & Li, Y. (2018). Eco-efficiency evaluation of regional circular economy: A case study in Zengcheng, Guangzhou. Sustainability (Switzerland), 10(2). https://doi.org/10.3390/su10020453 Liu, X., Guo, P., & Guo, S. (2019). Assessing the eco-efficiency of a circular economy system in China’s coal mining areas: Emergy and data envelopment analysis. Journal of Cleaner Production, 206, 1101–1109. https://doi.org/10.1016/j.jclepro.2018.09.218 Lu, F., Ming, Q. Z., Liu, H. F., & Luo, W. H. (2014). Applying eco-efficiency and emergy theory to the quantitative evaluation of tourism industry ecologicalization. In Advanced Materials Research (Vols. 1010–1012). https://doi.org/10.4028/www.scientific.net/AMR.1010-1012.2025 Lu, H., Bai, Y., Ren, H., & Campbell, D. E. (2010). Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: Implications for agricultural policy in China. Journal of Environmental Management, 91(12), 2727–2735. https://doi.org/10.1016/j.jenvman.2010.07.025 Lu, H., Xu, F. Y., Liu, H., Wang, J., Campbell, D. E., & Ren, H. (2019). Emergy-based analysis of the energy security of China. Energy, 181, 123–135. https://doi.org/10.1016/j.energy.2019.05.170 Mallett, J. (2014). Malt: A Practical Guide from Field to Brewhouse. Brewer publications. Marchettini, N., Ridolfi, R., & Rustici, M. (2007). An environmental analysis for comparing waste management options and strategies. Waste Management, 27(4), 562–571. https://doi.org/10.1016/j.wasman.2006.04.007 Mars, A. (2018). Psychro-chart2d. https://drajmarsh.bitbucket.io/psychro-chart2d.html Mcbride, B., & Gordon, S. (1992). Computer program for calculating and fitting thermodynamic functions. NASA Reference Publication 1271. Merlin, G., & Boileau, H. (2017). Eco-efficiency and entropy generation evaluation based on emergy analysis: Application to two small biogas plants. Journal of Cleaner Production, 143, 257–268. https://doi.org/10.1016/j.jclepro.2016.12.117 Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2014). Fundamentals Of Engineering Thermodynamics (8th ed.). John Wiley & Sons, Inc. Natural Resources Canada. (2016). INCREASING THE ENERGY EFFICIENCY OF BOILER AND HEATER INSTALLATIONS. https://www.nrcan.gc.ca/energy/publications/efficiency/industrial/cipec/6699 Nielsen, S. N., & Bastianoni, S. (2007). A common framework for emergy and exergy based LCA in accordance with environ theory. International Journal of Ecodynamics, 2(3), 170–185. https://doi.org/10.2495/ECO-V2-N3-170-185 Nikodinoska, N., Buonocore, E., Paletto, A., & Franzese, P. P. (2017). Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework. Applied Energy, 186, 197–210. https://doi.org/10.1016/j.apenergy.2016.04.073 Nimmanterdwong, P., Chalermsinsuwan, B., Østergård, H., & Piumsomboon, P. (2017). Environmental performance assessment of Napier grass for bioenergy production. Journal of Cleaner Production, 165, 645–655. https://doi.org/10.1016/j.jclepro.2017.07.126 Odum, E. C., Odum, H. T., Fe, S., & College, C. (1980). ENERGY SYSTEMS AND ENVIRONMENTAL EDUCATION Elisabeth C. Odum and Howard T. Odum Santa Fe Community College, Gainesville, FL 32602, U.S.A. University of Florida, Gainesville, FL 32611, U.S.A. Odum, E. P. (1976). Energy, Ecosystem Development and Environmental Risk. The Journal of Risk and Insurance, 43(1), 1. https://doi.org/10.2307/251605 Odum, H. (1988). Self-Organization, Transformity, and Information. SCIENCE, 24–2. Odum, H.T. (2002). Folio #2 Emergy global Processes. Handbook of Emergy Evaluation, 4(September), 1–40. Odum, Howard T. (1995). Environmental Accounting: Emergy and Environmental Decision Making. Odum, Howard T, Brown, M. T., & Brandt-Williams, S. (2000). Folio #1 Introduction and Global Budget. Handbook of Emergy Evaluation, May, 16. http://www.cep.ees.ufl.edu/emergy/documents/folios/Folio_01.pdf Oficina Económica y Comercial de la Embajada de España en Bogotá. (2020). El mercado de las bebidas alcohólicas en Colombia. http://colombia.oficinascomerciales.es/ Oggioni, G., Riccardi, R., & Toninelli, R. (2011). Eco-efficiency of the world cement industry: A data envelopment analysis. Energy Policy, 39(5), 2842–2854. https://doi.org/10.1016/j.enpol.2011.02.057 Panzieri, M., Marchettini, N., & Bastianoni, S. (2002). A thermodynamic methodology to assess how different cultivation methods affect sustainability of agricultural systems. International Journal of Sustainable Development and World Ecology, 9(1), 1–8. https://doi.org/10.1080/13504500209470097 Porter, M. E., Linde, C. Van Der, & Porter, M. E. (1995). Green and Competitive : Ending the Stalemate Green and Competitive : Rafat, E., Babaelahi, M., & Mofidipour, E. (2019). Sustainability analysis of low temperature solar-driven kalina power plant using emergy concept. International Journal of Thermodynamics, 22(3), 118–126. https://doi.org/10.5541/ijot.552938 Ren, S., Feng, X., & Yang, M. (2020). Emergy evaluation of power generation systems. Energy Conversion and Management, 211(December 2019), 112749. https://doi.org/10.1016/j.enconman.2020.112749 Rodríguez-Ortega, T., Bernués, A., Olaizola, A. M., & Brown, M. T. (2017). Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. Journal of Cleaner Production, 144, 171–179. https://doi.org/10.1016/j.jclepro.2016.12.089 Smirnov, V. N. (2020). Calculation of strong-collision dissociation rate constants from NASA thermodynamic polynomials. International Journal of Chemical Kinetics, 52(9), 559–579. https://doi.org/10.1002/kin.21369 Song, Q., Wang, Z., Li, J., & Duan, H. (2012). Sustainability evaluation of an e-waste treatment enterprise based on emergy analysis in China. Ecological Engineering, 42, 223–231. https://doi.org/10.1016/j.ecoleng.2012.02.016 Su, Y., He, S., Wang, K., Shahtahmassebi, A. R., Zhang, L., Zhang, J., Zhang, M., & Gan, M. (2020). Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production, 252. https://doi.org/10.1016/j.jclepro.2019.119650 Tang, M., Hong, J., Wang, X., & He, R. (2020). Sustainability accounting of neighborhood metabolism and its applications for urban renewal based on emergy analysis and SBM-DEA. Journal of Environmental Management, 275(April), 111177. https://doi.org/10.1016/j.jenvman.2020.111177 Thiel, D. (2014). Research methods for engineers. Cambridge University Press. Tilley, D. R. (1999). Emergy Basis of Forest Systems. Ph.D., 296. internal-pdf://tilley1999-1031041536/Tilley1999.pdf UPME. (2021). BALANCE ENERGETICO COLOMBIANO - BECO. https://www1.upme.gov.co/informacioncifras/paginas/balanceenergetico.aspx Vanti, G. (2020). ¿Quiénes somos? https://www.grupovanti.com/conocenos/ Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., & Verbruggen, A. (2014). Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability (Switzerland), 6(9), 5512–5534. https://doi.org/10.3390/su6095512 Wagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Maresˇ, R., Oguchi, K., Sato, H., Sto¨cker, I., Sˇifner, O., Takaishi, Y., Tanishita, I., Tru¨benbach, J., & Willkommen, T. (2000). The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam . Journal of Engineering for Gas Turbines and Power, 122(1), 150–184. https://doi.org/10.1115/1.483186 Xu, Z., Tang, Y., Wang, Q., Xu, Y., Yuan, X., Ma, Q., Wang, G., Liu, M., & Hao, H. (2021). Emergy based optimization of regional straw comprehensive utilization scheme. Journal of Cleaner Production, 297, 126638. https://doi.org/10.1016/j.jclepro.2021.126638 Yazdani, S., Salimipour, E., & Moghaddam, M. S. (2020). A comparison between a natural gas power plant and a municipal solid waste incineration power plant based on an emergy analysis. Journal of Cleaner Production, 274, 123158. https://doi.org/10.1016/j.jclepro.2020.123158 Zhang, J., Ma, L., & Yan, Y. (2020). A dynamic comparison sustainability study of standard wastewater treatment system in the straw pulp papermaking process and printing & dyeing papermaking process based on the hybrid neural network and emergy framework. Water (Switzerland), 12(6). https://doi.org/10.3390/w12061781 Zhang, X. H., Zhang, R., Wu, J., Zhang, Y. Z., Lin, L. L., Deng, S. H., Li, L., Yang, G., Yu, X. Y., Qi, H., & Peng, H. (2016). An emergy evaluation of the sustainability of Chinese crop production system during 2000-2010. Ecological Indicators, 60, 622–633. https://doi.org/10.1016/j.ecolind.2015.08.004 Zhang, X., Wei, Y., Pan, H., Xiao, H., Wu, J., & Zhang, Y. (2015). The comparison of performances of a sewage treatment system before and after implementing the cleaner production measure. Journal of Cleaner Production, 91, 216–228. https://doi.org/10.1016/j.jclepro.2014.12.025 Zhao, Z., Chen, J., Bai, Y., & Wang, P. (2020). Assessing the sustainability of grass-based livestock husbandry in Hulun Buir, China. Physics and Chemistry of the Earth, 120(July), 102907. https://doi.org/10.1016/j.pce.2020.102907 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 100 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería de Sistemas e Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81026/1/1014262421.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81026/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81026/3/1014262421.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
98fd757914f1c0e25884a489dec9b180 8153f7789df02f0a4c9e079953658ab2 13d792d54abca84c66ffc6da304890ee |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089891989946368 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Mantilla, Carlos Eduardo9a83dab60a1ef046e31ee1f9d6aa9a3a600Narváez Rincón, Paulo César1424150a73b4193d8936a493fb231fd5Niño Casallas, Jorge Andreib5e30f8373cdb653d1d2142dbbb463502022-02-21T18:00:21Z2022-02-21T18:00:21Z2021-10-14https://repositorio.unal.edu.co/handle/unal/81026Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLa ecoeficiencia se define como una relación entre el beneficio económico percibido por un sistema productivo y el impacto ambiental generado. Dentro de las metodologías disponibles para el cálculo de este último, está el análisis emergético el cual cuantifica la cantidad de energía directa e indirecta usada para crear un bien o un servicio bajo una misma unidad, evidenciando la inversión hecha por el ecosistema en aquel producto o servicio, lo cual permite integrarse con el análisis de ecoeficiencia. De esta forma, el propósito del presente estudio es implementar el análisis emergético para el cálculo de ecoeficiencia en el proceso de tostación de una planta productora de malta cervecera, donde el consumo energético es considerable. Para el desarrollo se realizó un análisis de entradas y salidas del sistema, se aplicaron transformicidades en cada entrada y se calcularon indicadores emergéticos que caracterizan el sistema. Con estos datos, se cuantificó la emergía total requerida por el sistema y se halló la ecoeficiencia con referencia al ingreso económico, obteniendo un valor de 2.90x10-13 USD/sej, y de 6.43x10-16 ton/sej respecto a la cantidad de malta producida. Con los resultados obtenidos se sugiere reusar la energía en el proceso de calderas y tostación, disminuir el consumo de fuentes no renovables, y disminuir las pérdidas de energía del sistema, en busca de generar un mejor comportamiento ambiental. De acuerdo con esto la implementación del método emergético en el análisis de ecoeficiencia, permite identificar puntos de mejora en la relación económica y ambiental de un sistema industrial. (Texto tomado de la fuente).Eco-efficiency is defined as a relationship between economic benefit perceived by a production system and the environmental impact generated. Into the methodologies available for calculating the environmental impact, there is the emergy analysis which quantifies the amount of direct and indirect energy used to create a good or a service under the same unit, determining the investment made by the ecosystem in that product or service, which allows integration with the eco-efficiency analysis. In this way, the purpose of this study is to implement emergy analysis for the calculation of eco-efficiency in the kilning process of a brewing malt production plant, where energy consumption is considerable. For that development, an analysis of inputs and outputs of the system was carried out, transformities were applied in each input and emergy indicators were calculated to characterize the system. With these data, total emergy required by the system was quantified and eco-efficiency was found with reference to economic income, obtaining a value of 2.90x10-13 USD/sej, and 6.43x10-16 ton/sej regarding the quantity of malt produced. According with that, it is suggested to reuse the energy in the boiler and kilning process, reduce the consumption of non-renewable sources, and reduce the energy losses of the system, to generate a better environmental behavior. In this way, the implementation of the emergy method in the eco-efficiency analysis, allows to identify points of improvement in the economic and environmental relationship of an industrial system.MaestríaMagíster en Ingeniería - Ingeniería IndustrialIngeniería de la productividadxxi, 100 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería IndustrialDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesBrewing industryEnergy efficiencyEfficiencyIndustria cerveceraRendimiento energéticoEficienciaMalteríaCebadaMaltaTostaciónEmergíaEcoeficienciaMalt plantBarleyMaltKilningEmergyEco-efficiencyImplementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cerveceraImplementation of emergy method for eco-efficiency analysis in kilning process of a brewing malt production plantTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMACCEFYN. (2003). Factores de emisión de los combustibles colombianos. Informe final, presentado a UPMEAlibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V., & Forero, J. D. (2020). Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03758Alizadeh, S., Zafari-koloukhi, H., Rostami, F., Rouhbakhsh, M., & Avami, A. (2020). The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses. Journal of Cleaner Production, 249, 119327. https://doi.org/10.1016/j.jclepro.2019.119327Alkhuzaim, L., Zhu, Q., & Sarkis, J. (2021). Evaluating Emergy Analysis at the Nexus of Circular Economy and Sustainable Supply Chain Management. Sustainable Production and Consumption, 25, 413–424. https://doi.org/10.1016/j.spc.2020.11.022Álvarez, S., Lomas, P. L., Martín, B., Rodríguez, M., & Montes, C. (2005). El Sistema de Evaluación Emergética (Emergy Synthesis). Integrando Energía, Ecología y Economía. February 2015.Arnold, M., & Osorio, F. (1998). Introduccion a los conceptos basicos de la teoria general de sistemas. Cinta de Moebio, 27, 157–159. https://www.redalyc.org/pdf/101/10100306.pdfBakshi, B. R. (2002). A thermodynamic framework for ecologically conscious process systems engineering. Computers and Chemical Engineering, 26(2), 269–282. https://doi.org/10.1016/S0098-1354(01)00745-1Bakshi, B. R. (2014). Methods and tools for sustainable process design. Current Opinion in Chemical Engineering, 6, 69–74. https://doi.org/10.1016/j.coche.2014.09.005Bakshi, B. R. (2019). Sustainable Engineering principles and practice. Cambridge University Press. https://doi.org/10.1017/9781108333726Bleier, F. P. (1997). Fan Handbook: Selection, Application, and Design. McGraw-Hill Book Company.Bolanakis, D. E., Kotsis, K. T., & Laopoulos, T. (2015). Temperature influence on differential barometric altitude measurements. Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2015, 1(September), 120–124. https://doi.org/10.1109/IDAACS.2015.7340711Breedveld, L., Timellini, G., Casoni, G., Fregni, A., & Busani, G. (2007). Eco-efficiency of fabric filters in the Italian ceramic tile industry. Journal of Cleaner Production, 15(1), 86–93. https://doi.org/10.1016/j.jclepro.2005.08.015Briggs, D. E. (1998). Malts and Malting (1st ed.). Springer US.Brown, M. T., & Ulgiati, S. (2002). Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production, 10(4), 321–334. https://doi.org/10.1016/S0959-6526(01)00043-9Brown, Mark T. (2004). A picture is worth a thousand words: Energy systems language and simulation. Ecological Modelling, 178(1–2), 83–100. https://doi.org/10.1016/j.ecolmodel.2003.12.008Brown, Mark T., Campbell, D. E., De Vilbiss, C., & Ulgiati, S. (2016). The geobiosphere emergy baseline: A synthesis. Ecological Modelling, 339, 92–95. https://doi.org/10.1016/j.ecolmodel.2016.03.018Brown, Mark T., Raugei, M., & Ulgiati, S. (2012). On boundaries and “investments” in Emergy Synthesis and LCA: A case study on thermal vs. photovoltaic electricity. Ecological Indicators, 15(1), 227–235. https://doi.org/10.1016/j.ecolind.2011.09.021Brown, Mark T., & Ulgiati, S. (2016). Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline. Ecological Modelling, 339, 126–132. https://doi.org/10.1016/j.ecolmodel.2016.03.017Cangrejo Castro, N. (2020). Integración de Economía Circular en la industria química colombiana: Propuesta de un sistema de indicadores de desempeño ambiental para medir la circularidad en empresas del sector. Universidad Nacional de Colombia.Cano. (2018). Sustainability Assessment of Alluvial and Open Pit Mining Systems in Colombia : Life Cycle Assessment , Exergy Analysis , and Emergy Accounting Evaluación de sostenibilidad de los sistemas de extracción aluvial y a cielo abierto en Colombia . Análisis Eme.Cano Londoño, N. A. (2012). Análisis mediante el método emergético de la disposición de los lodos producidos en una planta de tratamiento de aguas residuales. (Aplicación a una PTAR en el Área Metropolitana del Valle de Aburrá). http://www.bdigital.unal.edu.co/8652/1/tesisnataliacano.pdfCano, N. A., Velásquez, H. I., & McIntyre, N. (2019). Comparing the environmental sustainability of two gold production methods using integrated Emergy and Life Cycle Assessment. Ecological Indicators, 107(July), 105600. https://doi.org/10.1016/j.ecolind.2019.105600Cao, K., & Feng, X. (2007). The emergy analysis of multi-product systems. Process Safety and Environmental Protection, 85(5 B), 494–500. https://doi.org/10.1205/psep07007Cao, L., Zhou, Z., Wu, Y., Huang, Y., & Cao, G. (2019). Is metabolism in all regions of China performing well? – Evidence from a new DEA-Malmquist productivity approach. Ecological Indicators, 106. https://doi.org/10.1016/j.ecolind.2019.105487CELSIA. (2020). Sistema Interconectado de Energía. https://www.celsia.com/wp-content/uploads/2020/09/Documento-de-trabajo-sobre-el-Sistema-Interconectado-Nacional.pdfChang, C. S., Ni, S. H., Yang, H. S., & Chou, C. T. (2021). Simulation study of separating oxygen from air by pressure swing adsorption process with semicylindrical adsorber. Journal of the Taiwan Institute of Chemical Engineers, 120, 67–76. https://doi.org/10.1016/j.jtice.2021.03.027Chapman, S. J. (2012). Máquinas eléctricas (5ta ed.). McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.Chen, D., Li, X. C., Luo, Z. H., & Chen, J. (2019). Ecological and economic feasibility analysis of irrigation engineering projects. Applied Ecology and Environmental Research, 17(1), 781–793. https://doi.org/10.15666/aeer/1701_781793Corcelli, F., Ripa, M., & Ulgiati, S. (2018). Efficiency and sustainability indicators for papermaking from virgin pulp—An emergy-based case study. Resources, Conservation and Recycling, 131, 313–328. https://doi.org/10.1016/j.resconrec.2017.11.028Creswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (4th ed.). SAGE.Daly, H. E., & Farley, J. (2011). Ecological economics : principles and applications (2nd Editio). Island Press.De Clerck, J. (1957). A textbook of brewing: Vol. One. Chapman & Hall LTDA.de Souza Junior, H. R. A., Dantas, T. E. T., Zanghelini, G. M., Cherubini, E., & Soares, S. R. (2020). Measuring the environmental performance of a circular system: Emergy and LCA approach on a recycle polystyrene system. Science of the Total Environment, 726, 138111. https://doi.org/10.1016/j.scitotenv.2020.138111dos Reis, J. C., Rodrigues, G. S., de Barros, I., Ribeiro Rodrigues, R. de A., Garrett, R. D., Valentim, J. F., Kamoi, M. Y. T., Michetti, M., Wruck, F. J., Rodrigues-Filho, S., Pimentel, P. E. O., & Smukler, S. (2021). Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. Journal of Cleaner Production, 283. https://doi.org/10.1016/j.jclepro.2020.124580Dyllick, T., & Hockerts, K. (2002). BEYOND THE BUSINESS CASE FOR CORPORATE. 141, 130–141.Energy Technology Support Unit. (1986). Heat recovery from a boiler exhaust to pre-heat air to a spray dryer: A Demonstration Project at BIP Chemicals Ltd. Journal of Heat Recovery Systems, 6(1), 25–31.Fan, Y., & Fang, C. (2020). Assessing environmental performance of eco-industrial development in industrial parks. Waste Management, 107, 219–226. https://doi.org/10.1016/j.wasman.2020.04.008Field, B. C., & Field, M. K. (2016). Environmental Economics: An Introduction (Seventh Ed). McGraw-Hill Education.Flucorrex AG. (2018). Maltings: Heat-Exchanger. https://www.flucorrex.ch/heat-exchanger-e.htmlGeng, Y., Liu, Z., Xue, B., Dong, H., Fujita, T., & Chiu, A. (2014). Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone. Environmental Science and Pollution Research, 21(23), 13572–13587. https://doi.org/10.1007/s11356-014-3287-8Geng, Y., Zhang, P., Ulgiati, S., & Sarkis, J. (2010). Emergy analysis of an industrial park: The case of Dalian, China. Science of the Total Environment, 408(22), 5273–5283. https://doi.org/10.1016/j.scitotenv.2010.07.081Giannetti, B. F. B. F., Agostinho, F., Moraes, L. C., Almeida, C. M. V. B. C. M. V. B., & Ulgiati, S. (2015). Multicriteria cost-benefit assessment of tannery production: The need for breakthrough process alternatives beyond conventional technology optimization. Environmental Impact Assessment Review, 54, 22–38. https://doi.org/10.1016/j.eiar.2015.04.006Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565–573. https://doi.org/10.1016/j.ecolind.2015.08.003Hau, J. L., & Bakshi, B. R. (2004). Promise and problems of emergy analysis. Ecological Modelling, 178(1–2), 215–225. https://doi.org/10.1016/j.ecolmodel.2003.12.016He, C. (2011). Eco-efficiency evaluation of the water conservancy and hydropower project based on emergy analysis theory. 2011 International Conference on Multimedia Technology, ICMT 2011, 4389–4393. https://doi.org/10.1109/ICMT.2011.6002980Hellström, D. (1997). An exergy analysis for a wastewater treatment plant-an estimation of the consumption of physical resources. Water Environment Research, 69(1), 44–51. https://doi.org/10.2175/106143097x125173Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. del P. (2014). Metodologia de la Investigacion (I. EDITORES (ed.); 6th ed.). McGRAW-HILL.Huguet, J., Woodbury, K., & Taylor, R. (2008). Development of excel add-in modules for use in thermodynamics curriculum: steam and ideal gas properties. ASEE Annual Conference and Exposition, Conference Proceedings. https://doi.org/10.18260/1-2--4023Huppes, G., & Ishikawa, M. (2007). Eco-efficiency in industry and science (G. Huppes & M. Ishikawa (eds.); 22nd ed.).IDEAM. (2014). Consulta y Descarga de Datos Hidrometeorológicos. http://dhime.ideam.gov.co/atencionciudadano/ISO. (2006). ISO 14040:2006. https://www.iso.org/obp/Kamp, A., Ambye-Jensen, M., & Østergård, H. (2019). Modelling matter and energy flows of local, refined grass-clover protein feed as alternative to imported soy meal. Ecological Modelling, 410(September 2018), 108738. https://doi.org/10.1016/j.ecolmodel.2019.108738Kamp, A., Morandi, F., & Estergård, H. (2016). Development of concepts for human labour accounting in Emergy Assessment and other Environmental Sustainability Assessment methods. Ecological Indicators, 60, 884–892. https://doi.org/10.1016/j.ecolind.2015.08.011Kunze, W. (2019). Technology Brewing and Malting (O. Hendel (ed.); 6th ed.).Li, D., Zhu, J., Hui, E. C. M., Leung, B. Y. P., & Li, Q. (2011). An emergy analysis-based methodology for eco-efficiency evaluation of building manufacturing. Ecological Indicators, 11(5), 1419–1425. https://doi.org/10.1016/j.ecolind.2011.03.004Li, H., Yao, X., Tachega, M. A., Ahmed, D., & Ismaail, M. G. A. (2021). Technology selection for hydrogen production in China by integrating emergy into life cycle sustainability assessment. Journal of Cleaner Production, 294, 126303. https://doi.org/10.1016/j.jclepro.2021.126303Li, T., Song, Y. M., Li, A., Shen, J., Liang, C., & Gao, M. (2020). Research on green power dispatching based on an emergy-based life cycle assessment. Processes, 8(1). https://doi.org/10.3390/pr8010114Liu, C., Cai, W., Jia, S., Zhang, M., Guo, H., Hu, L., & Jiang, Z. (2018). Emergy-based evaluation and improvement for sustainable manufacturing systems considering resource efficiency and environment performance. Energy Conversion and Management, 177, 176–189. https://doi.org/10.1016/j.enconman.2018.09.039Liu, Conghu, Gao, M., Zhu, G., Zhang, C., Zhang, P., Chen, J., & Cai, W. (2021). Data driven eco-efficiency evaluation and optimization in industrial production. Energy, 224, 120170. https://doi.org/10.1016/j.energy.2021.120170Liu, W., Zhan, J., Li, Z., Jia, S., Zhang, F., & Li, Y. (2018). Eco-efficiency evaluation of regional circular economy: A case study in Zengcheng, Guangzhou. Sustainability (Switzerland), 10(2). https://doi.org/10.3390/su10020453Liu, X., Guo, P., & Guo, S. (2019). Assessing the eco-efficiency of a circular economy system in China’s coal mining areas: Emergy and data envelopment analysis. Journal of Cleaner Production, 206, 1101–1109. https://doi.org/10.1016/j.jclepro.2018.09.218Lu, F., Ming, Q. Z., Liu, H. F., & Luo, W. H. (2014). Applying eco-efficiency and emergy theory to the quantitative evaluation of tourism industry ecologicalization. In Advanced Materials Research (Vols. 1010–1012). https://doi.org/10.4028/www.scientific.net/AMR.1010-1012.2025Lu, H., Bai, Y., Ren, H., & Campbell, D. E. (2010). Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: Implications for agricultural policy in China. Journal of Environmental Management, 91(12), 2727–2735. https://doi.org/10.1016/j.jenvman.2010.07.025Lu, H., Xu, F. Y., Liu, H., Wang, J., Campbell, D. E., & Ren, H. (2019). Emergy-based analysis of the energy security of China. Energy, 181, 123–135. https://doi.org/10.1016/j.energy.2019.05.170Mallett, J. (2014). Malt: A Practical Guide from Field to Brewhouse. Brewer publications.Marchettini, N., Ridolfi, R., & Rustici, M. (2007). An environmental analysis for comparing waste management options and strategies. Waste Management, 27(4), 562–571. https://doi.org/10.1016/j.wasman.2006.04.007Mars, A. (2018). Psychro-chart2d. https://drajmarsh.bitbucket.io/psychro-chart2d.htmlMcbride, B., & Gordon, S. (1992). Computer program for calculating and fitting thermodynamic functions. NASA Reference Publication 1271.Merlin, G., & Boileau, H. (2017). Eco-efficiency and entropy generation evaluation based on emergy analysis: Application to two small biogas plants. Journal of Cleaner Production, 143, 257–268. https://doi.org/10.1016/j.jclepro.2016.12.117Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2014). Fundamentals Of Engineering Thermodynamics (8th ed.). John Wiley & Sons, Inc.Natural Resources Canada. (2016). INCREASING THE ENERGY EFFICIENCY OF BOILER AND HEATER INSTALLATIONS. https://www.nrcan.gc.ca/energy/publications/efficiency/industrial/cipec/6699Nielsen, S. N., & Bastianoni, S. (2007). A common framework for emergy and exergy based LCA in accordance with environ theory. International Journal of Ecodynamics, 2(3), 170–185. https://doi.org/10.2495/ECO-V2-N3-170-185Nikodinoska, N., Buonocore, E., Paletto, A., & Franzese, P. P. (2017). Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework. Applied Energy, 186, 197–210. https://doi.org/10.1016/j.apenergy.2016.04.073Nimmanterdwong, P., Chalermsinsuwan, B., Østergård, H., & Piumsomboon, P. (2017). Environmental performance assessment of Napier grass for bioenergy production. Journal of Cleaner Production, 165, 645–655. https://doi.org/10.1016/j.jclepro.2017.07.126Odum, E. C., Odum, H. T., Fe, S., & College, C. (1980). ENERGY SYSTEMS AND ENVIRONMENTAL EDUCATION Elisabeth C. Odum and Howard T. Odum Santa Fe Community College, Gainesville, FL 32602, U.S.A. University of Florida, Gainesville, FL 32611, U.S.A.Odum, E. P. (1976). Energy, Ecosystem Development and Environmental Risk. The Journal of Risk and Insurance, 43(1), 1. https://doi.org/10.2307/251605Odum, H. (1988). Self-Organization, Transformity, and Information. SCIENCE, 24–2.Odum, H.T. (2002). Folio #2 Emergy global Processes. Handbook of Emergy Evaluation, 4(September), 1–40.Odum, Howard T. (1995). Environmental Accounting: Emergy and Environmental Decision Making.Odum, Howard T, Brown, M. T., & Brandt-Williams, S. (2000). Folio #1 Introduction and Global Budget. Handbook of Emergy Evaluation, May, 16. http://www.cep.ees.ufl.edu/emergy/documents/folios/Folio_01.pdfOficina Económica y Comercial de la Embajada de España en Bogotá. (2020). El mercado de las bebidas alcohólicas en Colombia. http://colombia.oficinascomerciales.es/Oggioni, G., Riccardi, R., & Toninelli, R. (2011). Eco-efficiency of the world cement industry: A data envelopment analysis. Energy Policy, 39(5), 2842–2854. https://doi.org/10.1016/j.enpol.2011.02.057Panzieri, M., Marchettini, N., & Bastianoni, S. (2002). A thermodynamic methodology to assess how different cultivation methods affect sustainability of agricultural systems. International Journal of Sustainable Development and World Ecology, 9(1), 1–8. https://doi.org/10.1080/13504500209470097Porter, M. E., Linde, C. Van Der, & Porter, M. E. (1995). Green and Competitive : Ending the Stalemate Green and Competitive :Rafat, E., Babaelahi, M., & Mofidipour, E. (2019). Sustainability analysis of low temperature solar-driven kalina power plant using emergy concept. International Journal of Thermodynamics, 22(3), 118–126. https://doi.org/10.5541/ijot.552938Ren, S., Feng, X., & Yang, M. (2020). Emergy evaluation of power generation systems. Energy Conversion and Management, 211(December 2019), 112749. https://doi.org/10.1016/j.enconman.2020.112749Rodríguez-Ortega, T., Bernués, A., Olaizola, A. M., & Brown, M. T. (2017). Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. Journal of Cleaner Production, 144, 171–179. https://doi.org/10.1016/j.jclepro.2016.12.089Smirnov, V. N. (2020). Calculation of strong-collision dissociation rate constants from NASA thermodynamic polynomials. International Journal of Chemical Kinetics, 52(9), 559–579. https://doi.org/10.1002/kin.21369Song, Q., Wang, Z., Li, J., & Duan, H. (2012). Sustainability evaluation of an e-waste treatment enterprise based on emergy analysis in China. Ecological Engineering, 42, 223–231. https://doi.org/10.1016/j.ecoleng.2012.02.016Su, Y., He, S., Wang, K., Shahtahmassebi, A. R., Zhang, L., Zhang, J., Zhang, M., & Gan, M. (2020). Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production, 252. https://doi.org/10.1016/j.jclepro.2019.119650Tang, M., Hong, J., Wang, X., & He, R. (2020). Sustainability accounting of neighborhood metabolism and its applications for urban renewal based on emergy analysis and SBM-DEA. Journal of Environmental Management, 275(April), 111177. https://doi.org/10.1016/j.jenvman.2020.111177Thiel, D. (2014). Research methods for engineers. Cambridge University Press.Tilley, D. R. (1999). Emergy Basis of Forest Systems. Ph.D., 296. internal-pdf://tilley1999-1031041536/Tilley1999.pdfUPME. (2021). BALANCE ENERGETICO COLOMBIANO - BECO. https://www1.upme.gov.co/informacioncifras/paginas/balanceenergetico.aspxVanti, G. (2020). ¿Quiénes somos? https://www.grupovanti.com/conocenos/Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., & Verbruggen, A. (2014). Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability (Switzerland), 6(9), 5512–5534. https://doi.org/10.3390/su6095512Wagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Maresˇ, R., Oguchi, K., Sato, H., Sto¨cker, I., Sˇifner, O., Takaishi, Y., Tanishita, I., Tru¨benbach, J., & Willkommen, T. (2000). The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam . Journal of Engineering for Gas Turbines and Power, 122(1), 150–184. https://doi.org/10.1115/1.483186Xu, Z., Tang, Y., Wang, Q., Xu, Y., Yuan, X., Ma, Q., Wang, G., Liu, M., & Hao, H. (2021). Emergy based optimization of regional straw comprehensive utilization scheme. Journal of Cleaner Production, 297, 126638. https://doi.org/10.1016/j.jclepro.2021.126638Yazdani, S., Salimipour, E., & Moghaddam, M. S. (2020). A comparison between a natural gas power plant and a municipal solid waste incineration power plant based on an emergy analysis. Journal of Cleaner Production, 274, 123158. https://doi.org/10.1016/j.jclepro.2020.123158Zhang, J., Ma, L., & Yan, Y. (2020). A dynamic comparison sustainability study of standard wastewater treatment system in the straw pulp papermaking process and printing & dyeing papermaking process based on the hybrid neural network and emergy framework. Water (Switzerland), 12(6). https://doi.org/10.3390/w12061781Zhang, X. H., Zhang, R., Wu, J., Zhang, Y. Z., Lin, L. L., Deng, S. H., Li, L., Yang, G., Yu, X. Y., Qi, H., & Peng, H. (2016). An emergy evaluation of the sustainability of Chinese crop production system during 2000-2010. Ecological Indicators, 60, 622–633. https://doi.org/10.1016/j.ecolind.2015.08.004Zhang, X., Wei, Y., Pan, H., Xiao, H., Wu, J., & Zhang, Y. (2015). The comparison of performances of a sewage treatment system before and after implementing the cleaner production measure. Journal of Cleaner Production, 91, 216–228. https://doi.org/10.1016/j.jclepro.2014.12.025Zhao, Z., Chen, J., Bai, Y., & Wang, P. (2020). Assessing the sustainability of grass-based livestock husbandry in Hulun Buir, China. Physics and Chemistry of the Earth, 120(July), 102907. https://doi.org/10.1016/j.pce.2020.102907EstudiantesInvestigadoresMaestrosPersonal de apoyo escolarORIGINAL1014262421.2021.pdf1014262421.2021.pdfTesis de Maestría en Ingeniería - Ingeniería Industrialapplication/pdf1613849https://repositorio.unal.edu.co/bitstream/unal/81026/1/1014262421.2021.pdf98fd757914f1c0e25884a489dec9b180MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81026/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1014262421.2021.pdf.jpg1014262421.2021.pdf.jpgGenerated Thumbnailimage/jpeg5162https://repositorio.unal.edu.co/bitstream/unal/81026/3/1014262421.2021.pdf.jpg13d792d54abca84c66ffc6da304890eeMD53unal/81026oai:repositorio.unal.edu.co:unal/810262024-08-03 23:10:12.318Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |