Uso de técnicas de aprendizaje automatizado para predicción de morfología mandibular en clase I, II y III esquelética

Las técnicas de aprendizaje automatizado se emplean principalmente para clasificar y predecir datos en diferentes aplicaciones. El objetivo de esta investigación fue predecir a través de estos métodos la morfología mandibular en maloclusiones Clase I, Clase II y Clase III esquelética, empleando medi...

Full description

Autores:
Niño Sandoval, Tania Camila
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/11609
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/11609
http://bdigital.unal.edu.co/9055/
Palabra clave:
37 Educación / Education
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Redes Neuronales Artificiales
Máquinas de Vectores de Soporte
Predicción
Mandíbula
Biometría
Maloclusión Clase I, II, III
Esquelética / Artificial Neural
Networks
Support Vector
Machine
Prediction
Mandible
Biometry
Skeletal Class I, II, III
Malocclusion
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Las técnicas de aprendizaje automatizado se emplean principalmente para clasificar y predecir datos en diferentes aplicaciones. El objetivo de esta investigación fue predecir a través de estos métodos la morfología mandibular en maloclusiones Clase I, Clase II y Clase III esquelética, empleando medidas craneomaxilares. Se recolectaron 229 radiografías posteroanteriores y de perfil de adultos jóvenes colombianos de ambos sexos. Se emplearon coordenadas de landmarks óseos para formar variables craneomaxilares y mandibulares. Se probó inicialmente la clasificación de maloclusiones esqueléticas por medio de una máquina de vectores de soporte con un kernel lineal, excluyendo las variables mandibulares. En las radiografías posteroanteriores tuvo una precisión del 66%, clasificando en 71.43%, 70% y 60.87% para la Clase I, II y III. Para las radiografías de perfil, la precisión fue de 74.51%, con un 62.50%, 77.78% y 82.35% en la Clase I, II y III, definida por los atributos ENP-A-Pr, Zm-A-Pr, Te-Pr-A, Pr-A-Te, RhiA-Pr, A-Pr-Rhi, A-Te-Pr, A-N-Pr, N-Pr-A, Pr-A-N. En predicción, se usaron variables mandibulares específicas a partir de medidas craneofaciales seleccionadas evaluándose por medio de un coeficiente de correlación a través de una ridge regression; las variables Cdd-God, Cdd-Me, Cdi-Cdd, Cdi-Me y Goi-God tuvieron un r de 0.72, 0.82, 0.77, 0.86 y 0.76 con las redes neuronales en las radiografías posteroanteriores. Y en las radiografías de perfil, las medidas Gn-Id, Cd-Go-Gn, Gn-B, Gn-Pg, Go-Gn, Go-Me, Id-Gn-Go, Pg-B, Cd-Go-Gn, Gn-B, Gn-Pg, Go-Gn, Go-Me, Id-Gn-Go y Pg-B obtuvieron coeficientes de 0.95, 0.99, 0.95, 0.84, 0.91, 0.89, 0.93, 0.84, 0.95, 0.93, 0.98, 0.86, 0.84, 0.88, 0.96, 0.96 y 0.92 respectivamente. Las técnicas de aprendizaje automatizado en especial las redes neuronales, demostraron una precisión relevante que podría tener importancia en la reconstrucción facial para el proceso de individualización.