Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático

ilustraciones, graficas

Autores:
Baquero Tibocha, Diego Andrés
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83874
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83874
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
APRENDIZAJE
APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)
Learning
Machine learning
Signos vitales
Aprendizaje automático
Predicción
Estado clínico
Cuidado intensivo pediátrico
Vital signs
Prediction
Clinical status
Pediatric intensive care
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_676eb5c1f03d76642aeececed2123cdf
oai_identifier_str oai:repositorio.unal.edu.co:unal/83874
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático
dc.title.translated.eng.fl_str_mv Implementation of a software prototype to predict complications in patients in a pediatric intensive care unit (PICU), through machine learning models
title Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático
spellingShingle Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
APRENDIZAJE
APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)
Learning
Machine learning
Signos vitales
Aprendizaje automático
Predicción
Estado clínico
Cuidado intensivo pediátrico
Vital signs
Prediction
Clinical status
Pediatric intensive care
title_short Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático
title_full Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático
title_fullStr Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático
title_full_unstemmed Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático
title_sort Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático
dc.creator.fl_str_mv Baquero Tibocha, Diego Andrés
dc.contributor.advisor.none.fl_str_mv Niño Vásquez, Luis Fernando
Izquierdo Borrero, Ledys María
dc.contributor.author.none.fl_str_mv Baquero Tibocha, Diego Andrés
dc.contributor.researchgroup.spa.fl_str_mv laboratorio de Investigación en Sistemas Inteligentes Lisi
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
APRENDIZAJE
APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)
Learning
Machine learning
Signos vitales
Aprendizaje automático
Predicción
Estado clínico
Cuidado intensivo pediátrico
Vital signs
Prediction
Clinical status
Pediatric intensive care
dc.subject.lemb.spa.fl_str_mv APRENDIZAJE
APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)
dc.subject.lemb.eng.fl_str_mv Learning
Machine learning
dc.subject.proposal.spa.fl_str_mv Signos vitales
Aprendizaje automático
Predicción
Estado clínico
Cuidado intensivo pediátrico
dc.subject.proposal.eng.fl_str_mv Vital signs
Prediction
Clinical status
Pediatric intensive care
description ilustraciones, graficas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-25T19:48:30Z
dc.date.available.none.fl_str_mv 2023-05-25T19:48:30Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83874
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83874
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abromavičius, V. y Serackis, A. (2019). Sepsis Prediction Model Based on Vital Signs Related Features.
Amer, A.Y.A., Vranken, J., Wouters, F., Mesotten, D., Vandervoort, P., Storms, V., Luca, S., Vanrumste, B. y Aerts, J.-M. (2019). Feature engineering for ICU mortality prediction based on hourly to bi-hourly measurements. Applied Sciences (Switzerland), 9.
AnalystPrep (s. f.). Machine Learning Process. [Ilustración]. https://analystprep.com/study-notes/wpcontent/uploads/2020/04/MachineLearingApproaches_img1.jpg
Atashi, A., Ahmadian, L., Rahmatinezhad, Z., Miri, M., Nazeri, N. y Eslami, S. (2018). Development of a national core dataset for the Iranian ICU patients outcome prediction: A comprehensive approach. Journal of Innovation in Health Informatics, 25, 71-76.
Awad, A., Bader-El-Den, M., McNicholas, J. y Briggs, J. (2017). Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. International Journal of Medical Informatics, 108, 185-195.
Barnes, R., Clarke, D., Farina, Z., Sartorius, B., Brysiewicz, P., Laing, G., Bruce, J. y Kong, V. (2018). Vital sign based shock scores are poor at triaging South African trauma patients. American Journal of Surgery, 216, 235-239.
Bedoya, A.D., Clement, M.E., Phelan, M., Steorts, R.C., O'Brien, C. y Goldstein, B.A. (2019). Minimal Impact of Implemented Early Warning Score and Best Practice Alert for Patient Deterioration. Critical Care Medicine, 47, 49-55.
Bellew, S.D., Cabrera, D., Lohse, C.M. y Bellolio, M.F. (2017). Predicting Early Rapid Response Team Activation in Patients Admitted From the Emergency Department: The PeRRT Score. Academic Emergency Medicine, 24, 216-225.
Brilej, D., Stropnik, D., Lefering, R. y Komadina, R. (2017). Algorithm for activation of coagulation support treatment in multiple injured patients––cohort study. European Journal of Trauma and Emergency Surgery, 43, 423-430.
Brown, A., Ballal, A. y Al-Haddad, M. (2019). Recognition of the critically ill patient and escalation of therapy. Anaesthesia and Intensive Care Medicine, 20, 1-5.
Carlin, C.S., Ho, L.V., Ledbetter, D.R., Aczon, M.D. y Wetzel, R.C. (2018). Predicting individual physiologically acceptable states at discharge from a pediatric intensive care unit. Journal of the American Medical Informatics Association, 25, 1600-1607.
Chen, T., Xu, J., Ying, H., Chen, X., Feng, R., Fang, X., Gao, H. y Wu, J. (2019). Prediction of Extubation Failure for Intensive Care Unit Patients Using Light Gradient Boosting Machine. IEEE Access, 7, 150960-150968.
De Pasquale, M., Moss, T.J., Cerutti, S., Calland, J.F., Lake, D.E., Moorman, J.R. y Ferrario, M. (2017). Hemorrhage prediction models in surgical intensive care: Bedside monitoring data adds information to lab values. IEEE Journal of Biomedical and Health Informatics, 21, 1703-1710.
Ding, Y., Ma, X. y Wang, Y. (2018). Health status monitoring for ICU patients based on locally weighted principal component analysis. Computer Methods and Programs in Biomedicine, 156, 61-71.
Fagerström, J., Bång, M., Wilhelms, D. y Chew, M.S. (2019). LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock. Scientific Reports, 9.
Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Techniques and Tools to Build Learning Machines. Van Duuren Media.
Ge, W., Huh, J.-W., Park, Y.R., Lee, J.-H., Kim, Y.-H. y A. Turchin (2018). An Interpretable ICU Mortality Prediction Model Based on Logistic Regression and Recurrent Neural Networks with LSTM units. AMIA Annual Symposium proceedings. AMIA Symposium, 2018, 460-469.
Haider, A., Con, J., Prabhakaran, K., Anderson, P., Policastro, A., Feeney, J. y Latifi, R. (2019). Developing a simple clinical score for predicting mortality and need for ICU in trauma patients. American Surgeon, 85, 733-737.
Hever, G. , Cohen, L., O’Connor, M.F., Matot, I., Lerner, B. y Bitan, Y. (2020). Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU. Journal of Clinical Monitoring and Computing, 34, 339-352.
Hever, G., Cohen, L., O’Connor, M. F., Matot, I., Lerner, B., & Bitan, Y. (2019). Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU. Journal of Clinical Monitoring and Computing, 34(2), 339–352. https://doi.org/10.1007/s10877-019-00307-x
Hirano, Y., Kondo, Y., Hifumi, T., Yokobori, S., Kanda, J., Shimazaki, J., Hayashida, K., Moriya, T., Yagi, M., Takauji, S., Tanaka, H. y Yaguchi, A. (2021). Machine learningbased mortality prediction model for heat-related illness. Scientific Reports, 11.
IBM Cloud Education. (2020, 15 julio). Machine Learning. IBM. https://www.ibm.com/cloud/learn/machine-learning
Izquierdo, L. M., Nino, L. F., & Prieto Rojas, J. (2020). Modeling the vital sign space to detect the deterioration of patients in a pediatric intensive care unit. 16th International Symposium on Medical Information Processing and Analysis. Published. https://doi.org/10.1117/12.2579629
Izquierdo, L. M., Nino, L. F. (2021). Modelamiento del espacio de signos vitales para detectar el deterioro de los pacientes en una unidad de cuidados intensivos. Universidad Nacional de Colombia.
Karimi Moridani, M. y Haghighi Bardineh, Y. (2018). Presenting an efficient approach based on novel mapping for mortality prediction in intensive care unit cardiovascular patients. MethodsX, 5, 1291-1298.
Kefi, Z., Aloui, K. y Naceur, M.S. (2019). The early prediction of neonates mortality in Intensive Care Unit. (pp. 304-306).
Koyner, J.L., Carey, K.A., Edelson, D.P. y Churpek, M.M. (2018). The development of a machine learning inpatient acute kidney injury prediction model. Critical Care Medicine, 46, 1070-1077.
Li, X., Ge, P., Zhu, J., Li, H., Graham, J., Singer, A., Richman, P.S. y Duong, T.Q. (2020). Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables. PeerJ, 8.
Malycha, J., Farajidavar, N., Pimentel, M.A.F., Redfern, O., Clifton, D.A., Tarassenko, L., Meredith, P., Prytherch, D., Ludbrook, G., Young, J.D. y Watkinson, P.J. (2019). The effect of fractional inspired oxygen concentration on early warning score performance: A database analysis. Resuscitation, 139, 192-199.
Marafino, B.J., Park, M., Davies, J.M., Thombley, R., Luft, H.S., Sing, D.C., Kazi, D.S. Dejong, C., Boscardin, W.J., Dean, M.L. y Dudley, R.A. (2018). Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data. JAMA Network Open, 1.
Masud, M.M., Cheratta, M. y Harahsheh, A.R.A. (2018). Survival prediction of ICU patients using knowledge intensive data grouping and selection.
Matrices de confusión - Training. (s. f.). Microsoft Learn. https://learn.microsoft.com/eses/training/modules/machine-learning-confusion-matrix/2-confusion-matrices
Mayampurath, A., Jani, P., Dai, Y., Gibbons, R., Edelson, D. y Churpek, M.M. (2020). A vital sign-based model to predict clinical deterioration in hospitalized children. Pediatric Critical Care Medicine, 820-826.
Melinosky, C., Yang, S., Hu, P., Li, H., Miller, C.H.T., Khan, I., Mackenzie, C., Chang, W.- T., Parikh, G., Stein, D., Stein, D. y Badjatia, N. (2018). Continuous vital sign analysis to predict secondary neurological decline after traumatic brain injury. Frontiers in Neurology, 9.
Messinger, A.I., Bui, N., Wagner, B.D., Szefler, S.J., Vu, T. y Deterding, R.R. (2019). Novel pediatric-automated respiratory score using physiologic data and machine learning in asthma. Pediatric Pulmonology, 54, 1149-1155.
Monteiro, F., Meloni, F., Baranauskas, J.A. y Macedo, A.A. (2020). Prediction of mortality in Intensive Care Units: a multivariate feature selection. Journal of Biomedical Informatics, 107.
Nielsen, A.B., Thorsen-Meyer, H.-C., Belling, K., Nielsen, A.P., Thomas, C.E., Chmura, P.J., Lademann, M., Moseley, P.L., Heimann, M., Dybdahl, L., Perner, A. y Brunak, S. (2019). Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records. The Lancet Digital Health, 1, e78e89.
Parreco, J., Soe-Lin, H., Parks, J.J., Byerly, S., Chatoor, M., Buicko, J.L., Namias, N. y Rattan, R. (2019). Comparing machine learning algorithms for predicting acute kidney injury. American Surgeon, 85, 725-729.
Platzi: Cursos online profesionales de tecnología. (2018). Platzi. https://platzi.com/tutoriales/1269-probabilidad-estadistica/2308-coeficiente-decorrelacion-que-es-y-para-que-sirve/?utm_source=google
Pollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G. y Badawi, O. (2018). The eICU collaborative research database, a freely available multi-center database for critical care research. Scientific Data, 5.
R.G. Barry, T.T. Wolbert, F.B. Mozaffari, P.D. Ray, E.C. Thompson, T.W. Gress, & D.A. Denning (2019). Comparison of geriatric trauma outcomes when admitted to a medical or surgical service after a fall. Journal of Surgical Research, 233, 391-396.
Radhachandran, A., Garikipati, A., Zelin, N.S., Pellegrini, E., Ghandian, S., Calvert, J., Hoffman, J., Mao, Q. y Das, R. (2021). Prediction of short-term mortality in acute heart failure patients using minimal electronic health record data. BioData Mining, 14.
Rubin, J., Potes, C., Xu-Wilson, M., Dong, J., Rahman, A., Nguyen, H. y Moromisato, D. (2018). An ensemble boosting model for predicting transfer to the pediatric intensive care unit. International Journal of Medical Informatics, 112, 15-20.
Salahuddin, N., Shafquat, A., Marashly, Q., Zaza, K.J., Sharshir, M., Khurshid, M., Ali, Z., Malgapo, M., Jamil, M.G., Shoukri, M., Hijazi, M. y Al-Ghamdi, B. (2018). Increases in Heart Rate Variability Signal Improved Outcomes in Rapid Response Team Consultations: A Cohort Study. Cardiology Research and Practice, 2018.
Satchidanand, N., Servoss, T.J., Singh, R., Bosinski, A.M., Tirpak, P., Horton, L.L. y Naughton, B.J. (2018). Development of a Risk Tool to Support Discussions of Care for Older Adults Admitted to the ICU With Pneumonia. American Journal of Hospice and Palliative Medicine, 35, 1201-1206.
Shamout, F.E., Zhu, T., Sharma, P., Watkinson, P.J. y Clifton, D.A. (2020). Deep Interpretable Early Warning System for the Detection of Clinical Deterioration. IEEE Journal of Biomedical and Health Informatics, 24, 437-446.
Tamir, M. (2021, 29 enero). What Is Machine Learning? UCB-UMT. https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/
Timm, F.P., Zaremba, S., Grabitz, S.D., Farhan, H.N., Zaremba, S., Siliski, E., Shin, C.H., Muse, S., Friedrich, S., Mojica, J.E., Ramachandran, S.-K. y Eikermann, M. (2018). Effects of opioids given to facilitate mechanical ventilation on sleep apnea after extubation in the intensive care unit. Sleep, 41.
Tsur, E., Last, M., Garcia, V.F., Udassin, R., Klein, M. y Brotfain, E. (2019). Hypotensive episode prediction in icus via observation window splitting. LNAI, Vol. 11053.
Viegas, R., Salgado, C.M., Curto, S., Carvalho, J.P., Vieira, S.M. y Finkelstein, S.N. (2017). Daily prediction of ICU readmissions using feature engineering and ensemble fuzzy modeling. Expert Systems with Applications, 79, 244-253.
Wang, Y., Wei, Y., Yang, H., Li, J., Zhou, Y. y Wu, Q. (2020). Utilizing imbalanced electronic health records to predict acute kidney injury by ensemble learning and time series model. BMC Medical Informatics and Decision Making, 20.
Wellner, B., Grand, J., Canzone, E., Coarr, M., Brady, P.W., Simmons, J., Kirkendall, E., Dean, N. Kleinman, M. y Sylvester, P. (2017). Predicting unplanned transfers to the intensive care unit: A machine learning approach leveraging diverse clinical elements. JMIR Medical Informatics, 5.
Yoon, J.H., Jeanselme, V., Dubrawski, A., Hravnak, M., Pinsky, M.R. y Clermont, G. (2020). Prediction of hypotension events with physiologic vital sign signatures in the intensive care unit. Critical Care, 24.
Zachariasse J.M., Van Der Lee, D., Seiger, N., De Vos-Kerkhof, E., Oostenbrink, R. y Moll, H.A. (2017). The role of nurses' clinical impression in the first assessment of children at the emergency department. Archives of Disease in Childhood, 102, 1052- 1056.
Zimmerman, L.P., Reyfman, P.A., Smith, A.D.R., Zeng, Z., Kho, A., Sanchez-Pinto, L.N. y Luo, Y. (2019). Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Medical Informatics and Decision Making, 19.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 87 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83874/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83874/2/1016036337.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83874/3/1016036337.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
b3f8dd78dea6ae5c7778aea4a0f21fa6
f0d842feabf463805810fe8616a15525
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089410095874048
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Niño Vásquez, Luis Fernandobc784b82735e16fe53653c3f5c8f3bbeIzquierdo Borrero, Ledys María54650b76117390c84015c76bc9d8afefBaquero Tibocha, Diego Andrés20fa8a6927db3b94650b5f441668e8fclaboratorio de Investigación en Sistemas Inteligentes Lisi2023-05-25T19:48:30Z2023-05-25T19:48:30Z2023https://repositorio.unal.edu.co/handle/unal/83874Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasLos cuidadores de pacientes en estado crítico no siempre tienen las habilidades o la experiencia para tratar este tipo de pacientes (Wheatley, 2006). Además, el deterioro fisiológico se puede detectar a partir de cambios sutiles en los signos vitales dentro de una Unidad de Cuidados Intensivos Pediátricos (UCIP) (Izquierdo, 2021). Esto conlleva dificultades para el personal médico al realizar un pronóstico sobre una futura complicación. De acuerdo con lo anterior, este estudio tiene como objetivo implementar un prototipo de software capaz de predecir estados fisiológicos a través de los signos vitales, siguiendo como metodología el Proceso de Aprendizaje Automático (Machine Learning Process, MLP) sobre el conjunto de datos seleccionado. El prototipo se implementó de forma exitosa y se obtuvieron resultados prometedores en cuanto al uso de técnicas de aprendizaje automático para representar el estado actual y futuro de los pacientes en UCIP. Por lo tanto, se debe seguir trabajando en el esfuerzo de complementar el conjunto de datos e implementar nuevas propuestas del uso de las técnicas de aprendizaje automático, y así lograr una monitorización constante sobre los pacientes (Texto tomado de la fuente)Caregivers of critically ill patients do not always have the skills or experience to treat these types of patients (Wheatley, 2006). Furthermore, physiological deterioration can be detected from subtle changes in vital signs within a Pediatric Intensive Care Unit (PICU) (Izquierdo, 2021). This leads to difficulties for medical personnel when making a prognosis about a future complication. Accordingly, this study aims to implement a software prototype capable of predicting physiological states through vital signs, following the Machine Learning Process (MLP) methodology on the selected data set. The prototype was successfully implemented, and promising results were obtained regarding the use of machine learning techniques to represent the current and future state of PICU patients. Therefore, work must continue in the effort to complement the data set and implement new methods for the use of machine learning techniques, and thus achieve constant monitoring of patients.MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónSistemas inteligentesPara la implementación de esta aplicación del aprendizaje automático a la medicina y su interacción con el personal médico, se diseñó una plataforma que se divide en tres aplicaciones llamadas: Frontend (JavaScript/ReactJS), Backend (.NET Ciore 5), y Model API (Python/Keras/Scikit-learn). Las aplicaciones interoperan entre sí para recibir las entradas del usuario, leer los datos, y generar las clasificaciones y predicciones, respectivamente. Las aplicaciones fueron desplegadas en la nube a través de los servicios de Azure y fue necesaria la implementación de Docker para el despliegue del módulo Model API.xiv, 87 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaAPRENDIZAJEAPRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)LearningMachine learningSignos vitalesAprendizaje automáticoPredicciónEstado clínicoCuidado intensivo pediátricoVital signsPredictionClinical statusPediatric intensive careImplementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automáticoImplementation of a software prototype to predict complications in patients in a pediatric intensive care unit (PICU), through machine learning modelsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbromavičius, V. y Serackis, A. (2019). Sepsis Prediction Model Based on Vital Signs Related Features.Amer, A.Y.A., Vranken, J., Wouters, F., Mesotten, D., Vandervoort, P., Storms, V., Luca, S., Vanrumste, B. y Aerts, J.-M. (2019). Feature engineering for ICU mortality prediction based on hourly to bi-hourly measurements. Applied Sciences (Switzerland), 9.AnalystPrep (s. f.). Machine Learning Process. [Ilustración]. https://analystprep.com/study-notes/wpcontent/uploads/2020/04/MachineLearingApproaches_img1.jpgAtashi, A., Ahmadian, L., Rahmatinezhad, Z., Miri, M., Nazeri, N. y Eslami, S. (2018). Development of a national core dataset for the Iranian ICU patients outcome prediction: A comprehensive approach. Journal of Innovation in Health Informatics, 25, 71-76.Awad, A., Bader-El-Den, M., McNicholas, J. y Briggs, J. (2017). Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. International Journal of Medical Informatics, 108, 185-195.Barnes, R., Clarke, D., Farina, Z., Sartorius, B., Brysiewicz, P., Laing, G., Bruce, J. y Kong, V. (2018). Vital sign based shock scores are poor at triaging South African trauma patients. American Journal of Surgery, 216, 235-239.Bedoya, A.D., Clement, M.E., Phelan, M., Steorts, R.C., O'Brien, C. y Goldstein, B.A. (2019). Minimal Impact of Implemented Early Warning Score and Best Practice Alert for Patient Deterioration. Critical Care Medicine, 47, 49-55.Bellew, S.D., Cabrera, D., Lohse, C.M. y Bellolio, M.F. (2017). Predicting Early Rapid Response Team Activation in Patients Admitted From the Emergency Department: The PeRRT Score. Academic Emergency Medicine, 24, 216-225.Brilej, D., Stropnik, D., Lefering, R. y Komadina, R. (2017). Algorithm for activation of coagulation support treatment in multiple injured patients––cohort study. European Journal of Trauma and Emergency Surgery, 43, 423-430.Brown, A., Ballal, A. y Al-Haddad, M. (2019). Recognition of the critically ill patient and escalation of therapy. Anaesthesia and Intensive Care Medicine, 20, 1-5.Carlin, C.S., Ho, L.V., Ledbetter, D.R., Aczon, M.D. y Wetzel, R.C. (2018). Predicting individual physiologically acceptable states at discharge from a pediatric intensive care unit. Journal of the American Medical Informatics Association, 25, 1600-1607.Chen, T., Xu, J., Ying, H., Chen, X., Feng, R., Fang, X., Gao, H. y Wu, J. (2019). Prediction of Extubation Failure for Intensive Care Unit Patients Using Light Gradient Boosting Machine. IEEE Access, 7, 150960-150968.De Pasquale, M., Moss, T.J., Cerutti, S., Calland, J.F., Lake, D.E., Moorman, J.R. y Ferrario, M. (2017). Hemorrhage prediction models in surgical intensive care: Bedside monitoring data adds information to lab values. IEEE Journal of Biomedical and Health Informatics, 21, 1703-1710.Ding, Y., Ma, X. y Wang, Y. (2018). Health status monitoring for ICU patients based on locally weighted principal component analysis. Computer Methods and Programs in Biomedicine, 156, 61-71.Fagerström, J., Bång, M., Wilhelms, D. y Chew, M.S. (2019). LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock. Scientific Reports, 9.Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Techniques and Tools to Build Learning Machines. Van Duuren Media.Ge, W., Huh, J.-W., Park, Y.R., Lee, J.-H., Kim, Y.-H. y A. Turchin (2018). An Interpretable ICU Mortality Prediction Model Based on Logistic Regression and Recurrent Neural Networks with LSTM units. AMIA Annual Symposium proceedings. AMIA Symposium, 2018, 460-469.Haider, A., Con, J., Prabhakaran, K., Anderson, P., Policastro, A., Feeney, J. y Latifi, R. (2019). Developing a simple clinical score for predicting mortality and need for ICU in trauma patients. American Surgeon, 85, 733-737.Hever, G. , Cohen, L., O’Connor, M.F., Matot, I., Lerner, B. y Bitan, Y. (2020). Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU. Journal of Clinical Monitoring and Computing, 34, 339-352.Hever, G., Cohen, L., O’Connor, M. F., Matot, I., Lerner, B., & Bitan, Y. (2019). Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU. Journal of Clinical Monitoring and Computing, 34(2), 339–352. https://doi.org/10.1007/s10877-019-00307-xHirano, Y., Kondo, Y., Hifumi, T., Yokobori, S., Kanda, J., Shimazaki, J., Hayashida, K., Moriya, T., Yagi, M., Takauji, S., Tanaka, H. y Yaguchi, A. (2021). Machine learningbased mortality prediction model for heat-related illness. Scientific Reports, 11.IBM Cloud Education. (2020, 15 julio). Machine Learning. IBM. https://www.ibm.com/cloud/learn/machine-learningIzquierdo, L. M., Nino, L. F., & Prieto Rojas, J. (2020). Modeling the vital sign space to detect the deterioration of patients in a pediatric intensive care unit. 16th International Symposium on Medical Information Processing and Analysis. Published. https://doi.org/10.1117/12.2579629Izquierdo, L. M., Nino, L. F. (2021). Modelamiento del espacio de signos vitales para detectar el deterioro de los pacientes en una unidad de cuidados intensivos. Universidad Nacional de Colombia.Karimi Moridani, M. y Haghighi Bardineh, Y. (2018). Presenting an efficient approach based on novel mapping for mortality prediction in intensive care unit cardiovascular patients. MethodsX, 5, 1291-1298.Kefi, Z., Aloui, K. y Naceur, M.S. (2019). The early prediction of neonates mortality in Intensive Care Unit. (pp. 304-306).Koyner, J.L., Carey, K.A., Edelson, D.P. y Churpek, M.M. (2018). The development of a machine learning inpatient acute kidney injury prediction model. Critical Care Medicine, 46, 1070-1077.Li, X., Ge, P., Zhu, J., Li, H., Graham, J., Singer, A., Richman, P.S. y Duong, T.Q. (2020). Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables. PeerJ, 8.Malycha, J., Farajidavar, N., Pimentel, M.A.F., Redfern, O., Clifton, D.A., Tarassenko, L., Meredith, P., Prytherch, D., Ludbrook, G., Young, J.D. y Watkinson, P.J. (2019). The effect of fractional inspired oxygen concentration on early warning score performance: A database analysis. Resuscitation, 139, 192-199.Marafino, B.J., Park, M., Davies, J.M., Thombley, R., Luft, H.S., Sing, D.C., Kazi, D.S. Dejong, C., Boscardin, W.J., Dean, M.L. y Dudley, R.A. (2018). Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data. JAMA Network Open, 1.Masud, M.M., Cheratta, M. y Harahsheh, A.R.A. (2018). Survival prediction of ICU patients using knowledge intensive data grouping and selection.Matrices de confusión - Training. (s. f.). Microsoft Learn. https://learn.microsoft.com/eses/training/modules/machine-learning-confusion-matrix/2-confusion-matricesMayampurath, A., Jani, P., Dai, Y., Gibbons, R., Edelson, D. y Churpek, M.M. (2020). A vital sign-based model to predict clinical deterioration in hospitalized children. Pediatric Critical Care Medicine, 820-826.Melinosky, C., Yang, S., Hu, P., Li, H., Miller, C.H.T., Khan, I., Mackenzie, C., Chang, W.- T., Parikh, G., Stein, D., Stein, D. y Badjatia, N. (2018). Continuous vital sign analysis to predict secondary neurological decline after traumatic brain injury. Frontiers in Neurology, 9.Messinger, A.I., Bui, N., Wagner, B.D., Szefler, S.J., Vu, T. y Deterding, R.R. (2019). Novel pediatric-automated respiratory score using physiologic data and machine learning in asthma. Pediatric Pulmonology, 54, 1149-1155.Monteiro, F., Meloni, F., Baranauskas, J.A. y Macedo, A.A. (2020). Prediction of mortality in Intensive Care Units: a multivariate feature selection. Journal of Biomedical Informatics, 107.Nielsen, A.B., Thorsen-Meyer, H.-C., Belling, K., Nielsen, A.P., Thomas, C.E., Chmura, P.J., Lademann, M., Moseley, P.L., Heimann, M., Dybdahl, L., Perner, A. y Brunak, S. (2019). Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records. The Lancet Digital Health, 1, e78e89.Parreco, J., Soe-Lin, H., Parks, J.J., Byerly, S., Chatoor, M., Buicko, J.L., Namias, N. y Rattan, R. (2019). Comparing machine learning algorithms for predicting acute kidney injury. American Surgeon, 85, 725-729.Platzi: Cursos online profesionales de tecnología. (2018). Platzi. https://platzi.com/tutoriales/1269-probabilidad-estadistica/2308-coeficiente-decorrelacion-que-es-y-para-que-sirve/?utm_source=googlePollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G. y Badawi, O. (2018). The eICU collaborative research database, a freely available multi-center database for critical care research. Scientific Data, 5.R.G. Barry, T.T. Wolbert, F.B. Mozaffari, P.D. Ray, E.C. Thompson, T.W. Gress, & D.A. Denning (2019). Comparison of geriatric trauma outcomes when admitted to a medical or surgical service after a fall. Journal of Surgical Research, 233, 391-396.Radhachandran, A., Garikipati, A., Zelin, N.S., Pellegrini, E., Ghandian, S., Calvert, J., Hoffman, J., Mao, Q. y Das, R. (2021). Prediction of short-term mortality in acute heart failure patients using minimal electronic health record data. BioData Mining, 14.Rubin, J., Potes, C., Xu-Wilson, M., Dong, J., Rahman, A., Nguyen, H. y Moromisato, D. (2018). An ensemble boosting model for predicting transfer to the pediatric intensive care unit. International Journal of Medical Informatics, 112, 15-20.Salahuddin, N., Shafquat, A., Marashly, Q., Zaza, K.J., Sharshir, M., Khurshid, M., Ali, Z., Malgapo, M., Jamil, M.G., Shoukri, M., Hijazi, M. y Al-Ghamdi, B. (2018). Increases in Heart Rate Variability Signal Improved Outcomes in Rapid Response Team Consultations: A Cohort Study. Cardiology Research and Practice, 2018.Satchidanand, N., Servoss, T.J., Singh, R., Bosinski, A.M., Tirpak, P., Horton, L.L. y Naughton, B.J. (2018). Development of a Risk Tool to Support Discussions of Care for Older Adults Admitted to the ICU With Pneumonia. American Journal of Hospice and Palliative Medicine, 35, 1201-1206.Shamout, F.E., Zhu, T., Sharma, P., Watkinson, P.J. y Clifton, D.A. (2020). Deep Interpretable Early Warning System for the Detection of Clinical Deterioration. IEEE Journal of Biomedical and Health Informatics, 24, 437-446.Tamir, M. (2021, 29 enero). What Is Machine Learning? UCB-UMT. https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/Timm, F.P., Zaremba, S., Grabitz, S.D., Farhan, H.N., Zaremba, S., Siliski, E., Shin, C.H., Muse, S., Friedrich, S., Mojica, J.E., Ramachandran, S.-K. y Eikermann, M. (2018). Effects of opioids given to facilitate mechanical ventilation on sleep apnea after extubation in the intensive care unit. Sleep, 41.Tsur, E., Last, M., Garcia, V.F., Udassin, R., Klein, M. y Brotfain, E. (2019). Hypotensive episode prediction in icus via observation window splitting. LNAI, Vol. 11053.Viegas, R., Salgado, C.M., Curto, S., Carvalho, J.P., Vieira, S.M. y Finkelstein, S.N. (2017). Daily prediction of ICU readmissions using feature engineering and ensemble fuzzy modeling. Expert Systems with Applications, 79, 244-253.Wang, Y., Wei, Y., Yang, H., Li, J., Zhou, Y. y Wu, Q. (2020). Utilizing imbalanced electronic health records to predict acute kidney injury by ensemble learning and time series model. BMC Medical Informatics and Decision Making, 20.Wellner, B., Grand, J., Canzone, E., Coarr, M., Brady, P.W., Simmons, J., Kirkendall, E., Dean, N. Kleinman, M. y Sylvester, P. (2017). Predicting unplanned transfers to the intensive care unit: A machine learning approach leveraging diverse clinical elements. JMIR Medical Informatics, 5.Yoon, J.H., Jeanselme, V., Dubrawski, A., Hravnak, M., Pinsky, M.R. y Clermont, G. (2020). Prediction of hypotension events with physiologic vital sign signatures in the intensive care unit. Critical Care, 24.Zachariasse J.M., Van Der Lee, D., Seiger, N., De Vos-Kerkhof, E., Oostenbrink, R. y Moll, H.A. (2017). The role of nurses' clinical impression in the first assessment of children at the emergency department. Archives of Disease in Childhood, 102, 1052- 1056.Zimmerman, L.P., Reyfman, P.A., Smith, A.D.R., Zeng, Z., Kho, A., Sanchez-Pinto, L.N. y Luo, Y. (2019). Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Medical Informatics and Decision Making, 19.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83874/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1016036337.2023.pdf1016036337.2023.pdfTesis de Maestría en Ingeniería de Sistemas y Computaciónapplication/pdf1987713https://repositorio.unal.edu.co/bitstream/unal/83874/2/1016036337.2023.pdfb3f8dd78dea6ae5c7778aea4a0f21fa6MD52THUMBNAIL1016036337.2023.pdf.jpg1016036337.2023.pdf.jpgGenerated Thumbnailimage/jpeg5765https://repositorio.unal.edu.co/bitstream/unal/83874/3/1016036337.2023.pdf.jpgf0d842feabf463805810fe8616a15525MD53unal/83874oai:repositorio.unal.edu.co:unal/838742023-08-05 23:04:24.188Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=