Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada

En este trabajo de investigación, se propone el desarrollo de un modelo de regresión lineal con respuesta multivariada asociado a la clase de distribuciones normal/independiente multivariadas. El objetivo principal es lograr el modelado de cuantiles marginales bajo la presencia de datos faltantes, t...

Full description

Autores:
Escobar Arias, Jose Antonio
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86279
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86279
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Modelos log-lineales
Análisis de regresión
Análisis multivariante
Algoritmo de Aumento de Datos Monótonos (MDA Algorithm)
distribuciónn normal/independiente multivariada
distribución log-normal/independiente multivariada
modelado de cuantiles
datos faltantes
regresión lineal multivariada
Monotone Data Augmentation Algorithm (MDA Algorithm)
multivariate normal/independent distribution
multivariate log-normal/independent distribution
quantile modeling
missing data
multivariate linear regression
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_6739be4bcf26b788faac139dfdc296c1
oai_identifier_str oai:repositorio.unal.edu.co:unal/86279
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada
dc.title.translated.eng.fl_str_mv Modeling of marginal quantiles in the presence of missing data using the class of regression models with normal/independent multivariate distribution
title Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada
spellingShingle Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Modelos log-lineales
Análisis de regresión
Análisis multivariante
Algoritmo de Aumento de Datos Monótonos (MDA Algorithm)
distribuciónn normal/independiente multivariada
distribución log-normal/independiente multivariada
modelado de cuantiles
datos faltantes
regresión lineal multivariada
Monotone Data Augmentation Algorithm (MDA Algorithm)
multivariate normal/independent distribution
multivariate log-normal/independent distribution
quantile modeling
missing data
multivariate linear regression
title_short Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada
title_full Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada
title_fullStr Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada
title_full_unstemmed Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada
title_sort Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada
dc.creator.fl_str_mv Escobar Arias, Jose Antonio
dc.contributor.advisor.none.fl_str_mv Mazo Lopera, Mauricio Alejandro
dc.contributor.author.none.fl_str_mv Escobar Arias, Jose Antonio
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Modelos log-lineales
Análisis de regresión
Análisis multivariante
Algoritmo de Aumento de Datos Monótonos (MDA Algorithm)
distribuciónn normal/independiente multivariada
distribución log-normal/independiente multivariada
modelado de cuantiles
datos faltantes
regresión lineal multivariada
Monotone Data Augmentation Algorithm (MDA Algorithm)
multivariate normal/independent distribution
multivariate log-normal/independent distribution
quantile modeling
missing data
multivariate linear regression
dc.subject.lemb.none.fl_str_mv Modelos log-lineales
Análisis de regresión
Análisis multivariante
dc.subject.proposal.spa.fl_str_mv Algoritmo de Aumento de Datos Monótonos (MDA Algorithm)
distribuciónn normal/independiente multivariada
distribución log-normal/independiente multivariada
modelado de cuantiles
datos faltantes
regresión lineal multivariada
dc.subject.proposal.eng.fl_str_mv Monotone Data Augmentation Algorithm (MDA Algorithm)
multivariate normal/independent distribution
multivariate log-normal/independent distribution
quantile modeling
missing data
multivariate linear regression
description En este trabajo de investigación, se propone el desarrollo de un modelo de regresión lineal con respuesta multivariada asociado a la clase de distribuciones normal/independiente multivariadas. El objetivo principal es lograr el modelado de cuantiles marginales bajo la presencia de datos faltantes, teniendo en cuenta la asociación entre las variables del vector de respuesta. Se emplea un enfoque Bayesiano, aprovechando las herramientas que este ofrece, como también algoritmos (que serán descritos posteriormente) para llevar a cabo el proceso de imputación y aproximación de distribuciones posteriores. La validez del modelo se evalúa mediante estudios de simulación, que confirman el desempeño satisfactorio en el proceso de estimación de los parámetros. Además, se presenta una aplicación práctica del modelo a un conjunto de datos reales, proporcionando así una validación adicional de su utilidad y aplicabilidad en contextos empíricos. (Tomado de la fuente)
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-19T21:06:15Z
dc.date.available.none.fl_str_mv 2024-06-19T21:06:15Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86279
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86279
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Abanto-Valle, C. A., Lachos, V. H., y Ghosh, P. (2012). A bayesian approach to term struc ture modeling using heavy-tailed distributions. Applied stochastic models in business and industry, 28 (5), 430–447.
Andrews, D. F., y Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society: Series B (Methodological), 36 (1), 99–102.
Arellano-Valle, R., Galea-Rojas, M., y Zuazola, P. I. (2000). Bayesian sensitivity analysis in elliptical linear regression models. Journal of Statistical Planning and Inference, 86 (1), 175–199.
Arslan, O. (2008). An alternative multivariate skew-slash distribution. Statistics & Probability Letters, 78 (16), 2756–2761.
Arslan, O., y Gen¸c, A. ˙I. (2009). A generalization of the multivariate slash distribution. Journal of Statistical Planning and Inference, 139 (3), 1164–1170.
Atkinson, A. C. (1981). Two graphical displays for outlying and influential observations in regression. Biometrika, 68 (1), 13–20.
Bartlett, M. S. (1934). Xx.—on the theory of statistical regression. Proceedings of the Royal Society of Edinburgh, 53 , 260–283.
Beale, E. M., y Little, R. J. (1975). Missing values in multivariate analysis. Journal of the Royal Statistical Society Series B: Statistical Methodology, 37 (1), 129–145.
Boris Choy, S., y Chan, J. S. (2008). Scale mixtures distributions in statistical modelling. Australian & New Zealand Journal of Statistics, 50 (2), 135–146.
Box, G. E., y Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society Series B: Statistical Methodology, 26 (2), 211–243.
Box, G. E., y Tiao, G. C. (1973). Bayesian inference in statistical analysis. John Wiley & Sons.
Buchinsky, M. (1998). Recent advances in quantile regression models: a practical guideline for empirical research. Journal of human resources, 88–126.
Carpenter, J. R., Bartlett, J. W., Morris, T. P., Wood, A. M., Quartagno, M., y Kenward, M. G. (2023). Multiple imputation and its application. John Wiley & Sons.
Chakraborty, B. (2003). On multivariate quantile regression. Journal of statistical planning and inference, 110 (1-2), 109–132.
Chen, G., y Luo, S. (2016). Robust bayesian hierarchical model using normal/independent distributions. Biometrical Journal, 58 (4), 831–851.
De la Cruz, R. (2014). Bayesian analysis for nonlinear mixed-effects models under heavy-tailed distributions. Pharmaceutical statistics, 13 (1), 81–93.
Dempster, A. P., Laird, N. M., y Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the royal statistical society: series B (methodological), 39 (1), 1–22.
De Santis, F., y Spezzaferri, F. (1999). Methods for default and robust bayesian model comparison: the fractional bayes factor approach. International Statistical Review, 67 (3), 267–286.
Dunnett, C. W., y Sobel, M. (1954). A bivariate generalization of student’s t-distribution, with tables for certain special cases. Biometrika, 41 (1-2), 153–169.
Ferrari, S. L., y Fumes, G. (2017). Box–cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101 , 321–344.
Galarza Morales, C., Lachos Davila, V., Barbosa Cabral, C., y Castro Cepero, L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6 (1), 113–130.
Garay, A. M., Bolfarine, H., Lachos, V. H., y Cabral, C. R. (2015). Bayesian analysis of censored linear regression models with scale mixtures of normal distributions. Journal of Applied Statistics, 42 (12), 2694–2714.
Gelman, A., Carlin, J. B., Stern, H. S., y Rubin, D. B. (1995). Bayesian data analysis. Chapman and Hall/CRC.
Gen¸c, A. ˙I. (2007). A generalization of the univariate slash by a scale-mixtured exponential power distribution. Communications in Statistics—Simulation and Computation®, 36 (5), 937–947.
G´omez, H. W., Quintana, F. A., y Torres, F. J. (2007). A new family of slash-distributions with elliptical contours. Statistics & probability letters, 77 (7), 717–725.
Han, P., Kong, L., Zhao, J., y Zhou, X. (2019). A general framework for quantile estimation with incomplete data. Journal of the Royal Statistical Society Series B: Statistical Methodology, 81 (2), 305–333.
Howarth, T., Ben Saad, H., y Heraganahally, S. S. (2023). The impact of lung function parameters on sleep among aboriginal australians–a polysomnography and spirometry relationship study. Nature and Science of Sleep, 449–464.
Hunter, D. R., y Lange, K. (2000). Quantile regression via an mm algorithm. Journal of Computational and Graphical Statistics, 9 (1), 60–77.
Kafadar, K. (2004). Slash distribution. Encyclopedia of statistical sciences, 12 .
Kibria, B. G., y Joarder, A. H. (2006). A short review of multivariate t-distribution. Journal of Statistical research, 40 (1), 59–72.
Kleinke, K., Fritsch, M., Stemmler, M., Reinecke, J., y L¨osel, F. (2021). Quantile regression based multiple imputation of missing values—an evaluation and application to corporal punishment data. Methodology, 17 (3), 205–230.
Koenker, R. (2005). Quantile regression (Vol. 38). Cambridge university press.
Koenker, R., y Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 33–50.
Kotz, S., y Nadarajah, S. (2004). Multivariate t-distributions and their applications. Cambridge University Press.
Lachos, V. H., Bandyopadhyay, D., y Dey, D. K. (2011). Linear and nonlinear mixed-effects models for censored hiv viral loads using normal/independent distributions. Biometrics, 67 (4), 1594–1604.
Lange, K., y Sinsheimer, J. S. (1993). Normal/independent distributions and their applications in robust regression. Journal of Computational and Graphical Statistics, 2 (2), 175–198.
Lange, K. L., Little, R. J., y Taylor, J. M. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association, 84 (408), 881–896.
Lee, S. X., y McLachlan, G. J. (2014). Scale mixture distribution. Wiley StatsRef: Statistics Reference Online, 1–16.
Li, K.-H. (1988). Imputation using markov chains. Journal of Statistical Computation and Simulation, 30 (1), 57–79.
Lin, P.-E. (1972). Some characterizations of the multivariate t distribution. Journal of Multivariate Analysis, 2 (3), 339–344.
Little, R. J. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Journal of the Royal Statistical Society Series C: Applied Statistics, 37 (1), 23–38.
Little, R. J. A., y Rubin, D. B. (1987). Statistical analysis with missing data (First ed.). Hoboken, NJ : Wiley: Wiley Series in Probability and Statistics.
Liu, C. (1993). Bartlett s decomposition of the posterior distribution of the covariance for normal monotone ignorable missing data. Journal of Multivariate Analysis, 46 (2), 198–206.
Liu, C. (1994). Statistical analysis using the multivariate t distribution. Harvard University.
Liu, C. (1995). Missing data imputation using the multivariate t distribution. Journal of multivariate analysis, 53 (1), 139–158.
Liu, C. (1996). Bayesian robust multivariate linear regression with incomplete data. Journal of the American Statistical Association, 91 (435), 1219–1227.
Liu, C. (1997). Ml estimation of the multivariate tdistribution and the em algorithm. Journal of Multivariate Analysis, 63 (2), 296–312.
Liu, C., y Rubin, D. B. (1995). Ml estimation of the t distribution using em and its extensions, ecm and ecme. Statistica Sinica, 19–39.
Meng, X.-L., y Rubin, D. B. (1993). Maximum likelihood estimation via the ecm algorithm: A general framework. Biometrika, 80 (2), 267–278.
Montgomery, D. C., Peck, E. A., y Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.
Morán-Vásquez, R. A., y Ferrari, S. L. (2019). Box–cox elliptical distributions with application. Metrika, 82 (5), 547–571.
Morán-Vásquez, R. A., Giraldo-Melo, A. D., y Mazo-Lopera, M. A. (2023). Quantile estimation using the log-skew-normal linear regression model with application to children’s weight data. Mathematics, 11 (17), 3736.
Morán-Vásquez, R. A., Mazo-Lopera, M. A., y Ferrari, S. L. (2021). Quantile modeling through multivariate log-normal/independent linear regression models with application to newborn data. Biometrical Journal, 63 (6), 1290–1308.
Morán-V´asquez, R. A., Roldán-Correa, A., y Nagar, D. K. (2023). Quantile-based multivariate log-normal distribution. Symmetry, 15 (8), 1513.
Petrella, L., y Raponi, V. (2019). Joint estimation of conditional quantiles in multivariate li near regression models with an application to financial distress. Journal of Multivariate Analysis, 173 , 70–84.
Quiroz, A. J., Nakamura, M., y P´erez, F. J. (1996). Estimation of a multivariate box-cox transformation to elliptical symmetry via the empirical characteristic function. Annals of the Institute of Statistical Mathematics, 48 , 687–709.
Raghunathan, T. (2015). Missing data analysis in practice. CRC press.
Reyes, J., Gallardo, D. I., Bolfarine, H., y G´omez, H. W. (2019). A new class of slash-elliptical distributions. Communications in Statistics-Theory and Methods, 48 (12), 3105–3121.
Reyes, J., y Iriarte, Y. A. (2023). A new family of modified slash distributions with applications. Mathematics, 11 (13), 3018.
Ritter, C., y Tanner, M. A. (1992). Facilitating the gibbs sampler: the gibbs stopper and the griddy-gibbs sampler. Journal of the American Statistical Association, 87 (419), 861–868.
Rogers, W. H., y Tukey, J. W. (1972). Understanding some long-tailed symmetrical distributions. Statistica Neerlandica, 26 (3), 211–226.
Rosa, G., Padovani, C. R., y Gianola, D. (2003). Robust linear mixed models with normal/independent distributions and bayesian mcmc implementation. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 45 (5), 573–590.
Roth, S., M’Pembele, R., Stroda, A., Voit, J., Lurati Buse, G., Sixt, S. U., . . . others (2022). Days alive and out of hospital after left ventricular assist device implantation. ESC Heart Failure, 9 (4), 2455–2463.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63 (3), 581–592.
Rubin, D. B. (1983). Iteratively reweighted least squares. Encyclopedia of statistical sciences, 6 .
Rubin, D. B., y Schafer, J. L. (1990). Efficiently creating multiple imputations for incomplete multivariate normal data. En Proceedings of the statistical computing section of the american statistical association (Vol. 83, p. 88).
S´anchez, B., Lachos, H., y Labra, V. (2013). Likelihood based inference for quantile regression using the asymmetric laplace distribution. Journal of Statistical Computation and Simulation, 81 , 1565–1578.
Schafer, J. L. (1997). Analysis of incomplete multivariate data. CRC press.
Schmeiser, B. W., y Lal, R. (1980). Squeeze methods for generating gamma variates. Journal of the American Statistical Association, 75 (371), 679–682.
Stasinopoulos, M., Rigby, B., Voudouris, V., Akantziliotou, C., Enea, M., y Kiose, D. (2023). Package ‘gamlss’. Dist’2020Available online: http://www. gamlss. org (accessed on 16 July 2021).
Student. (1908). The probable error of a mean. Biometrika, 6 (1), 1–25.
Tang, Y. (2015). An efficient monotone data augmentation algorithm for bayesian analysis of incomplete longitudinal data. Statistics & Probability Letters, 104 , 146–152.
Tanner, M. A., y Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American statistical Association, 82 (398), 528–540.
Tian, Y., Tian, M., y Zhu, Q. (2014). Linear quantile regression based on em algorithm. Communications in Statistics-Theory and Methods, 43 (16), 3464–3484.
Van Buuren, S. (2018). Flexible imputation of missing data. CRC press.
Van Dyk, D. A., y Meng, X.-L. (2001). The art of data augmentation. Journal of Computational and Graphical Statistics, 10 (1), 1–50.
Van Dyk, D. A., y Meng, X.-L. (2010). Cross-fertilizing strategies for better em mountain climbing and da field exploration: A graphical guide book.
Vanegas, L. H., y Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation.
Verhasselt, A., Fl´orez, A. J., Van Keilegom, I., y Molenberghs, G. (2019). The impact of incomplete data on quantile regression for longitudinal data. FEB Research Report KBI 1906 .
Wang, C., Tian, M., y Tang, M.-L. (2022). Nonparametric quantile regression with missing data using local estimating equations. Journal of Nonparametric Statistics, 34 (1), 164–186.
Wang, J., y Genton, M. G. (2006). The multivariate skew-slash distribution. Journal of Statistical Planning and Inference, 136 (1), 209–220.
Wei, Y. (2008). An approach to multivariate covariate-dependent quantile contours with application to bivariate conditional growth charts. Journal of the American Statistical Association, 103 (481), 397–409.
WHO. (2006). Who child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. World Health Organization.
WHO. (2007). World health organization child growth standards: head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development. World Health Organization.
Wichitaksorn, N., Choy, S. B., y Gerlach, R. (2014). A generalized class of skew distributions and associated robust quantile regression models. Canadian Journal of Statistics, 42 (4), 579–596.
Yu, K., y Moyeed, R. A. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54 (4), 437–447.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 94 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86279/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86279/2/1123415188.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86279/3/1123415188.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a7e625c7e545c0eea2c8c76fb19dc85f
cb063782430c53c491b06357615d2b05
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089283306258432
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mazo Lopera, Mauricio Alejandro225507a038cae9633b438fc57783c3b2Escobar Arias, Jose Antonio600193592e5d7c6087a9b8965e1127f72024-06-19T21:06:15Z2024-06-19T21:06:15Z2024https://repositorio.unal.edu.co/handle/unal/86279Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En este trabajo de investigación, se propone el desarrollo de un modelo de regresión lineal con respuesta multivariada asociado a la clase de distribuciones normal/independiente multivariadas. El objetivo principal es lograr el modelado de cuantiles marginales bajo la presencia de datos faltantes, teniendo en cuenta la asociación entre las variables del vector de respuesta. Se emplea un enfoque Bayesiano, aprovechando las herramientas que este ofrece, como también algoritmos (que serán descritos posteriormente) para llevar a cabo el proceso de imputación y aproximación de distribuciones posteriores. La validez del modelo se evalúa mediante estudios de simulación, que confirman el desempeño satisfactorio en el proceso de estimación de los parámetros. Además, se presenta una aplicación práctica del modelo a un conjunto de datos reales, proporcionando así una validación adicional de su utilidad y aplicabilidad en contextos empíricos. (Tomado de la fuente)In this research work, we propose the development of a multivariate linear regression model associated with the class of normal/independent multivariate distributions. The primary objective is to achieve modeling of marginal quantiles in the presence of missing data, considering the association among variables in the response vector. A Bayesian approach is employed, leveraging the tools offered by this approach, including algorithms (which will be described later) for imputation and posterior distribution calculations. The model's validity is assessed through simulation studies, confirming the satisfactory performance of parameters estimation. Additionally, a practical application of the model to a real dataset is presented, providing further validation of its utility and applicability in empirical contexts.MaestríaMagíster en Ciencias - EstadísticaModelado de CuantilesEstadística.Sede Medellín94 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - EstadísticaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasModelos log-linealesAnálisis de regresiónAnálisis multivarianteAlgoritmo de Aumento de Datos Monótonos (MDA Algorithm)distribuciónn normal/independiente multivariadadistribución log-normal/independiente multivariadamodelado de cuantilesdatos faltantesregresión lineal multivariadaMonotone Data Augmentation Algorithm (MDA Algorithm)multivariate normal/independent distributionmultivariate log-normal/independent distributionquantile modelingmissing datamultivariate linear regressionModelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariadaModeling of marginal quantiles in the presence of missing data using the class of regression models with normal/independent multivariate distributionTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAbanto-Valle, C. A., Lachos, V. H., y Ghosh, P. (2012). A bayesian approach to term struc ture modeling using heavy-tailed distributions. Applied stochastic models in business and industry, 28 (5), 430–447.Andrews, D. F., y Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society: Series B (Methodological), 36 (1), 99–102.Arellano-Valle, R., Galea-Rojas, M., y Zuazola, P. I. (2000). Bayesian sensitivity analysis in elliptical linear regression models. Journal of Statistical Planning and Inference, 86 (1), 175–199.Arslan, O. (2008). An alternative multivariate skew-slash distribution. Statistics & Probability Letters, 78 (16), 2756–2761.Arslan, O., y Gen¸c, A. ˙I. (2009). A generalization of the multivariate slash distribution. Journal of Statistical Planning and Inference, 139 (3), 1164–1170.Atkinson, A. C. (1981). Two graphical displays for outlying and influential observations in regression. Biometrika, 68 (1), 13–20.Bartlett, M. S. (1934). Xx.—on the theory of statistical regression. Proceedings of the Royal Society of Edinburgh, 53 , 260–283.Beale, E. M., y Little, R. J. (1975). Missing values in multivariate analysis. Journal of the Royal Statistical Society Series B: Statistical Methodology, 37 (1), 129–145.Boris Choy, S., y Chan, J. S. (2008). Scale mixtures distributions in statistical modelling. Australian & New Zealand Journal of Statistics, 50 (2), 135–146.Box, G. E., y Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society Series B: Statistical Methodology, 26 (2), 211–243.Box, G. E., y Tiao, G. C. (1973). Bayesian inference in statistical analysis. John Wiley & Sons.Buchinsky, M. (1998). Recent advances in quantile regression models: a practical guideline for empirical research. Journal of human resources, 88–126.Carpenter, J. R., Bartlett, J. W., Morris, T. P., Wood, A. M., Quartagno, M., y Kenward, M. G. (2023). Multiple imputation and its application. John Wiley & Sons.Chakraborty, B. (2003). On multivariate quantile regression. Journal of statistical planning and inference, 110 (1-2), 109–132.Chen, G., y Luo, S. (2016). Robust bayesian hierarchical model using normal/independent distributions. Biometrical Journal, 58 (4), 831–851.De la Cruz, R. (2014). Bayesian analysis for nonlinear mixed-effects models under heavy-tailed distributions. Pharmaceutical statistics, 13 (1), 81–93.Dempster, A. P., Laird, N. M., y Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the royal statistical society: series B (methodological), 39 (1), 1–22.De Santis, F., y Spezzaferri, F. (1999). Methods for default and robust bayesian model comparison: the fractional bayes factor approach. International Statistical Review, 67 (3), 267–286.Dunnett, C. W., y Sobel, M. (1954). A bivariate generalization of student’s t-distribution, with tables for certain special cases. Biometrika, 41 (1-2), 153–169.Ferrari, S. L., y Fumes, G. (2017). Box–cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101 , 321–344.Galarza Morales, C., Lachos Davila, V., Barbosa Cabral, C., y Castro Cepero, L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6 (1), 113–130.Garay, A. M., Bolfarine, H., Lachos, V. H., y Cabral, C. R. (2015). Bayesian analysis of censored linear regression models with scale mixtures of normal distributions. Journal of Applied Statistics, 42 (12), 2694–2714.Gelman, A., Carlin, J. B., Stern, H. S., y Rubin, D. B. (1995). Bayesian data analysis. Chapman and Hall/CRC.Gen¸c, A. ˙I. (2007). A generalization of the univariate slash by a scale-mixtured exponential power distribution. Communications in Statistics—Simulation and Computation®, 36 (5), 937–947.G´omez, H. W., Quintana, F. A., y Torres, F. J. (2007). A new family of slash-distributions with elliptical contours. Statistics & probability letters, 77 (7), 717–725.Han, P., Kong, L., Zhao, J., y Zhou, X. (2019). A general framework for quantile estimation with incomplete data. Journal of the Royal Statistical Society Series B: Statistical Methodology, 81 (2), 305–333.Howarth, T., Ben Saad, H., y Heraganahally, S. S. (2023). The impact of lung function parameters on sleep among aboriginal australians–a polysomnography and spirometry relationship study. Nature and Science of Sleep, 449–464.Hunter, D. R., y Lange, K. (2000). Quantile regression via an mm algorithm. Journal of Computational and Graphical Statistics, 9 (1), 60–77.Kafadar, K. (2004). Slash distribution. Encyclopedia of statistical sciences, 12 .Kibria, B. G., y Joarder, A. H. (2006). A short review of multivariate t-distribution. Journal of Statistical research, 40 (1), 59–72.Kleinke, K., Fritsch, M., Stemmler, M., Reinecke, J., y L¨osel, F. (2021). Quantile regression based multiple imputation of missing values—an evaluation and application to corporal punishment data. Methodology, 17 (3), 205–230.Koenker, R. (2005). Quantile regression (Vol. 38). Cambridge university press.Koenker, R., y Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 33–50.Kotz, S., y Nadarajah, S. (2004). Multivariate t-distributions and their applications. Cambridge University Press.Lachos, V. H., Bandyopadhyay, D., y Dey, D. K. (2011). Linear and nonlinear mixed-effects models for censored hiv viral loads using normal/independent distributions. Biometrics, 67 (4), 1594–1604.Lange, K., y Sinsheimer, J. S. (1993). Normal/independent distributions and their applications in robust regression. Journal of Computational and Graphical Statistics, 2 (2), 175–198.Lange, K. L., Little, R. J., y Taylor, J. M. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association, 84 (408), 881–896.Lee, S. X., y McLachlan, G. J. (2014). Scale mixture distribution. Wiley StatsRef: Statistics Reference Online, 1–16.Li, K.-H. (1988). Imputation using markov chains. Journal of Statistical Computation and Simulation, 30 (1), 57–79.Lin, P.-E. (1972). Some characterizations of the multivariate t distribution. Journal of Multivariate Analysis, 2 (3), 339–344.Little, R. J. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Journal of the Royal Statistical Society Series C: Applied Statistics, 37 (1), 23–38.Little, R. J. A., y Rubin, D. B. (1987). Statistical analysis with missing data (First ed.). Hoboken, NJ : Wiley: Wiley Series in Probability and Statistics.Liu, C. (1993). Bartlett s decomposition of the posterior distribution of the covariance for normal monotone ignorable missing data. Journal of Multivariate Analysis, 46 (2), 198–206.Liu, C. (1994). Statistical analysis using the multivariate t distribution. Harvard University.Liu, C. (1995). Missing data imputation using the multivariate t distribution. Journal of multivariate analysis, 53 (1), 139–158.Liu, C. (1996). Bayesian robust multivariate linear regression with incomplete data. Journal of the American Statistical Association, 91 (435), 1219–1227.Liu, C. (1997). Ml estimation of the multivariate tdistribution and the em algorithm. Journal of Multivariate Analysis, 63 (2), 296–312.Liu, C., y Rubin, D. B. (1995). Ml estimation of the t distribution using em and its extensions, ecm and ecme. Statistica Sinica, 19–39.Meng, X.-L., y Rubin, D. B. (1993). Maximum likelihood estimation via the ecm algorithm: A general framework. Biometrika, 80 (2), 267–278.Montgomery, D. C., Peck, E. A., y Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.Morán-Vásquez, R. A., y Ferrari, S. L. (2019). Box–cox elliptical distributions with application. Metrika, 82 (5), 547–571.Morán-Vásquez, R. A., Giraldo-Melo, A. D., y Mazo-Lopera, M. A. (2023). Quantile estimation using the log-skew-normal linear regression model with application to children’s weight data. Mathematics, 11 (17), 3736.Morán-Vásquez, R. A., Mazo-Lopera, M. A., y Ferrari, S. L. (2021). Quantile modeling through multivariate log-normal/independent linear regression models with application to newborn data. Biometrical Journal, 63 (6), 1290–1308.Morán-V´asquez, R. A., Roldán-Correa, A., y Nagar, D. K. (2023). Quantile-based multivariate log-normal distribution. Symmetry, 15 (8), 1513.Petrella, L., y Raponi, V. (2019). Joint estimation of conditional quantiles in multivariate li near regression models with an application to financial distress. Journal of Multivariate Analysis, 173 , 70–84.Quiroz, A. J., Nakamura, M., y P´erez, F. J. (1996). Estimation of a multivariate box-cox transformation to elliptical symmetry via the empirical characteristic function. Annals of the Institute of Statistical Mathematics, 48 , 687–709.Raghunathan, T. (2015). Missing data analysis in practice. CRC press.Reyes, J., Gallardo, D. I., Bolfarine, H., y G´omez, H. W. (2019). A new class of slash-elliptical distributions. Communications in Statistics-Theory and Methods, 48 (12), 3105–3121.Reyes, J., y Iriarte, Y. A. (2023). A new family of modified slash distributions with applications. Mathematics, 11 (13), 3018.Ritter, C., y Tanner, M. A. (1992). Facilitating the gibbs sampler: the gibbs stopper and the griddy-gibbs sampler. Journal of the American Statistical Association, 87 (419), 861–868.Rogers, W. H., y Tukey, J. W. (1972). Understanding some long-tailed symmetrical distributions. Statistica Neerlandica, 26 (3), 211–226.Rosa, G., Padovani, C. R., y Gianola, D. (2003). Robust linear mixed models with normal/independent distributions and bayesian mcmc implementation. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 45 (5), 573–590.Roth, S., M’Pembele, R., Stroda, A., Voit, J., Lurati Buse, G., Sixt, S. U., . . . others (2022). Days alive and out of hospital after left ventricular assist device implantation. ESC Heart Failure, 9 (4), 2455–2463.Rubin, D. B. (1976). Inference and missing data. Biometrika, 63 (3), 581–592.Rubin, D. B. (1983). Iteratively reweighted least squares. Encyclopedia of statistical sciences, 6 .Rubin, D. B., y Schafer, J. L. (1990). Efficiently creating multiple imputations for incomplete multivariate normal data. En Proceedings of the statistical computing section of the american statistical association (Vol. 83, p. 88).S´anchez, B., Lachos, H., y Labra, V. (2013). Likelihood based inference for quantile regression using the asymmetric laplace distribution. Journal of Statistical Computation and Simulation, 81 , 1565–1578.Schafer, J. L. (1997). Analysis of incomplete multivariate data. CRC press.Schmeiser, B. W., y Lal, R. (1980). Squeeze methods for generating gamma variates. Journal of the American Statistical Association, 75 (371), 679–682.Stasinopoulos, M., Rigby, B., Voudouris, V., Akantziliotou, C., Enea, M., y Kiose, D. (2023). Package ‘gamlss’. Dist’2020Available online: http://www. gamlss. org (accessed on 16 July 2021).Student. (1908). The probable error of a mean. Biometrika, 6 (1), 1–25.Tang, Y. (2015). An efficient monotone data augmentation algorithm for bayesian analysis of incomplete longitudinal data. Statistics & Probability Letters, 104 , 146–152.Tanner, M. A., y Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American statistical Association, 82 (398), 528–540.Tian, Y., Tian, M., y Zhu, Q. (2014). Linear quantile regression based on em algorithm. Communications in Statistics-Theory and Methods, 43 (16), 3464–3484.Van Buuren, S. (2018). Flexible imputation of missing data. CRC press.Van Dyk, D. A., y Meng, X.-L. (2001). The art of data augmentation. Journal of Computational and Graphical Statistics, 10 (1), 1–50.Van Dyk, D. A., y Meng, X.-L. (2010). Cross-fertilizing strategies for better em mountain climbing and da field exploration: A graphical guide book.Vanegas, L. H., y Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation.Verhasselt, A., Fl´orez, A. J., Van Keilegom, I., y Molenberghs, G. (2019). The impact of incomplete data on quantile regression for longitudinal data. FEB Research Report KBI 1906 .Wang, C., Tian, M., y Tang, M.-L. (2022). Nonparametric quantile regression with missing data using local estimating equations. Journal of Nonparametric Statistics, 34 (1), 164–186.Wang, J., y Genton, M. G. (2006). The multivariate skew-slash distribution. Journal of Statistical Planning and Inference, 136 (1), 209–220.Wei, Y. (2008). An approach to multivariate covariate-dependent quantile contours with application to bivariate conditional growth charts. Journal of the American Statistical Association, 103 (481), 397–409.WHO. (2006). Who child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. World Health Organization.WHO. (2007). World health organization child growth standards: head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development. World Health Organization.Wichitaksorn, N., Choy, S. B., y Gerlach, R. (2014). A generalized class of skew distributions and associated robust quantile regression models. Canadian Journal of Statistics, 42 (4), 579–596.Yu, K., y Moyeed, R. A. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54 (4), 437–447.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86279/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1123415188.2024.pdf1123415188.2024.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf1301165https://repositorio.unal.edu.co/bitstream/unal/86279/2/1123415188.2024.pdfa7e625c7e545c0eea2c8c76fb19dc85fMD52THUMBNAIL1123415188.2024.pdf.jpg1123415188.2024.pdf.jpgGenerated Thumbnailimage/jpeg5179https://repositorio.unal.edu.co/bitstream/unal/86279/3/1123415188.2024.pdf.jpgcb063782430c53c491b06357615d2b05MD53unal/86279oai:repositorio.unal.edu.co:unal/862792024-08-25 23:11:42.758Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=