Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada
En este trabajo de investigación, se propone el desarrollo de un modelo de regresión lineal con respuesta multivariada asociado a la clase de distribuciones normal/independiente multivariadas. El objetivo principal es lograr el modelado de cuantiles marginales bajo la presencia de datos faltantes, t...
- Autores:
-
Escobar Arias, Jose Antonio
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86279
- Palabra clave:
- 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Modelos log-lineales
Análisis de regresión
Análisis multivariante
Algoritmo de Aumento de Datos Monótonos (MDA Algorithm)
distribuciónn normal/independiente multivariada
distribución log-normal/independiente multivariada
modelado de cuantiles
datos faltantes
regresión lineal multivariada
Monotone Data Augmentation Algorithm (MDA Algorithm)
multivariate normal/independent distribution
multivariate log-normal/independent distribution
quantile modeling
missing data
multivariate linear regression
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional