Estimation of Sensitive Attributes Using a Stratified Kuk Randomization Device
This paper suggests a stratified Kuk model to estimate the proportion of sensitive attributes of a population composed by a number of strata; this is undertaken by applying stratified sampling to the adjusted Kuk model. The paper estimates sensitive parameters when the size of the stratum is known...
- Autores:
-
Kim, Jong-Min
Lee, Gi-Sung
Hong, Ki-Hak
Son, Chang-Kyoon
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66503
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66503
http://bdigital.unal.edu.co/67531/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Randomized response model
Kuk’s model
Sensitive attribute
Stratified sampling
Stratified double sampling
modelo Kuk ajustado
modelo de respuesta aleatorizada
atributos sensibles
muestreo doble estratificado
muestreo estratificado
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | This paper suggests a stratified Kuk model to estimate the proportion of sensitive attributes of a population composed by a number of strata; this is undertaken by applying stratified sampling to the adjusted Kuk model. The paper estimates sensitive parameters when the size of the stratum is known by taking proportional and optimal allocation methods into account and then extends to the case of an unknown stratum size, estimating sensitive parameters by applying stratified double sampling and checking the two allocation methods. Finally, the paper compares the efficiency of the proposed model to that of the Su, Sedory and Singh model and the adjusted Kuk model in terms of the estimator variance. |
---|